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Abstract

Cloud computing is a popular, flexible, scalable, and cost-effective technology in the modern

world that provides on-demand services dynamically. The dynamic execution of user

requests and resource-sharing facilities require proper task scheduling among the available

virtual machines, which is a significant issue and plays a crucial role in developing an optimal

cloud computing environment. Round Robin is a prevalent scheduling algorithm for fair dis-

tribution of resources with a balanced contribution in minimized response time and turn-

around time. This paper introduced a new enhanced round-robin approach for task

scheduling in cloud computing systems. The proposed algorithm generates and keeps

updating a dynamic quantum time for process execution, considering the available number

of process in the system and their burst length. Since our method dynamically runs pro-

cesses, it is appropriate for a real-time environment like cloud computing. The notable part

of this approach is the capability of scheduling tasks with asymmetric distribution of burst

time, avoiding the convoy effect. The experimental result indicates that the proposed algo-

rithm has outperformed the existing improved round-robin task scheduling approaches in

terms of minimized average waiting time, average turnaround time, and number of context

switches. Comparing the method against five other enhanced round robin approaches, it

reduced average waiting times by 15.77% and context switching by 20.68% on average.

After executing the experiment and comparative study, it can be concluded that the pro-

posed enhanced round-robin scheduling algorithm is optimal, acceptable, and relatively bet-

ter suited for cloud computing environments.
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Introduction

Cloud Computing (CC) has become a popular technology in the modern world due to its cost

savings and the scalable, accessible, and flexible services it provides for businesses and individ-

uals [1]. This technology is aimed at reducing operational costs by providing on-demand

resources such as data storage, physical and virtual servers, applications, development tools,

and network capabilities via the internet [2, 3]. These resources are hosted and maintained by

a remote Cloud Services Provider (CSP) that controls the user access to each resource using

specific scheduling algorithms [4]. The number of resources determines the degree of simulta-

neous execution by a CSP. Several task scheduling algorithms such as First Come First Serve

(FCFS), Shortest Job Fast (SJF), Longest Job First (LJF), Feedback Based Task Scheduling

(FBTS), Priority-Based (PB), and Round Robin (RR) are incorporated to fairly and efficiently

distribute these resources against each user requests [5–9]. The objective of these scheduling

algorithms is to maximize resource utilization, enhance the quality of service, minimize wait-

ing times, turnaround times, and response times, reduce costs, manage complex tasks, and

ensure adaptability in a dynamic CC environment [10]. To meet this objective, researchers

have proposed various scheduling algorithms considering the system’s requirements.

RR is a popular scheduling approach with a fixed amount of CPU slot called Quantum

Time (QT) for each process in the ready queue to execute them fairly without leaving any

process waiting infinitely [11, 12]. Fig 1 displays the CC environment that uses the RR

Fig 1. Round robin scheduling in cloud computing environment.

https://doi.org/10.1371/journal.pone.0304517.g001
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scheduling approach to execute user tasks simultaneously. The remote user sends workload

requests like data processing, computation, or any other operation to execute in the cloud

environment. A job scheduler manages the allocation of resources and schedules the execu-

tion of user requests from the global queue in the distributed infrastructure. Each CSP has

several virtual machines (VMs), virtualized instances of a physical computer capable of run-

ning applications and operating systems. A load balancer is employed to circulate traffic

across multiple VMs equally to optimize resource utilization and ensure that no single

server is overwhelmed with too much workload. VM executes user requests through multi-

programming to minimize the total execution time and incorporates different scheduling

approaches. Understanding the dynamic nature of virtual machines (VMs) within CC envi-

ronments is crucial for efficient task scheduling, ensuring optimal resource allocation and

system performance [13]. Fig 1 shows that the VMs are using the RR algorithm to complete

the tasks in a cyclic order.

The main challenge of RR is the selection of the optimal QT [14]. A small QT results in a

higher Context Switching (CS) leading to additional overhead and reduced CPU efficiency

whereas a large QT may increase the Average Waiting Time (AWT) of the system. The rule of

thumb for selecting the optimal QT is 80 percent of the process bursts should be shorter than

the QT [15]. But processes in CC arrive in the system at different times with variable length

Burst Time (BT). As a result, selecting a fixed QT using this rule at the beginning may become

irrelevant later. To address this issue our paper proposed a dynamic time quantum based RR

approach that can manage processes with variable length BT and enhance the overall system

performance reducing the AWT and unnecessary CS in the CC environment. The suggested

approach improved and concentrated on a number of crucial aspects of scheduling techniques,

including:

• Our technique dynamically executes processes, which makes the approach suitable for a

real-time setting such as CC

• Automatically tear down the convoy effect caused by processes with relatively larger burst

length and adjust the optimal QT for the existing processes in the system

• Provides a relatively small AWT, ATT, and an even distribution of context switches through-

out the execution of processes

The complete proposed algorithm has been described in the methodology section with an

appropriate flowchart. We have tested the proposed method on three distinct datasets: process

BT in ascending order, descending order, and random order considering 20 processes for each

test case. Our dataset has skewness in the data with nonuniform process BT which is a com-

mon scenario in CC. The algorithm determines QT each time a new process arrives in or

leaves the system ensuring that the QT calculation considers the remaining process only. The

objective of this work is to minimize the AWT and number of CS which are the crucial perfor-

mance factor in the scheduling. Comparing the proposed method with some other existing

improved RR algorithms it is clear that our algorithm is capable of meeting the objective for

nonuniform and realistic data.

The rest of the paper is structured as follows: In section two we discussed some improved

RR approaches in recent years including their outcomes and limitations. Section three

describes the methodology of the proposed Enhanced Round Robin with Dynamic Time

Quantum (ERRDTQ) approach with algorithm and flowchart. This section also includes the

dataset we considered to evaluate our work. Experimental results and necessary discussion

with appropriate tables and charts have been demonstrated in section four. Finally, the conclu-

sion and future direction of this research is presented in section five.
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Related work

Omotehinwa et al. presented a dynamic CPU scheduling algorithm (SIDRR) that uses a

numeric outlier detection technique and geometric mean to determine an optimal time quan-

tum for processes with asymmetrically distributed burst times. They implemented and tested

the proposed algorithm alongside existing improved variants of Round-Robin (RR) scheduling

algorithms [16–20]. For that, they feed the processes used in each paper as input into the pro-

grams written in C programming language for each of the selected algorithms to validate the

correct implementation. Experimental analysis has been done based on the arrival time of pro-

cesses, considering zero arrival time and non-zero arrival time categories, and different orders

of burst time of processes (ascending, descending, and random order). Then they compared

the performance of the proposed algorithm with the selected improved variants of RR in terms

of average waiting time, average turnaround time, and number of context switches. The pro-

posed algorithm outperformed the other variants regarding average waiting time and average

turnaround time, except for EDRR, which performed better in context switching [21].

Alhaidari et al. proposed a novel technique focusing on the traditional RR algorithm disad-

vantages. The proposed model optimizes the functionality of the traditional RR algorithm for

scheduling tasks in the cloud computing environment by optimizing the performance metrics

by decreasing the average waiting time, average turnaround time, and average response time.

The proposed technique is called the dynamic round-robin heuristic algorithm (DRRHA)

which considers the mean of time quantum and remaining burst time of tasks. It focuses on

addressing the time quantum issue by computing the average for all the tasks in the ready

queue, which is organized based on the shortest job first (SJF) approach. They dynamically

adjust the time quantum by dividing the calculated average by the current process’s BT or

remaining BT which is repeated for each task and each iteration. Additionally, it is crucial to

employ the principle of checking the remaining burst time of the tasks. If the remaining burst

time is less than or equal to the current task quantum, the task execution is finalized and subse-

quently removed from the ready queue. Otherwise, the task is stored at the end of the ready

queue to be executed in the subsequent iteration. However, their algorithm calculates relatively

lower QT for the larger BT in the queue creating unnecessary context switches. Numerous

experiments were conducted using the CloudSim Plus tool to assess the DRRHA and then

compared with related proposed algorithms [17, 22–25]. They found it outperforms other

studied algorithms in terms of performance metrics like average waiting time, average turn-

around time and average response time [26].

Sakshi et al. propose the Median-Average Round Robin (MARR) scheduling algorithm,

which dynamically adjusts the time quantum to improve the performance compared to static

Round Robin scheduling and other existing dynamic scheduling techniques. The authors com-

pare the proposed MARR algorithm with four other scheduling algorithms to demonstrate its

effectiveness [27–32]. The paper highlights the impact of the quantum decision on the schedul-

ing of processes and the system’s performance, emphasizing the need for an improved algo-

rithm. The MARR algorithm incorporates meta-heuristic optimization strategies, making it a

better-performing algorithm in scheduling techniques. The algorithm that has been proposed,

along with all the performance metrics, offers the most optimal outcomes for Average Turn-

around Time (ATT) and Average Waiting Time (AWT). However, the context switches remain

relatively constant across all dynamic scheduling algorithms that have been considered [33].

In recent times, more research has been done based on the optimization of round-robin

algorithms in cloud computing environments [34–37]. Dipto et al. proposed a new round-

robin task scheduling approach named NRRTSA that enhances the performance of the alloca-

tion of resources from the central remote server in a cloud computing environment. As well as
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the implemented NRRTSA has also determined an efficient time quantum for each round dur-

ing scheduling. They determine the time quantum dynamically based on the differences

among the three maximum burst times of tasks in the ready queue for each round. It utilizes

an additive manner among the differences and the burst times of the processes while deter-

mining the time quantum. By reducing average turn-around time, diminishing average wait-

ing time, and minimizing the number of context switching, it outperforms other existing

round-robin task scheduling approaches for the cloud computing environment [38].

Another study has been conducted by Nermeen et al. proposing the utilization of the ame-

liorated round-robin algorithm (ARRA) as a means of task scheduling in cloud computing.

This algorithm has demonstrated that an ideal time quantum of (0.75 times the average) should

be allocated to the tasks, with an increasing order of priority. The algorithm was then simulated

and compared against other algorithms such as RR, Improved RR, Enhanced RR, ARR, and

Enhanced RR (RAST ERR) [34, 39–41]. The experimental results have indicated that the ARRA

algorithm has significantly reduced the Average Waiting Time (AWT) by 3.8-38.20% and the

Average Turnaround Time (ATT) by 2.28-38.19% in comparison to the other algorithms [42].

Task scheduling and allocation algorithms have been thoroughly studied in recent years in

cloud computing research, taking into account both single and multi-objective optimization

viewpoints. In order to improve system efficiency, single-objective optimization seeks to mini-

mize metrics like makespan (response time). Numerous studies have used novel methodolo-

gies, such as discrete Particle Swarm Optimization (PSO), hybrid Genetic Algorithm (GA),

and Simulated Annealing (SA) techniques [43, 44]. In contrast, multi-objective optimization

involves simultaneous consideration of multiple criteria, such as makespan minimization and

monetary cost reduction [45–47]. Researchers have delved into the intricacies of trade-offs

inherent in workflow scheduling to address these diverse objectives.

Although the goal of this study is to improve RR scheduling for asymmetric burst length

processes in real-time in cloud computing environments, it is important to recognize the

wider field of scheduling algorithms and their goals. This work attempts to integrate tradi-

tional scheduling algorithms into the cloud computing setting, in contrast to many previous

research that mostly concentrate on cloud-specific solutions. Therefore, this study has not

explored the single-point and multi-point optimization perspectives. However, understanding

the multidimensional nature of scheduling algorithms and their implications for broader goals

is critical for further study in this area.

A summary of the highlighted work done in this field is given in Table 1.

Methodology

The proposed approach in this research works on minimizing the ATT and AWT using

dynamic QT which is updated each time a new process arrives in the system or a process leaves

the system terminating its execution. The QT is determined considering the available burst

time of all the processes in the ready queue. The QT will be updated in a manner so that 80

percent of the ready processes can complete their execution in a single turn. To facilitate the

small processes earlier for maximizing the overall performance the remaining burst time of a

running process will also be tracked in several checkpoints and the scheduler will decide con-

text switching based on the remaining BT and current QT.

Definitions

This subsection presents the abbreviation used in the algorithm. Let,

Pi = ith number process,

ATi = Arrival Time of ith number process,
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BTi = Burst Time of ith number process,

RQ = Ready Queue,

SRQ = Sorted Ready Queue,

QT = Quantum Time,

RBT = Remaining Burst Time of running process Pi,
FBT = Burst Time of the First process in the Sorted Ready Queue.

Proposed algorithm

In our proposed algorithm [Algorithm 1], Enhanced Round Robin with Dynamic Time Quan-

tum (ERRDTQ), allows processes to join the system in real-time and add them to the ready

queue, which is ordered in ascending order by process burst time. A new time quantum is also

computed with the 80th percentile formula. The approach functions preemptively, applying

the computed time quantum to the first process in the sorted ready queue until a new process

joins the queue. The amount of burst time that the running process has left determines

whether to interrupt it. The process can conclude its execution if the burst time left is less than

one-third of the current time quantum. On the other hand, if this threshold is exceeded by the

Table 1. Summary of related studies.

Ref Contributions Time Quantum Dataset Consideration Limitations

[16] Proposed an improved RR scheduling with

minimizes AWT and ATT using arithmatic mean

of the processes BT

QT = BT or Mean 5 processes BT of the processes are considered as symmetric

statistical distribution patterns.

[18] This paper presents a variant of RR scheduling

algorithm using dynamic QT to improve the

performances

QT = Mean 5 processes in 3

different order

Processes are assumed to have BT within a

specific range

[20] Developed an efficient RR using the thumb rule of

selecting QT more than 80% Processes’ BT

QT = 0.8 *Maximum_BT 5 processes Outlier BT is not considered while executing

[21] Improved the AWT and ATT of scheduling with

burst times that are asymmetrically distributed

using Interquartile Range(IQR) method for

outlier detection

QT = BT or Third Quartile or

Arithmatic Mean or

(Arrithmatic Mean + First

Quartile/2)

20 processes in 3

different orders

The IQR method may fail to detect outliers in

small datasets due to limited data and

overidentify outliers in large datasets due to

natural variability.

[23] Proposed a variation of the RR technique that

might be applied to situations where the

processes’ initial BT are unknown. At run time,

the time quantum must be adjusted for this

QT = random number or

(QT*2) or (QT/2)

5 processes A process with a short burst time could enter in

the middle of execution when the quantum is

increased, which could cause the algorithm to

suffer because the new process would have to

wait longer than the original RR.

[26] This paper dynamically adjusts the QT in the RR

algorithm based on the mean and remaining

burst time of tasks, improving task execution

continuity and scheduling efficiency

QT = (Mean/2) + ((Mean/2)/

BT)

5 processes in 3

different order BT

range from 10 to 90

The datasets under consideration are uniformly

distributed and homogeneous. For smaller

processes, this approach produces significantly

bigger QT, and for larger processes, smaller QT,

which is irrelevant.

[32] Developed an improved RR model using dynamic

QT to gain better average response time and

AWT than the classical RR

QT = (median * highest BT) 6 processes The median rule is unable to manage processes

with too short BT or too large BT.

[33] Used a median-average based approach to set the

QT dynamically for effective scheduling

QT = (Median + Mean) / 2 8 processes in 3

different order

Convoy effect results from an inability to identify

the skewnesses in the BT of the processes.

[38] The suggested method improved performance

using the three highest BT of the processes in the

ready queue to dynamically determine the time

quantum for each round

QT = (Highest BT—1) or

Highest BT

4 datasets each having 5

distinct processes

Performance degradation for processes arrived

with BT in descending order.

[42] Designed a dynamic QT to enhance overall

scheduling performance based on the arithmetic

mean of the process length.

QT = (3/4 *Mean) 8 processes in 3

different order

Unable to effectively manage the diversity in

process BT.

https://doi.org/10.1371/journal.pone.0304517.t001
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remaining burst duration, the algorithm looks for an alternative process in the ready queue

with a burst time less than one-third of the current time quantum and assigns CPU to that pro-

cess preempting the running process. The preempted process is then reintegrated into the

ready queue with its updated burst time.

In this algorithm, the arrival or termination of a process works as a checkpoint for the

scheduler. The design incorporates maximum 2n numbers of time quantum corresponding to

n enqueue and dequeue operation, ensuring that processes with the shortest burst times are

executed first, thereby minimizing average waiting time. Simultaneously, the algorithm strate-

gically preempts running processes, taking into account their remaining burst times, thereby

contributing to a balanced approach to context switching. Fig 2 depicted the detailed flow

chart of our proposed algorithm.

Fig 2. Flow chart of ERRDTQ.

https://doi.org/10.1371/journal.pone.0304517.g002
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Algorithm 1 ERRDTQ
1: Initialize new Process Pi at ATi with BTi
2: Process Pi enters into the RQ
3: SRQ  Sort(RQ) ▷ according to the BT in Ascending order
4: N  Length(SRQ)
5: (QT)  SRQ[0.8 � N]
6: if CPU is empty then
7: Select first process P from SRQ to execute for maximum QT unit
8: Go to step 24
9: else
10: Calculate RBT of running Process P
11: if RBT � QT/3 then
12: Keep executing P for QT unit
13: Go to step 24
14: else
15: Check the FBT in the SRQ
16: if FBT � QT/3 then
17: Return P to RQ with updated BT
18: else
19: Keep executing P for QT unit
20: Go to step 24
21: end if
22: end if
23: end if
24: if P is finished then
25: Check SRQ
26: if SRQ is empty then
27: End
28: else
29: Go to step 5
30: end if
31: else
32: Return P to RQ with updated BT
33: end if

Quantum Time (QT) calculation

The 80th percentile value displayed in [Algorithm 2] is used by the suggested ERRDTQ tech-

nique to ascertain the optimum time quantum for task scheduling. Let’s look at an example

that will assist in grasping this method better. Assume the following 12 values make up our

dataset: [12, 45, 67, 23, 89, 34, 56, 78, 90, 10, 350, 101]. This dataset can be sorted to provide

the following results: [10, 12, 23, 34, 45, 56, 67, 78, 89, 90, 101, 350]. We multiply 0.8 by 12 to

find the index for the 80th percentile, and the result is 9.6. We obtain 10 by rounding this to

the closest whole number. Consequently, our desired Quantum Time is represented by the

10th number of the sorted dataset, which in this case is 90.

Algorithm 2 Quantum Time Calculation
1: n  number of processes in SRQ
2: index  0.8 � n
3: if index is an integer then
4: go to step 8
5: else
6: index  nearest whole number
7: end if
8: QT  SRQ[index]
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Experimental data

The processes’ arrival times convey the basis of the experimental analysis. The processes’ burst

times in ascending [Table 2], descending [Table 3], and random [Table 4] order were consid-

ered. We evaluated twenty processes with different arrival and burst times. The skewness of

the data was taken into consideration while generating the process’s burst time. The analysis

was carried out under the assumptions of a single processor environment, considering burst

times before execution, and non-consequential sorting time.

Results and discussion

This section demonstrates the optimal process execution by the proposed ERRDTQ approach

with different datasets, and evaluates and compares the experiment result with five existing

improved round-robin algorithms. The proposed method has shown comparatively outstand-

ing performance for any kind of dataset to minimize the waiting time of the processes, balance

the context switching and give a response to a waiting process in a productive manner.

Performance metrics for CPU scheduling algorithm

Numerous performance metrics are used in CPU scheduling to evaluate the efficiency of

scheduling algorithms. Context switching, average waiting time, and average turnaround time

are a few of the important performance indicators. To measure our proposed scheduling algo-

rithms’ effectiveness and ensure that processes are executed promptly and efficiently, these

indicators are employed in this experiment.

Context switching. The technique of switching the CPU from one process to another

while ensuring that the previous process’s information is preserved and can be resumed later is

known as context switching. In the multi-programming environment, context switching is ini-

tiated to ensure the maximum throughput of the processor. The OS can invoke context switch-

ing if a running process is waiting for an I/O or synchronization action to complete, an

interrupt occurs, a transition between the user mode and kernel mode is required or a

Table 2. Processes with burst time in ascending order.

Process ID A B C D E F G H I J K L M N O P Q R S T

Arrival Time 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19

Burst Time 10 15 34 37 37 44 46 51 52 55 68 71 72 74 77 79 88 91 101 350

https://doi.org/10.1371/journal.pone.0304517.t002

Table 3. Processes with burst time in descending order.

Process ID A B C D E F G H I J K L M N O P Q R S T

Arrival Time 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19

Burst Time 350 101 91 88 79 77 74 72 71 68 55 52 51 46 44 37 37 34 15 10

https://doi.org/10.1371/journal.pone.0304517.t003

Table 4. Processes with burst time in random order.

Process ID A B C D E F G H I J K L M N O P Q R S T

Arrival Time 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19

Burst Time 51 77 44 10 79 34 88 68 72 74 15 55 91 37 71 101 350 52 37 46

https://doi.org/10.1371/journal.pone.0304517.t004
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process’s time quantum expires. However, context switching comes at a cost, for example, Per-

formance overhead, Cache and Translation Lookaside Buffer (TLB) flushes, loss of energy,

confusion about priorities, and even a decline in cognitive function. While designing a sched-

uling algorithm it is preferred to minimize the frequency of context switching as well as ensure

a balanced response to the available processes.

Average Turnaround Time (ATT). The whole amount of time a process spends in the

system to finish its job, including any waiting in the ready queue, is known as turnaround

time. The calculation involves determining the difference between each process’s arrival and

termination times, then averaging these numbers. Smaller ATT indicates that processes are

executing quickly.

ATT ¼
Pn

i¼1
ðCompletioni � ArrivaliÞ

n

Average Waiting Time (AWT). A significant metric in CPU scheduling is the AWT,

indicating the amount of time a process spends in the ready queue for completing its execu-

tion. It is determined as the difference between a process’s turnaround and burst time. The

CPU scheduling procedure and process arrival sequence have a direct influence on the average

waiting time. One of the primary objectives of scheduling algorithms is to reduce the overall

waiting time.

AWT ¼
Pn

i¼1
ðTurnaroundi � BurstiÞ

n

Experimental results

The overall process of the proposed ERRDTQ has been mathematically explained in this sub-

section. The determination of the effective time quantum for the proposed approach and the

execution of all tasks with the determined effective time quantum have been described here.

Intel Core i7 processor with 16 GB of RAM and 4GB Nvidia 920MX GPU were used in the

preliminary test. The experiment was carried out using 3 types of datasets shown in [Tables

2–4] all having a nonzero arrival time and variable length burst time.

Case 1: Burst time in ascending order. Here, all the processes are assumed to arrive at

the system with their burst time in an increasing manner. Our algorithm is designed to cal-

culate the QT in a dynamic method with an enqueue or dequeue operation in the SRQ. Fig 3

depicted the Gantt chart of the process execution with determined QT at every checkpoint.

At time 0, process A has arrived in the RQ with BT = 10 and is selected by the scheduler for

execution. While executing A, 10 other processes B, C, D, E, F, G, H, I, J, and K have

enqueued in the RQ at time 1, 2, 3, 4, 5, 6, 7, 8, 9, 10 respectively. Based on their BT, all the

incoming processes are sorted in ascending order and the algorithm determines a new QT

each time a new process arrives. As the remaining BT of the running process (A) is smaller

than one-third of the current QT, other processes are kept waiting in the SRQ. At time 10

process A left the system and process B is selected for execution as it has the smallest BT

among all the available processes in SRQ and occupied the CPU till 25. In the meantime, we

received 9 other processes L, M, N, O, P, Q, R, S, and T in the system at time 11, 12, 13, 14,

15, 16, 17, 18, 19 respectively. At time 25, we have 18 processes in the SRQ ready for the

CPU. The scheduler selects a process with the minimum BT and executes it until no inter-

ruption occurs. The proposed ERRDTQ completed all 20 tasks with 19 context switches,

415.95 AWT and 488.55 ATT.
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Case 2: Burst time in descending order. Here, all the processes are assumed to arrive at

the system with their burst time in a decreasing manner. Fig 4 depicted the Gantt chart of the

process execution with determined QT at every checkpoint. At time 0, process A arrived in the

RQ with BT = 350 and was selected by the scheduler for execution with QT = 350. Then, at time

1, process B arrived with BT = 101 and updated the QT as the 80th percentile BT of available

processes, which is 350, and preempted process A selecting process B for execution as the BT of

process B (101) is less than one-third of the current QT(117). Through this approach, we can

eradicate the convoy effect that causes a small process to suffer for a comparatively large process.

Process B is kept running till time 18, while we have 19 available processes (A, B, C, D, E, F, G,

H, I, J, K, L, M, N, O, P, Q, R, and S) in our RQ. The algorithm determined QT = 79 at time 18

preempted Process B and shifted CPU to Process S because Process S had BT = 15, which is less

than one-third of the current QT of 27. At time 19, a new process T entered the RQ with

BT = 10, updating the QT = 79. We kept process S running till its completion as the remaining

BT of S is smaller than one-third of the current QT prohibiting unnecessary context switching.

In this way, the scheduler kept updating the QT based on the remaining BT of ready processes

and preempted the running process or let it complete its execution accordingly. The proposed

ERRDTQ completed all 20 tasks with 21 context switches, 431.90 AWT and 504.50 ATT.

Fig 3. Gantt chart of the process with burst time in ascending order.

https://doi.org/10.1371/journal.pone.0304517.g003
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Case 3: Burst time in random order. Here, all the processes are assumed to arrive at the

system with their burst time in a random order. Fig 5 depicted the Gantt chart of the process

execution with determined QT at every checkpoint. At time 0, process A arrived in the RQ

with BT = 51 and started its execution on the CPU with QT = 51. The algorithm updated QT to

77 with the arrival of process B (BT = 77) at time 1. We kept running process A because process

B could not fulfil the preemption criteria. Then, at time 3, we have four processes (A, B, C, and

D) in the SRQ and derived QT = 51. The scheduler preempted process A and transferred CPU

to process D as it had BT = 10, which is smaller than one-third of the current QT (17). Process

D terminated and left the system at time 13 when there were 13 (A, B, C, E, F, G, H, I, J, K, L,

M, N) processes in the SRQ. Among them, the scheduler selected process K for execution with

QT = 77. Within the completion of process K, we got all the other processes in the system and

continued process execution without any further preemption until time 1452. The proposed

ERRDTQ completed all 20 tasks with 19 context switches, 416.95 AWT and 489.55 ATT.

Result comparison and discussion

To evaluate the effectiveness of the proposed algorithm, we compared this with five other

improved round-robin approaches. The comparison results are presented in Tables 5–7 for

Fig 4. Gantt chart of the process with burst time in descending order.

https://doi.org/10.1371/journal.pone.0304517.g004
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process with their burst time in ascending order (Table 2), descending order (Table 3) and ran-

dom order (Table 4) respectively. Each table portrays the performance of different models con-

sidering four evaluation matrics: Time Quantum (the duration for which each process is

allowed to run), AWT (the amount of time processes spend in the ready queue), ATT (the

amount of time processes take to complete their tasks), and the number of context switches

Fig 5. Gantt chart of process with burst time in random order.

https://doi.org/10.1371/journal.pone.0304517.g005

Table 5. Comparative result of processes with burst time in ascending order.

Different

Algorithms

SIDRR (Omotehinwa

et al., 2019 [21])

DRRHA (Alhaidari

et al., 2021 [26])

MARR (Sakshi

et al., 2022 [33])

NRRTSA (Dipto

et al., 2023 [38])

ARRA (Nermeen

et al., 2023 [42])

ERRDTQ (This

study)

Time Quantum 77, 350 5.5, 40.5, 39, 38, 48, 47,

133

10, 45, 74, 37 10, 67, 349 8, 33, 63 [Fig 3]

Average Waiting

Time

415.95 444.45 493.95 415.95 429 415.95

Average

Turnaround Time

488.55 517.05 566.55 488.55 501.6 488.55

No. of Context

Switch

23 26 31 19 25 19

https://doi.org/10.1371/journal.pone.0304517.t005
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(the number of times each model made processes swap in and out). The comparison shows

that the proposed ERRDTQ outperforms other popular round-robin task scheduling methods

by reducing AWT, ATT, and the number of context switches. In Table 5, it is depicted that the

ERRDTQ algorithm performed well with the smallest AWT, ATT, and number of CS. The

NRRTSA also showed the same performance for this case because shorter-length processes

arrived prior in the system which automatically prevented the convoy effect (a process with a

short burst time is stuck waiting for a process with a long burst time to complete).

Table 6 shows that the ERRDTQ algorithm performed better than any other approach

under consideration. Here, the process with the largest BT arrived in the system first and

started execution while many smaller processes kept waiting in the ready queue. As our pro-

posed algorithm updates its QT each time a new process arrives, it could make the best deci-

sion for preempting a running process and context switch. Through this technique the

ERRDTQ achieved the best AWT and ATT for processes with variable length burst time auto-

matically preventing the outliers. For this dataset, the NRRTSA recorded the best number of

CS(20), whereas our approach scored with the number of CS(21), resulting in an improved

AWT.

Based on the data presented in Table 7, we can observe that the ERRDTQ algorithm outper-

formed the others concerning AWT, ATT, and the number of CS. In this particular scenario,

the algorithm processed incoming processes with varying burst times in a random order. By

selecting the most appropriate quantum time (QT), the algorithm was able to minimize both

the AWT and ATT while also ensuring that unnecessary context switches were avoided.

Fig 6 presents the AWT of the six improved RR approaches including ERRDTQ. It is

depicted that for each case we scored the best result. In Fig 7, the proposed algorithm’s

improvement rate is displayed. The algorithm resulted in a 5.05%, 35.22%, and 7.03% reduc-

tion in the average waiting time for case 1, case 2, and case 3, respectively. Moreover, it

Table 7. Comparative result of processes with burst time in random order.

Different

Algorithms

SIDRR (Omotehinwa

et al., 2019 [21])

DRRHA (Alhaidari

et al., 2021 [26])

MARR (Sakshi

et al., 2022 [33])

NRRTSA (Dipto

et al., 2023 [38])

ARRA (Nermeen

et al., 2023 [42])

ERRDTQ (This

study)

Time Quantum 77,350 26, 37, 38, 39,41, 47, 48,

134

51, 71, 30, 249 51,349 38,53 [Fig 5]

Average Waiting

Time

422.65 450.4 522.05 422.65 438.4 416.95

Average

Turnaround Time

495.25 523 594.65 495.25 511 489.55

No. of Context

Switch

23 26 28 19 29 19

https://doi.org/10.1371/journal.pone.0304517.t007

Table 6. Comparative result of processes with burst time in descending order.

Different

Algorithms

SIDRR (Omotehinwa

et al., 2019 [21])

DRRHA (Alhaidari

et al., 2021 [26])

MARR (Sakshi

et al., 2022 [33])

NRRTSA (Dipto

et al., 2023 [38])

ARRA (Nermeen

et al., 2023 [42])

ERRDTQ (This

study)

Time Quantum 77, 350 175.5, 29, 30, 31, 32, 26,

19, 20, 14

350, 57, 22, 13 350, 100 263, 44, 27, 17 [Fig 4]

Average Waiting

Time

457.75 749.45 799.25 693.35 776.6 431.90

Average

Turnaround Time

530.35 822.05 871.85 765.95 849.2 504.5

No. of Context

Switch

24 32 31 20 28 21

https://doi.org/10.1371/journal.pone.0304517.t006
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recorded a 20.03%, 19.83%, and 22.19% decrease in the number of context switching for the

mentioned three cases individually.

As a consequence, it is clear that the proposed approach is a cost-effective, efficient, and fea-

sible method of task scheduling for allocating resources in a cloud computing environment. It

prioritizes relatively smaller tasks to decrease the convoy effect and ensures equitable CPU

time distribution while avoiding unnecessary switching overhead.

Conclusion and future direction

To maximize the utilization of resources, load balancing, reduce consumption of energy,

adhere to service level agreements, and improve productivity and cost-effectiveness, optimal

Fig 6. Comparison of AWT of different improved RR algorithms.

https://doi.org/10.1371/journal.pone.0304517.g006

Fig 7. Improvement of ERRDTQ compared to the other related algorithms of round robin based on Average

Waiting Time (AWT) and Context Switching(CS).

https://doi.org/10.1371/journal.pone.0304517.g007
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task scheduling is crucial in cloud computing. This paper presents a novel enhanced round-

robin task scheduling method utilizing dynamic time quantum to improve the performance of

task scheduling in a cloud computing environment. In addition, by automatically scheduling

tasks of varying lengths and anticipating outlier burst times, the implemented ERRDTQ

approach can provide minimal waiting time and a fair distribution of context switches. The

results show that the suggested method performs better than the other round-robin task sched-

uling approaches currently in use in terms of decreasing the average waiting time, average

turnaround time, and number of context switches. The study leads to the conclusion that the

proposed ERRDTQ algorithm can be used in CC environment for scheduling processes with

variable length BT with comparatively minimized operational cost. Our work did not incorpo-

rated the priorities of the incoming processes while planning the schedule. Our goal is to

enhance the ERRDTQ methodology by taking into account the processes’ priorities and bal-

ancing them with high-quality performance through the application of reinforcement

learning.
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