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Abstract

Inhibition of acetylcholinesterase (AChE) is a crucial target in the treatment of Alzheimer’s

disease (AD). Common anti-acetylcholinesterase drugs such as Galantamine, Rivastig-

mine, Donepezil, and Tacrine have significant inhibition potential. Due to side effects and

safety concerns, we aimed to investigate a wide range of phytochemicals and structural

analogues of these compounds. Compounds similar to the established drugs, and phyto-

chemicals were investigated as potential inhibitors for AChE in treating AD. A total of

2,270 compound libraries were generated for further analysis. Initial virtual screening was

performed using Pyrx software, resulting in 638 molecules showing higher binding affini-

ties compared to positive controls Tacrine (-9.0 kcal/mol), Donepezil (-7.3 kcal/mol),

Galantamine (-8.3 kcal/mol), and Rivastigmine (-6.4 kcal/mol). Subsequently, ADME prop-

erties were assessed, including blood-brain barrier permeability and Lipinski’s rule of five

violations, leading to 88 compounds passing the ADME analysis. Among the rivastigmine

analogous, [3-(1-methylpiperidin-2-yl)phenyl] N,N-diethylcarbamate showed interaction

with Tyr123, Tyr336, Tyr340, Phe337, Trp285 residues of AChE. Tacrine similar com-

pounds, such as 4-amino-2-styrylquinoline, exhibited bindings with Tyr123, Phe337,

Tyr336, Trp285, Trp85, Gly119, and Gly120 residues. A phytocompound (bisdemethoxy-

curcumin) showed interaction with Trp285, Tyr340, Trp85, Tyr71, and His446 residues of

AChE with favourable binding. These findings underscore the potential of these com-

pounds as novel inhibitors of AChE, offering insights into alternative therapeutic avenues

for AD. A 100ns simulation analysis confirmed the stability of protein-ligand complex

based on the RMSD, RMSF, ligand properties, PCA, DCCM and MMGBS parameters.

The investigation suggested 3 ligands as a potent inhibitor of AChE which are [3-(1-

methylpiperidin-2-yl)phenyl] N,N-diethylcarbamate, 4-Amino-2-styrylquinoline and bisde-

methoxycurcumin. Furthermore, investigation, including in-vitro and in-vivo studies, is
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needed to validate the efficacy, safety profiles, and therapeutic potential of these com-

pounds for AD treatment.

Introduction

Alzheimer’s disease (AD) is a neurological disorder that leads to the deterioration of brain

cells. It is the primary cause of dementia, a condition marked by a decline in cognitive abilities

and a loss of independence in daily tasks [1]. AD is characterized by a decline in the choliner-

gic system, resulting in reduced levels of acetylcholine in brain regions responsible for learn-

ing, memory, behavior, and emotional responses [2]. AD is neuropathologically defined by the

presence of beta-amyloid (Aβ) plaques, neurofibrillary tangles, and degeneration or atrophy of

the basal forebrain cholinergic neurons [3].

Acetylcholinesterase (AChE), an enzyme that belongs to the serine hydrolase family, plays a

vital role in breaking down acetylcholine (ACh) into choline and acetate. Therefore, maintain-

ing normal cholinergic neurotransmission. In AD patients ACh degradation is amplified by

the AChE in early stages. The use of enzymatic inhibition to reduce AChE activity has shown

promise as a treatment strategy for AD [4]. The FDA-approved AChE enzyme inhibitors

donepezil and rivastigmine are utilized for the treatment of mild to moderate AD. Tacrine was

one of the AChE inhibitory drugs which had been banned since 2013. Tacrine have adverse

effects such as nausea, diarrhoea, loss of appetite, fainting, abdominal pain, and vomiting [5].

Administration of tacrine for AD treatment leads to reversible hepatotoxicity in 30–50% of

patients, as evidenced by an elevation in transaminase levels [6]. Hence, researchers aim to

identify novel therapeutics characterized by heightened efficacy and reduced incidence of

adverse reactions [7].

Researchers have investigated natural resources for anti-AChE agents because they are safer

than synthetic chemicals [8]. Galantamine, a natural drug from Galanthus woronowii, is used

to treat AD alongside other chemical drugs [9]. However, none of these medications have

proven to be entirely effective in halting the advancement or formation of AD. To ameliorate

the potential side effects and optimize the therapeutic efficacy of enzyme inhibition, com-

pounds possessing structural similarities to FDA-approved drugs emerge as promising candi-

dates [10–12]. Ongoing research is being conducted to discover novel compounds derived

from natural sources or FDA-approved drug-like compounds with anti-AChE properties [13].

Plant products and its derivatives are increasingly being recognized globally for their potential

as AChE inhibitors (AChEi), making them a promising therapeutic option for the treatment of

AD [14]. Extensive research has identified a comprehensive list of plant-derived substances

that inhibit AChE. The research on AChE inhibition-based treatment of AD has focused on

this diverse range of phytochemicals due to the absence of promising, effective, and safe inhibi-

tors [8, 15].

Studies have demonstrated that memory-enhancing herbs such as Enhydra fluctuans,
Vanda roxburghii, Bacopa monnieri, Centella asiatica, Convolvulus pluricaulis, and Aegle mar-
melos have AchE inhibitory and antioxidant properties [16]. This study aims to elucidate the

human AChE inhibitory potential of the current FDA-approved drugs like structural ana-

logues, as well as phytochemicals. Our study aimed to assess the in-silico assay results by

employing various techniques such as molecular docking, ADME, MD simulation (RMSD,

RMSF, and ligand properties). Principal component analysis (PCA) and Domain cross-corre-

lation matrix (DCCM) analysis were performed to identify the main directions of motion of

protein during the attachment of ligands throughout the simulation. Finally, all the analyses
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were compared with respect to the FDA-approved drugs (donepezil, galantamine, and rivastig-

mine). Moreover, molecular mechanics with generalised born and surface area solvation

(MM/GBSA) was performed to check the interaction energies of all categories such as H-

bond, lipophilicity etc.

Materials and methods

Ligand selection

Ligand library 1: Similar structure selection. The rationale behind constructing library 1

(Similar structure search) was two-sided. Firstly, compounds with analogous structures might

be able to show a similar kind of effect to some extent. Secondly, studies have reported mild to

severe adverse effects upon their administration and among them. Each of the four com-

pounds was used as a query in the PubChem database followed by a similar structure search.

Ligand library 2: Dr. Duke database search for phytochemicals. Phytochemicals,

known for their anti-AChE and anti-butyrylcholinesterase (BChE) activities, were identified

through a literature review of medicinal plants. Scientific names were queried in Dr. Duke’s

Phytochemical and Ethnobotanical Databases (https://phytochem.nal.usda.gov/). Compound

names were then searched in PubChem for 3-D structure retrieval.

Selection of target protein and protein preparation

The RSCB-PDB database (https://www.rcsb.org) was utilized to search for the target protein,

human acetylcholinesterase protein (PDB ID: 4M0E) with a lower X-ray resolution (2.00 AÅ).

Several gaps were spotted while checking the structure with PyMol. Both the docking and sim-

ulation processes were vulnerable to interference from missing residues. To avoid any subse-

quent anomaly in docking and molecular dynamics simulation the spotted missing residues

were repaired. To ensure the missing residues I-tasser (https://zhanggroup.org/I-TASSER/) a

web-based server was used to predict the 3D structure of protein. The FASTA sequence was

retrieved from the RCSB PDB database and used to build the predicted structure. The geome-

try analysis was performed using the MolProbity server (http://molprobity.biochem.duke.edu/

), and the overall geometry and Ramachandran plots were analyzed.

Active site prediction

The active region on the surface of the protein that performs protein function is known as a

protein-ligand binding site. To avoid blind docking the specific amino acid residues (S1 Table)

of protein-ligand interaction were predicted using CASTP v3.0 (http://sts.bioe.uic.edu/castp/

calculation.html).

Molecular docking of primarily selected molecules

PyRx 0.8 was used for the initial virtual screening [17]. The protein was retrieved from the I-

tasser website in PDB format after homology modelling and ligands were downloaded from

the PubChem of NCBI (https://pubchem.ncbi.nlm.nih.gov) one by one in SDF file format.

The target protein was loaded in Pyrx 0.8 and converted into macromolecules. The similar

structures of tacrine, donepezil, rivastigmine and galantamine along with phytochemicals were

loaded in the PyRx virtual screening tool in triplicates. After energy minimization, it was con-

verted into a pdbqt file. All the parameters and grid box positioned at some standard value

(Centre box: X = -0.9600, Y = -38.1677, Z = 34.2085) and the dimensions in Angstrom were

X = 58.7652, Y = 60.0782 and Z = 65.867. Later, the docking results were screened for binding

affinity and then all the generated possible docked conformations were stored in CSV format
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[17]. Only those conformations that interacted specifically with the active-site residues of the

target protein targeted protein were selected and further detailed interactions were explored

through Discovery Studio and PyMOL.

Re-docking was performed by the AutoDock Vina tool and HDOCK (http://hdock.phys.

hust.edu.cn/) [18] for the reliability of the software, and consistency of the docking algorithm.

The target protein was converted into pdbqt. The parameters and grid box were positioned at

some standard value (Centre box: X = 106.848, Y = 43.703, Z = 18.797) and the dimensions of

Box in Angstrom were X = 126, Y = 116 and Z = 122. Docking results of triplicates were

reported as mean ± standard deviation as a negative value in kcal/mol where the lowest dock-

ing score indicates the highest binding affinity [19]. For Hdock docking the scores were com-

pared with the control and ligands.

ADME profiling

The SwissADME (http://www.swissadme.ch/index.php) server was utilized to conduct ADME

profiling. Canonical smiles of ligands were required for conducting ADME analysis. To per-

form ADME profiling, the canonical smiles of all the ligands were uploaded as input on the

SwissADME server. The entirety of the data was acquired in the CSV (comma-separated

value) format. The subsequent sorting procedure was conducted according to the permeability

of the blood-brain barrier, greater binding affinity, violations of drug-likeness violation

(Lipinski, Ghose, Veber, Egan, Muggue), and oral bioactivity (lipophilicity, flexibility, solubil-

ity, instability, size) [20].

Molecular dynamics simulation

Protein-ligand interaction stability during macromolecule structure-to-function transitions

was studied using molecular dynamics. The Desmond software, developed by Schrödinger

LLC, enabled the execution of molecular dynamics (MD) simulations that lasted for a duration

of 100 nanoseconds. The simulations, utilizing Newton’s classical equation of motion, moni-

tored the path of atoms as they moved through time. The receptor-ligand complex was sub-

jected to preprocessing using Maestro’s Protein Preparation Wizard, which included

optimization and minimization procedures. The system was prepared using the System

Builder tool, employing the Transferable Intermolecular Interaction Potential 3 Points

(TIP3P) solvent model within an orthorhombic box. The simulation was governed by the

OPLS 2005 force field, and counter ions were introduced to maintain model neutrality. A 0.15

M sodium chloride (NaCl) solution was added to replicate the conditions found in the body.

The simulations were conducted using the Number of particles (N), Pressure (P), and Temper-

ature (NPT) ensemble, with a temperature of 300 K and a pressure of 1 atm. Before the simula-

tion, the models underwent a process of relaxation. The trajectories were recorded at intervals

of 100 picoseconds. The stability was evaluated by comparing the root mean square deviation

(RMSD), root mean square fluctuation (RMSF), and ligand properties (radius of Gyration,

Molecular surface area, hydrogen bond etc.). Analysis of PCA and DCCM were performed

using Desmond software with default parameters [21, 22]. Additionally, a subsequent 100 ns

simulation was conducted to further validate the findings, with MM/GBSA utilized to assess

the binding stability over time and identify the optimal binding configuration.

Re-simulation for further validation of the data is performed by Gromacs simulation Soft-

ware conserving the parameters unchanged. The stability was evaluated by comparing the root

mean square deviation (RMSD), root mean square fluctuation (RMSF), and protein-ligand

properties (radius of Gyration, SASA etc.).
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Results

Ligand library construction

The number of similar structure compounds was massive; however, considering the facts

about drug-likeness several criteria were optimized to select the best-suited structures. A total

of 2252 similar compounds (library 1) and 18 phytochemicals (library 2) were primarily

selected for the virtual screening based on the selection criteria (Table 1).

3D structure prediction

The I-tasser gave a modelled structure (Fig 1B) which is like the pdb 4M0E structure (Fig 1A),

and mostly conserved (Fig 1C). The alignment of the sequence of amino acids is provided to

verify the residues, with further sequence alignment and geometry details (S2 and S3 Tables).

The Ramachandran plot (S1 Fig.) shows the statistical distribution of the combinations of the

backbone dihedral angles ϕ and ψ. In theory, the allowed regions of the Ramachandran plot

show which values of the Phi/Psi angles are possible for an amino acid, X, in an ala-X-ala tri-

peptide [23]. The Ramachandran plot analysis of protein AChE showed high conformational

quality, with no outliers identified. All 537 residues (100%) were in acceptable regions

(>99.8%), with 96.6% (519/537) falling within favoured regions (>98%). The findings show

the strong structural integrity of AChE [24].

Virtual screening with PyRx

Using PyRx 0.8 docking tools, the original phytochemicals, and four other groups of similar

structure were docked. The affinity of tacrine, donepezil, galantamine, and rivastigmine bind-

ing was considered as positive control which is -9.0 kcal/mol, -7.3 kcal/mol, -8.3 kcal/mol and

-6.4 kcal/mol. Value (kcal/mol) greater than that was considered as the target ligand. The pri-

mary screening was performed by compounds with greater binding affinity than tacrine, rivas-

tigmine, donepezil, and galantamine. A total of 620 molecules have exhibited higher binding

affinity than the control molecules (tacrine, donepezil, rivastigmine, and galantamine), includ-

ing 18 phytochemicals sourced from the Dr. Dukes database (https://phytochem.nal.usda.gov/

) (S4 Table).

ADME profiling of screened phytochemicals

The SwissADME (http://www.swissadme.ch/index.php) was utilized to examine the ADME

profile and ability to traverse the blood-brain barrier for the selected 638 compounds. During

this phase of the investigation, most of the chemicals did not meet the drug-likeness property

that was assessed. Lipinski’s rule states that, historically, 90% of orally absorbed drugs had

fewer than 5 H-bond donors, less than 10 H-bond acceptors, molecular weight of less than 500

Daltons and XlogP values of less than 5 [25]. Due to their high solubility, many phytochemicals

Table 1. Primary selection criteria for similar structure compounds.

Compound

name/Criteria

Molecular Weight

G/MOL [Min-

Max]

Rotatable Bond

Count [Min-

Max]

Heavy Atom

Count [Min-

Max]

H-Bond Donor

Count [Min-

Max]

H-Bond Acceptor

Count [Min-

Max]

Polar Area,

[Angstrom sq]

[Min-Max]

Complexity

[Min-Max]

XLOGP

[Min-Max]

Tacrine 147–467 0–9 12–30 0–4 0–10 4.9–104 144–494 1–5

Donepezil 289–479 4–9 21–35 0–2 2–8 26.3–119 366–776 2–5

Rivastigmine 179.26–479 2–9 13–30 0–3 2–7 12.2–112 147–497 -0.3–4.7

Galantamine 245–445 0–9 18–32 0–4 2–9 18.5–128 326–766 -2.4–4

https://doi.org/10.1371/journal.pone.0304490.t001
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may struggle to penetrate the blood-brain barrier (BBB). Therefore, compounds with a blood-

brain barrier permeability (BBB) equal to or higher than 0.477 (Log 3) were prioritized for

analysis as potentially potent BBB-permeable candidates. Additionally, high gastrointestinal

(GI) absorption was assessed. A comprehensive analysis of the ADME (absorption, distribu-

tion, metabolism, and excretion) and docking results of Rivastigmine analogues (Table 2), Tac-

rine analogues (Table 3), Galantamine analogues (Table 4), and phytochemicals (Table 5) were

Fig 1. Structure of AChE. (A) The Crystal Structure of AChE Retrieved from RSCB-PDB, (B) the I-tasser predicted structure, and (C) the merged

RCSB-PDB and predicted structures. The resolved missing residues and the conservation of the protein structure compared to its actual PDB sequence

are shown.

https://doi.org/10.1371/journal.pone.0304490.g001
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Table 2. The docking, redocking and ADME results of Rivastigmine’s similar structure with CID and chemical name.

Sl

no

CID IUPAC Name Binding

Affinity

PyRx

Redocking

(Autodock

vina)

Hdock

docking

BBB Rules 5

violation

GI

absorption

Leadlikeness

violations

1 77991 Rivastigmine -6.56±0.19 -6.36±0.11 -166.81 0.508 0 High 0

2 70266158 [2-[1-(azetidin-1-yl)ethyl]phenyl] N,N-

dimethylcarbamate

-7.16±0.70 -7.07±0.37 -176.94 0.564 0 High 2

3 66717459 [3-[(1S)-1-(dimethylamino)ethyl]-2-tritiophenyl] N-

ethyl-N-methylcarbamate

-8.1±0.5 -7.9±0 -191.39 0.506 0 High 1

4 42604975 [3-[(1S)-1-[methyl-[(1S)-1-phenylethyl]amino]ethyl]

phenyl] N-ethyl-N-methylcarbamate

-8.03±0.05 -7.9±0.3 -219.43 0.501 0 High 2

5 129309692 [3-[1-[[(1S)-1-cyclohexa-1,3-dien-1-ylethyl]-

methylamino]ethyl]phenyl] N-ethyl-N-

methylcarbamate

-7.9±0 -7.53±0.01 -200.05 0.502 0 High 2

6 68377091 [3-[(1S)-1-(dimethylamino)ethyl]phenyl] N-ethynyl-

N-[(2R)-1-phenylpropan-2-yl]carbamate

-7.67±0.01 -8.2±0 -223.99 0.516 0 High 2

7 144066490 [3-[1-(dimethylamino)ethyl]phenyl] N-methyl-N-

[(2R)-1-phenylpropan-2-yl]carbamate

-7.2±0.75 -7.77±0.20 -194.04 0.506 0 High 3

8 10989924 [3-(1-methylpiperidin-2-yl)phenyl] N,N-

diethylcarbamate

-7.6±0 -7.53±0.60 -187.46 0.528 0 High 2

9 11359764 [3-[(1S)-1-[methyl(trideuterio(113C)methyl)amino]

ethyl]phenyl] N-methyl-N-(1,1,2,2,2-pentadeuterio

(213C)ethyl)carbamate

-7.43±0.25 -7.3±0.01 -193.22 0.506 0 High 0

10 46898202 [3-(1-piperidin-1-ylethyl)phenyl] N,N-

diethylcarbamate

-7.53333 N/A -195.06 0.506 0 High 2

11 149047000 [3-[1-(dimethylamino)cyclopropyl]phenyl] N-ethyl-N-

methylcarbamate

-7.3±0.25 -7.36±0.25 -191.1 0.505 0 High 2

12 144474639 [3-[(1S)-1-[[(1S)-1-cyclohexa-2,4-dien-1-ylethyl]-

methylamino]ethyl]phenyl] N-ethyl-N-

methylcarbamate

-7.16±0.40 -7.13±0.01 -212.22 0.501 0 High 0

13 21767521 7-[1-(dimethylamino)ethyl]-3-methyl-5,6-dihydro-

4H-1,3-benzoxazocin-2-one

-7.46±0.05 -6.96±0.20 -179.55 0.555 0 High 2

14 21767510 6-[1-(dimethylamino)ethyl]-3-methyl-4,5-dihydro-

1,3-benzoxazepin-2-one

-7.4±0 -6.43±0.45 -172.4 0.546 0 High 0

15 25204947 [3-[(1S)-1-(dimethylamino)ethyl]phenyl] N-methyl-N-

[(2S)-1-phenylpropan-2-yl]carbamate

-7.36±0.05 -8±0.3 -196.88 0.506 0 High 1

16 72816136 [3-[1-(dimethylamino)ethyl]phenyl] N-methyl-N-

(1-phenylpropan-2-yl)carbamate

-7.36±0.50 -7.73±0.05 -194.04 0.506 0 High 2

17 13955119 [2-[1-(dimethylamino)ethyl]phenyl] N,N-

dimethylcarbamate

-6.93±0.55 -6.7±0.85 -159.43 0.478 0 High 2

18 141557115 [3-[1-(dimethylamino)pentyl]phenyl] acetate -6.93±0.30 -6.43±0.60 -175.65 0.566 0 High 1

19 21767515 9-[1-(dimethylamino)ethyl]-3-methyl-5,6-dihydro-

4H-1,3-benzoxazocin-2-one

-7±0.3 -6.73±0.45 -181.7 0.547 0 High 1

20 21767496 5-[1-(dimethylamino)ethyl]-3-methyl-4H-

1,3-benzoxazin-2-one

-6.9±0.4 -6.9±0.45 -165.9 0.540 0 High 1

21 10935608 [2-(1-piperidin-1-ylethyl)phenyl] N,N-

diethylcarbamate

-7.2±0 -7.36±.55 -192 0.520 0 High 0

22 10924256 [3-(piperidin-1-ylmethyl)phenyl] N,N-

diethylcarbamate

-7.36±.35 -7.06±0.14 -178.19 0.517 0 High 1

23 144474633 [3-[(2S)-1-(dimethylamino)propan-2-yl]phenyl] N-

ethyl-N-methylcarbamate

-6.9±0.15 -6.66±0.299 -182.68 0.503 0 High 0

24 25230721 [3-[(1S)-1,2,2,2-tetradeuterio-1-(dimethylamino)ethyl]

phenyl] N-ethyl-N-methylcarbamate

-6.9±0.25 -6.66±0.35 -165.91 0.509 0 High 1

25 51037855 [3-[(1S)-1,2,2,2-tetradeuterio-1-(dimethylamino)

(213C)ethyl]phenyl] N-ethyl-N-methylcarbamate

-6.9±0.25 -6.73±0.05 -165.82 0.508 0 High 0

(Continued)
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performed. Analogues of donepezil cannot fulfil the criteria of the ADME profile and are elim-

inated for further study. These tables provide valuable insights into the compounds’ pharma-

cokinetic properties and their potential interactions with target proteins. A total of 89

compounds along with phytochemicals were found to possess the properties (S5 Table).

Table 2. (Continued)

Sl

no

CID IUPAC Name Binding

Affinity

PyRx

Redocking

(Autodock

vina)

Hdock

docking

BBB Rules 5

violation

GI

absorption

Leadlikeness

violations

26 51038065 [3-[(1S)-1-[methyl(trideuterio(113C)methyl)amino]

ethyl]phenyl] N-ethyl-N-methylcarbamate

-6.76±.24 -6.36±0.05 -165.38 0.508 0 High 0

27 21767507 [3-[(1S)-1-[methyl(trideuterio(113C)methyl)amino]

ethyl]phenyl] N-methyl-N-(1,1,2,2,2-pentadeuterio

(213C)ethyl)carbamate

-7.43±0.25 -7.36±0.05 -180.75 0.508 0 High 0

28 9823072 [3-[(1S)-1-(dimethylamino)ethyl]-2-tritiophenyl] N-

ethyl-N-methylcarbamate

-6.83±0.2 -7.03±0.18 -175.19 0.497 0 High 0

29 53705187 [2-[[ethyl(methyl)amino]methyl]phenyl] N,N-

dimethylcarbamate

-6.5± 0.35 -6.36±0.35 -153.59 0.493 0 High 1

30 97357026 [3-[(1R)-1-(dimethylamino)ethyl]phenyl] N,N-

diethylcarbamate

-6.63±.30 -6.6±0.25 -186.94 0.517 0 High 0

31 11066683 [3-(1-piperidin-1-ylethyl)phenyl] N,N-

diethylcarbamate

-6.96±0.19 -7.33±0.15 -187.83 0.493 0 High 1

32 25230725 [3-[(1S)-1-[bis(trideuteriomethyl)amino]-

1,2,2,2-tetradeuterioethyl]-2,4,5,6-tetradeuteriophenyl]

N-(1,1,2,2,2-pentadeuterioethyl)-N-

(trideuteriomethyl)carbamate

-7±0.15 -7±0.45 -165.02 0.517 0 High 0

33 144198864 (1S)-1-(3-methoxyphenyl)-N,N-dimethylpropan-

1-amine

-6.33±0.18 -6±0.25 -145.74 0.508 0 High 0

34 67474850 [3-[(1S)-1-(dimethylamino)ethyl]-4-fluorophenyl] N-

ethyl-N-methylcarbamate

-6.33±.44 -6.1±0.55 -166.31 0.764 0 High 0

35 10999871 [3-(piperidin-1-ylmethyl)phenyl] N,N-

dimethylcarbamate

-6.8±0.15 -6.83±0.53 -181.29 0.545 0 High 1

36 10586926 [3-[(1S)-1-(dimethylamino)ethyl]-2-tritiophenyl] N-

ethyl-N-methylcarbamate

-6.83±0.20 -6.76±.60 -166.78 0.533 0 High 0

37 71316042 [3-(1-piperidin-1-ylethyl)phenyl] N,N-

diethylcarbamate

-6.56±0.19 -6.4±0.01 -176 0.508 0 High 0

38 745584 [2-[(dimethylamino)methyl]phenyl] N,N-

dimethylcarbamate

-6.13±0.34 -6.5±0.2 -158.37 0.493 0 High 0

39 25230720 [2-deuterio-3-[(1S)-1-[dideuteriomethyl(methyl)

amino]ethyl]phenyl] N-ethyl-N-methylcarbamate

-6.6±0 -6.67±0.455 -163.7 0.532 0 High 0

40 25230723 [3-[(1S)-1-(dimethylamino)ethyl]phenyl] N-ethyl-N-

(trideuteriomethyl)carbamate

-6.43±0.35 -6.93±0.50 -165.17 0.508 0 High 1

41 25230724 [3-[(1S)-1-(dimethylamino)ethyl]phenyl] N-methyl-N-

(1,1,2,2,2-pentadeuterioethyl)carbamate

-6.6±0 -6.56±0.51 -165.17 0.508 0 High 0

42 51037853 [3-[(1S)-1,2,2,2-tetradeuterio-1-(dimethylamino)

(113C)ethyl]phenyl] N-ethyl-N-methylcarbamate

-6.73±0.18 -7.033±0.49 -165.82 0.508 0 High 0

43 51038067 [3-[(1S)-1-[methyl(trideuterio(113C)methyl)amino]

ethyl]phenyl] N-methyl-N-(1,1,2,2,2-pentadeuterio

(213C)ethyl)carbamate

-6.73±0.29 -6.5±0.35 -189.38 0.508 0 High 0

44 77991 [3-(1-piperidin-1-ylethyl)phenyl] N,N-

diethylcarbamate

-6.66±0.01 -6.36±0.15 -176.57 0.508 0 High 0

45 92044359 [3-[(1R)-1-[bis(trideuteriomethyl)amino]ethyl]phenyl]

N-ethyl-N-methylcarbamate

-6.56±0.19 -6.36±0.11 -166.81 0.508 0 High 0

https://doi.org/10.1371/journal.pone.0304490.t002
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Table 3. The Docking and redocking results of tacrine’s similar structures with CID and chemical name.

Sl

no

CID IUPAC Name Affinity Pyrx

Kcal/mol

Redocking

Autodock Kcal/

mol

Hdock

docking

BBB Rules 5

violation

GI

absorption

Leadlikeness

violations

1 1935 Tacrine -8.86±0.01 -8.33±0.50 -150.2 0.316 1 High 1

2 18403988 2-naphthalen-2-ylquinolin-4-amine -10.23±0.05 -10.1±0.65 -202.24 0.565 0 High 2

3 149800 N-benzylacridin-9-amine -10.03±0.10 -9.16±0.23 -207.62 0.625 0 High 1

4 402658 12-azatetracyclo[9.8.0.02,7.013,18]nonadeca-1

(19),2,4,6,11,13,15,17-octaen-19-amine

-9.9±0.051 -8.63±0.37 -189.28 0.54 0 High 2

5 54474520 3-[2-(7-fluoroquinolin-2-yl)ethenyl]aniline -9.3±0.7 -8.7±1.75 -200.72 0.596 0 High 2

6 3438772 2-phenyl-4-pyrrolidin-1-ylquinoline -9.7±0 -8.7±1.05 -200.55 0.559 0 High 2

7 18934490 N-phenylacridin-1-amine -9.56±.20 -8.26±0.84 -209.77 0.485 0 High 3

8 11492743 4-fluoro-2-(6-fluoro-4-methylquinolin-2-yl)

aniline

-9.4±0.3 -0.73±0.35 -183.8 0.602 0 High 2

9 69799851 4-Amino-2-styrylquinoline -9.53±0.06 -9.067±0.9 -190.86 0.577 0 High 1

10 129829335 10-sulfidoacridin-10-ium -9.2±0.25 -8.6±1.2 -143.64 0.708 0 High 0

11 164587579 2-benzyl-6-fluoroquinolin-4-amine -8.63333 N/A 0.692 0 High 2

12 130408026 2-(7-fluoro-2-phenylquinolin-3-yl)

ethanamine

-8.63±1.14 -8.43±1.11 -189.83 0.533 0 High 2

13 22395290 2-[(E)-2-phenylethenyl]quinolin-4-amine -9.46±0.049 -3±0.30 -190.91 0.521 0 High 0

14 69799851 2-(2-phenylethenyl)quinolin-4-amine -9.5±0 -8.33±1.3 -204.78 0.521 0 High 2

15 696663 12-azatetracyclo[9.8.0.02,7.013,18]nonadeca-1

(19),2,4,6,11,13,15,17-octaen-19-amine

-9.5±0 -8.8±0.85 -185.5 0.495 0 High 0

16 402666 19-azatetracyclo[9.8.0.02,7.013,18]nonadeca-1

(19),2,4,6,11,13,15,17-octaen-12-amine

-9.16±.20 -8.83±1.59 -191.76 0.483 0 High 1

17 10587156 6-fluoro-2-(2-fluorophenyl)quinolin-4-amine -9.4±0 -9.2±0.6 -204.53 0.692 0 High 2

18 1504001 2-phenyl-4-piperidin-1-ylquinoline -9.23±0.048 -8.96±0.64 -195.06 0.535 0 High 2

19 164587580 2-(2-fluorophenyl)quinolin-4-amine -9.26±0.049 -8.9±0.15 -189.2 0.662 0 High 1

20 60598 9-(4-methylpiperidin-1-yl)-

1,2,3,4-tetrahydroacridine

-8.96±0.1 -9.46±.20 -178.61 0.596 0 High 1

21 4452632 3-quinolin-2-ylaniline -9.53±0.44 -8.3±1.00 -181.89 0.506 0 High 1

22 7742109 (NZ)-N-(1-phenyl-2-quinolin-2-ylethylidene)

hydroxylamine

-9.3±0 -8.9±0.94 -163.54 0.487 0 High 0

23 12102730 2,4-dimethylbenzo[h]quinolin-10-amine -9.26±0.049 -9.5±0 -155.41 0.48 0 High 1

24 21998 10-methylacridin-10-ium-9-amine -9.2±0 -8.13±.133 -178.3 0.71 0 High 0

25 45599224 12-azatetracyclo[9.8.0.02,7.013,18]nonadeca-1

(19),2,4,6,11,13,15,17-octaen-19-amine

-9.2±0 -8.26±1.15 -184.9 0.653 0 High 1

26 45599463 5,7-difluoro-2-phenylquinolin-4-amine -9.16±0.048 -8.4±0.7 -204.25 0.637 0 High 0

27 22334541 N-(3-fluorophenyl)-2,3-dihydro-1H-

cyclopenta[b]quinolin-9-amine

-9.2±0 -7.13±0.94 -189.01 0.635 0 High 0

28 11737199 2-(2-fluorophenyl)quinolin-4-amine -9.2±0 -8.73±1.44 -182.28 0.583 0 High 0

29 55045454 6-methyl-2-phenylquinolin-4-amine -9.1±0 -9.2±0.3 -158.98 0.484 0 High 0

30 31633 10-methylacridin-10-ium-3-amine -9.16±0.048 -9.93±0.15 -186.82 0.71 0 High 1

31 45599470 7,8-difluoro-2-phenylquinolin-4-amine -8.56±.71 -7.43±1.52 -182.25 0.701 0 High 0

32 45599222 6-fluoro-2-phenylquinolin-4-amine -9.1±0 -8.9±1.5 -190.43 0.662 0 High 1

33 21828278 2,6-diphenylpyridin-4-amine -9.06±0.15 -7.43±0.048 -174.1 0.613 0 High 0

34 21639083 12-azatetracyclo[9.8.0.02,7.013,18]nonadeca-1

(19),2,4,6,11,13,15,17-octaen-19-amine

-8.96±0.149 -8±0.7 -196.44 0.607 0 High 0

35 43419931 N-[(4-fluorophenyl)methyl]-

2-methylquinolin-4-amine

-9.03±0.20 -8.83±0.63 -191.29 0.545 0 High 0

36 129641425 2-(2-phenylethenyl)quinolin-3-amine -9.1±0 -7.13±1.16 -167.55 0.521 0 High 1

37 12394207 2-phenyl-4-piperidin-1-ylquinoline -9.13±0.49 -8.4±0.15 -192.01 0.518 0 High 0

38 10980245 2-(2-fluorophenyl)quinolin-4-amine -8.86±0.01 -8.3±0.30 -150.2 0.506 0 High 0

https://doi.org/10.1371/journal.pone.0304490.t003
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Computational molecular docking with AutoDock and Hdock

Outperforming control compounds tacrine, donepezil, galantamine, and rivastigmine, 89

identified molecules exhibit enhanced binding affinity in molecular docking via AutoDock

Vina-1.5.7 and Hdock. These findings suggest their potential as promising acetylcholinesterase

inhibitors, warranting further investigation, this study establishes a benchmark for assessing

the comparative efficacy of the identified molecules with the positive control. The docking and

redocking outcomes for the remaining compounds are comprehensively presented in the

accompanying tables, encapsulating a comprehensive overview of their binding characteristics

for further analytical consideration. This nuanced evaluation contributes to the burgeoning

discourse surrounding potential therapeutic candidates for the development of novel acetyl-

cholinesterase inhibitors [26].

The binding affinities of rivastigmine analogue compounds, which exhibit both blood-

brain barrier (BBB) permeability and favourable drug-likeness characteristics, were further

investigated (Table 2). Notably, three rivastigmine analogues, such as 10989924 ([3-(1-methyl-

piperidin-2-yl)phenyl] N,N-diethylcarbamate), 74817986 ([3-[1-[methyl(1-phenylethyl)

amino]ethyl]phenyl] N-ethyl-N-methylcarbamate) and 46898202 ([3-(1-piperidin-1-ylethyl)

phenyl] N,N-diethylcarbamate), exhibited superior docking affinities as compared to rivastig-

mine. This observation suggests a potential enhancement in the binding interactions of these

molecules with the target receptor.

The binding affinities of tacrine and its structurally analogous exhibited the highest binding

affinities in the entirety of the conducted docking study (Table 3). Notably, 2-naphthalen-

2-ylquinolin-4-amine(18403988) emerges as the most promising candidate, displaying a sub-

stantial binding affinity of -10.23±0.05 kcal/mol (PyRx), -10.1±0.65 kcal/mol (AutoDock) and

-202.24 (Hdock). The overall binding affinities observed collectively underscore the potential

of these compounds for further exploration and development. Conversely, the galantamine

Table 4. The Docking and redocking results of galantamine similar structure with CID and chemical name.

Sl

no

CID (galantamine

similar structures)

IUPAC Name Affinity

Pyrx Kcal/

mol

Redocking

Autodock Kcal/

mol

Hdock

docking

BBB Rules 5

violation

GI

Absorption

Leadlikeness

violations

1 9651 Galantamine -7.83±0.33 -8.16±0.40 -195.26 -0.08 0 High 0

2 91042094 9-methoxy-4-prop-2-enyl-11-oxa-

4-azatetracyclo[8.6.1.01,12.06,17]

heptadeca-6(17),7,9,15-tetraene

-8.56±0.48 -7.7±1.25 -213.78 0.48 0 High 1

3 20706288 4,14-dimethyl-11-oxa-4 azatetracyclo

[8.7.1.01,12.06,18]octadeca-6

(18),7,9,15-tetraen-9-ol

-8.43±0.48 -8.6±0.5 -194.87 0.59 0 High 0

https://doi.org/10.1371/journal.pone.0304490.t004

Table 5. The Docking results of phytochemicals with CID and chemical name.

Sl

no

Ligand

CID

IUPAC Name Affinity Pyrx

Kcal/mol

Redocking Autodock

Kcal/mol

Hdock

Docking

BBB Rules 5

violation

GI

Absorption

Leadlikeness

violations

1 2353 Berberine -8.63±0.78 -9.2±0.4 -244.81 0.198 0 High 1

2 5315472 Bisdemethoxycurcumin -8.86±1.1 -8.83±0.65 -232.61 0.398 0 high 0

3 6916252 Huperzine B -8.13±0.33 -7.56±1.21 -181.09 0.489 0 High 0

4 854026 Huperzine A -7.56±0.048 -7.56±0.68 -155.14 0.317 0 High 1

5 160512 Ar-Turmerone -7.63±0.14 -6.83±0.48 -155.14 0.105 1 High 2

6 1253 (-)-Selagine -7.26±0.28 -6.66±0.31 -174.59 0.512 0 High 1

https://doi.org/10.1371/journal.pone.0304490.t005
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similar structures present only two compounds, and among them 4,14-dimethyl-11-oxa-4 aza-

tetracyclo [8.7.1.01,12.06,18]octadeca-6(18),7,9,15-tetraen-9-ol (20706288) was the best bind-

ing affinity with -8.43±0.48 Kcal/mol (PyRx), -8.6±0.5 Kcal/mol (Autodock) and -194.87

(Hdock), as the remaining analogues were judiciously excluded during primary virtual screen-

ing and ADME profiling (Table 4). This stringent selection process aims to ensure structural

and pharmacokinetic viability, contributing to a refined pool of candidates with enhanced

potential for subsequent stages of drug development.

Phytochemicals meeting the criteria of the blood-brain barrier (BBB) permeability and

favourable drug-likeness were subjected to further investigation through molecular docking

(Table 5). Among these, berberine exhibited a notable binding affinity of -8.63±0.78 kcal/mol

(PyRx), -9.2±0.4 kcal/mol (autodock) and -244.81 (Hdock); huperzine B demonstrated -8.13

±0.65 kcal/mol (PyRx), 7.56±1.21 kcal/mol and -181.09 (Hdock); bisdemethoxycurcumin

revealed of -8.86±1.1 kcal/mol (PyRx), -8.83±0.65 kcal/mol (autodock) and 232.61 (Hdock);

and Ar-Turmerone displayed a binding affinity o -7.63±0.14 kcal/mol (PyRx), -6.83±0.48 kcal/

mol (autodock) and -155.81 (Hdock). These findings highlight the substantial potential of

these phytochemicals as candidates for acetylcholinesterase inhibition.

Docking site analysis

To conduct a more comprehensive investigation, a total of eight compounds (Table 6) have

been chosen for a molecular dynamics (MD) simulation lasting 100 nanoseconds based on the

docking analysis and ADME profiling. Utilizing BioVia Discovery Studio, it is feasible to visu-

ally observe the interaction between protein ligands and active site residues, as well as to over-

lay all proteins and ligands, based on their highest binding affinity and respective segments.

The common residues involved in the positive controls tacrine, galantamine, rivastigmine, and

donepezil are- Tyr340, Phe296, Trp285, Phe337, and Tyr123, and there was Tyr123 with a

hydrogen bond and Trp285, Tyr340, and Phe296 with Pi-allyl interaction. However, the resi-

dues involved in the interaction and the binding sites exhibit similarities, as do the bonding

characteristics. This suggests that the binding location and residues are congruent to those to

which tacrine, donepezil rivastigmine galantamine bind.

Table 6. Docking site analysis for selected chemicals.

Sl

no

Ligand name Complex Pubchem

CID

Pyrx

Docking

Autodock

docking

Interacting Residues

1 [3-(1-methylpiperidin-2-yl)phenyl] N,N-diethylcarbamate Complex_1 10989924 -7.6±0.0 -7.53±0.6 Tyr123, Tyr336, Tyr340, Phe337,

Trp285

2 2-naphthalen-2-ylquinolin-4-amine Complex_2 18403988 10.23±0.05 -10.1±0.65 Tyr123, Tyr285, Tyr340, His286,

Asp73

3 4-Amino-2-styrylquinoline Complex_3 69799851 -9.5±0.0 8.33±1.3 Tyr123, Phe337, Tyr336, Trp285,

Trp85, Gly119, Gly120

4 9-methoxy-4-prop-2-enyl-11-oxa-4-azatetracyclo

[8.6.1.01,12.06,17] heptadeca-6(17),7,9,15-tetraene

Complex_4 91042094 -8.56±0.48 -7.7±1.25 Leu288, Leu75, Phe337, Phe296,

Tyr340, Trp285

5 Huperzine B Complex_5 6916252 -8.13±0.33 -7.56±1.21 Trp285, Tyr123, Tyr71, Leu71

6 Bisdemethoxycurcumin Complex_6 5315472 -8.86±1.1 -8.83±0.65 Trp285, Tyr340, Trp85, Tyr71,

His446

7 Berberine Complex_7 2353 8.63±0.78 -9.2±0.4 Tyr123, Tyr336, Tyr340, Phe337,

Trp285, Ser292, His286

8 Ar-Turmerone Complex_8 160512 -7.63±0.14 -6.83±0.48 Tyr123, Tyr336, Tyr340, Phe337,

Trp285, Phe296, Leu288

https://doi.org/10.1371/journal.pone.0304490.t006
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The 2D interaction analysis elucidates the nature of binding interactions (Fig 2), revealing

the presence of pi-alkyl and pi-sigma interactions while notably excluding electrostatic bonds.

Notably, TYR123 exhibits hydrogen bonding, and TRP285 displays pi-alkyl interaction across

all complexes. These residue interactions demonstrate a consistent pattern, underscoring the

reproducibility of specific binding motifs within the studied complexes.

Fig 2. A visual representation of Protein-ligand interaction. The protein-ligand interaction of Complex_1 (A), Complex_2 (B), Complex_3 (C),

Complex_4 (D), Complex_5 (E), Complex_6 (F), Complex_7 (G), and Complex_8 (H). All the interactions have common Tyr123 with a hydrogen

bond and Trp85 with Pi-allyl interaction. The rest of the interactions have Pi-sigma with similar residues of the active side.

https://doi.org/10.1371/journal.pone.0304490.g002
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Molecular dynamics simulation analysis

The simulation was performed in a Desmond environment. There were 8 compounds primar-

ily selected for MD simulation in the Desmond simulation environment. The overall simula-

tion results were interpreted in RMSD, RMSF, Ligand properties, DCCM, PCA and MM/

GBSA analysis. The binding grooves (Fig 3A) of the examined chemicals were superimposed,

revealing a remarkable degree of similarity in their spatial arrangements. Additionally, the resi-

dues involved in interactions exhibited striking congruence among the complex_1 (Fig 3B),

complex_3 (Fig 3C), and complex_6 (Fig 3D). This congruency in binding grooves and inter-

acting residues suggests a conserved mode of binding, reinforcing the likelihood of a shared

molecular mechanism or target engagement.

The RMSD of Protein-ligand Complex figures have shown the Protein RMSD fit with

ligand RMSD over a 100ns time scale. RMSD, which is the ligand insect in the protein RMSD

line, is considered a good stability benchmark. Complex_1 Complex_3 and Complex_6 show

better binding stability (Fig 4) and the other complexes couldn’t show the stable binding affin-

ity over the 100 ns time scale (S2 Fig). The good results were further confirmed by re-simula-

tion of these 3 complexes using GROMACS software in the aspect of protein fit with ligand

over the 100ns time scale (S3 Fig.) The Root Mean Square Fluctuation (RMSF) is a valuable

tool for quantifying localized variations along the protein chain. Peaks on the plots represent

Fig 3. A visual representation of the binding pocket and ligand interaction. (A) The 3D Structure of protein-ligand complex and protein

hydrophobicity mapping. Close view of Complex_1 (B), Complex_3 (C), Complex_6 (D). The protein pocket region is slightly bluish which indicates

partially hydrophilic. All the ligands bind to the same side of the protein.

https://doi.org/10.1371/journal.pone.0304490.g003
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regions of the protein that exhibit the highest degree of fluctuation throughout the simulation.

It is commonly observed that the tails, specifically the N- and C-terminal, exhibit greater fluc-

tuations compared to other regions of the protein. Secondary structure elements, such as alpha

helices and beta strands, typically exhibit greater rigidity compared to the unstructured regions

of the protein. As a result, they undergo less fluctuation than the loop regions (Fig 5), while the

other five complexes RMSF have shown in S4 Fig. The RMSF results from the re-simulation

using GROMACS software showed similar results (S5 Fig).

A ligand exhibiting a moderate degree of compactness, as measured by a moderate gyration

value, could potentially achieve a harmonious equilibrium between sufficient molecular sur-

face area (SASA) for interaction purposes and accessibility for binding. The combination of

moderate gyration and a larger molecular surface area may provide numerous binding interac-

tion sites, whereas a moderate SASA may indicate a stable structure with restricted solvent

exposure (Fig 6).

The gyration results indicate that Complex_1 and Complex_3 are located within a range of

3.5–4.00 Armstrong, while Complex_6 is situated between 5.0–5.5 Å (Fig 6A). A higher value

of the radius of gyration indicates a greater dispersion of atoms and a longer molecule. This

metric quantifies the degree of elongation of a ligand and is equal to its primary moment of

inertia. The SASA analysis reveals superior ligand characteristics, specifically in Complex_3

Fig 4. A 100-nanosecond simulation is conducted to measure the root mean square deviation (RMSD) results of three complexes. Complexes 1, 3,

and 6 are subjected to be a better binding stability over the 100-nanosecond molecular dynamics simulation using the Desmond software. (A) RMSD of

Complex_1, (B) RMSD of Complex_3, and (C) RMSD of Complex_6. The root means square deviation (RMSD) between the ligand and protein

exhibits temporal constancy, thereby ensuring stability. Nevertheless, complex_1 and 3 demonstrate persistent stability, suggesting that the interaction

between the protein and ligand remains intact throughout the entire duration. Complex_6 exhibits a deviation of 30ns, indicating inferior stability

compared to the other 2 complexes. Nevertheless, the overall binding interaction is not significantly unfavourable, and further investigation is required

for the other parameters.

https://doi.org/10.1371/journal.pone.0304490.g004

Fig 5. The root means square fluctuation (RMSF) of all the simulation complexes over a 100-nanosecond simulation. (A) Root Mean Square

Fluctuation (RMSF) of Complex_1, (B) RMSF of Complex_3, and (C) RMSF of Complex_6. The interpretation of the results is justified. Several

significant fluctuations. The fluctuation primarily arises when the ligand interacts with the protein residues. Complex_1 exhibits three significant

fluctuations on the green vertical bar, which signify the contact between the ligand molecule and the protein. Complex_3 and Complex_6 exhibit

significant temporal fluctuations. The overall comparison reveals significant fluctuations, although they do not exceed 4.8 AÅ.

https://doi.org/10.1371/journal.pone.0304490.g005
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and Complex_6, with a surface area ranging from 50 to 100 Armstrong square units (Fig 6B).

Reduced solvent-accessible surface area (SASA) leads to increased binding stability. The polar

surface area and the molecular surface area exhibit significant differences. Complex_1 exhibits

lower levels of PSA and higher levels of MolSA, whereas Complex_6 displays higher levels of

both PSA and MolSA (Fig 6C and 6D). Complex_6 exhibits reduced levels of PSA and MolSA.

Elevated PSA levels can potentially impact binding employing electrostatic interactions. A

greater MolSA value signifies an increased number of sites available for interacting with other

molecules or receptors. The ligand SASA, ligand Gyration, protein SASA, and protein gyration

from the re-simulation using GROMACS software showed a similar pattern (S6 Fig.).

PCA analysis

Principal Component Analysis (PCA) is a mathematical technique that identifies the most sig-

nificant components in a dataset by analyzing the covariance or correlation matrix. In the con-

text of protein analysis, PCA utilizes atomic coordinates to define the protein’s available

degrees of freedom (DOF). The result of those three results PCAs has been performed (Fig 7).

PCA analysis of each of the component percentages indicates each of the parameters, PC1

might indicate how strongly the ligand binds to the protein, PC2 could represent something

like the flexibility of the protein-ligand complex and PC3 might capture variations in the shape

complementarity between the protein and ligand.

The highest percentage of variance explained is indicated by the Single Component with

the Highest Variance (PC1), as determined by the PCA analysis. Complex_1 PCA yields the

Fig 6. A 100ns simulation of ligand properties of all the complexes. (A) Ligand Gyration, (B) Ligand SASA, (C)

Ligand Polar Surface Area (PSA), and (D) Molecular Surface Area (MolSA). Values of complex_1, complex_3, and

complex_6 are represented with blue, orange, and green colours, respectively.

https://doi.org/10.1371/journal.pone.0304490.g006
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most favourable outcomes, followed by complex_3 and complex_6. By considering the amal-

gamation of constituents that capture substantial variation in contrast to the summaries of

46.18% and 41.54% for both complexes, Complex_1 exhibits a sum of 53% (Table 7). It exhibits

improved variances. Complex 1 exhibits superior performance in both analyses, whether a sin-

gular component with the highest variance is considered or a collection of components that

collectively account for a substantial proportion of the data’s variance is considered [27].

DCCM analysis

The DCCM analysis method was applied in a novel way to assist in the identification of poten-

tial protein domains. During the implementation of this novel approach, multiple DCCM

maps (Fig 8) were computed, each utilizing a distinct coordinate reference frame to determine

the boundaries of protein domains and the constituents of protein domain residues[28].

MM/GBSA analysis

The binding free energies predicted by MM/GBSA for Complexes 1, 3, and 6 show a strong

correlation with the calculated values. However, the strength of MM/PBSA and MM/GBSA

lies in their ability to dissect the obtained binding free energies into specific components, such

as the contributions from van der Waals interactions and hydrogen bonding from the solvent

phase (Table 8). In assessing the overall protein complexes, it becomes evident that the unfa-

vourable contribution primarily stems from covalent binding across all complexes suggesting

that there is no favorable covalent interaction which this protein-ligand complexes. Notably,

both Complex 1 and Complex 6 exhibit favorable outcomes in terms of Coulombic

Fig 7. PCA analysis of three complexes. The PCA of Complex_1 (A), complex_2 (B), and complex_3 (C). The White dot here mentions the transition

state of protein-ligand simulation confirmation, the blue dot with a scattered indicates energetically unstable conformational states and the red dots

indicate the stable conformational state.

https://doi.org/10.1371/journal.pone.0304490.g007

Table 7. Different PCA components chart of each of the complexes.

Complex PCA Components

PC1 (%) PC2 (%) PC3 (%)

Complex_1 44.7 8.21 6.76

Complex_3 35.3 10.88 7.01

Complex_6 33.21 8.33 5.75

https://doi.org/10.1371/journal.pone.0304490.t007
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interactions, whereas Complex 3 demonstrates an unfavorable trend in this regard. The

Hydrogen bond plays a crucial role in competitive inhibitory mechanisms. The greater HBond

can seen in complex_3 which is -2.67913 kcal/mol (S6 Table).

Discussion

The therapeutic intervention of Alzheimer’s disease (AD) using AChEi has been demonstrated

by a wide range of plant-based compounds [29]. Given the absence of reliable, efficient, and

secure inhibitors, investigating structurally similar compounds could be a promising field for

researchers to explore [30]. In this study, we analyzed the chemical structures of tacrine, done-

pezil, galantamine, and rivastigmine to identify potential alternative drugs that are safer [31].

Computer aid drug design (CADD) methodologies have been discovered to expand the reposi-

tories of chemical compounds for the identification of potential inhibitors. The assessment of

the binding affinity between a protein and a vast collection of ligands is frequently accom-

plished through the application of molecular docking techniques [32]. The molecules within

the applicability domain of the constructed-in-silico model were screened to assess their drug-

likeness and ADME properties. Drug likeness provides a highly valuable criterion for deter-

mining the minimum requirements that a compound must meet to be considered suitable for

drug development [33]. This criterion helps in the objective selection of new drug candidates

that have desirable bioavailability [34].

Molecular docking is a highly effective approach in CADD that utilizes specific algorithms

to determine the affinity scores based on the positioning of ligands within the binding pocket

of a target. In molecular docking, the lowest docking score corresponds to the highest affinity,

indicating that the complex remains in contact for a longer period with good stability [35, 36].

Fig 8. The cross-correlation map of the C α atom pairs within the monomers of AChE is analyzed for dynamics. The DCCM of

Complex_1 (A), complex_2 (B), and complex_3 (C). The correlation coefficient (C ij) was represented using various colours. The

values of Cij, ranging from 0 to 1, indicate positive correlations. Positive correlations indicate that these pairs of atoms tend to move

in similar directions or have comparable behaviors during the simulation. On the other hand, negative correlations are represented

by Cij values ranging from -1 to 0. Negative correlations indicate that these pairs of atoms tend to migrate in opposite directions or

have contrasting behaviors during the simulation.

https://doi.org/10.1371/journal.pone.0304490.g008

Table 8. Calculated binding free energy of protein for complex_1, complex_3 and complex_6 with its component contributions (all the units are in kcal/mol).

Sl no Compound ΔGbind (Kcal/mol) ΔGbind Coulomb ΔGbind Covalent ΔGbind Vander ΔGbind HBond ΔGbind Lipophilic

1 Complex_1 -47.21025 -60.08772 2.78367 -29.40811 -0.14593 -34.87072

2 Complex_3 -67.26226 9.254793 6.30836 -34.90804 -2.67913 -29.17265

3 Complex_6 -49.89042 -17.04911 5.36441 -38.68284 -0.55515 -32.40361

https://doi.org/10.1371/journal.pone.0304490.t008
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Rigorously examine the protein-ligand binding to identify compounds with higher binding

affinity and potentially improved hydrogen bonding characteristics [37]. The analysis of the

docking results confirmed the binding of the final three compounds, including [3-(10methyl-

piperidin-2-yl)phenyl]. The residues Tyr123, Tyr336, Tyr340, Phe337, and Trp285 are

involved in the interaction with N,N-diethyl carbamate. Specifically, Compound 3, identified

as 4-amino-2-styrylquinoline, interacts with the residues Tyr 123, Phe 337, Tyr 336, Trp 285,

Trp 85, Gly 119, and Gly 120. Conversely, Compound 6, known as Bisdemethoxycurcumin,

binds to the residues Trp 285, Tyr 123, Trp 85, Tyr 71, and His 446.

Molecular dynamics simulations demonstrated stable interactions between specific ligands

and the AChE binding site. Notably, compounds like [3-(1-methylpiperidin-2-yl)phenyl] N,

N-diethylcarbamate, 4-Amino-2-styrylquinoline and Bisdemethoxycurcumin displayed con-

sistent and favourable interactions throughout the simulation period. Such stability suggests a

potential for these compounds to serve as stable and effective inhibitors. The RMSD and

RMSF values of these complexes remained quite stable throughout the simulation. Specifically,

the complex involving 4-Amino-2-styrylquinoline exhibited stability with a constant value

over time. Similarly, [3-(1-methylpiperidin-2-yl)phenyl] N,N-diethylcarbamate also demon-

strated stability during the simulation. Although the RMSD of Bisdemethoxycurcumin devi-

ated, indicating a slight variation in the protein-ligand fit, the overall stability remained

satisfactory. PCA and DCCM analysis of those three compounds were performed. Principal

Component Analysis (PCA) in molecular dynamics studies elucidates key factors influencing

protein-ligand interactions. PC1 signifies binding strength, PC2 reflects protein-ligand com-

plex flexibility, and PC3 captures shape complementarity. Higher PC1 scores denote stronger

interactions, while elevated PC2 scores suggest increased complex flexibility. Enhanced PC3

scores indicate superior geometric fit between protein and ligand [27]. Complex_1, compris-

ing [3-(1-methylpiperidin-2-yl) phenyl] N, N-diethyl carbamate, binds with AChE and dem-

onstrates superior performance in PC analysis. Additionally, Compounds 3 (4-Amino-

2-styrylquinoline) and 6 (Bisdemethoxycurcumin) exhibit promising results in PCA. Con-

versely, the DCCM analysis of compound 1 reveals a positive correlation among the protein-

protein residues throughout the simulation, alongside stable correlations with certain com-

pounds exhibiting both positive and negative associations [38]. The MMGBSA suggests that

none of these complexes could be able to bind with the protein covalently which can suggest

the drug doses and period. The hydrogen bond is also an important parameter for protein-

ligand competitive inhibitory mechanisms. Complex_3 serves as a potential candidate for the

AChE inhibitor. The simulation results it depict complex_3 serves as potent inhibitory proper-

ties against AChE

Exploring the potential of computationally screened compounds in comparison to estab-

lished drugs for Alzheimer’s disease shows a promising direction for future research [31].

Experimental validation using in vitro and in vivo studies is essential to confirm the effective-

ness and safety characteristics of these identified compounds. Recognizing the constraints of

the computational approach is crucial, including the inherent approximations in modelling,

the possibility of false positives, and the requirement for experimental verification. The intri-

cate characteristics of AD pathophysiology pose difficulties in identifying specific inhibitors

that efficiently target the progression of the disease [39]. The combination of computational

screening and molecular dynamics simulations provides an initial yet insightful view of poten-

tial inhibitors for AD [40]. The identified compounds show potential as candidates for further

investigation and confirmation in preclinical and clinical studies. Nevertheless, the practical

application of these compounds as effective treatments necessitates thorough experimental

verification [41].
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Conclusion

The treatment of Alzheimer’s disease through acetylcholinesterase inhibitors has been show-

cased by various plant-derived compounds. Considering the scarcity of dependable, effective,

and safe inhibitors, exploring compounds with comparable structures holds promise as a

potential avenue for investigation. In this study, we performed a virtual screening to discover

new cholinesterase inhibitors from similar structures of already approved drugs and plant

compounds that interact with cholinesterase. Docking and molecular simulation tools were

employed to investigate the significance of binding interactions of potentially new molecules

for Alzheimer’s disease treatment. The comparative analysis of molecular dynamics simulation

data generated from two distinct software platforms elucidates a more nuanced understanding

of the stability dynamics inherent in protein-ligand interactions. Additionally, the utilization

of molecular mechanics generalized born surface area scoring across various parameters pro-

vides valuable insights that complement and potentially corroborate the hypothesized

mechanisms.

Supporting information

S1 Fig. The Ramachandran plot. The Ramachandran plot shows the statistical distribution of

the combinations of the backbone dihedral angles ϕ and ψ. In theory, the allowed regions of the

Ramachandran plot show which values of the Phi/Psi angles are possible for an amino acid, X,

in an ala-X-ala tripeptide (Wiltgen, 2019). The Ramachandran plot analysis of protein AChE

showed high conformational quality, with no outliers identified. All 537 residues (100%) were

in acceptable regions (>99.8%), with 96.6% (519/537) falling within favoured regions (>98%).

(TIF)

S2 Fig. A 100-nanosecond simulation is conducted to measure the root mean square devia-

tion (RMSD). Results of rest 5 complexes. Complexes 2, 4, 5, 7 and 8 are subjected to a

100-nanosecond molecular dynamics simulation using the Desmond software. A) RMSD of

Complex_2, B) RMSD of Complex_4, C) RMSD of Complex_5, D) RMSD of Complex_7, E)

RMSD of Complex_8. The root means square deviation (RMSD) between the ligand and pro-

tein exhibits temporal constancy, thereby can’t able tov ensure stability. Nevertheless, com-

plex_4 demonstrated persistent stability over 90 ns simulation but rest of 10 ns it deviated, and

ligand don’t fit to the protein, suggesting that the interaction between the protein and ligand

remains intact throughout the 90 ns duration but ultimate result is not good all over the time.

The rest of the complexes don’t show any stable interaction throughout the simulation. It may

cause of ion imbalance of the binding pore. Overall binding interaction is not favorable, and

further investigation is required for the other parameters.

(TIF)

S3 Fig. Root mean square deviation (RMSD) profile of selected compound. Cross-valida-

tion of the stability by another simulation machine GROMACS. In the graph, green, and red

colour represented protein carbon alpha chains, ligand respectively. A) Complex_1 showed

steady protein RMSD, and ligands overlapped only for a short time. B) Complex_3 displayed

increasing RMSD and deemed well synchronized with the ligand RMSD. C) Complex_6 dem-

onstrates overlapping RMSD of protein and ligand till 60 ns afterward ligand RMSD goes

higher. Overall, RMSD of the complexes ensures stability and compactness although further

validation may need. Nevertheless, the overall binding interaction is not significantly unfa-

vourable, and further investigation is required for the other parameters.

(TIF)
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S4 Fig. The root means square fluctuation (RMSF) of all the simulation complexes over a

100-nanosecond simulation. A- Root Mean Square Fluctuation (RMSF) of Complex_2, B-

RMSF of Complex_4, C- RMSF of Complex_5, D- RMSF of Complex_7, E- RMSF of Com-

plex_8. The interpretation of the results is justified by Several significant fluctuations. The fluc-

tuation primarily arises when the ligand interacts with the protein residues. Complex_7 has

shown two major fluctuations as 180 residues and 395 residues. Overall, others exhibit signifi-

cant fluctuations on the green vertical bar, which signify the hydrogen bond contact between

the ligand molecule and the protein.

(TIF)

S5 Fig. The root means square fluctuation (RMSF) of all the simulation complexes over a

100-nanosecond simulation. A- Root Mean Square Fluctuation (RMSF) of Complex_1, B-

RMSF of Complex_3, C- RMSF of Complex_6. The interpretation of the results is justified.

Several significant fluctuations. The fluctuation primarily arises when the ligand interacts with

the protein residues. Complex_1 exhibits three significant fluctuations, which signify the con-

tact between the ligand molecule and the protein. Complex_3 and Complex_6 exhibit signifi-

cant temporal fluctuations. The overall comparison reveals significant fluctuations, although

they do not exceed 0.4 nm.

(TIF)

S6 Fig. A 100 ns simulation of ligand properties for all the complexes. The green, orange,

and blue colours represent Complex_1, Complex_3, and Complex_6, respectively. A) The

SASA value of the ligand across 100 ns displayed lower solvent access. B) The gyration of the

ligand results indicates that Complex_1 and Complex_3 are located within a range of 0.40 nm,

while Complex_6 averages 0.55 nm. Additionally, Complex_6 showed irregularity in the

radius of gyration, notably around 20 ns, indicating changes in atom dispersion around an

axis.

(TIF)

S1 Table. The active side residues.

(DOCX)

S2 Table. The sequence alignment of 3D predicted structures.

(DOCX)

S3 Table. The geometrical analysis of 3D predicted protein.

(DOCX)

S4 Table. ADME analysis of screened chemical compounds.

(DOCX)

S5 Table. Molecular docking study of primary screening by pyrx.

(DOCX)

S6 Table. Predicted binding free energies for complexes 1, 3, and 6.

(XLSX)
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