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Abstract

In privacy protection methods based on location services, constructing anonymous areas

using location information shared by collaborative users is the main method. However, this

collaborative process not only increases the risk of mobile users’ location privacy being

leaked, but also reduces positioning accuracy. In response to this problem, we propose a

balancing strategy, which transforms the problem of protecting mobile users’ location pri-

vacy and improving positioning accuracy into a balance issue between location privacy and

positioning accuracy. The cooperation of mobile users with different collaborating users is

then modeled as an objective optimization problem, and location privacy and positioning

accuracy are evaluated separately to make different selection strategies. Finally, an optimi-

zation function is constructed to select the optimal selection strategies. Experimental results

show that our proposed strategy can effectively achieve the balance between location pri-

vacy and positioning accuracy.

Introduction

With the rapid development of the Internet of Things and 5G/6G networks, smart mobile

devices have accelerated their upgrading [1, 2]. The popularity of smart mobile devices has

also promoted the application of location-based services (LBS) [3]. LBS pertains to the utiliza-

tion of geographic location coordinates and associated data derived from mobile devices, with

the objective of furnishing users possessing such devices with information resources and foun-

dational services pertinent to their specific locations. The scope of LBS applications encom-

passes cartographic utilities, points of interest retrieval, and navigation, among others. Early

LBS systems were mainly used in military and civilian fields involving important national

interests. At present, LBS has been widely used in situation awareness, traffic navigation, busi-

ness services, leisure and entertainment, and other fields [4]. Users can obtain points of inter-

est (POI) near the location, such as the nearest restaurants, supermarkets, hospitals, etc., by

sending LBS service requests. It can be seen that location-based services have penetrated into

all aspects of people’s daily lives, and thoughtful and meticulous services make people increas-

ingly inseparable from LBS.

However, in order to obtain necessary information services, users need to send their loca-

tion information to the LBS server, and the server returns corresponding query results to the
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user based on the uploaded location information. At the same time, because the LBS server has

the characteristics of honest but curious [5], it can make inferences based on the private infor-

mation data uploaded by users, which may cause security issues for users [6]. For example, a

malicious attacker may use private data to analyze the locations where users often stay, and

determine whether the locations where users often stay during a specific period of time are

home addresses and work locations. If malware cannot be prevented from spreading on the

LBS server, or the LBS server does not have intrusion detection methods to detect malicious

traffic, then this information will be cracked by malicious attackers, and users will face serious

security and property threats [7–9].

In order to protect user location privacy, users need to communicate and cooperate with

surrounding cooperating users to send the location information of multiple users to the server.

However, working with more users means a reduction in positioning accuracy, thus affecting

the accuracy of user location-based services. Therefore, it is crucial to balance location privacy

and positioning accuracy for mobile users.

Example Taking Fig 1 as an example, if the mobile user u cooperates with u1, u2, u3, u4, and

u5 simultaneously, it can be determined that u is within the area jointly covered by the u1, u2,

u3, u4, and u5 response areas. This area is referred to as the inferred area in this paper, which is

used to measure the accuracy of the inferred positioning accuracy. The distance between the

cooperative user and the mobile user indicates whether the actual positioning is accurate, that

is, the average distance between cooperative users and the mobile user is used to measure the

accuracy of actual positioning accuracy. The accuracy of user positioning is determined by

both the inferred positioning accuracy and the actual positioning accuracy. The degree of loca-

tion privacy protection for the mobile user is also the same, and cannot be simply measured by

Fig 1. Example of requesting user cooperation.

https://doi.org/10.1371/journal.pone.0304446.g001
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Yes or No. The convex hull area formed by u1, u2, u3, u4, and u5 in Fig 1 is referred to as pri-

vacy area in this paper. The risk of the mobile user location information leakage depends on

the size of the privacy area, because the smaller the privacy area, the closer the positions

between cooperative users, thereby increasing the probability of mobile user location being

discovered by attackers, and the higher the risk of location information leakage. In this paper,

the key to protecting user privacy is to maximize the privacy area, as the larger the privacy

area, the less likely the mobile user’s location will be discovered by attackers. Therefore, coop-

erative users should stay as far away as possible from the mobile user. But this will reduce the

actual positioning accuracy of user and improve their inferred positioning accuracy. In addi-

tion, the shorter the average distance between cooperative users and the mobile user, the

higher the actual positioning accuracy of the mobile user. However, this increases the risk of

user location privacy leakage. Reducing the actual positioning accuracy in turn leads to an

increase in inferred positioning accuracy, which not only lowers the user’s positioning accu-

racy but also increases the risk of location privacy leakage. Therefore, it is necessary to improve

the actual positioning accuracy of users and reduce their inferred positioning accuracy while

ensuring the privacy and security of user location. Therefore, we regard this issue as a balance

among location privacy, actual positioning accuracy, and inferred positioning accuracy.

In response to the above problems, we propose a strategy to balance location privacy and

positioning accuracy. The contributions of this paper are summarized as follows:

• We proposed a model to balance location privacy and positioning accuracy(BLPPA), and

proved that it is NP-hard.

• We design a privacy evaluation model and a positioning accuracy evaluation model. It is

proposed to use privacy areas to evaluate location privacy, while using actual distance and

inferred areas to evaluate actual positioning accuracy and inferred positioning accuracy

respectively. An optimization function is established to select the optimal decision to achieve

a balance between location privacy and positioning accuracy.

• Based on the public real data set, experimental comparisons were conducted with existing

solutions to verify the effectiveness of our designed model in balancing location privacy and

positioning accuracy.

The remainder of this paper is organized as follows. Related work section introduces related

work in the field of location privacy, and Problem statement section analyzes and formulates

the BLPPA problem, proving the difficulty of the problem. Privacy and positioning accuracy

assessment section evaluates location privacy and positioning accuracy respectively, and pro-

poses an optimization function to find the optimal strategy. Experimental results section con-

ducts experimental analysis. Conclusion section summarizes the full text.

Related work

In order to solve the problem of location privacy leakage, researchers have proposed many

algorithms, which are summarized as follows.

In the research on location privacy protection methods, anonymous methods are the more

mature and most commonly used technology. Among the anonymous methods, K-anonymity

[10] is one of the most classic algorithms.

K-anonymity is a data desensitization method. The core idea is to generalize quasi-identifi-

ers so that any piece of data cannot be distinguished from at least K − 1 other pieces of data.

Gruteser et al. [11] first introduced the K-anonymity concept of relational databases into the

field of LBS privacy protection and proposed location K-anonymity. It means that the position
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in the LBS query corresponds to an area containing at least K different users, and the attacker

cannot distinguish the real query user from these K users. A larger K value indicates a higher

degree of privacy protection, but the query accuracy will be lower, resulting in lower quality of

service (QoS).

In recent years, researchers have been continuously proposing improvements and optimi-

zations to K-anonymity techniques. Xing et al. [12] proposed a location privacy protection

method based on double K-anonymity, which introduces a cloud server as a trusted third-

party to isolate the direct communication between the user and the service provider, and at the

same time reduces the relevance of the identity to the request through the method of substitu-

tion and combination, in order to hide the user’s location and request information. Peng et al.

[13] proposed a multidimensional privacy protection scheme that provides comprehensive

protection for user privacy without the need for a trusted third party. The scheme employs a

semi-trusted intermediate entity to perform user anonymization and blind filtering of results,

utilizes Hilbert curves to transform the user’s location, and uses encryption to preserve the

user’s query.

However, the above methods all rely on a third-party central server, which may store the

user’s real location information, and all queries submitted must go through it, which itself may

become a bottleneck for system service performance and failure. In order to solve the short-

comings of centralized architecture, researchers have proposed distributed architecture [14–

16]. Cui et al. [14] proposed a novel architecture that builds a non-localized LBS based on a

distributed architecture, allowing mobile users to access the LBS without revealing their loca-

tion. Furthermore, a technique to evaluate mobile user privacy and utility is proposed to

achieve a balance between them. Shi et al. [15] considered that cooperative nodes would incur

privacy costs when reporting their location information, and proposed a feasible incentive

mechanism based on contract theory to reward cooperative nodes and ensure the expected

positioning accuracy of the target node. Zhang et al. [16] proposed a cache-based double K-

anonymity location privacy protection scheme, which reduces the load on user devices by

applying multi-level caching and protects location privacy through double anonymity.

In order to address the issue of untrustworthy collaborators in distributed architectures,

researchers have proposed conducting trust assessments on cooperative users to identify mali-

cious users who disguise themselves as normal users and may engage in malicious operations

[5, 17–20]. Luo et al. [17] and Li et al. [5, 18] proposed a blockchain based trust location pri-

vacy protection scheme in VANET. This scheme designs a trust management method based

on Dirichlet distribution by analyzing the different requirements of requesting and coopera-

tive vehicles in the process of constructing anonymous camouflage areas, so that requesting

and cooperative vehicles only cooperate with the vehicles they trust. Liu et al. [19] proposed a

blockchain-based TM scheme together with a conditional privacy-preserving announcement

protocol (named as BTCPS). By the use of group signatures in anonymous aggregate vehicular

announcement protocol, the reliability of announcements can be maintained without reveal-

ing users’ privacy in the non-fully-trusted environment. Feng et al. [20] proposed a trusted

CAC scheme called TCAC to protect the location privacy of vehicles. With the trust mecha-

nism, multiple anonymizers in adjacent vehicular regions can be selected to construct the

cloaking area in a cross-region manner. Min et al. [21] proposed a location privacy protection

method in 3D space based on geo-indistinguishability, which develop a mechanism of three-

variates Laplacian to generate perturbed locations considering the locations’ X, Y, and Z-coor-

dinates simultaneously, guaranteeing geo-indistinguishability. Furthermore, the truncation of

the Laplace mechanism was further studied to limit the generated perturbation locations to

specific regions. Kim et al. [22] used the perturbation mechanism of Geo-I to obfuscate user

location information, and then proposed an expectation-maximization (EM) algorithm and
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the deep learning based approaches to accurately calculate the density distribution of LBS

users while preserving the privacy of location datasets.

In the field of location privacy protection, differential privacy [23] is also a popular research

direction, which is characterized by being unaffected by attackers with background knowledge.

Andrés et al. [24] proposed Geo-indistinguishability, where noise is added to the user’s true

location so that the final published user’s location is within a circular range of the true location,

making it impossible for the service provider to get the user’s true geographic location from

the collected location information. Li et al. [25] proposed an enhanced privacy definition

beyond Geo-indistinguishability, combining with differential private indexing mechanism to

design a new mechanism to realize this definition, by guaranteeing that the user’s pseudo-loca-

tion is reasonable to prevent the user’s location perturbation behavior from being recognized.

Wang et al. [26] proposed a location privacy preserving algorithm with location clustering and

differential privacy, which firstly divides the continuous locations into different clusters, and

then adds Laplacian noise to the stationary points and centers of mass within the clusters to

protect the user’s location privacy.

In the field of industrial Internet of Things, some research on privacy protection can also

bring some inspiration. Wu et al. [27] proposed a privacy-preserving offloading scheme based

on stochastic game theory considering multiple access points. In terms of privacy, the privacy

risks caused by the offloading preferences of different edge nodes are studied, and the privacy

entropy is used to evaluate the privacy protection level. Shen et al. [28] proposed a privacy pro-

tection model based on signaling game. This paper first derives the optimal privacy protection

strategy of the model from a theoretical perspective. And a signaling Q-learning algorithm is

designed to formulate the optimal privacy protection strategy by combining the Bayesian rule

and the Q-learning approach. Wu et al. [29] first define the cumulative privacy amount for

each IIoT user and trigger the privacy protection mechanism when the cumulative privacy

amount exceeds the set privacy threshold. The offloading data generated by the IIoT user is

then transferred to local processing, and finally, the cumulative privacy amount of the IIoT

user is reduced.

The comparison of location privacy protection algorithms is shown in Table 1. Through the

analysis of current research results, it can be found that the sharing of location information

increases the risk of location privacy leakage for mobile users. At the same time, it also reduces

the positioning accuracy. Therefore, we conduct research on this issue and propose solutions.

Table 1. Comparison of location privacy protection algorithms.

References Methods Degree of location privacy protection Accurate level of positioning accuracy

[12] double k-

anonymity

medium; no guarantee that cloud servers are completely

trustworthy

not considered

[13] encryption medium; semi-trusted middle entity risk privacy leakage not considered

[14] a novel

architecture

high; depend on the number of servers accessed

simultaneously

medium; depending on privacy zone size

[15] differential privacy high; depend on how much noise is added medium; depending on the degree of incentive of the incentive

mechanism

[16] double k-

anonymity

high; depend on cache size not considered

[5, 17–20] blockchain high; depend on the trust value threshold not considered

[21–26] differential privacy high; depend on cache size not considered

ours k-anonymity high; depend on the size of the privacy area,

it can balance positioning accuracy while also

protecting location privacy to a high degree.

high; using actual positioning accuracy

and inferred positioning accuracy to

comprehensively evaluate the positioning

accuracy of mobile users

https://doi.org/10.1371/journal.pone.0304446.t001
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Problem statement

Preliminary

Convex hull [30]. The minimum convex polygon encompassing all the points in a given

point set Q is referred to as the convex hull. Since the convex hull problem investigates how to

construct the smallest convex polygon that can enclose the given point set, we employ convex

hull computation to determine the privacy area for cooperative users.

3-SAT problem [31]. The 3-SAT problem is a Boolean satisfiability problem. Given a

Boolean expression, it is necessary to find a variable assignment that makes the expression

result true. If there exist assignments of variables as true or false that result in the Boolean

expression evaluating to true, then the expression is satisfiable. If no such assignments exist,

and for all possible variable assignments, the expression always evaluates to false, then the

expression is unsatisfiable.

Haversine formula [32]. The Haversine formula is a method for calculating the distance

between two points on a great circle on the Earth’s surface based on their longitudes and lati-

tudes. It approximates the Earth as a sphere with a radius of R. This formula allows for the cal-

culation of the great circle distance between any two points, A and B, on the Earth.

Heron’s formula [33]. The Heron’s formula is a mathematical formula used to directly

calculate the area of a triangle based on the lengths of its three sides.

Problem analysis

When a mobile user has multiple cooperating users to cooperate with, a selection strategy

needs to be made to determine which cooperating users the mobile user cooperates with to

build an anonymous area. Taking the mobile user u in the user layer in Fig 2 as an example,

Fig 2. System architecture.

https://doi.org/10.1371/journal.pone.0304446.g002
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there maybe be sixteen different selection strategies, namely {{�}, {u1}, . . ., {u3}, {u1, u2}, . . .,

{u2, u3}, {u1, u2, u3}, . . ., {u1, u2, u3, u4}}. These selection strategies result in different position-

ing accuracy and privacy area. For example, the selection strategy {u1, u2, u3, u4} indicates that

u cooperates with all surrounding cooperative users at the same time, thus producing the larg-

est privacy area. However, this selection strategy produces the highest inferred positioning

accuracy. Too high inferred positioning accuracy will lead to too small inferred area and

attacks. Combined with surrounding buildings and other information, the real location of the

mobile user can be easily inferred, and this selection strategy produces the lowest actual posi-

tioning accuracy. In order to reduce the risk of the location being inferred and to improve the

actual localization accuracy, u will work with as few and as close collaborating users as possible

to increase the inferred area size and shorten the average distance, but this leads to a reduction

of the privacy area, making the anonymous area construction less effective and not conducive

to privacy protection. Therefore, the solution to the BLPPA problem must achieve a balance

among privacy area, actual positioning accuracy, inferred positioning accuracy generated for

u. The main symbols and their interpretations in this paper are shown in Table 2.

Problem formlation

Definition 1 (Selection Strategy). Given the mobile user u and the set of cooperative users ui

2 N(u), a selection strategy represents the collaboration of the mobile user u with any coopera-

tive user ui. If u collaborates with k cooperative users, the selection strategy can be denoted as

a = (u1, . . ., ui, . . ., uk), i = 1, 2, . . ., k;k�m.

Definition 2 (BLPPA Strategy). The u’s BLPPA strategy is composed of a set of selection

strategies represented by a = {a1, . . ., ai, . . ., a2m}, i = 1, 2, . . ., 2m.

Table 2. Key notations.

Notation Description

u the mobile user u
m number of cooperative users

N(u) = {u1, . . ., ui, . . ., um} set of u0 cooperative users

ui 2 N(u) cooperative user ui

a = (u1, . . ., ui, . . ., uk) selection strategy a
a = {a1, . . ., ai, . . ., a2m} BLPPA strategy a
ad(a) actual distance produced by a
ia(a) inferred area produced by a
pa(a) privacy area produced by a
λad weight of actual distance

λsa weight of inferred area

λpa weight of privacy area

pi point pi

circles(uj) coverage of uj

d(ui, uj) or d(pi, pj) distance between ui or pi and uj or pj

r coverage radius of u
R earth radius

S(Δpipjpk) triangle area formed by points pi,pj and pk

S
_

ðpiOpipj
pjÞ sector area formed by points pi,pj and Opipj

S
_

ðpipjÞ arched area formed by points pi,pj

https://doi.org/10.1371/journal.pone.0304446.t002
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Definition 3 (Average Distance). Given the mobile user u and the selection strategy a =

(u1, . . ., ui, . . ., uk), i = 1, 2, . . ., k;k�m, the average distance between u and the cooperative

users in a is defined as disðu; aÞ.
Definition 4 (Coverage). Given the mobile user u, the request-response area of u is defined

as cover(u).

Definition 5 (Convex Hull Area). Given the set of users users = {u1, . . ., ui, . . ., uk}, i = 1, 2,

. . ., k;k�m, the convex hull area of the user set is defined as cha(u1, . . ., ui, . . ., uk).

The actual positioning accuracy generated by a selection strategy a is measured by the

length of the corresponding actual distance, defined as follows:

Definition 6 (Actual Distance). Given the selection strategy a = (u1, . . ., ui, . . ., uk), i = 1, 2,

. . ., k;k�m, the actual distance is the average distance between the cooperative users and the

mobile user u, denoted as ad(a), defined as follows:

adðaÞ ¼ disðu; aÞ ð1Þ

The inferred positioning accuracy generated by a selection strategy a is measured by the

size of the corresponding inferred area, defined as follows:

Definition 7 (Inferred Area). Given the selection strategy a = (u1, . . ., ui, . . ., uk), i = 1, 2,

. . ., k;k�m, the inferred area is the intersection of the coverage of the cooperative users,

denoted as ia(a), defined as follows:

iaðaÞ ¼
\k

i¼1

coverðuiÞ ð2Þ

The privacy generated by a selection strategy a is measured by the size of the corresponding

privacy area, defined as follows:

Definition 8 (Privacy Area). Given the selection strategy a = (u1, . . ., ui, . . ., uk), i = 1, 2,

. . ., k;k�m, the privacy area is the convex hull area of the cooperative users, denoted as pa(a),

defined as follows:

paðaÞ ¼ chaðu1; . . . ; ui; . . . ; ukÞ ð3Þ

Problem hardness

In order to establish the NP-hardness of the BLPPA problem, it is necessary to reduce this

problem to an NPC problem. Given that the 3-SAT problem is a known NPC problem, dem-

onstrating that the BLPPA problem can be reduced to the 3-SAT problem will suffice to prove

that the BLPPA problem is NP-hard.

Theorem The BLPPA problem is NP-hard

Proof First, it is necessary to formalize the problem in this paper, with three parameters:

ad, pa, and ia, corresponding to actual distance, privacy area, and inferred area in this paper. If

"means increase, #means decrease, the simplified constraint relationships among them are as

follows:

ad ")pa ", ia #, meaning an increase in ad will lead to an increase in pa and a decrease in

ia.

pa ")ad ", ia #, meaning an increase in pa will lead to an increase in ad and a decrease in

ia.

ia " )pa #, ad #, meaning an increase in ia will lead to a decrease in pa and an increase in

ad.
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The ultimate goal is to find values for ad, pa, and ia that satisfy these constraint conditions,

with the aim of making ad as small as possible to improve actual positioning accuracy, maxi-

mizing ia to reduce inferred positioning accuracy, and maximizing pa to enhance privacy.

For this purpose, it is proposed to create a 3-SAT problem that is equivalent to the problem

in this paper. Given that an increase is true and a decrease is false, for each variable ad, pa, ia,

introduce corresponding Boolean variables ad_tf, pa_tf, ia_tf. The constructed Boolean expres-

sion reflecting the constraint conditions is as follows:

ðad tf _ pa tf _ ia tf Þ ^ ðad tf _ pa tf _ ia tf Þ ^ ðad tf _ pa tf _ ia tf Þ

The Boolean variables that satisfy the objectives are ad_tf = false, pa_tf = true, and ia_tf =

true. Substituting these Boolean variables into the aforementioned Boolean expression, the

process is as follows:

ðad tf _ pa tf _ ia tf Þ ^ ðad tf _ pa tf _ ia tf Þ ^ ðad tf _ pa tf _ ia tf Þ

) ðflase _ true _ trueÞ ^ ðfalse _ true _ trueÞ ^ ðfalse _ true _ trueÞ

) true ^ true ^ true

) true

The final result shows that the result of Boolean expression is true.

Therefore, it has been proved that the original problem can be reduced to a 3-SAT problem,

and the original problem is NP-hard.

Privacy and positioning accuracy assessment

This section evaluates privacy protection and positioning accuracy respectively.

Privacy assessment model

Privacy can be measured by the size of the corresponding privacy area. We propose to use the

convex hull area composed of cooperative users to quantify the privacy area. In Fig 3(a),

mobile user u has five cooperating users, namely u1, u2, u3, u4, and u5, so a selection strategy of

u is represented as a = (u1, u2, u3, u4, u5). Observing Fig 3(a), the privacy area consists of the

Fig 3. Calculate the privacy area.

https://doi.org/10.1371/journal.pone.0304446.g003
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coordinate points of five cooperative users. The privacy area is extracted from Fig 3(a) to form

the convex hull shown in Fig 3(b). Next, the area of this convex hull will be computed.

From Fig 3(b), it can be observed that the convex hull is an irregular polygon. By further

subdividing the convex hull, it can be split into several triangles, as shown in Fig 3(c). The area

of the convex hull can be calculated by summing the areas of the triangles that compose it.

First, determine the set of points P = {p2, p1, p0, p4, p3} that make up the convex hull. The area

of the convex hull formed by this point set is denoted as cha(P). Select the lower-left point

within the convex hull as the reference point, for example, use point p0 in Fig 3(c) as the refer-

ence point. The remaining points are sorted based on the angles formed with the reference

point and the positive x-axis. The sorted point coordinates might be represented as {p1, p2, p3,

p4}. The sorted points and reference points form three triangles, and the sum of the areas of

the three triangles is exactly equal to the convex hull area, i.e. conv(P) = S(Δp0p1p2) + S
(Δp0p2p3) + S(Δp0p3p4). Below, we will take S(Δp0p1p2) as an example to discuss how to calcu-

late the area of a triangle.

According to the Haversine Formula, the distance between p0 and p1 can be calculated

based on their longitude and latitude (lat0, lng0), (lat1, lng1), and (lat2, lng2), simply represented

as (x0, y0), (x1, y1), and (x2, y2):

d p0; p1ð Þ ¼ 2R � arcsin
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

sin2 y1 � y0

2
þ cos y0ð Þ � cos y1ð Þ � sin

2 x1 � x0

2

r� �

ð4Þ

where R is the radius of the earth. In the same way, d(p0, p2) and d(p1, p2) can be calculated.

According to Heron’s Formula, S(Δp0p1p2) can be calculated as:

SðDp0p1p2Þ ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
sðs � dðp0; p1ÞÞðs � dðp0; p2ÞÞðs � dðp1; p2ÞÞ

p

s ¼
dðp0; p1Þ þ dðp0; p2Þ þ dðp1; p2Þ

2

ð5Þ

Now, the formula for calculating the privacy area of mobile user u’s selection strategy a is

given:

paðaÞ ¼ SðDp0p1p2Þ þ SðDp0p2p3Þ þ SðDp0p3p4Þ ð6Þ

Positioning accuracy assessment model

There are two types of positioning accuracy: actual positioning accuracy and inferred position-

ing accuracy. Firstly, the evaluation methods for actual positioning accuracy will be intro-

duced, followed by the evaluation methods for inferred positioning accuracy.

Actual positioning accuracy. As introduced in Problem formlation section of this paper,

the actual positioning accuracy is measured by the length of the corresponding actual distance,

which is the geographic distance between the cooperative user ui and the mobile user u.

In Fig 4(a), mobile user u has five cooperative users, namely u1, u2, u3, u4, and u5. A selec-

tion strategy for u is represented as a = (u1, u2, u3, u4, u5). The dashed line in Fig 4(a) indicates

that the cooperative user has a cooperative relationship with the mobile user. Fig 4(b) is a sim-

plified diagram in Fig 4(a), where all cooperative users and mobile users have quantified their

cooperative relationships as actual distances, represented by solid lines. According to the

Haversine Formula, the actual distance between mobile user u and cooperative user u1 can be

calculated based on their latitude and longitude, which are simply denoted as (xu, yu) and
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ðxu1
; yu1
Þ, and the calculation result is:

d u; u1ð Þ ¼ 2R � arcsin
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

sin2
yu1
� yu

2
þ cos yuð Þ � cos yu1

� �
� sin2

xu1
� xu

2

r� �

ð7Þ

The actual distance calculation method between other cooperative users and the mobile

user is similar. Finally, the formula for calculating the average actual distance of the mobile

user u’s selection strategy a is given:

ad að Þ ¼
Pk

i¼1
dðu; uiÞ

k
ð8Þ

Inferred positioning accuracy. The accuracy of inferred positioning is measured by the

size of the corresponding inferred area, which is the intersection of the cooperative user cover-

age. In Fig 5(a), the mobile user u has five cooperative users, namely u1, u2, u3, u4, and u5. A

same selection strategy for u is represented as a = (u1, u2, u3, u4, u5). Extract the inferred area

Fig 4. Calculating the actual distance.

https://doi.org/10.1371/journal.pone.0304446.g004

Fig 5. Calculating the inferred area.

https://doi.org/10.1371/journal.pone.0304446.g005
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from Fig 5(a) to form the curved polygon shown in Fig 5(b). To calculate the area of the

inferred area, the vertex of the curved polygon should be determined first. The method is as

follows: calculate the intersection point of each cooperative user and other cooperative users in

the requested area, determine whether each intersection point is an inner intersection point. If

the distance between the intersection point and each cooperative user is not greater than the

radius of the requested area, then the intersection point is considered an inner intersection

point, which is a part of the curved polygon point set. Next, we will calculate the area of the

curved polygon.

By observing Fig 5(b), it was found that the curved polygon can be divided into a convex

hull and multiple arches, as shown in Fig 5(c). Therefore, the area of a curved polygon can be

calculated by adding the areas of multiple arches of the convex hull at the center. The method

for calculating the area of the convex hull has been detailed in Privacy Assessment Model sec-

tion, so this section will discuss how to calculate the area of the arch.

Taking the calculation of the arch area S_ðp1p5Þ as an example. Firstly, calculating the center

angle formed by p1, p5, and u2. If x represents longitude and y represents latitude, then the lon-

gitude and latitude of p1, p5, and u2 are simply represented as (x1, y1), (x5, y5), and ðxu2
; yu2
Þ

respectively. The radius of the cooperative user coverage is r. Calculate the center angle θ
(p1u2p5) as:

y p1u2p5ð Þ ¼ 2arcsin
dðp1; p5Þ

2r
ð9Þ

Next, calculate the sector area S_ðp1u2p5Þ enclosed by p1, p5, and u2:

S_ p1u2p5ð Þ ¼ pr2
yðp1u2p5Þ

360
ð10Þ

The triangle area formed by p1, p5, and u2 is S_ðp1u2p5Þ, and the arch area S_ðp1p5Þ can be cal-

culated as:

S_ p1p5ð Þ ¼ S_ p1u2p5ð Þ � S Dp1u2p5ð Þ ¼ r2 � arcsin
dðp1; p5Þ

2r
� S Dp1u2p5ð Þ ð11Þ

Finally, the privacy area calculation formula for u’s selection strategy a is given:

iaðaÞ ¼ paðaÞ þ S_ðp1p2Þ þ S_ðp2p3Þ þ S_ðp3p4Þ þ S_ðp4p5Þ ð12Þ

Algorithm analysis

It can be seen from Algorithm 1 that the time complexity of calculating the privacy area is O
(n). And m cooperative users can generate m − 2 triangles. During the calculation process, the

areas of m − 2 triangles need to be calculated one by one, and the time required is O(n).

Algorithm 1 Privacy Area Calculation
Input: The cooperative users N(u) = {u1(x1, y1), u2(x2, y2), . . .un(xn,

yn)} for u, the selection strategy a, R
Output: Privacy area pa(a)
1: K  0, list−arctan  �, pa(a)  0;
2: for ui 2 {u1, . . ., un} do
3: if yi < yk or (yi = = yk and xi<xk) then
4: k = i;
5: end if
6: end for
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7: let uk be the reference point;
8: swap the positions of u1 and uk in N(u);
9: for ui 2 {u2, u3, . . ., un} do
10: calculate the tan value between u1 and ui: tan(u1, ui) = (yi −

y1)/(xi − x1);
11: calculate the arctan value between u1 and ui: arctan(u1, ui);
12: list−arctan  arctan(u1, ui);
13: sort the list−arctan by the value of arctan value from smallest

to largest;
14: end for
15: for pi 2 {u2, u3, . . ., un} do
16: calculate the distances d(u1, ui) between u1 and ui, d(u1, ui+1)

between u1 and ui+1, and d(ui, ui+1) between ui and ui+1 according
to formula (8);

17: calculate S(4u1uiui+1) according to formula (6);
18: pa  pa + S(4u1uiui+1);
19: end for
20: return pa(a);

From Algorithm 2, it can be seen that the time complexity of calculating the actual distance

is also O(n). In the calculation process, the geographic distances of m cooperative users and

requesting users need to be calculated separately, and then the mean value is calculated, which

requires a time overhead of O(n).

Algorithm 2 Actual Distance Calculation
Input: The cooperative users N(u) = {u1(x1, y1), u2(x2, y2), . . .un(xn,

yn)} for mobile user u(x, y), the selection strategy a, R
Output: Actual Distance ad(a)
1: ad(a) 0, dis  0;
2: for ui 2 {u1, u2, . . ., un} do
3: calculate the distances d(u, ui) between u and ui according to

formula (8);
4: dis  dis + d(u, ui);
5: end for
6: calculate average distance ad(a): ad að Þ ¼ dis u; fu1;u2; . . . ;ukgð Þ ¼ dis

n ;
7: return ad(a);

It can be seen from Algorithm 3 that the time complexity of calculating the size of the

inferred area is O(kn2). We assume that the coverage of all users is a circle. The analysis steps

are as follows:

Step 1: The coverage of any two cooperative users will produce two intersection points. The

time complexity required to calculate all intersection points of the coverage of m cooperative

users is O(n2).

Step 2: If the distance between the intersection point and all cooperative users is not greater

than the radius, the intersection point is regarded as an internal intersection point, and the

time complexity required to determine whether all intersection points are internal intersection

points is O(n2).

Step 3: Calculate the convex hull area formed by all internal intersection points according

to Algorithm 1, the required time complexity is O(n).

Step 4: Two adjacent inner intersection points form an arch, and the time complexity

required to calculate the areas of all arches is O(n).

Algorithm 3 Inferred Area Calculation
Input: The cooperative users N(u) = {p0(x0, y0), p1(x1, y1), . . .pn(xn,

yn)} for u, the coverage radius r of the cooperative user, the
selection strategy a, R

Output: Inferred Area sa(a)
1: determine all circles {circes(u), circes(u1), . . ., circes(un)};
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2: candidate  �, result  �, _ SðresultÞ  0, sa(a)  0;
3: for circles(ui) 2 {circles(u1), circles(u2), . . ., circles(un)} do
4: for circles(uj) 2 {circles(ui+1), . . ., circles(un)} do
5: calculate intersection points of circles(ui) and circles(uj):

p0,p1;
6: candidate  {p0, p1};
7: end for
8: end for
9: for pi 2 candidate do
10: for circles(uk) 2 {circles(u1), circles(u2), . . ., circles(un)} do
11: calculate the distance between p and circles(uk):d(pi, circles

(uk));
12: if d(pi, circles(uk)) � r then
13: result  pi;
14: end if
15: end for
16: end for
17: calculate the convex hull area area(result) of result by Algorithm
1;
18: for pi 2 result do
19: calculate the central angle of pi, pi+1, Opipiþ1

:
yðpiOpipiþ1

piþ1Þ  2arcsinðdðpi;piþ1Þ=2rÞ;
20: calculate the sector area of pi, pi+1, Opipiþ1

:

S
_
ðpiOpipiþ1

piþ1Þ  pr2ðyðpiOpipiþ1
piþ1Þ=360Þ;

21: calculate S(4p0pipi+1) according to formula (6);
22: calculate the arch area: S

_
ðpipiþ1Þ  S

_
ðpiOpipiþ1

piþ1Þ � SðpiOpipiþ1
piþ1Þ;

23: S
_
ðresultÞ  S

_
ðresultÞ þ S

_
ðpipiþ1Þ;

24: end for
25: saðaÞ  S

_
ðresultÞ þ areaðresultÞ;

26: return sa(a);

Optimization function

To achieve a better balance among privacy area, actual positioning accuracy, and inferred posi-

tioning accuracy, it is necessary to select collaborative users in the optimal selection strategy to

construct an anonymous area. The formation of optimal selection strategy must satisfy the fol-

lowing conditions:

In order to maximize the actual positioning accuracy, it is necessary to minimize the aver-

age distance ad(a) between each collaborative user and the requesting user. Given k collabora-

tive users for mobile user u, the optimization function can be described as:

adðaÞ ¼ min
a2a

adðaÞ

¼ min
a2a

Pk
i¼1

dðu; uiÞ

k

ð13Þ

where the BLPPA strategy, denoted as a, consists of several selection strategies a.

To maximize the reduction of inferred positioning accuracy, it is necessary to maximize the

common coverage area ia(a) among the collaborative users. Given k collaborative users for
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mobile user u, denoted as {u1, u2, . . ., uk}, the optimization function can be described as:

iaðaÞ ¼ max
a2a

iaðaÞ

¼ max
a2a

 
Xk� 2

i¼1

SðDu0uiuiþ1Þ þ
Xk� 1

i

S_ðuiuiþ1Þ

! ð14Þ

To maximize the privacy area, it is necessary to maximize the convex hull area pa(a) formed

by the collaborative users. Similarly, given k collaborative users for mobile user u, the optimi-

zation function can be described as:

paðaÞ ¼ max
a2a

paðaÞ

¼ max
a2a

Xk� 2

i¼1

SðDu0uiuiþ1Þ

ð15Þ

If the actual distance is minimized, the inferred area is maximized, and the privacy area is

maximized at the same time, the optimal strategy selection problem is transformed into a

multi-objective optimization problem.

min
a

n
lad � ada2a

ðaÞ þ lia � iaa2a
ðaÞ þ lpa � pa

a2a
ðaÞ
o

ð16Þ

To address the above multi-objective optimization problem, we transform the multi-objec-

tive optimization problem into a single objective optimization problem by assigning weights to

each objective function according to the relationship between the objective functions. Specifi-

cally, the multiple objective functions are linearly combined into a Privacy Positioning Accu-

racy Weighted Average (PPAWA) optimization function, and the optimal selection strategy is

sought by adjusting the weights of each objective. Combining Eqs (13)–(16), the privacy posi-

tioning accuracy weighted average optimization function can be described as:

ppawaðaÞ ¼ 1 � min
a

n
lad � ada2a

ðaÞ þ lia � iaa2a
ðaÞ þ lpa � pa

a2a
ðaÞ
o

ð17Þ

where λad, λia, and λpa represent the weights assigned to the actual distance, inferred area, and

privacy area, respectively, indicating their relative importance in the BLPPA problem.

This method of solving the optimal strategy for the BLPPA problem is hereinafter referred

to as Balance Location Privacy and Positioning Accuracy-Actual distance and Inferred area

and Privacy area(BLPPA-AIP).

Experimental analysis

We conducted a large number of experiments to test the performance of BLPPA-AIP, and

selected five methods for comparison, as shown in Table 3.

Experimental setup and performance metrics

The performance of BLPPA-AIP is tested using the publicly available dataset from the Geolife

project of Microsoft Research Asia. In order to simulate different scenarios, we set up three

scenarios: sparse scenario, normal scenario, and dense scenario, and the number of users in

different scenarios is set to 100, 200, and 300, respectively [34], with the number of cooperative

users taking the value of 10, and the radius of the user’s coverage is 250 meters. In each experi-

ment, given the location of a mobile user, we use a different approach to formulate a selection
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strategy for the mobile user. The weights of privacy, actual location accuracy, and inferred

location accuracy are all set to 1/3, giving all three equal importance.

For effectiveness assessment, four metrics are used: PPAWA, actual positioning accuracy,

inferred positioning accuracy, and privacy area. To assess the efficiency, experimental compar-

isons are made with other methods, which are analyzed in terms of computation time and

delay distance, respectively.

Experimental results

Effectiveness. Tables 4–6 compare the average of privacy positioning accuracy, actual

positioning accuracy, inferred positioning accuracy, and privacy area of six methods (i.e.,

BLPPA-AIP, APA, IPA, PA, EANDOM, GREEDY). Overall, compared to the other five meth-

ods, BLPPA-AIP performs best: it has the highest average PPAWA, the second largest inferred

area, the second shortest average distance, and the fourth largest privacy area. This indicates

that the scheme achieves an appropriate balance between location privacy and positioning

accuracy.

From the PPAWA column in Tables 4–6, it can be seen that BLPPA-AIP achieved the high-

est PPAWA values in all three scenarios. In Table 4, the average PPAWA values are 26.32%,

Table 3. Methods and descriptions of comparisons.

Methods Description

BLPPA-AIP Our method attempts to find the optimal selection strategy

APA(Actual Positioning Accuracy) Only considering improving actual positioning accuracy

IPA(Inferred Positioning Accuracy) Only considering reducing the accuracy of inferred positioning

PA(Privacy Area) Only consider maximizing privacy area

RANDOM Randomly select k cooperative users from n to cooperate

GREEDY Select all cooperative users to cooperate with

https://doi.org/10.1371/journal.pone.0304446.t003

Table 4. Dense scenarios.

Method PPAWA Actual Distance Inferred Area Privacy Area

BLPPA-AIP 0.7138 81.8627 64457.1538 11418.17

APA 0.5259 74.5726 35434.4131 2369.17

IPA 0.544 121.0637 68397.4418 635.31

PA 0.4981 162.5725 2425.916 39633.1

RANDOM 0.5233 139.5602 2425.916 39633.1

GREEDY 0.524 153.4682 50463.9713 13804.49

https://doi.org/10.1371/journal.pone.0304446.t004

Table 5. Ordinary scenarios.

Method PPAWA Actual Distance Inferred Area Privacy Area

BLPPA-AIP 0.7542 118.519 47555.8488 30688.73

APA 0.5632 109.1796 33844.5029 10564.84

IPA 0.5697 176.1167 76717.4008 3791.02

PA 0.6023 155.5322 8047.4802 42536.65

RANDOM 0.615 147.5397 8047.4802 42536.65

GREEDY 0.5314 156.8365 5190.5412 35328.99

https://doi.org/10.1371/journal.pone.0304446.t005
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23.79%, 30.22%, 26.69%, and 26.59% higher than APA, IPA, PA, RANDOM, and GREDDY,

respectively. This indicates that BLPPA-AIP can best balance location privacy and positioning

accuracy. Meanwhile, from the Actual Distance column in Tables 4–6, it can be seen that the

average distance generated by BLPPA-AIP to measure actual positioning accuracy is the sec-

ond shortest among all methods, only 9.78% higher than the APA. From the Inferred Area col-

umn, it can be seen that the inferred area generated by BLPPA-AIP for measuring the

accuracy of inferred positioning is the second largest among all methods, only 5.76% lower

than the IPA. From the Privacy Area column, it can be seen that the comparison of privacy

area sizes shows that BLPPA-AIP is worse than most methods and 71.19% lower than the PA.

This result is expected, as APA, IPA, and PA only consider actual positioning accuracy,

reduced inferred positioning accuracy, and privacy areas, respectively. When it is necessary to

balance actual positioning accuracy, reduce inferred positioning accuracy, and privacy areas,

these three methods are not suitable.

Take the performance of PA in ordinary scenarios as an example. Although PA achieves the

maximum privacy area (Table 5), this method achieves the smallest inferred area and the lon-

gest average distance. This indicates that maximizing the user’s privacy area without consider-

ing actual and inferred positioning accuracy will put mobile users at risk of location privacy

leakage and reduced positioning accuracy. Similarly, the balance between position privacy and

positioning accuracy achieved by APA is also extremely uneven. As shown in Table 5, although

APA achieved the shortest average distance of 102.39 m, its privacy area is the second smallest,

with 10564.84 m2. The reason is that the goal of APA is to maximize the actual positioning

accuracy, and in this process, it is inevitable to overlook the consideration of inferred position-

ing accuracy and privacy areas. Similar to APA, although IPA achieved the maximum inferred

area of 76717.40 m2, it had the longest average distance and the smallest privacy area, with

176.1167 m and 3791.02 m2, respectively. The reason is that the goal of IPA is to minimize the

actual inferred positioning accuracy, without considering the actual positioning accuracy and

privacy area. This indicates that although APA and IPA can ensure the positioning accuracy of

mobile users, they can easily lead to the leakage of user location privacy.

From Tables 4–6, it can be seen that all six methods have achieved smaller average dis-

tances, smaller inference areas, and smaller privacy areas in dense scenarios. This indicates

that in dense scenarios, protecting the location privacy of mobile users is relatively difficult.

However, dense scenes have the most mobile users and environmental information, and

mobile users can infer corresponding locations and points of interest based on this. Therefore,

in such dense scenarios, BLPPA-AIP is the best method because it provides a very high level of

positioning accuracy without sacrificing too much location privacy.

Efficiency. 1) Computing time. Due to the NP-hardness of the BLPPA problem, given

mobile users in a specific area, if there are many cooperative users to choose from in the area,

the time complexity of finding the selection strategy is high. Assuming there are m cooperative

Table 6. Sparse scenarios.

Method PPAWA Actual Distance Inferred Area Privacy Area

BLPPA-AIP 0.707 183.9408 31842.6171 19198.71

APA 0.5873 174.4127 21696.7215 9048.57

IPA 0.6395 203.0802 31981.3572 6456.25

PA 0.5966 226.5934 643.3908 108453.87

RANDOM 0.6107 214.7921 643.3908 108453.87

GREEDY 0.5894 224.0338 685.1998 105014.16

https://doi.org/10.1371/journal.pone.0304446.t006
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users around u, then there are a total of 2m possible selection strategies. To evaluate the effi-

ciency of BLPPA-AIP, we will discuss the computational time required to find a solution to the

BLPPA problem.

Table 7 shows the calculation time evaluation results. The main reason why BLPPA-AIP

takes the most time is that it needs to calculate all possible 2m selection strategies for m cooper-

ative users for a given mobile user u, and select the best selection strategy among them. And

the result of calculation time 77.795 ms is acceptable.

APA, IPA and PA take more time than the RANDOM and GREEDY with the goal of mini-

mizing the average distance, maximizing the inferred area and maximizing the privacy area,

respectively. The reason is because APA, in pursuit of minimizing the distance, only needs to

select a cooperative user closest to u. Similarly, to maximize the privacy area, PA can simply

select all cooperative users. These two methods do not need to compute all possible selection

strategies as BLPPA-AIP does. In contrast, IPA pursues maximizing the inferred area and

needs to compute all possible selection strategies like BLPPA-AIP, but it takes less time than

BLPPA-AIP because it considers fewer factors. The reason that the GREEDY takes less time is

because it selects all cooperative users and performs the computation of only one selection

strategy. The reason that the RANDOM takes less time is because the RANDOM takes less

time because it randomly selects one selection strategy and also performs the computation of

only one selection strategy.

Fig 6 illustrates the effect of different numbers of cooperative users on the computation

time. It can be seen that the computation time increases exponentially as the value of m
increases, this is because the method BLPPA-AIP we proposed needs to compute all possible

2m selection strategies for m cooperative users for cooperation given a mobile user u and select

the best selection strategy among them. So when the value of m increases, the number of selec-

tion strategies that may need to be computed grows exponentially, which greatly increases the

amount of computation and also leads to an exponential increase in computation time. From

Fig 6, it can be seen that when the number of required cooperative users is small (e.g., when m
is 3 to 7), the computation time is low, but fewer cooperative users produce weaker privacy

protection. When the number of required cooperative users is large (e.g., when m is greater

than 10), the computation time is too high to be acceptable, even though the privacy protection

is excellent. Therefore, the value of m should be moderate, and all the experiments in this

paper are done when m is 10.

2) Delay distance Delay distance is the combined measure of delay and distance experienced

by the user in the moving process, which is specifically described as the user’s moving distance

from issuing a cooperation request to balancing location privacy protection and positioning

accuracy, which reflects the efficiency of the method used for balancing location privacy pro-

tection and positioning accuracy, and the shorter the delay distance is, it indicates that the

method handles balancing location privacy protection and positioning accuracy more effi-

ciently in the process of the user’s moving.

We set three speed metrics: 5km/h, 30km/h and 60km/h, which are used to simulate the

user’s movement at slow, medium, and fast speeds, respectively [35]. Table 8 demonstrates the

comparison results of the delay distance of each method at different speeds. The delay dis-

tances of BLPPA-AIP methods are higher than the comparison methods at different speeds,

Table 7. Computing time.

Method BLPPA-AIP APA IPA PA GREEDY RANDOM

Time (ms) 77.795 12.988 60.840 19.971 10.995 10.995

https://doi.org/10.1371/journal.pone.0304446.t007
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but the delay distances of BLPPA-AIP methods at different speeds are within the acceptable

range.

When the user moves at a slow speed (e.g., walking), the delay distance of BLPPA-AIP is

0.15657 m, which is only 0.14 m lower than that of the GREEDY and RANDOM methods,

Fig 6. Computing time for different m.

https://doi.org/10.1371/journal.pone.0304446.g006

Table 8. Comparison of delay distance for each method at different speeds (m).

Method 5km/h 30km/h 60km/h

BLPPA-AIP 0.15657 0.93942 1.87883

APA 0.01943 0.11656 0.23312

IPA 0.11363 0.68178 1.36355

PA 0.03324 0.19945 0.39890

GREEDY 0.01527 0.09164 0.18328

RANDOM 0.01527 0.09164 0.18328

https://doi.org/10.1371/journal.pone.0304446.t008
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which have the shortest delay distances at the same speed, indicating that the delay distance of

the BLPPA-AIP method does not affect the user’s experience of the location-based service

under the user’s slow speed movement.

When the user moves at medium speed (e.g., riding), the delay distance of BLPPA-AIP is

0.93942 m, which is 0.85 m lower than that of GREEDY and RANDOM, which have the short-

est delay distances at the same speed, indicating that under the user’s medium-speed move-

ment, the delay distance of the BLPPA-AIP method basically does not affect the user’s

experience of location-based services.

When the user is moving fast (e.g., driving), the delay distance of BLPPA-AIP is 1.87883 m,

which is 1.69 m lower than that of the GREEDY and RANDOM methods that have the shortest

delay distances at the same speed, indicating that under the user’s fast movement, the delay

distance of the BLPPA-AIP method basically does not affect the user’s experience of the loca-

tion-based service.

Conclusion

In this paper, we propose a balanced location privacy and positioning accuracy strategy

BLPPA-AIP. In terms of location privacy protection, BLPPA-AIP provides personalized loca-

tion privacy protection for mobile users by constructing an anonymous area in the edge envi-

ronment. In terms of improving location accuracy, BLPPA-AIP models the problem of

selecting cooperative users as an objective optimization problem and constructs an optimiza-

tion function to select cooperative users to ensure the highest location accuracy. In addition,

we also propose methods to evaluate location privacy, actual positioning accuracy, and

inferred positioning accuracy, so that BLPPA-AIP can achieve a balance between location pri-

vacy and positioning accuracy. Simulation results show that BLPPA-AIP not only achieves bet-

ter location privacy, but also ensures high positioning accuracy, i.e., it strikes a proper balance

between location privacy and positioning accuracy. In future work, how to further improve

the efficiency as well as analyze the evaluation metrics affecting the choice of cooperative users

at a finer granularity will be the next research focus.
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