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Abstract

COVID-19 caused by SARS-CoV-2 is a global health issue. It is yet a severe risk factor to

the patients, who are also suffering from one or more chronic diseases including different

lung diseases. In this study, we explored common molecular signatures for which SARS-

CoV-2 infections and different lung diseases stimulate each other, and associated candidate

drug molecules. We identified both SARS-CoV-2 infections and different lung diseases

(Asthma, Tuberculosis, Cystic Fibrosis, Pneumonia, Emphysema, Bronchitis, IPF, ILD, and

COPD) causing top-ranked 11 shared genes (STAT1, TLR4, CXCL10, CCL2, JUN, DDX58,

IRF7, ICAM1, MX2, IRF9 and ISG15) as the hub of the shared differentially expressed

genes (hub-sDEGs). The gene ontology (GO) and pathway enrichment analyses of hub-

sDEGs revealed some crucial common pathogenetic processes of SARS-CoV-2 infections

and different lung diseases. The regulatory network analysis of hub-sDEGs detected top-

ranked 6 TFs proteins and 6 micro RNAs as the key transcriptional and post-transcriptional

regulatory factors of hub-sDEGs, respectively. Then we proposed hub-sDEGs guided top-

ranked three repurposable drug molecules (Entrectinib, Imatinib, and Nilotinib), for the treat-

ment against COVID-19 with different lung diseases. This recommendation is based on the

results obtained from molecular docking analysis using the AutoDock Vina and GLIDE mod-

ule of Schrödinger. The selected drug molecules were optimized through density functional

theory (DFT) and observing their good chemical stability. Finally, we explored the binding

stability of the highest-ranked receptor protein RELA with top-ordered three drugs (Entrecti-

nib, Imatinib, and Nilotinib) through 100 ns molecular dynamic (MD) simulations with

YASARA and Desmond module of Schrödinger and observed their consistent performance.
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Therefore, the findings of this study might be useful resources for the diagnosis and thera-

pies of COVID-19 patients who are also suffering from one or more lung diseases.

1. Introduction

The SARS-CoV-2 virus is responsible for COVID-19 which was the first outbreak in Wuhan

city, Hubei province, China, in December 2019 [1]. Its outbreak became a terrible form rapidly

whole over the world and the WHO officially announced it to be a global epidemic on March

11, 2020 [1]. Although COVID-19 has hurt almost all countries, notably the United States,

India, France, Germany, Brazil, South Korea, and Japan are the top seven countries affected by

SARS-CoV-2 (https://www.worldometers.info/coronavirus/). According to the WHO report,

until December 31, 2023, over 6.9 million people out of 700 million SARS-CoV-2 infected peo-

ple have died. Though infection rates are gradually decreasing worldwide due to the impact of

vaccination, however, some people are yet infecting [2]. It may have happened due to the

unstable RNA pattern of SARS-CoV-2 and the weak immunity of the patients. Not every

patient with SARS-CoV-2 infection suffers in the same way. Some patients become more vul-

nerable, who are already suffering from one or more comorbidities like cardiovascular diseases

[3], diabetes [4], hypertension [3], and different lung diseases including chronic obstructive

pulmonary disease (COPD) [5], idiopathic pulmonary fibrosis (IPF) [6], interstitial lung dis-

ease (ILD) [7], asthma [8], tuberculosis [9], cystic fibrosis [4], pneumonia [1,10], emphysema

[11], and bronchitis [12]. Chronic obstructive pulmonary disease (COPD) is a chronic inflam-

matory lung disorder that encompasses chronic bronchitis and emphysema, and it is charac-

terized by restricted airflow with symptoms of breathing problems and cough with mucus due

to abnormalities in the airways or air sacs of the lungs [13]. It is the third leading cause of

death globally [14]. Idiopathic pulmonary fibrosis (IPF) is a long-term, progressive lung disor-

der characterized by lung scarring or fibrosis that leads to respiratory failure [15]. Patients

with IPF survive only about 3–5 years after diagnosis with symptoms of dry cough and short-

ness of breath [16]. Respiratory failure is responsible for death related to IPF [16]. Interstitial

lung disease (ILD) is a lung disorder that can stimulate both the vulnerability and severity of

COVID-19 [7]. Tuberculosis (TB) constitutes the predominant cause of mortality associated

with respiratory infections. Furthermore, TB significantly augments the susceptibility to

COVID-19 while simultaneously exacerbating the severity of the disease [9]. People with cystic

fibrosis (CF), a chronic lung disease involving mucus blockage and persistent airway inflam-

mation, are highly vulnerable to COVID-19 due to the increased risk of severe viral respiratory

infections [4]. Moreover, pneumonia is a type of lung disease characterized by inflammation

in the tiny air sacs within the human lungs, leading to the accumulation of fluid and resulting

in breathing difficulties [17].

The S-protein of SARS-CoV-2 has a higher interaction with ACE2 (angiotensin-converting

enzyme 2); however, a significant amount of ACE2 is found in lung disease patients [13].

Therefore, in this study, we have considered chronic lung disease patients as a high-risk group

for COVID-19 complications [7,13]. Several studies explored SARS-CoV-2 infections causing

key genes (KGs). Some of these studies detected shared key-genes (sKGs) to disclose common

pathogenetic processes of SARS-CoV-2 infections with one or two lung diseases including

COPD [13], IPF [6], COPD and IPF [13], ILD [7], asthma [18], tuberculosis [19], cystic fibrosis

[20], pneumonia [21], emphysema [13], and bronchitis [13]. Few of these studies recom-

mended sKGs-guided common drug molecules in which molecules (curcumin, triclosan,
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tamoxifen, deguelin) were recommended for the treatment of SARS-CoV-2 infections with

COPD [13], molecules (tegobuvir, nilotinib, digoxin, proscillaridin, simeprevir, sorafenib,

torin 2, rapamycin, vancomycin and hesperidin) with IPF [6], molecules (suloctidil, estradiol,

prenylamine, clioquinol) with asthma [18], molecules (rituximab, bevacizumab, bosentan,

sitaxentan, and macitentana) with tuberculosis [19], molecules (imiquimod and raloxifene)

with cystic fibrosis [20]. However, so far, there is no study that explored sKGs/sDEGs to dis-

close common pathogenetic mechanisms and associated drug molecules for SARS-CoV-2

infections and different lung diseases. Therefore, the main objective of this study is to explore

potential sKGs/sDEGs to reveal the common pathogenetic mechanisms of SARS-CoV-2 infec-

tion and different lung diseases to adopt a common treatment plan. The workflow of this

research is shown in Fig 1.

2. Materials and methods

2.1. Data sources and descriptions

In this study, we analyzed three RNA-Seq profile datasets for SARS-CoV-2 infections and nine

microarray gene expression datasets for nine types of lung diseases (COPD, IPF, ILD, Asthma,

Tuberculosis, Cystic Fibrosis, Pneumonia, Emphysema, and Bronchitis) that were collected

from the Gene Expression Omnibus (GEO) platform of National Center for Biotechnology

Information (NCBI) database [22]. The detail information of these datasets is given in

S1 Table.

2.2.Identification of shared differentially expressed genes (sDEGs)

We considered three methods DESeq2, edgeR and LIMMA (voom) for the identification of

DEGs between SARS-CoV-2 infections and control groups separately from RNA-Seq profile

datasets [23,24]. To identify DEGs between lung disease and control samples based on micro-

array gene expression profile datasets, separately we utilized KW, SAM, and LIMMA

approaches [25]. R-software (Version 4.0.5) has been used to implement these approaches for

data analysis. Let CDESeq2

i ;CedgeR
i and CLIMMAðvoomÞ

i are three DEGs sets computed from ith RNA-

Seq count dataset by DESeq2, edgeR and LIMMA (voom), respectively, for COVID-19

(i = 1,2,3). Again, let LKW
j ; LSAM

j and LLIMMA
j are three DEGs sets computed from microarray

gene expression profiles by KW, SAM and LIMMA, respectively, for jth lung disease

(j = 1,2,. . .,9). Then we computed shared DEGs (sDEGs) between COVID-19 and different

Fig 1. The complete workflow of this study.

https://doi.org/10.1371/journal.pone.0304425.g001
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lung diseases as follows,

sDEGs ¼
\3

i¼1
CDESeq2

i

� �
[
\3

i¼1
CedgeR
i

� �
[
\3

i¼1
CLIMMAðvoomÞ
i

� �h i

\
\9

j¼1
LKW
j [ L

SAM
j [ LLIMMA

j

� �h i
; ð1Þ

Since different methods (utilized in this study) identify DEGs based on different assump-

tions on expression data; however, a method fails to detect some potential DEGs when its

assumption is not fully satisfied by the dataset [26].

2.3. Protein-protein interaction (PPI) network analysis

To construct protein-protein interaction (PPI) network, we inserted sDEGs in the ‘Search

Tool for the Retrieval of Interacting Genes (STRING)’ database (version 11.5). Then, we used

Cytoscape (version 3.10.0) software with a confidence score� 0.90 to analyze and visualize the

PPI network. We implemented a Cytoscape plugin Network Analyzer (version 4.4.8), to inves-

tigate the interactions among sDEGs. Then, we used the cytoHubba (version 0.1) plugin in

Cytoscape to identify significant nodes or hub-sDEGs based on the degree scores [25,27].

2.4. Gene-disease interaction network analysis

To investigate the disease risk factors of SARS-CoV-2 infections through the hub-sDEGs, we

performed ‘gene-disease’ interaction network analysis by using the web-tool ‘NetworkAnalyst

(version 3.0)’ with the database ‘DisGeNET’ [28]. A disease has been considered as signifi-

cantly associated with hub-sDEGs if adjusted p-value< 0.05.

2.5. GO functional and pathways enrichment analysis with hub-sDEGs

The GO functional and pathway enrichment analysis of hub-sDEGs were performed by using

‘Enrichr’ and ‘DAVID’ databases [6,24]. Then, we extracted common GO terms and pathways

from both databases. The adjusted p-value< 0.05 was considered as the threshold value for

this analysis.

2.6. The gene regulatory network (GRN) analysis of hub-sDEGs

To obtain key transcriptional and post-transcriptional regulators of hub-sDEGs, we performed

network analysis of hub-sDEGs with TFs and miRNAs from TF2DNA and TarBase (v8.0)

databases, respectively, and their interaction networks were constructed by using STRING

(version 11.5) database and visualized in Cytoscape (version 3.10.0) software [24]. The signifi-

cant key TFs and miRNAs were identified via the ‘CytoHubba’ plugin in Cytoscape based on

the highest degree scores.

2.7. Hub-sDEGs guided drug repurposing by molecular docking studies

To explore hub-sDEGs mediated receptor-proteins guided few potential repurposable drug

molecules for the treatment against SARS-CoV-2 infections with one or more lung diseases by

molecular docking analysis, a total number of n = 184 candidate drug molecules (S2 Table)

were accumulated from different published articles associated with SARS-CoV-2 infections

and/or different lung diseases. Before going to the molecular docking analysis, both the recep-

tor-proteins and drug/ligand structures were prepared for molecular docking. The crystallo-

graphic structure of the target protein was obtained from the Protein Data Bank (PDB) and

AlphaFold databases [6]. The ‘PubChem’ database was used to retrieve the 3D structures of
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those meta-drug agents. To identify potential binding sites within the target protein’s catalytic

site (target pocket), we employed the ‘PrankWeb’ tools which employs a template-free

machine learning method called ‘P2Rank’ for predicting ligand binding sites on solvent-acces-

sible protein surfaces and identifying receptor protein target pockets [29]. Then, ‘PyMOL’ was

used to visualize and select amino acid residues for the active sites of target proteins [24].

2.7.1. Molecular docking using autodock vina. AutoDock tools 1.5.7 were utilized to

process the receptor-proteins by removing water molecules, adding charges, and centering the

grid box on the active site with specific coordinates [24]. The drug agents/ligands were pre-

processed by minimized energy through the ‘Avogadro’ software and setting torsion tree using

‘AutoDock tools 1.5.7’. Both prepared receptor and ligands were converted into the PDBQT

format. Subsequently, using the ‘AutoDock Vina’ [24], the binding affinities between the drug

agents and target proteins were determined. Let Aij be the binding affinity score (BAS)

between ith target protein (i = 1,2,. . .,m) and jth drug agent (j = 1,2,. . .,n). The target proteins

and drug agents were arranged according to the descending order of row sums
Pn

j¼1
Aij; i ¼ 1; . . . ;m, and column sums

Pm
i¼1

Aij; j ¼ 1; . . . ; n; respectively, to pick the

best-performing drugs as the candidate drugs. Then, we constructed the image of BAS corre-

sponding to the ordered drugs and targets using TBtools [30]. Finally, the discovery studio

visualizer (v21.1.0.0) and ‘PyMOL’ were used to display receptor-ligand interactions involving

amino acids and their interactive position in the docked complex molecule.

2.7.2. Molecular docking through Schrödinger software. At first, the ligands were pre-

pared by utilizing LigPrep module of Schrödinger [31] which involves the minimization of the

appropriate bond angles and using force fields OPLS3 to minimize the structure’s energy.

Next, several steps were performed to prepare proteins using protein preparation wizard tools.

These steps involve adding hydrogen, utilizing prime to complete side chain gaps, replacing

any absent loops with prime, removing water molecules located farther than 5.00 angstroms

from the specified HET group, and producing the protonation state of heteroatoms using

Epik, with a pH range of 7.0 ± 2.0. Finally, docking analysis was performed between the active

site of the proteins and the drugs.

2.8. Optimization of drug compounds and their chemical reactivity

calculation

Drug compounds were optimized using Gaussian 09 [32], a powerful computational chemistry

software suite renowned for performing geometry optimizations and electronic structure cal-

culations. The resulting data were then visualized and analyzed using GaussView 05 [33], a

user-friendly interface that seamlessly integrates with ‘Gaussian 09’. Key parameters such as

the highest occupied molecular orbital (HOMO) energies, lowest unoccupied molecular

orbital (LUMO) energies, electron affinity, and electrophilicity index were calculated. These

parameters play a crucial role in explaining the magnitude of ligand interaction in the binding

pocket of the receptor protein.

2.9. Molecular dynamic (MD) simulations

To evaluate the stability and flexibility of the top-ranked protein-ligand complexes, we consid-

ered two software’s (YASARA and Desmond) for molecular dynamics (MD) simulation for a

duration of 100 nanoseconds.

2.9.1. Molecular dynamic simulations using YASARA. To investigate the dynamic

behavior of the top-ranked protein-ligand complexes, MD simulations were performed using

the AMBER14 force field by the YASARA Dynamics software [34,35]. Before starting the sim-

ulation, the hydrogen bonding network of the target-drug combination was solvated and
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tuned by a TIP3P water model [36]. Using the steepest gradient approach (5000 cycles), a sim-

ulated annealing method was used for the initial energy minimization of each simulation sys-

tem. A 100 ns MD simulation was carried out under a Berendsen thermostat and constant

pressure [37]. The YASARA macro’s default script and SciDAVis (http://scidavis.sourceforge.

net/) were used for this analysis. Then, using the following formula.

Binding free Energy ¼ EpotReceptor þ EsolvReceptor þ EpotLigand þ EsolvLigand � EpotComplex � EsolvComplex

the binding free energy of each snapshot was calculated by the molecular mechanics Poisson–

Boltzmann surface area (MM-PBSA) function of the YASARA software.

2.9.2. Molecular dynamic simulations using Desmond module of Schrödinger. Ini-

tially, the Schrödinger software’s system constructor wizard was used to solvate the protein-

ligand complex (PLC) with water molecules [38]. The study employed a transferable inter-

molecular potential 3P (TIP3P) solvent system [39]. The computational analyses were con-

ducted within an orthorhombic box of 10 × 10 × 10 Å, utilizing periodic boundary

conditions. A constant salt concentration of 0.15 M was maintained. The entire model sys-

tem was subjected to a 100 ps minimization process, and the resulting trajectory was utilized

for conducting a molecular dynamics investigation. The dynamics investigations were con-

ducted for a duration of 100 nanoseconds, with a recording interval of 50 picoseconds. This

resulted in a total of 5000 frames for the whole study. The simulations utilized a time step of

2 femtoseconds. The binding free energy of each snapshot in the protein-ligand interactions

during high-throughput molecular dynamics (MD) simulations was calculated with

MM-GBSA using gmx_MM-PBSA tools. The binding free energy (ΔGbind) was calculated

by using the following equation:

DGbind ¼ Ecomplex � ðEprotein þ EligandÞ

This comprehensive approach encompasses multiple interaction-free energies, including

van der Waals forces, electrostatic interactions, polar solvation effects, solvent-accessible sur-

face area (SASA) contributions, and binding energies. In this study, we have employed

g_mmpbsa package [40,41]. The trajectories from the protein-ligand MD simulation in explicit

water from the Desmond module were used to generate the GROMACS trajectory file

required for calculations using Schrödinger scripts. Additionally, topology files for protein and

ligand were obtained separately by converting the *.cms files to *.gro and *.top files using the

InterMol software [42].

3. Results

3.1. Identification of shared differentially expressed genes (sDEGs)

Three RNA-Seq count datasets (GSE147507, GSE150392, and GSE152075) were analyzed by

using three methods DESeq2, edgeR, and LIMMA (voom), and detected a total of 888 shared

DEGs between COVID-19 and control samples as

\3

i¼1
CDESeq2

i

� �
[
\3

i¼1
CedgeR
i

� �
[
\3

i¼1
CLIMMAðvoomÞ
i

� �h i
¼ 888

Then, we analyzed GSE64913, GSE34608, GSE107846, GSE42830, GSE1122, GSE22148,

GSE53845, GSE40839, and GSE100281 datasets for Asthma, Tuberculosis, Cystic Fibrosis,

Pneumonia, Emphysema, Bronchitis, IPF, ILD, and COPD, respectively using three methods
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KW, SAM and LIMMA and combinedly identified total 3698 DEGs for these lung diseases as

\9

j¼1
ðLKW

j [ L
SAM
j [ LLIMMA

j Þ
h i

¼ 3698

Then we found 267 shared DEGs (sDEGs) between COVID-19 and different lung diseases

using Eq 1 (Fig 2A).

3.2. Identification of hub-sDEGs through PPI network analysis

The PPI network of 267 sDEGs was constructed which contained 267 nodes and 291 edges dis-

played in Fig 2B to detect the biomarker genes named hub-sDEGs. Based on the degree of

importance, we selected the top-ranked 11 genes: STAT1, TLR4, CXCL10, CCL2, JUN, DDX58,

IRF7, ICAM1, MX2, IRF9 and ISG15 as the hub-sDEGs and used for further analysis. Among

them, 5 genes (CCL2, CXCL10, ICAM1, JUN, TLR4) are common with text mining of COVID-

19 and lung disease presented through the Venn diagram in Fig 2C.

3.3. Association of hub-sDEGs with different diseases

To investigate the different disease risk factors of SARS-CoV-2 infections from the genetic

viewpoint, the interaction network analyses of hub-sDEGs with different diseases were per-

formed which revealed that 6 hub-sDEGs (ICAM1, MX2, CCL2, IRF7, JUN, STAT1) out of 11

Fig 2. (A) Venn diagram of DEGs for COVID-19 and lung diseases to display shared DEGs (sDEGs). The blue and green circles represent DEGs from three

datasets of COVID-19 and nine datasets of lung diseases, respectively. (B) Protein-protein interaction network of 267 sDEGs, where the large size maroon color

octagonal node indicates hub-sDEGs. (C) Venn diagram among hub-sDEGs, reviewed DEGs of COVID-19, and reviewed DEGs of lung diseases.

https://doi.org/10.1371/journal.pone.0304425.g002
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are significantly associated with different diseases including asthma, atherosclerosis, bronchi-

ectasis, cardiovascular diseases, brain ischemia, diabetes mellitus, obesity, schizophrenia, urti-

caria, melanoma, pneumonia, pulmonary fibrosis, tuberculosis, lung injury, lung neoplasms,

rheumatoid arthritis, liver cirrhosis, hypertension, etc. (Fig 3 and S3 Table).

3.4. GO functions and pathways enrichment analysis of hub-sDEGs

GO functions are classified into three subsections: biological processes (BPs), molecular

functions (MFs), and cellular components (CCs). The few top common enriched GO func-

tions for each of the three subsections (BPs, MFs, and CCs) based on two online databases

(DAVID and Enrichr) are presented in Table 1. According to the BP-terms, almost all the

hub-sDEGs were mainly enriched with the defense response to virus, positive regulation of

interferon-alpha/beta production, positive regulation of transcription by RNA polymerase

II, positive regulation of DNA-templated transcription and cellular response to type II

interferon, etc. Among the enriched CC-terms, endosome membrane, cytoplasmic vesicle

membrane, nucleus, euchromatin, and intracellular membrane-bounded organelle are the

top enriched GO functions. In the case of MFs, hub-sDEGs are significantly enriched in

Fig 3. The disease vs. hub-sDEGs interaction network represents the disease risk factors of SARS-CoV-2 infections. Here the green circle node indicates

significant disease risk and the maroon-colored octagonal node indicates hub-sDEGs.

https://doi.org/10.1371/journal.pone.0304425.g003
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chemokine activity, transcription regulatory region sequence-specific DNA binding, RNA

polymerase II core promoter proximal region sequence-specific DNA binding, double-

stranded DNA binding, etc. Pathway enrichment analysis of the hub-sDEGs based on four

databases (KEGG, WikiPathways, Reactome, and BioCarta) identified some crucial path-

ways (S4 Table). Top-ranked four pathways (Coronavirus disease, Interferon signaling

pathway, Immune responses, and Measles virus infection) supported by at least two data-

bases are shown in Table 2.

3.5. The gene regulatory network (GRN) analysis of hub-sDEGs

To identify key transcriptional and post-transcriptional regulatory factors of hub-sDEGs, we

constructed the interaction network among miRNAs, TFs, and hub-sDEGs as depicted in

Fig 4. From this network, we selected top-ranked six significant TFs proteins (MYC, SOX2,

CEBPA, NANOG, RELA, and MSX1) and six significant miRNAs (hsa-miR-16-5p, hsa-miR-

129-2-3p, hsa-miR-21-3p, hsa-miR-27a-5p, hsa-miR-1-3p, hsa-miR-155-5p) as the key tran-

scriptional and post-transcriptional regulatory factors of hub-sDEGs, based on the degree

score.

Table 1. Significantly enriched common GO-terms (BPs, MFs, and CCs) that might be associated with SARS-CoV-2 infections and some lung diseases identified

from two online web-tools DAVID and Enrichr (adjusted p-value< 0.05).

GO Category GO ID GO-terms Associated hub-sDEGs

Biological Process GO:0051607 defense response to virus CXCL10; STAT1; MX2; IRF7; ISG15

GO:0032727 positive regulation of interferon-alpha production STAT1; IRF7; TLR4

GO:0032728 positive regulation of interferon-beta production IRF7; ISG15; TLR4

GO:0045944 positive regulation of transcription by RNA polymerase II CXCL10; JUN; STAT1; IRF7; TLR4; IRF9

GO:0071346 cellular response to interferon gamma STAT1; CCL2; TLR4

GO:0045893 positive regulation of DNA-templated transcription CXCL10; JUN; STAT1; IRF7; TLR4; IRF9

Cellular Component

GO:0010008 Endosome Membrane IRF7; TLR4

GO:0030659 Cytoplasmic Vesicle Membrane IRF7; TLR4

GO:0005634 Nucleus JUN; STAT1; MX2; IRF7; ISG15; IRF9

GO:0000791 Euchromatin JUN

GO:0043231 Intracellular Membrane-Bounded Organelle JUN; STAT1; MX2; IRF7; ISG15; IRF9

Molecular Function GO:0003690 double-stranded DNA binding JUN; STAT1; IRF7; IRF9

GO:0008009 chemokine activity CXCL10; CCL2

GO:0044389 ubiquitin-like protein ligase binding JUN; STAT1; ISG15

GO:0000978 RNA polymerase II core promoter proximal region sequence-specific DNA binding JUN; STAT1; IRF7; IRF9

GO:1990837 sequence-specific double-stranded DNA binding JUN; IRF7; IRF9

GO:0000976 transcription regulatory region sequence-specific DNA binding JUN; STAT1

https://doi.org/10.1371/journal.pone.0304425.t001

Table 2. Summary table of the significantly enriched common pathways with hub-sDEGs that might be associated with SARS-CoV-2 infections and some lung dis-

eases identified from two online web-tools DAVID and Enrichr (adjusted p-value< 0.05).

Common pathways Associated hub-sDEGs in different databases

Pathways KEGG BioCarta Reactome WikiPathways

Coronavirus disease ✓ - - ✓

Interferon signaling pathway - ✓ ✓ ✓

Immune responses - - ✓ ✓

Measles virus infection ✓ - - ✓

https://doi.org/10.1371/journal.pone.0304425.t002
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3.6. Drug repurposing by molecular docking studies

To explore candidate repurposable drugs as a therapy for SARS-CoV-2 infections with one or

more lung diseases, we choose our suggested 11 hub-sDEGs based proteins (STAT1, TLR4,

CXCL10, CCL2, JUN, DDX58, IRF7, ICAM1, MX2, IRF9, and ISG15) and its regulatory 6 key

TFs proteins (MYC, SOX2, CEBPA, NANOG, RELA, and MSX1) as the m = 17 target proteins

and 184 meta-drug agents (ligands). The 3D structures of 11 receptor proteins (CCL2,

DDX58, ICAM1, ISG15, JUN, MYC, NANOG, RELA, SOX2, STAT1, TLR4) were down-

loaded from the PDB with source code (1dok, 2lwd, 2oz4, 3phx, 1jun, 1nkp, 2kt0, 4kv1, 2le4,

Fig 4. The miRNAs, TFs, and hub-sDEGs interaction network where the pink color round square node indicates miRNAs, the sky-blue color ellipse node

indicates TFs and the maroon color octagonal node indicates hub-sDEGs. The key miRNAs are indicated by larger round square nodes.

https://doi.org/10.1371/journal.pone.0304425.g004
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3wwt, 3fxi) and remaining 6 receptor proteins (CEBPA, CXCL10, IRF7, IRF9, MSX1, MX2) were

obtained from AlphaFold source using Uniprot IDs P49715, P02778, Q92985, Q00978, P28360,

P20592. Then molecular docking analyses were performed betweenm = 17 drug target proteins

and n = 184 drug agents to obtain the binding affinity score (kcal/mol) for each target protein

with each drug agent (S5 Table). Fig 5A represents the ordered top-ranked 30 drugs binding

affinity score matrix out of 184 drugs. We observed that the first four top-ordered compounds

(Nilotinib, Entrectinib, Imatinib, and SCH-772984) produce highly significant binding affinity

scores (� -7) kcal/mol with at least 14 receptor proteins out of 17 and their average binding affin-

ity score is less than or equal to −8.0 kcal/mol. The remaining six top-ordered compounds (Icoti-

nib, Regorafenib, Zanubrutinib, Sorafenib, Ibrutinib, and Dabrafenib) also produced significant

binding with at least 12 receptors out of 17, and their average binding affinity score (� −7.4) kcal/

mol. Hence, we considered these top-ranked 10 compounds (Nilotinib, Entrectinib, Imatinib,

SCH-772984, Icotinib, Regorafenib, Zanubrutinib, Sorafenib, Ibrutinib, and Dabrafenib) as the

most viable candidate drugs to treat COVID-19 as well as patients with lung diseases and

highlighted them in Fig 5A. To investigate the resistance performance of the considered drug

molecules, and compare to the already published molecules against the state-of-the-arts alterna-

tives top-ranked independent receptors published by other studies, we reviewed 27 published arti-

cles related to COVID-19 (S6 Table) and 27 published articles associated with lung diseases (S7

Table). Then, we selected eight top-ranked target proteins that are commonly reported in at least

two articles in both SARS-CoV-2 and lung disease-related literature and highlighted them in the

5th column in S6 and S7 Tables. These 8 target proteins were considered as the top-ranked inde-

pendent meta-receptors to examine the resistivity of the considered drugs compared to the

selected top-ranked published drugs by molecular docking analysis. To examine the resistivity of

the considered 10 candidate drugs against the top-ranked eight independent meta receptors, we

downloaded the 3D structures of the seven (ICAM1, JUN, MMP1, CXCL8, CXCL1, VEGFA, and

IL6) independent meta receptor proteins from the PDB with source codes 2oz4, 1jun, 1ayk, 1o7b,

1msh, 1kat, and 1il6, respectively and the protein SOSC3 downloaded from the AlphaFold data-

base using Uniprot ID O14543. Then, we performed molecular docking analysis of published

drugs with the top-ranked 8 independent meta-receptor proteins, and their docking results are

given in Fig 5B and S8 Table. We observed that among the considered drugs, 9 drugs (Nilotinib,

Entrectinib, Imatinib, SCH-772984, Icotinib, Regorafenib, Sorafenib, Ibrutinib, and Dabrafenib)

belong to the top-ranked ten drugs against the independent receptors also. Hence, we selected

these nine drugs as the potential drugs for the therapy of SARS-CoV-2 infections and lung dis-

eases. To verify the significance of the protein-ligand interaction for our proposed target proteins

and the selected ligands (drugs), we also took into account an alternative docking tool known as

the GLIDE module of Schrödinger and calculated binding scores (Glide g-score, Docking score,

and Glide e-model) (Fig 5C and S9–S11 Tables).

3.7. Optimization of drug compounds and their chemical reactivity

calculation

Selected nine compounds from molecular docking analysis were further optimized through

density functional theory (DFT). For that, Frontier molecular orbitals (FMO) properties (such

as HOMO and HUMO) of nine compounds were computed to determine the significance of

charge-transfer interactions at the protein binding site (Table 3).

3.8. Molecular dynamic (MD) simulations

Among the selected candidate drugs—Nilotinib, Entrectinib, and Imatinib were the top-ranked

three candidate drugs, and we choose RELA for MDS, since RELA vs. Nilotinib, RELA vs.
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Fig 5. Matrix plot of the binding score obtained through the molecular docking analysis. (A) Image of BAS of the top-ranked 30 candidate drugs out of

184 meta-drug agents in the X-axis with the proposed top-ranked 17 drug target proteins in the Y-axis. (B) Image of BAS of the top-ranked 30 candidates

published drugs in the X-axis against the published top-ranked 8 independent meta receptors in the Y-axis. (C) Image of Glide g-score of the top-ranked

selected nine candidate drugs in the X-axis with the proposed top-ranked 17 drug target proteins in the Y-axis.

https://doi.org/10.1371/journal.pone.0304425.g005
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Entrectinib, and RELA vs. Imatinib complexes produce highest binding affinity scores compare

to the other complexes (Fig 5). Therefore, these top three drug-target complexes were selected

for their stability analysis with the molecular dynamics (MD) simulation for a duration of 100

nanoseconds. To perform MD simulation using YASARA, the initial energy minimization of

each simulation system included 33769, 33564, and 44604 atoms for the RELA vs. Nilotinib,

RELA vs. Entrectinib, and RELA vs. Imatinib complexes, and the average RMSDs for these sys-

tems were 1.42 Å, 1.37 Å, and 1.89 Å, respectively. These three complexes were almost stable

throughout the whole simulation and all of the systems projected RMSD between 0.36 Å and

2.95 Å, though in the case of RELA vs. Nilotinib complex, a steady movement was found from

38 ns to 43 ns (Fig 6A). To examine the stability of these three complexes by another software,

we considered the Desmond module of Schrödinger. The conformational stability of biological

molecules were investigated using the Root Mean Square Deviation (RMSD) [43]. The protein

backbone RMSDs were used to assess the deviation of the RELA protein bound with proposed

inhibitors. The RMSD values of RELA for each frame computed through MD simulation pro-

duction bound with all three drug molecules were plotted against the time scale, as shown in

Fig 6B, which shows that the three complexes RELA vs. Entrectinib, RELA vs. Imatinib, and

RELA vs. Nilotinib average RMSDs were 1.85 Å, 1.89 Å, and 2.47 Å, respectively. These results

indicated that the complexes of Entrectinib and Imatinib with RELA are almost stable through-

out the whole simulation and all of the systems projected an RMSD between 1.0 Å and 2.75 Å.

However, the RELA vs. Nilotinib complex shows a slight fluctuation than the other two com-

plexes between 0 to 35 ns, after reaching at 40ns, it seems quite stable and no complex has the

RMSD greater than 3.0 Å. Thus, in the case of RMSD, it is clearly observed from both software

that none of those three complexes has more fluctuation and they formed stable interactions.

To investigate the stability of the top-ranked three complexes, we also determined the

MM-PBSA and MM-GBSA binding energies for these complexes (Fig 7). From Fig 7A, we

observed that the average binding energies obtained from the RELA vs. Nilotinib, RELA vs.
Entrectinib, and RELA vs. Imatinib complexes were 132.44 kJ/mol, 180.87 kJ/mol, and 79.50

kJ/mol, respectively. These positively average binding energies with YASARA indicate the sig-

nificant stability of these three complexes [44]. To examine the stability of those complexes

with another software, we calculated MM-GBSA binding free energy (ΔG) for the MD

Table 3. Physio-chemical descriptors and their reactivity descriptor analysis of the top-ranked nine compounds.

Nilotinib Entrectinib Imatinib SCH- 772984 Icotinib Regorafenib Sorafenib Ibrutinib Dabrafenib

ԑHOMO -0.219 -0.192 -0.198 -0.190 -0.203 -0.226 -0.224 -0.212 -0.224

ԑLUMO -0.078 -0.033 -0.053 -0.050 -0.047 -0.047 -0.043 -0.042 -0.069

Energy gap

Δԑ = ԑLUMO–ԑHOMO)

0.141 0.159 0.145 0.140 0.156 0.179 0.181 0.170 0.155

Ionization potential

(I = ˗ԑHOMO)

0.219 0.192 0.198 0.190 0.203 0.226 0.224 0.212 0.224

Electron affinity

(A = ˗ԑLUMO)

0.078 0.033 0.053 0.050 0.047 0.047 0.043 0.042 0.069

Electro-negativity

(χ = (I+A)/2)

0.149 0.113 0.125 0.120 0.125 0.137 0.134 0.127 0.146

Chemical potential

(μ = ˗(I+A)/2)

-0.149 -0.113 -0.125 -0.120 -0.125 -0.137 -0.134 -0.127 -0.146

Chemical hardness

(ղ = (I-A)/2)

0.070 0.079 0.072 0.070 0.078 0.090 0.090 0.085 0.077

Electrophilicity index (ω = μ2/2η) 0.157 0.080 0.108 0.104 0.100 0.104 0.099 0.095 0.138

Softness (S = 1/ղ) 6.358 12.520 9.233 9.658 9.965 9.611 10.093 10.567 7.230

https://doi.org/10.1371/journal.pone.0304425.t003
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simulation with the Desmond module of Schrödinger (Fig 7B). Fig 7B indicates that the aver-

age ΔG of RELA vs. Entrectinib, RELA vs. Imatinib, and RELA vs. Nilotinib are -146.24 kJ/

mol, -148.59 kJ/mol and -94.84 kJ/mol, respectively. Also, the results (S1 Fig) show that the

overall binding energy for RELA vs. Imatinib is -35.51 kcal/mol after adding the solvation

term of 27.65 kcal/mol. Moreover, RELA vs. Entrectinib and RELA vs. Nilotinib showed the

average VDW energy as -39.79 kcal/mol and -36.47 kcal/mol respectively, whereas the electro-

static energy showed -65.83 and -14.43 kcal/mol, respectively. The ΔGTotal and solvation

energy for RELA vs. Entrectinib is -35 and 70.67 kcal/mol. These negative average binding

energies with the Desmond module indicate the significant stability of those three complexes

as before [45].

We also investigated the drug-target binding positions in the proposed top-ranked three

complexes docked by AutoDock Vina in Fig 8. The 2D schematic diagram of the receptor-

ligand interactions is given in the fourth column. The third column displays the 3D view of the

protein-ligand complex, and the interactive key amino acids in the docked complex are men-

tioned in the fifth column.

Fig 6. The root mean square deviation (RMSD) analysis results for a duration of 100 ns simulation with each of the top-ranked three drug-target

complexes. (A) The RMSD analysis results with YASARA. (B) The RMSD analysis results with the Desmond module of Schrödinger.

https://doi.org/10.1371/journal.pone.0304425.g006
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4. Discussion

Chronic lung diseases including asthma [8], tuberculosis [9], cystic fibrosis [4], pneumonia

[1, 10], emphysema [11], bronchitis [12], IPF [6], COPD [5], and ILD [7] are associated with

the severity of SARS-CoV-2 infections. Therefore, in this study, we identified the top-ranked

11 genes (STAT1, TLR4, CXCL10, CCL2, JUN, DDX58, IRF7, ICAM1, MX2, IRF9, and ISG15)

as hub-sDEGs by the protein-protein interaction (PPI) network analysis of the shared differen-

tially expressed genes (sDEGs) to disclose shared molecular mechanisms and associated drug

molecules. Among the hub-sDEGs, the signal transducer and activator of transcription 1

Fig 7. Binding energies (kJ/mol) for a duration of 100 ns simulation with each of the top-ranked three drug-target complexes. (A) The MM-PBSA binding

energies for the MD simulation with YASARA (B) The MM-GBSA binding energies for the MD simulation with the Desmond module of Schrödinger.

https://doi.org/10.1371/journal.pone.0304425.g007
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(STAT1) is essential for the defense against viral infections like influenza A and SARS-CoV-2

infections [46]. Some authors proposed STAT1 as a therapeutic target and candidate bio-

marker for SARS-CoV-2 infection [47]. The toll-like receptor 4 (TLR4) plays a crucial role in

the innate immune system, cardiac hypertrophy, myocardial inflammation, lung fibrosis, ath-

erosclerosis, skin fibroblasts, and alveolar and bronchial epithelial cells that bind with the

spike-glycoprotein of SARS-CoV-2 and increases angiotensin-converting enzyme 2 (ACE 2)

expression. It has been suggested as a potential therapeutic target for the neurological com-

plexities and respiratory illness of SARS-CoV-2 infections [48]. CXCL10 is a pro-inflammatory

chemokine that plays a crucial role in the COVID-19-related cytokine storm and olfactory dys-

functions [49]. Moreover, it is implicated in the increased susceptibility observed among

Fig 8. Receptor-ligand interactions (The 3D views of the highest binding affinity score-based receptor and top 3 lead compounds with their interacting

amino acids).

https://doi.org/10.1371/journal.pone.0304425.g008
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patients afflicted with severe obesity, hypertension, diabetes, and lung cancer [50]. The C-C

motif ligand 2 (CCL2) is significantly involved in the pathogenesis of the breathing complexi-

ties that define the most severe form of COVID-19 [51]. The upregulation of JUN (Jun proto-

oncogene, AP-1 transcription factor subunit) is prominently observed in the pathogenesis of

severe COVID-19 patients with the development of viral infections and immunological abnor-

malities by T-cell hyperactivation [21]. The DDX58 gene also known as retinoic acid-inducible

gene I (RIG-I), plays a vital role in the development progression of SARS-CoV-2 infection and

regulating host immune responses including dermatomyositis (DM) characterized by muscle

dysfunction, pain, skin rashes, etc. [52]. Inflammatory cytokines, including Interleukin and

type I interferon, are associated with susceptibility to Dermatomyositis [52]. The gene IRF7

(Interferon Regulatory Factor 7) is associated with the pathogenesis of lung cancer, type 1 dia-

betes, and obesity [53]. It is also over-expressed in COVID-19, which exhibits the congruence

between responses of primary lung cells and systemic blood cells during the acute phases of

SARS-CoV-2 infection [54]. In COVID-19 patients, a high level of ICAM-1 (Intercellular

Adhesion Molecule 1) gene is observed, induced by cytokines including Tumor Necrosis Fac-

tor-Alpha (TNF-α) and Interleukin-1 (IL-1) that regulates influenza virus infection in human

bronchial epithelial cells (HBEpC) during the primary stages of infection [55]. The MX2 gene

is highly enriched in the type 1 interferon signaling pathway, which plays a crucial role in the

development of IPF disease and the innate immune response in the pathogenesis of COVID-

19 [56]. The IRF9 is a biomarker gene for respiratory viral infection [57]. The interferon-stim-

ulated gene 15 (ISG15) is a crucial therapeutic target for active tuberculosis and other comor-

bidities such as dermatomyositis, glioblastoma, psoriasis, hypertension, lung cancer, and

breast cancer [58]. Thus, the association of our proposed hub-sDEGs with the progression of

SARS-CoV-2 infections and different lung diseases are also supported by the literature review.

The interaction network analysis of hub-sDEGs with different diseases from independent

databases showed that some of our proposed hub-sDEGs (CCL2, STAT1, MX2, ICAM1, JUN,

and IRF7) are significantly associated with different lung diseases including asthma, bronchi-

ectasis, pneumonia, pulmonary fibrosis, tuberculosis, lung injury, lung neoplasms (Fig 3 and

S3 Table). Besides, bronchiectasis and diabetes mellitus are linked by ICAM1 and STAT1;

hypertensive disease is linked by CCL2, ICAM1, and JUN; inflammation is linked by CCL2,

ICAM1, and IRF7; influenza is linked by CCL2, IRF7, MX2, and STAT1; liver cirrhosis is

linked by CCL2 and STAT1 and multiple sclerosis is linked by ICAM1. The genes CCL2,

ICAM1, and JUN were identified as being associated with neurological disorders such as brain

ischemia and schizophrenia. Schizophrenia patients are more susceptible to COVID-19 infec-

tion [59]. The genes ICAM1 and STAT1 have associations with some skin disorders such as

urticaria, and eczema, respectively. Interestingly, these skin disorders have also been observed

in some patients with COVID-19 [13,60]. Several studies reported that elevated risk of devel-

oping COVID-19 among patients with liver disease and rheumatoid arthritis. Moreover, these

disorders were associated with increased severity of COVID-19 and lead to mortality [61,62].

Public literature also supports our findings and suggests that melanoma [63], rheumatoid

arthritis [61], asthma [8], atherosclerosis [64], obesity, hypertension, diabetes mellitus [50],

schizophrenia [59], multiple sclerosis and multiple myeloma [13] are closely linked to

COVID-19.

To investigate the pathogenetic mechanisms of the proposed hub-sDEGs, we selected the

few top common GO-terms (BPs, MFs, and CCs) from two databases (DAVID and Enrichr)

and pathways that are common in at least two databases from KEGG, BioCarta, Reactome,

and WikiPathways (Tables 1 and 2). Among the enriched BPs, defense response to virus, posi-

tive regulation of interferon-alpha/beta production, positive regulation of transcription by

RNA polymerase II, positive regulation of DNA-templated transcription, and cellular response
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to interferon gamma are the top GO terms. Defense response to virus were reported as impor-

tant BPs for SARS-CoV-2 progression and lung disease [65]. Positive regulation of interferon-

alpha or beta production promotes SARS-CoV-2 pulmonary vascular infection by triggering

the expression of ACE2 [66]. Positive regulation of transcription by RNA polymerase II has

been identified as an important BP for COVID-19-associated cardiac dysfunctions [67]. The

regulation of DNA-templated transcription is crucial for the activation of the host immune

response against SARS-CoV-2 [68]. Cellular response to interferon-gamma (IFN-γ), plays a

crucial role in SARS-CoV-2 infection due to its association with both inflammation and

immune responses [69]. In COVID-19 patients, it is also regarded as a risk factor for pulmo-

nary fibrosis [70]. In the enriched MFs, double-stranded DNA binding, chemokine activity

[71], ubiquitin-like protein ligase binding [72], and RNA polymerase II core promoter proxi-

mal region sequence-specific DNA binding [73] are related to COVID-19. Sequence-specific

double-stranded DNA binding [74] and transcription regulatory region sequence-specific

DNA binding [75] are associated with the development of melanoma and ovarian cancer,

respectively. According to the CCs, several significant cellular components (CCs) were identi-

fied for various diseases, the endosome membrane was found to be enriched with chronic

obstructive pulmonary disease (COPD) and lung cancer [76]. Additionally, the cytoplasmic

vesicle membrane has been identified as the enriched CC term, associated with the develop-

ment of obesity and COVID-19 [77]. In patients with non-small-cell lung cancer (NSCLC),

euchromatin has been identified as a significant CC term [78]. Furthermore, the nucleus and

intracellular membrane-bounded organelle were found to be significant CC terms for

COVID-19 and non-alcoholic fatty liver disease (NAFLD) [79]. Among the enriched path-

ways, Coronavirus disease, Interferon signaling pathway, Immune responses, and Measles virus
infection are involved with the progression of SARS-CoV-2 infection and other comorbidities

(Table 2 and S4 Table). An essential route in the initial line of defense against SARS-CoV-2 is

interferon signaling (Type I and III) [80]. COVID-19 patients have innate and adaptive

immune responses and rapidly declining antibodies [81]. Measles has a significant association

with acute respiratory tract infections, which can contribute to the development of acute exac-

erbations in individuals with chronic bronchitis, asthma, pneumonia, and COVID-19 [18].

The hub-sDEGs interaction network analysis with TFs proteins revealed that 6 TFs proteins

(MYC, SOX2, CEBPA, NANOG, RELA, and MSX1) are the key transcriptional regulatory fac-

tors of hub-sDEGs (Fig 4). Among them, the TF-protein MYC has been demonstrated as a

therapeutic target for lung cancer [28]. Activation of MYC has an association with COPD and

viral infection influenza A virus (IAV) that also promotes the metabolic reprogramming of

glutamine in SARS-CoV-2-infected cells [82]. Several studies demonstrated that the transcrip-

tional activation of SOX2 is linked with tumorigenesis that leads to various cancers including

glioblastoma, small cell lung cancer (SCLC), lung squamous cell carcinoma (LSCC), lung ade-

nocarcinoma, breast cancer, and colon cancer [83]. The SARS-CoV-2 infection may be signifi-

cantly impacted by the TF-protein CEBPA. The TF-protein NANOG is reported as a

prognostic biomarker for lung cancer [84]. The TF-protein RELA is a regulator of both prolif-

erative and inflammatory cellular responses, and it also plays a key role in the development of

NF-kB and SARS-CoV-2 infection [85]. The TF protein MSX1 has been identified as a prog-

nostic marker for several conditions, including colorectal cancer (CRC), breast cancer, and

endometriosis [86].

To explore hub-sDEGs guided few potential repurposable therapeutic drugs for SARS--

CoV-2 treatment with one or more lung diseases, at first, we performed molecular docking

analysis with 184 candidate drug molecules that were collected from different published arti-

cles associated with COVID-19 and/or lung diseases, by using AutoDock Vina. We selected

nine (out of 184) top-ranked drugs (Nilotinib, Entrectinib, Imatinib, SCH-772984, Icotinib,
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Regorafenib, Sorafenib, Ibrutinib, and Dabrafenib) that showed strong binding affinities with

our proposed and independent receptor proteins (Fig 5A and 5B, S5 and S8 Tables). The

selected drug molecules were optimized through density functional theory (DFT) and observ-

ing their good chemical stability. To verify the significance of protein-ligand interaction by

another software, we considered the well-known GLIDE module of Schrödinger. We observed

that previously suggested top-ranked three molecules (Nilotinib, Entrectinib, Imatinib) signifi-

cantly interact with our suggested target proteins according to the binding scores (Glide g-

score, Docking score� −6) and Glide e-model� −35 produced by Schrödinger also (Fig 5C,

S9–S11 Tables) [87]. Therefore, we considered these three molecules (Entrectinib, Imatinib,

and Nilotinib) for further investigation. We evaluated the stability of the top-ranked receptor

RELA with these three molecules (Entrectinib, Imatinib, and Nilotinib) by molecular dynamic

simulation studies and found their stable performance (Figs 6 and 7). Recent research has

shown that the tyrosine kinase inhibitors Entrectinib and Nilotinib both have antiviral activity

that could reduce SARS-CoV-2 infections in human lung tissue [88]. Entrectinib is also recom-

mended for the treatment of metastatic NTRK-positive solid tumors and ROS1-positive non-

small cell lung cancer (NSCLC) [89]. Some studies reported that Nilotinib alone or its combi-

nation with Carboplatin and Paclitaxel could be considered as a therapy to treat a variety of

cancer disorders such as ovarian cancer, colorectal cancer, and chronic myeloid leukemia [90].

Moreover, Entrectinib and Nilotinib are also considered to be potential candidate drugs for

COVID-19 [56,91]. Imatinib is an FDA-approved drug used for treating chronic myeloid leu-

kemia (CML), ovarian cancer, and gastrointestinal stromal tumors (GIST) [92]. Recent studies

reported that imatinib exhibits inhibitory effects on the initial stages of SARS-CoV-2 infection,

providing valuable insights into its potential as a therapeutic intervention for combating viral

infection [93]. Thus, it has been found that the proposed drugs are approved by the Food and

Drug Administration (FDA). Therefore, the findings of this study might be interesting

resources for the diagnosis and therapies of COVID-19 patients who are also suffering from

one or more lung diseases. However, experimental validation in wet-lab is required for taking

a proper treatment plan.

5. Conclusion

In this study, we identified the top-ranked 11 genes (STAT1, TLR4, CXCL10, CCL2, JUN,

DDX58, IRF7, ICAM1, MX2, IRF9, and ISG15) as the hub of the shared differentially expressed

genes (hub-sDEGs) highlighting their molecular mechanisms for which SARS-CoV-2 infec-

tions and different lung diseases stimulate each other. The GO enrichment analysis with hub-

sDEGs revealed that these hub genes are involved in cellular response to interferon-gamma,

defense response to virus, positive regulation of interferon-alpha or beta production, etc., and

pathways were enriched in coronavirus disease, TNF signaling pathway, interferon signaling

pathway, etc., that are associated with both COVID-19 and lung diseases. Some TFs proteins

(MYC, SOX2, CEBPA, NANOG, RELA, and MSX1) and miRNAs (hsa-miR-16-5p, hsa-miR-

129-2-3p, hsa-miR-21-3p, hsa-miR-27a-5p, hsa-miR-1-3p, and hsa-miR-155-5p) were also

detected as the key transcriptional and post-transcriptional regulatory factors of key/hub-

sDEGs. Then, hub-sDEGs guided top-ranked three repurposable drug molecules (Entrectinib,

Imatinib, and Nilotinib) were detected by molecular docking analysis with AutoDock Vina

and GLIDE module of Schrödinger. Additionally, molecular dynamic simulations confirmed

the stability of the top-ranked three drugs (Entrectinib, Imatinib, and Nilotinib) in complex

with the RELA protein over a 100 ns period. Therefore, the findings of this study would be use-

ful resources for the diagnosis and therapies of COVID-19 patients who are also suffering

from chronic lung diseases.
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