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Abstract

Objective

Parkinson’s disease (PD) is an age-related neurodegenerative condition characterized

mostly by motor symptoms. Although a wide range of non-motor symptoms (NMS) are fre-

quently experienced by PD patients. One of the important and common NMS is cognitive

impairment, which is measured using different cognitive scales. Monitoring cognitive

impairment and its decline in PD is essential for patient care and management. In this study,

our goal is to identify the most effective cognitive scale in predicting cognitive decline over a

5-year timeframe initializing clinical biomarkers and DAT SPECT.

Methods

Machine Learning has previously shown superior performance in image and clinical data

classification and detection. In this study, we propose to use machine learning with different

types of data, such as DAT SPECT and clinical biomarkers, to predict PD-CD based on vari-

ous cognitive scales. We collected 330 DAT SPECT images and their clinical data in base-

line, years 2,3,4, and 5 from Parkinson’s Progression Markers Initiative (PPMI). We then

designed a 3D Autoencoder to extract deep radiomic features (DF) from DAT SPECT

images, and we then concatenated it with 17 clinical features (CF) to predict cognitive

decline based on Montreal Cognitive Assessment (MoCA) and The Movement Disorder

Society-Unified Parkinson’s Disease Rating Scale (MDS-UPDRS-I).

Results

The utilization of MoCA as a cognitive decline scale yielded better performance in various

years compared to MDS-UPDRS-I. In year 4, the application of the deep radiomic feature

resulted in the highest achievement, with a cross-validation AUC of 89.28, utilizing the gradi-

ent boosting classifier. For the MDS-UPDRS-I scale, the highest achievement was obtained
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by utilizing the deep radiomic feature, resulting in a cross-validation AUC of 81.34 with the

random forest classifier.

Conclusions

The study findings indicate that the MoCA scale may be a more effective predictor of cogni-

tive decline within 5 years compared to MDS-UPDRS-I. Furthermore, deep radiomic fea-

tures had better performance compared to sole clinical biomarkers or clinical and deep

radiomic combined. These results suggest that using the MoCA score and deep radiomic

features extracted from DAT SPECT could be a promising approach for identifying individu-

als at risk for cognitive decline in four years. Future research is needed to validate these

findings and explore their utility in clinical practice.

Introduction

Parkinson’s disease (PD) is a neurodegenerative disorder that affects the basal ganglia, an area

of the brain that regulates movement [1]. However, PD also has a variety of non-motor symp-

toms (NMS) that are related to a mix of dopaminergic and non-dopaminergic pathways, show-

ing PD’s multi-focal and widespread pathology [2]. Cognitive problems are one of the most

common and important NMS that can happen at any stage of the disease [3]. Cognitive

impairment in PD can range from mild cognitive impairment to dementia, impacting various

cognitive domains. The cognitive abilities of PD patients often decline throughout the disease,

and it is increasingly recognized as a significant aspect of PD progression [4]. In the past few

years, many studies have focused on predicting cognitive decline in PD (PD-CD) [5–10]. The

prediction of PD-CD involves a multifaceted approach incorporating various markers, assess-

ments, and biomarkers over different time frames [11–13]. These predictive models provide

valuable insights for patient management, clinical trial design, and the development of treat-

ments for PD-CD.

Different scales are utilized for the prediction of PD-CD, and various studies have delved

into the predictive capabilities of these scales [14–16]. Montreal Cognitive Assessment

(MoCA) [17] is one of the best-known cognitive scales widely used to measure cognitive

aspects of PD [5,8,9]. MoCA was initially created to assess mild cognitive impairment linked

to Alzheimer’s Disease, focusing on areas such as memory, executive functions, and verbal flu-

ency. Another scale is UPDRS which is a widely accepted tool for measuring the severity of PD

and tracking changes in motor and non-motor function over time [18]. The Movement Disor-

der Society-sponsored revision of the UPDRS (MDS-UPDRS) is a clinical assessment tool

introduced in 2008 as an updated version of the original UPDRS. The MDS-UPDRS is com-

prised of four sections, with Part I dedicated to assessing non-motor aspects of daily living

such as assessment of cognitive impairment, hallucinations and psychosis, depressed mood,

anxious mood, and apathy [19].

The presence of visual hallucinations and psychosis has been associated with an increased

risk of cognitive decline and dementia in PD [20]. Also, mood disturbances are prevalent non-

motor symptoms in PD and can significantly impact cognitive function [21]. Based on these

results, we chose to utilize the overall score of MDS-UPDRS-I rather than solely focusing on

the cognitive impairment question. (Further details on the MoCA and MDS-UPDRS-I, as well

as their respective questionnaires, can be found in S1 Table).
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Predicting PD-CD is feasible across various periods, as evidenced by prior research employ-

ing different durations [5–10]. For instance, one study demonstrated that PD-CD could be

forecasted within 2 years by integrating factors such as age, non-motor evaluations, DAT

imaging, and CSF biomarkers [22]. Another investigation revealed that close to half of the PD

patients who initially presented with normal cognitive function developed PD-CD within 6

years [12]. Furthermore, another study has indicated that baseline pro-saccadic metrics are

predictive of PD-CD over 4.5 years [23].

In addition, researchers are investigating the use of various biomarkers to anticipate the

development of PD-CD. The link between cognitive problems and age and Postural Instability

and Gait Disorders (PIGD) was previously discussed in another study [24,25]. Another study

also found that age is a predictor of MDS-UPDRS-I [26]. Minor hallucinations in people with

PD might be a predictor of faster PD-CD [27]. Prior research has established a link between

olfactory impairment and cognitive impairment [28–31]. According to several studies, the

gene variant apolipoprotein E (APOE) is associated with PD-CD [32,33]. Cerebrospinal Fluid

(CSF) biomarkers can also be useful in the prediction of PD-CD, one study [34] demonstrated

the possible involvement of tau species in the progression of cognitive symptoms in PD.

Another study suggests that CSF α-synuclein levels correlate with PD-CD [35]. In addition to

clinical data, several imaging techniques have been used to investigate changes in brain struc-

ture and function that may be predictive of future PD-CD. Dopamine active transporter

(DAT), located in the presynaptic terminal of the dopaminergic projection and responsible for

dopamine reuptake, is a marker of dopamine innervation, and a DAT SPECT is commonly

used to diagnose dopaminergic neuron loss in the striatum [36]. Biomarker studies have

revealed that lower dopamine levels on DAT SPECT, are linked to PD-CD [5,16,22,37]. Cas-

pell-Garcia et al. found that lower DAT availability in the putamen is a longitudinal biomarker

predictor of developing cognitive problems [38]. Another study reported that cognitive

impairment was linked to lower DAT density on SPECT, especially in the caudate [39].

Traditionally, researchers have relied on classical statistical models to predict PD-CD. How-

ever, machine learning approaches are gaining traction due to their ability to handle complex

datasets and potentially improve prediction accuracy [40–42]. Machine learning leverages clin-

ical and imaging data more effectively, particularly in predicting PD-CD [6,43–45]. Unlike

classical models, these approaches achieve high performance without the need for extensive

manual programming [46].

PD-CD is a common and disabling symptom of PD, although its prediction and diagnosis

are challenging due to the heterogeneity and complexity of the disease [47]. In this study, we

used machine learning with different types of data, such as DAT SPECT and clinical biomark-

ers, to predict PD-CD based on two cognitive scales. We aim to compare the prognostic accu-

racy of MoCA and MDS-UPDRS-I based on the year and features that we use. Our approach

will provide more accurate and personalized predictions of PD-CD and will contribute to the

development of better diagnostic and therapeutic strategies.

Materials and methods

In the below sections, we investigate our diverse data selection/generation, image processing

methods, machine learning, and analysis methods. As shown in Fig 1, we first encoded our

imaging data and clinical biomarkers, and then we used combinations of clinical and deep

radiomic features to predict whether a PD-CD happens 2, 3, 4, and 5 years after the initial diag-

nosis using the MoCA and MDS-UPDRS-I scales. Unlike previous studies, here we defined

PD-CD as any slight decrease in the score of MoCA or MDS-UPDRS-I, thereby enhancing our

model’s sensitivity to even subtle cognitive deteriorations.
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Participants

Data for this study were retrieved from the Parkinson’s Progression Markers Initiative (PPMI)

database, adhering to previously established inclusion and exclusion criteria for PPMI [48]. We

further filtered participants based on our inclusion criteria: 1) Participants were required to

exhibit all 17 clinical features at baseline assessment. 2) Participants needed to complete

MDS-UPDRS-I and MoCA scores at baseline and follow-up visits at years 2, 3, 4, and 5. 3) All

participants included in the study underwent DAT SPECT imaging at baseline. Based on these

criteria, we included 330 patients and their DAT SPECT and clinical data in baseline; 204 and

126 patients, respectively, were male and female; the average age at baseline was 61.2 ± 9.6 years.

Clinical features

Different clinical variables and biomarkers are used to address cognitive impairment severity

and prognosis. As previously discussed, recent studies showed that advanced age, genetic varia-

tion in APOE, gait disturbance, motor assessments, non-motor assessments, DAT imaging,

electroencephalogram, and CSF biomarkers may contribute to the early prediction of PD-CI

[5–7,10,24,37,38,44,49]. We used 17 of the most predictive clinical biomarkers in previous stud-

ies to further investigate the effect of clinical biomarkers alongside DAT SPECT. These bio-

markers are age, CSF amyloid-β 42, CSF α-Synuclein, hallucination, MDS-UPDRS-III, PIDG,

CSF P-tau, CSF T-tau, serum uric acid, disease duration, The Scale for Outcomes in Parkinson’s

disease for Autonomic symptoms (SCOPA-AUT), Geriatric Depression Scale (GDS), APOE

genetic variation, gender, Orthostatic hypotension, diabetes, and hypertension [50–52]. We

then used one hot encoding to encode all of these biomarkers to clinical features (CF).

Deep radiomic features

To investigate DAT SPECT images, we conducted a deep radiomic feature extraction from the

DAT SPECT images that were extracted from PPMI. We first segmented the dorsal striatum

Fig 1. Data collection procedure. After extracting DFs, we combined CF and DF to make three different combinations of features. After feature set generation,

we fed each feature set into nine different classifiers to predict PD-CD based on two cognitive scales and four timeframes. CF: Clinical feature, DF: Deep

features, RFE: Recursive Feature Elimination, ADBC: AdaBoost Classifier, BGC: Bagging Classifier, SVC: Support Vector Classifier, KNN: K-Nearest

Neighbors Classifier, RFC: Random Forest Classifier, GBC: Gradient Boosting Classifier, MLP: Multi-Layer Perceptron, DTC: Decision Tree Classifier, LRC:

Logistic Regression Classifier, CF: Clinical Features, DF: Deep Features.

https://doi.org/10.1371/journal.pone.0304355.g001
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on DAT SPECT before feature extraction, using the same procedures as in our earlier study

[16] (S1 File and S1 Fig). Following the segmentation process, we cropped the DAT SPECT

images according to the segmentations and finally resized each image to its final size of 32 X

32 X 32. Intensity normalization was a further step we used before feature extraction. We also

augmented images just by flipping them from left to right, as suggested in previous studies

[53]. Subsequently, the images were inputted into the autoencoder for feature extraction. A

detailed explanation of our proposed 3D-Autoencoder can be found in the S1 File. Using this

3D-Autoencoder, we extracted 1024 DFs from the bottleneck layer using DAT SPECT images.

To further explore the predictive performance of clinical and deep features combined, we cre-

ated a third feature set from a combination of the extracted data called CF + DF.

Machine learning models

Based on previous studies [5–10], we used nine classifiers, AdaBoost Classifier (ADBC) [54],

Support Vector Classifier (SVC) [55], K-Nearest Neighbors Classifier (KNNC) [56], Random

Forest Classifier (RFC) [57], Gradient Boosting Classifier (GBC) [58], Bagging Classifier

(BGC) [59], Multi-Layer Perceptron (MLP) [60], Decision Tree Classifier (DTC) [61], and

Logistic Regression Classifier (LRC) [62] (Fig 1). They were chosen experimentally from dif-

ferent families of learning algorithms. Several studies have shown that using only some of the

most relevant features improves performance on a variety of tasks compared to using all of

them. It has been shown that most classifiers often cannot cope with large amounts of input to

work [63,64]. Therefore, it is important to choose the optimal subset of features to use as input

to avoid overfitting. We used Recursive Feature Elimination (RFE) [65] to select the top 10, 50,

and 100 features from each feature set. In addition, we tuned the hyperparameters of the classi-

fier using 5-fold cross-validation and grid search optimization techniques. Grid search optimi-

zation is a powerful way to significantly improve the performance of your ML methods. The

data points are divided into 4 convolutions for training and 1 convolution for testing in 5-fold

cross-validation. Moreover, 80% of the training data points were used for cross-validation and

20% were used for external tests.

Results

We selected 330 patients from PPMI that had baseline, year 2, year 3, year 4, year 5 MoCA,

and MDS-UPDRS-I scores. Before deploying machine learning algorithms, we performed a

statistical examination with an unpaired t-test to assess differences between PD-CD individu-

als and non-converting PD (PD-NC) participants. This analysis considered a range of cogni-

tive scales and time frames, with the findings presented in S2 and S3 Tables. Subsequently, this

dataset was utilized to train our machine learning models to predict potential declines in

MoCA and MDS-UPDRS-I scores over time. In total, 648 distinct trajectories were tested,

encompassing 2 scales, 4 years, 3 feature sets, 3 feature sizes, and 9 algorithms. The perfor-

mance of several algorithms and datasets is displayed in Fig 2. The best accuracy was selected

between different combinations of feature set sizes for each trajectory.

The utilization of MoCA as a cognitive decline scale yielded better performance in various

years compared to MDS-UPDRS-I. As shown in Fig 2 In year 4, the application of the DF

resulted in the highest achievement, with a cross-validation AUC of 89.2, Utilizing the GBC

with 100 features. The external test of 89.8 confirmed our finding. In year 3, the best outcome

was attained by employing LRC and DFs, with a cross-validation AUC of 78.06 using 50 fea-

tures, although the external test was 52. Similarly, in year 5, the combination of LRC and DF

produced a cross-validation AUC of 77.93 using 50 features and an external test of 55.7. Con-

versely, year 2 demonstrated the lowest performance, with the most favorable outcome
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achieved by utilizing both CF + DF, in conjunction with LRC, resulting in a cross-validation

AUC of 74.79 using 50 features and an external test of 46.6.

The optimal performance when using MDS-UPDRS-I as the cognitive decline scale varied

across different years, and similar to MoCA, As shown in Fig 2, year 4 had the best perfor-

mance with the highest achievement obtained by utilizing the DF, resulting in a cross-valida-

tion AUC of 81.34 with the RFC using 100 features and an external test of 78.6 confirmed our

finding. For year 3, the best result was achieved through the use of LRC and DF, yielding a

cross-validation AUC of 76.73 and an external test of 61.9 using 50 features. Similarly, in year

5, the combination of LR and DF + CF led to the best outcome, with a cross-validation AUC of

73.52 and an external test of 51.3. On the other hand, year 2 exhibited the lowest performance,

with the most favorable result achieved by employing DF and LRC, resulting in a cross-valida-

tion AUC of 70.90 using 50 features with an external test of 43.5. External test results are

shown in S3 Fig.

The MoCA and MDS-UPDRS-I scale ROC curves for the fourth year are displayed below

in Fig 3. MoCA outperforms MDS-UPDRS-I in PD-CD prediction for all three feature sets.

Discussion

The primary aim of this study was to evaluate the accuracy of the MOCA and MDS-UPDRS-I

in predicting cognitive decline in PD over five years, utilizing ML techniques. Moreover, the

study aimed to investigate the potential of different features, such as DAT SPECT imaging and

clinical variables, to improve the accuracy and reliability of predicting PD-CD.

Cognitive impairment in PD can significantly affect the quality of life, functional indepen-

dence, and treatment outcomes for both patients and their caregivers [66]. It is uncertain how

cognitive decline in PD will ultimately manifest. Patients may either fully regain their cognitive

abilities, remain in a state of mild cognitive impairment, or develop dementia [67]. Also,

PD-CD is influenced by a variety of factors, including motor symptoms, non-motor symp-

toms, medical comorbidities, and psychosocial conditions, all of which interact in complex

Fig 2. Heatmap for cross-validation AUC scores. Showing the superiority of MoCA performance compared to MDS-UPDRS-I and also the high performance

of year 4 in both scales. ADBC: AdaBoost Classifier, BGC: Bagging Classifier, SVC: Support Vector Classifier, KNN: K-Nearest Neighbors Classifier, RFC:

Random Forest Classifier, GBC: Gradient Boosting Classifier, MLP: Multi-Layer Perceptron, DTC: Decision Tree Classifier, LRC: Logistic Regression

Classifier, CF: Clinical Features, DF: Deep Features.

https://doi.org/10.1371/journal.pone.0304355.g002
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ways [68]. The research conducted by Weil et al. emphasizes the importance of understanding

mild cognitive impairment in PD and its progression to dementia [69]. This knowledge can

pave the way for early interventions targeting cognitive decline in PD patients. Moreover, Ray

et al. suggest that identifying patients at risk of cognitive decline early in the course of PD can

aid in stratifying individuals for targeted interventions [70].

Fig 3. Illustrates the ROC analysis. Showcasing the superior results for both the MoCA and MDS-UPDRS-I across all three feature sets. The peak AUC

performance for the MoCA was secured through the deployment of DF for forecasting the MoCA score in year 4. Similarly, the optimal AUC for the

MDS-UPDRS-I was also obtained by employing DF to estimate the MDS-UPDRS-I score in the same year. CF: Clinical feature, DF: Deep features.

https://doi.org/10.1371/journal.pone.0304355.g003
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Cognitive assessment scales are essential for evaluating cognitive function in PD patients

and detecting mild cognitive impairment and dementia, as well as cognitive decline for moni-

toring stages, which are common in PD. In our most recent research [16], we utilized HMLS

for forecasting cognitive impairment in the fourth year, relying exclusively on the MoCA score

as the cognitive measure without reference to alternative scales. In contrast, our current objec-

tive is to evaluate the MoCA against other cognitive scales present in PPMI, specifically

MDS-UPDRS-I, and we found that using changes in MoCA score as a metric for cognitive

decline can be more predictable compared to MDS-UPDRS-I. To our knowledge, this compar-

ison was not done elsewhere before. One of the key distinctions between the MoCA and the

MDS-UPDRS-I lies in their assessment focus. Although both measure NMS, the MoCA ques-

tionnaire evaluates a broader range of cognitive functions, while the MDS-UPDRS-I assesses

symptoms related to cognition (S1 Table). Also, The Montreal Cognitive Assessment (MoCA)

test is designed to be administered by a healthcare professional [17], But the MDS-UPDRS-I

questionnaire is structured so that it can be filled out independently by the patient, collabora-

tively with caregiver input, or solely by the caregiver, based on the preference of the patient

and caregiver [19].

Notably, the most significant results were observed in year four, suggesting that the onset of

PD-CD becomes apparent and can be predicted with high accuracy at this stage. Previous

studies indicated that PD-CD can become noticeable within 5 years of diagnosis [71]. This

period is characterized by a decline in various cognitive domains, including executive func-

tion, attention, memory, and visuospatial abilities. Identifying these changes early on can aid

in implementing appropriate interventions and support strategies to manage cognitive decline

effectively.

DAT SPECT, which plays a significant role in tracking dopamine in the brain, could serve

as a valuable tool for monitoring PD-CD. As shown in our study, the deep features extracted

from DAT SPECT imaging offer a promising avenue for providing a comprehensive dataset

that surpasses traditional clinical data in insight extraction. This sophisticated imaging tech-

nique serves as a quantitative biomarker for assessing the onset and progression of PD. Fur-

thermore, the use of radiomic analysis on longitudinal DAT SPECT images has been shown to

improve the prediction of PD outcomes, underscoring the diagnostic value of DAT SPECT

imaging in this context [72].

One of the challenges we encountered in our study was the lack of longitudinal data from

various cognitive questionnaires for temporal analysis. This shortfall in suitable longitudinal

data necessitated the exclusion of two questionnaires namely Site Investigators Decision (SID)

and MDS Task Forse Guideline (MDS-TFG) neurophysiological battery. We also were not

able to study the MDS-UPDRS-I cognitive impairment question individually as the PD-CD

and PD-NC groups are extremely (1:5) imbalanced and even with implementing the Synthetic

Minority Over-sampling Technique (SMOTE) our results were significantly overfitted.

As mentioned, we utilized DAT SPECT scan images due to their relevance to the dopa-

mine-based mechanisms of PD. However, other imaging modalities may yield better results,

and further studies are needed to compare the efficacy of different modalities. Looking ahead,

exploring additional biomarkers and conducting longitudinal analyses of other medical

recordings through machine learning techniques could greatly advance the development of AI

models that are closely aligned with clinical applications; for example, the use of mobile and

tablet-based applications for the ongoing longitudinal monitoring of patient’s cognitive func-

tions, coupled with the integration of these data into artificial intelligence tools, holds substan-

tial promise for the field [73]. This allows us to have access to more data and train more robust

models.
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Conclusions

The study findings indicate that the decline in MoCA as a measure for PD-CD results in higher

performance within 5 years compared to MDS-UPDRS-I especially in year 4. Furthermore,

deep radiomic features had better performance compared to sole clinical biomarkers or clini-

cal and deep radiomic combined. These results suggest that using the MoCA score and Deep

Radiomic features extracted from DAT SPECT could be a promising approach for identifying

individuals at risk for cognitive decline in four years. Future research and additional data are

needed to validate these findings and explore their utility in clinical practice.

Supporting information

S1 File. Imaging protocols. Consist of three parts 1) S1 Appandix DAT SPECT image charac-

teristics 2) S1 Protocol Image Preprocessing 3) S2 Protocol 3D-Autoencoder.

(DOCX)

S1 Fig. Preprocessing steps. 1) Smooth images 2) Increase the contrast of the images 3) Use a

threshold to digitize the image 4) Crop 3D ROI.

(TIFF)

S2 Fig. 3D autoencoder architecture. It has four convolutional layers, each followed by a

batch normalization and max-pooling operation. The pooling layers are used to reduce the

number of parameters. The decoder path has four convolutional layers, each followed by batch

normalization.

(TIFF)

S3 Fig. Heatmap for external test AUC based on different trajectories explained in the

method section. ADBC: AdaBoost Classifier, BGC: Bagging Classifier, SVC: Support Vector

Classifier, KNN: K-Nearest Neighbors Classifier, RFC: Random Forest Classifier, GBC: Gradi-

ent Boosting Classifier, MLP: Multi-Layer Perceptron, DTC: Decision Tree Classifier, LRC:

Logistic Regression Classifier, CF: Clinical Features, DF: Deep Features.
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S1 Table. Detail of MDS-UPDRS-I and MoCA questionnaires. In the MDS-UPDRS-I, we

utilized a summation of five sections that assess cognitive-related symptoms in Parkinson’s

Disease (PD). The total response to these items is scored on a scale of 0 to 20. Additionally,

itemw from the MoCA is referenced in the accompanying table. The total response to these

items is scored on a scale of 0 to 30. MDS-UPDRDS-I: The Movement Disorder Society-Uni-

fied Parkinson’s Disease Rating Scale, MoCA: Montreal Cognitive Assessment.
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S2 Table. Paired T-test outcomes for the MDS-UPDRS-I score. In year 2, there was a signifi-

cant gender-related discrepancy observed between the PD-CD and PD-NC groups. Year 3

highlighted a substantial difference in PIGD scores between the same groups. However, in

years 4 and 5, the analysis revealed no significant differences between PD-CD and PD-NC.
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S3 Table. Results of the paired T-test for the MoCA score. In year 2, a notable difference was

observed in T-tau levels between the PD-CD and PD-NC groups. Year 3 saw a significant dis-

parity in gender distribution between the two groups. No substantial differences were detected

in year 4. However, in year 5, significant variations were found in a-synuclein, P-tau, T-tau,

and diabetes occurrences between the PD-CD and PD-NC groups.
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ers for dementia and mild cognitive impairment in Parkinson’s disease: Biomarkers and Cognition in

Parkinson’s Disease. Mov Disord. 2016; 31: 861–881. https://doi.org/10/f8tkmc

51. Lin C-H, Wu R-M. Biomarkers of cognitive decline in Parkinson’s disease. Parkinsonism Relat Disord.

2015; 21: 431–443. https://doi.org/10.1016/j.parkreldis.2015.02.010 PMID: 25737398

52. Mollenhauer B, Rochester L, Chen-Plotkin A, Brooks D. What can biomarkers tell us about cognition in

Parkinson’s disease? Biomarkers for Cognitive Decline in PD. Mov Disord. 2014; 29: 622–633. https://

doi.org/10/f5zn47

PLOS ONE Machine learning for predicting cognitive decline within five years in Parkinson’s disease

PLOS ONE | https://doi.org/10.1371/journal.pone.0304355 July 17, 2024 12 / 13

https://doi.org/10.1016/j.parkreldis.2014.12.027
https://doi.org/10.1016/j.parkreldis.2014.12.027
http://www.ncbi.nlm.nih.gov/pubmed/25596881
https://doi.org/10.1136/jnnp-2016-314857
https://doi.org/10.1136/jnnp-2016-314857
http://www.ncbi.nlm.nih.gov/pubmed/28550072
https://doi.org/10.3906/sag-2008-253
https://doi.org/10.3906/sag-2008-253
http://www.ncbi.nlm.nih.gov/pubmed/33237660
https://doi.org/10.1016/S1474-4422%2817%2930122-9
http://www.ncbi.nlm.nih.gov/pubmed/28629879
https://doi.org/10.1371/journal.pone.0175674
http://www.ncbi.nlm.nih.gov/pubmed/28520803
https://doi.org/10.3389/fpsyg.2021.729755
http://www.ncbi.nlm.nih.gov/pubmed/34566817
https://jnm.snmjournals.org/content/64/supplement_1/P1174.abstract
https://jnm.snmjournals.org/content/64/supplement_1/P1174.abstract
https://jnm.snmjournals.org/content/64/supplement_1/P1196.abstract
https://jnm.snmjournals.org/content/64/supplement_1/P1196.abstract
https://doi.org/10.1109/NSSMICRTSD49126.2023.10338394
https://doi.org/10.1148/radiol.2021203383
http://www.ncbi.nlm.nih.gov/pubmed/34032515
https://doi.org/10.1007/978-94-009-0279-4%5F9
https://doi.org/10.1007/978-94-009-0279-4%5F9
https://doi.org/10.1038/npjparkd.2016.18
http://www.ncbi.nlm.nih.gov/pubmed/28725699
https://doi.org/10.1002/acn3.644
http://www.ncbi.nlm.nih.gov/pubmed/30564614
https://doi.org/10.1016/j.neurobiolaging.2011.11.028
https://doi.org/10.1016/j.neurobiolaging.2011.11.028
http://www.ncbi.nlm.nih.gov/pubmed/22226489
https://doi.org/10/f8tkmc
https://doi.org/10.1016/j.parkreldis.2015.02.010
http://www.ncbi.nlm.nih.gov/pubmed/25737398
https://doi.org/10/f5zn47
https://doi.org/10/f5zn47
https://doi.org/10.1371/journal.pone.0304355


53. Adams MP, Tang J, Arman, Rahmim. Improved motor outcome prediction in Parkinson’s disease apply-

ing deep learning to DaTscan SPECT images. Comput Biol Med. 2021; 132: 104312. https://doi.org/10.

1016/j.compbiomed.2021.104312 PMID: 33892414

54. Freund Y, Schapire RE. A Decision-Theoretic Generalization of On-Line Learning and an Application to

Boosting. J Comput Syst Sci. 1997; 55: 119–139. https://doi.org/10.1006/jcss.1997.1504

55. Cortes C, Vapnik V. Support-vector networks. Mach Learn. 1995; 20: 273–297. https://doi.org/10.1007/

BF00994018

56. Fix E, Hodges JL. Discriminatory analysis. Nonparametric discrimination: Consistency properties. Int

Stat Rev Int Stat. 1989; 57: 238–247.

57. Uddin S, Khan A, Hossain ME, Moni MA. Comparing different supervised machine learning algorithms

for disease prediction. BMC Med Inform Decis Mak. 2019; 19: 281. https://doi.org/10.1186/s12911-019-

1004-8 PMID: 31864346

58. [1908.06951] Gradient Boosting Machine: A Survey. [cited 19 Apr 2024]. Available: https://arxiv.org/

abs/1908.06951.

59. Skurichina M, Duin RPW. Bagging, Boosting and the Random Subspace Method for Linear Classifiers.

Pattern Anal Appl. 2002; 5: 121–135. https://doi.org/10.1007/s100440200011

60. Gardner MW, Dorling SR. Artificial neural networks (the multilayer perceptron)—a review of applications

in the atmospheric sciences. Atmos Environ. 1998; 32: 2627–2636. https://doi.org/10.1016/S1352-

2310(97)00447-0

61. SONG YLU Y. Decision tree methods: applications for classification and prediction. Shanghai Arch Psy-

chiatry. 2015; 27: 130–135. https://doi.org/10.11919/j.issn.1002-0829.215044 PMID: 26120265

62. Schmidt M, Roux NL, Bach F. Minimizing Finite Sums with the Stochastic Average Gradient. arXiv;

2016. https://doi.org/10.48550/arXiv.1309.2388

63. Salmanpour MR, Hosseinzadeh M, Bakhtiari M, Ghaemi MM, Rezaeijo SM, Nabizadeh AH, et al. Cog-

nitive Outcome Prediction in Parkinson’s Disease using Hybrid Machine Learning Systems and Radio-

mics Features. Soc Nuclear Med; 2022.

64. Salmanpour MR, Shamsaei M, Rahmim A. Feature selection and machine learning methods for optimal

identification and prediction of subtypes in Parkinson’s disease. Comput Methods Programs Biomed.

2021; 206: 106131. https://doi.org/10.1016/j.cmpb.2021.106131 PMID: 34015757

65. Feature Selection Using Recursive Feature Elimination for Handwritten Digit Recognition | IEEE Con-

ference Publication | IEEE Xplore. [cited 19 Apr 2024]. Available: https://ieeexplore.ieee.org/document/

5337549.

66. Mack J, Marsh L. Parkinson’s Disease: Cognitive Impairment. Focus J Life Long Learn Psychiatry.

2017; 15: 42–54. https://doi.org/10.1176/appi.focus.20160043 PMID: 31975839

67. Weil RS, Costantini AA, Schrag AE. Mild Cognitive Impairment in Parkinson’s Disease—What Is It?

Curr Neurol Neurosci Rep. 2018; 18: 17. https://doi.org/10.1007/s11910-018-0823-9 PMID: 29525906

68. Fang C, Lv L, Mao S, Dong H, Liu B. Cognition Deficits in Parkinson’s Disease: Mechanisms and Treat-

ment. Park Dis. 2020; 2020: 2076942. https://doi.org/10.1155/2020/2076942 PMID: 32269747

69. Postuma RB, Berg D, Stern M, Poewe W, Olanow CW, Oertel W, et al. MDS clinical diagnostic criteria

for Parkinson’s disease. Mov Disord Off J Mov Disord Soc. 2015; 30: 1591–1601. https://doi.org/10.

1002/mds.26424 PMID: 26474316

70. Ray NJ, Bradburn S, Murgatroyd C, Toseeb U, Mir P, Kountouriotis GK, et al. In vivo cholinergic basal

forebrain atrophy predicts cognitive decline in de novo Parkinson’s disease. Brain J Neurol. 2018; 141:

165–176. https://doi.org/10.1093/brain/awx310 PMID: 29228203

71. Jones JD, Baxter F, Timblin H, Rivas R, Hill CR. Physical inactivity is associated with Parkinson’s dis-

ease mild cognitive impairment and dementia. Ment Health Phys Act. 2022; 23: 100461. https://doi.org/

10.1016/j.mhpa.2022.100461

72. Rahmim A, Huang P, Shenkov N, Fotouhi S, Davoodi-Bojd E, Lu L, et al. Improved prediction of out-

come in Parkinson’s disease using radiomics analysis of longitudinal DAT SPECT images. NeuroImage

Clin. 2017; 16: 539–544. https://doi.org/10.1016/j.nicl.2017.08.021 PMID: 29868437

73. Gorji A, Fathi Jouzdani A. PerPsych: An iPadOS-based open-source neuropsychological software for

time perception assessment. MethodsX. 2024; 12: 102504. https://doi.org/10.1016/j.mex.2023.102504

PMID: 38179067

PLOS ONE Machine learning for predicting cognitive decline within five years in Parkinson’s disease

PLOS ONE | https://doi.org/10.1371/journal.pone.0304355 July 17, 2024 13 / 13

https://doi.org/10.1016/j.compbiomed.2021.104312
https://doi.org/10.1016/j.compbiomed.2021.104312
http://www.ncbi.nlm.nih.gov/pubmed/33892414
https://doi.org/10.1006/jcss.1997.1504
https://doi.org/10.1007/BF00994018
https://doi.org/10.1007/BF00994018
https://doi.org/10.1186/s12911-019-1004-8
https://doi.org/10.1186/s12911-019-1004-8
http://www.ncbi.nlm.nih.gov/pubmed/31864346
https://arxiv.org/abs/1908.06951
https://arxiv.org/abs/1908.06951
https://doi.org/10.1007/s100440200011
https://doi.org/10.1016/S1352-2310%2897%2900447-0
https://doi.org/10.1016/S1352-2310%2897%2900447-0
https://doi.org/10.11919/j.issn.1002-0829.215044
http://www.ncbi.nlm.nih.gov/pubmed/26120265
https://doi.org/10.48550/arXiv.1309.2388
https://doi.org/10.1016/j.cmpb.2021.106131
http://www.ncbi.nlm.nih.gov/pubmed/34015757
https://ieeexplore.ieee.org/document/5337549
https://ieeexplore.ieee.org/document/5337549
https://doi.org/10.1176/appi.focus.20160043
http://www.ncbi.nlm.nih.gov/pubmed/31975839
https://doi.org/10.1007/s11910-018-0823-9
http://www.ncbi.nlm.nih.gov/pubmed/29525906
https://doi.org/10.1155/2020/2076942
http://www.ncbi.nlm.nih.gov/pubmed/32269747
https://doi.org/10.1002/mds.26424
https://doi.org/10.1002/mds.26424
http://www.ncbi.nlm.nih.gov/pubmed/26474316
https://doi.org/10.1093/brain/awx310
http://www.ncbi.nlm.nih.gov/pubmed/29228203
https://doi.org/10.1016/j.mhpa.2022.100461
https://doi.org/10.1016/j.mhpa.2022.100461
https://doi.org/10.1016/j.nicl.2017.08.021
http://www.ncbi.nlm.nih.gov/pubmed/29868437
https://doi.org/10.1016/j.mex.2023.102504
http://www.ncbi.nlm.nih.gov/pubmed/38179067
https://doi.org/10.1371/journal.pone.0304355

