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Abstract

Magnetic MnFe2O4 nanoparticles were successfully prepared by the rapid combustion

method at 500 ˚C for 2 h with 30 mL absolute ethanol, and were characterized by SEM,

TEM, XRD, VSM, and XPS techniques, their average particle size and the saturation mag-

netization were about 25.3 nm and 79.53 A�m2/kg, respectively. The magnetic MnFe2O4

nanoparticles were employed in a fixed bed experimental system to investigate the adsorp-

tion capacity of Hg0 from air. The MnFe2O4 nanoparticles exhibited the large adsorption per-

formance on Hg0 with the adsorption capacity of 16.27 μg/g at the adsorption temperature of

50 ˚C with the space velocity of 4.8×104 h-1. The VSM and EDS results illustrated that the

prepared MnFe2O4 nanoparticles were stable before and after adsorption and successfully

adsorbed Hg0. The TG curves demonstrated that the mercury compound formed after

adsorption was HgO, and both physical and chemical adsorption processes were observed.

Magnetic MnFe2O4 nanoparticles revealed excellent adsorbance of Hg0 in air, which sug-

gested that MnFe2O4 nanoparticles be promising for the removal of Hg0.

1. Introduction

Mercury is harmful to ecosystems because of its long-range transport, persistence, and bioac-

cumulation [1–3]. Mercury can undergo various stages of transformation to produce methyl-

mercury (MeHg), a highly toxic form of mercury, the ingestion of which can have adverse

effects on human health [4]. The increasing concentration of mercury in the environment has

attracted the attention of governments and environmental organizations, and has become a

worldwide environmental problem. The Minamata Convention on mercury, which entered

into force in 2017, emphasizes cost-effective abatement and efficient decontamination of mer-

cury pollution, as well as the sound management and utilization of mercury-rich waste [5].

Coal-fired power plants are reported to be the most significant source of mercury emissions,

so in response to this problem, the Emission Standards for Air Pollutants from Power Plants

(GB 132232011), published in July 2011, for the first-time limit mercury emission concentra-

tions to no more than 0.03 mg/m3 of mercury and mercury compounds from coal-fired power

plants [6].
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Mercury in coal combustion flue gas exists in three main forms: elemental mercury (Hg0),

oxidized mercury (Hg2+), and particulate bound mercury (Hgp) [7–9]. Hg2+ is water soluble

and volatile, can be readily adsorbed and removed via a wet scrubber process. HgP is suscepti-

ble to adsorption and charging, it has a short residence time in the atmosphere, and it is easily

removed by electric precipitators. Since Hg0 is highly volatile and almost insoluble in water,

where it remains in the atmosphere for 0.5–2 years. More importantly, Hg0 is one of the most

difficult form to control, and it is challenging to remove mercury from coal-fired flue gases

[10].

Catalysis and adsorption methods are the main methods for the removal of elemental mer-

cury [11–14]. In recent years, various catalysts and adsorbents have been reported for mercury

removal, such as activated carbon, precious metals, and metal oxides [8, 15, 16]. Among them,

magnetic ferrite nanomaterials are a new type of material that offers the advantages of easy

separation, recyclability, and environmental friendliness, so they have been widely applied in

organic and biological separations. Especially, they are excellent adsorbents due to their large

specific surface area, abundant active sites, and interfacial effect [17–19]. Simultaneously, man-

ganese oxides can impact the mercury cycle by adsorbing it, influencing the ambient redox

potential and regulating microorganism activity. Therefore, MnFe2O4 is recognized as an

excellent adsorbent for removing singlet Hg from coal-fired flue gases. To enhance the

removal performance of MnFe2O4 nanoparticles, researchers have proposed several construc-

tive ideas, such as applying organic or inorganic layers to coat the surface of nanomaterials

[20–22], modifying the structural composition and morphology parameters [23], and doping

transition metals [24].

Various approaches are available for the preparation of magnetic nanomaterials, such as

co-precipitation [25], hydrothermal methods [26], rapid combustion methods [27], and so on.

The birdnesting and the nonuniformity of composition are the largest problem owing to the

accession of precipitant. While, magnetic nanoparticles prepared by hydrothermal method

have long cycle time and small yield. The rapid combustion method has a short preparation

cycle, low cost, safe, reliable, and environmentally friendly process, it is easy to produce indus-

trially, and it can achieve the purpose of controlling the sizes and properties of magnetic nano-

particles by changing the amount of solvent and calcination temperature [28–30]. And the

application of adsorbents prepared by this method for the removal of elemental mercury from

coal combustion flue gas has not been reported.

In this paper, magnetic MnFe2O4 nanomaterials were prepared from metal nitrates by a

rapid combustion method based on the ability of manganese compounds to oxidize mercury,

and the factors (volume of anhydrous ethanol and calcination temperature) affecting their

adsorption properties were optimized. The mercury removal performance of the magnetic

MnFe2O4 nanomaterials was evaluated in a fixed bed system. Combined with vibrating sample

magnetometry (VSM), energy dispersive spectroscopy (EDS) mapping, and thermogravi-

metric (TG) curves, the mercury removal process was analyzed.

2. Experiment details

2.1 Preparation and characterization of magnetic MnFe2O4 nanoparticles

Magnetic MnFe2O4 nanoparticles were prepared via the rapid combustion process, typically,

Fe(NO3)3�9H2O and Mn(NO3)2�6H2O were dissolved into 30 mL absolute ethanol according

to 1:2 molar ratio of them to form a homogeneous solution, ignited and burned until extin-

guished, and calcinated at 400–800 ˚C for 2 h with the heating rate of 3 ˚C/min to obtain mag-

netic MnFe2O4 nanoparticles. In the rapid combustion process, anhydrous ethanol acted as

both a dispersant and a fuel, effectively dispersing the solute while serving as a catalyst for
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combustion. The product obtained at the end of the combustion of the solution incompletely

formed MnFe2O4 crystals in a sol state. Subsequently, the semi-finished product was trans-

ferred to the temperature-controlled furnace programmed for high-temperature calcination.

The purpose of this process was to provide sufficient heat for inducing the formation of

MnFe2O4 nanoparticles and removed impurities such as activated carbon and nitrate.

The microscopic morphology and elemental distribution of MnFe2O4 nanomaterials were

characterized by scanning electron microscopy (SEM), transmission electron microscopy

(TEM), and energy dispersive spectroscopy (EDS). The physical phase and crystallinity were

analyzed through X-ray diffractometer (XRD). Vibrating sample magnetometer (VSM) was

employed to measure the hysteresis loops of MnFe2O4 nanoparticles before and after adsorp-

tion. The formation of the products in the adsorption process was determined by a thermogra-

vimetric curve (TG).

2.2 Elemental mercury adsorption experiments

The actual coal combustion flue gas contains a variety of gases such as N2, CO2, O2, and SO2.

The influence of the various gases on the removal of mercury was complex, and considering

that most of the flue gas was N2, only N2 was chosen for the experiments (Fig 1). The gas flow

rate was controlled by a rotameter and adjusted according to the experimental requirements.

Various concentrations of mercury vapors were produced by means of a heated mercury per-

meation tube. The adsorbent was packed in a U-shaped tube with an inner diameter of 5 mm.

To prevent the adsorbent from falling or being blown up by the gas, cotton was inserted at

both ends for support and fixation. All experimental piping and connections were made of

poly tetra fluoroethylene (PTFE). The tail gas after the reaction is purified with 10% H2SO4-4%

KMnO4 absorption solution and discharged. Once adsorbed, the solid nanoparticles were

Fig 1. Simple diagram of a fixed bed experimental setup.

https://doi.org/10.1371/journal.pone.0304333.g001
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detected by means of DMA-80 mercury analyzer. The experimental data were obtained after

three experiments.

3. Results and discussion

3.1 Characterization of magnetic MnFe2O4 nanoparticles

Fig 2 showed the SEM morphology, TEM image, XRD pattern, and XPS spectra of the

MnFe2O4 nanomaterials calcinated at 500 ˚C for 2 h with 30 mL absolute ethanol. As shown in

Fig 2A (S1 Fig), the morphology of the prepared MnFe2O4 nanomaterials exhibited a granular

shape with an average particle size of about 25.3 nm. The TEM image was shown in Fig 2B (S2

Fig), the measured morphology was granular and the average particle size was also around

25.3 nm, which was in general agreement with the observation from SEM morphology. The

excellent nano-size made the adsorption capacity extraordinarily large, making it an excellent

choice for absorbing Hg0. XRD pattern of MnFe2O4 nanoparticles was shown in Fig 2C (S3

Fig 2. (A) SEM morphology, (B) TEM image, (C) XRD pattern, and (D) XPS spectra of magnetic MnFe2O4 nanoparticles obtained by calcination at 500

˚C for 30 mL of absolute ethanol for 2 h.

https://doi.org/10.1371/journal.pone.0304333.g002
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Fig), the characteristic peaks were 29.62˚, 34.82˚, 43.13˚, 62.29˚, and 74.34˚, corresponding to

the (220), (311), (400), (440), and (622) crystalline planes of the MnFe2O4 standard card

(JCPDS No. 10–0319), which proved that the MnFe2O4 nanoparticles were prepared success-

fully [31]. The prepared nanomaterials possessed four components, Mn, Fe, O, and C, as could

be seen from the XPS maps (Fig 2D, S4 Fig), which again demonstrated the successful prepara-

tion of MnFe2O4 nanoparticles.

3.2 Effects of preparation factors for MnFe2O4 nanoparticles on Hg0

adsorption

To understand the effect of MnFe2O4 nanoparticles prepared with different alcohol volumes

and calcination temperatures on the performance of the mercury removal, it was investigated

by a fixed bed experimental system [32].

Anhydrous ethanol was essential in the rapid combustion process, which not only played a

role in distributing to the solute and ignition, but also effectively controlled the duration of

combustion. As could be seen from Fig 3A (S1 Table), when experimental conditions were

controlled at permeation temperature of 40 ˚C, space velocity of 4.8×104 h-1, and adsorption

temperature of 30 ˚C, the adsorption capacity of Hg0 increased slowly with the volume of alco-

hol for the preparation of MnFe2O4 nanoparticles increasing of from 15 mL to 25 mL, and

when the absolute alcohol volume rose to 30 mL, a significant increase of the adsorption capac-

ity could be seen. The reason for this phenomenon might be that the large volume of anhy-

drous ethanol caused the solute to be dispersed excessively in the solvent, resulting in the

formation of smaller grain sizes. However, as the volume of anhydrous ethanol increased fur-

ther, the adsorption capacity tended to decrease. This might be attributed that the large

amount of anhydrous ethanol dispersed the solute, while also prolonging the combustion

time. As a result, there was a greater degree of sintering, leading to larger grain size and

decreases in specific surface area and adsorption capacity [33]. Therefore, 30 mL was chosen

as the optimum volume of absolute alcohol.

Fig 3. Adsorption curves of Hg0 by MnFe2O4 nanoparticles prepared at different calcination temperatures (B) with various alcohol volumes (A)

under permeation temperature of 40 ˚C, space velocity of 4.8×104 h-1, and adsorption temperature of 30 ˚C.

https://doi.org/10.1371/journal.pone.0304333.g003
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Fig 3B (S2 Table) showed the adsorption capacities of MnFe2O4 nanoparticles prepared at

different calcination temperatures for Hg0 under permeation temperature of 40 ˚C, space

velocity of 4.8×104 h-1, and adsorption temperature of 30 ˚C. As could be seen from the figures,

the adsorption capacity increased with the increase of calcination temperature, reached the

maximum adsorption capacity of 2.57 μg/g for MnFe2O4 nanoparticles calcinated at 500 ˚C,

and then reduces. From previous experience, it could be seen that the crystallinity of the pro-

duced nanoparticle was poor at 400 ˚C of calcination temperature. And when the calcination

temperature was increased to 500 ˚C, the crystallinity improved greatly and the grain size was

relatively small. The growth rate of the grains increased with the increase of the calcination

temperature, and the crystallinity and grain size also increased, which in turn led to a decrease

of specific surface area and a reduction of adsorption capacity [30]. Therefore, 500 ˚C was cho-

sen as the optimum calcination temperature. In summary, the MnFe2O4 nanoparticles were

prepared with alcohol volume of 30 mL and a calcination temperature of 500 ˚C for subse-

quent adsorption experiments.

3.3 Influence of adsorption temperature on the performance of Hg0

removal

As could be seen from Fig 4 (S3 Table), when the permeation temperature and space velocity

were controlled at 40 ˚C and 4.8×104 h-1, respectively, the adsorption capacity of MnFe2O4

nanoparticles for Hg0 increased from 7.68 μg/g to 16.27 μg/g at the adsorption temperature of

30–50 ˚C. With the further rise of the adsorption temperature, the adsorption capacity of Hg0

began to decline, and the adsorption capacity was only 8.0 μg/g at the adsorption temperature

of 120 ˚C. This could be due to the fact that the adsorption of Hg0 by MnFe2O4 nanoparticles

was both physical and chemical adsorption mechanism, and the high temperature would cause

the desorption of adsorbed Hg0, and decrease the adsorption capacity, so the high temperature

was not conducive to the physical adsorption. Therefore, the temperature of 50 ˚C was the

optimum temperature for adsorption.

3.4 Effect of space velocity on the performance of mercury adsorption

In this experiment, the space velocity was varied by adjusting the flow rate of the simulated

flue gas and other experimental conditions were kept constants. When the permeation temper-

ature and the adsorption temperature were controlled at 40 ˚C and 50 ˚C, respectively, four

gas flow rates (30 mL/min, 40 mL/min, 50 mL/min, and 60 mL/min) were set, and four space

velocities were obtained by calculating 3.6×104 h-1, 4.8×104 h-1, 6.0×104 h-1, and 7.0×104 h-1

via equation. The adsorption capacities of MnFe2O4 nanoparticles for Hg0 at different space

velocities were revealed in Fig 5 (S4 Table). It could be seen from the figure that, when the

space velocity was increased from 3.6×104 h-1 to 4.8×104 h-1, a large increase of the adsorption

capacity for Hg0 onto MnFe2O4 nanoparticles occurred. A reduction of adsorption capacity

began to occur when the space velocity was greater than 4.8×104 h-1, which indicated that the

space velocity affected the performance of MnFe2O4 nanoparticles for the removal of mercury.

The simulated flue gas would have a reduced contact time with the MnFe2O4 nanoparticles

due to the rise in space velocity, and the chances of the MnFe2O4 nanoparticles capturing Hg0

would be reduced, thus leading to a decline of adsorption capacity. Therefore, an airspeed

lower than 4.8×104 h-1 was chosen to be more favorable for Hg0 capture by MnFe2O4

nanoparticles.
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3.5 Variation in adsorption capacity at different mercury permeation

temperatures

Fig 6 (S5 Table) presented a trend of the adsorption capacity of MnFe2O4 nanoparticles for

Hg0 at different mercury permeation temperatures under space velocity of 4.8×104 h-1 and

adsorption temperature of 50 ˚C. The MnFe2O4 nanoparticles exhibited a relatively larger

adsorption capacity in all three permeation temperature ranges. As the permeation tempera-

ture rose, a large increase of adsorption capacity was observed. This was probably attributed to

the fact that the increase of the concentration gave the adsorbent an increased opportunity to

contact with Hg0, which led to an increase of adsorption capacity. And this trend was also

important in the practical application of coal-fired power plants, where the amount of adsor-

bent could be varied according to the actual needs of the plant.

Fig 4. Adsorption capacity of MnFe2O4 nanoparticles for Hg0 at different adsorption temperatures under permeation temperature of 40 ˚C and space

velocity of 4.8×104 h-1.

https://doi.org/10.1371/journal.pone.0304333.g004
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Compared with the previously reported articles related to mercury adsorption in gases

(Table 1), the preparation method of MnFe2O4 nanoparticles proposed in this paper was low

cost and easy to operate. In addition, the MnFe2O4 nanoparticles had better adsorption perfor-

mance and short adsorption time, the biggest advantage was that MnFe2O4 could utilize its

own magnetism to realize magnetic separation and recycling after adsorption, which effec-

tively avoided secondary pollution.

3.6 Characterization of MnFe2O4 nanoparticles before and after adsorption

The magnetic properties of the MnFe2O4 nanoparticles before and after adsorption of Hg0

were displayed in Fig 7. Obviously, the saturation magnetization of fresh MnFe2O4 nano-

particles was 79.53 A�m2/kg, after adsorption of Hg0, the saturation magnetization

Fig 5. Effect of the space velocity on the performance of MnFe2O4 nanoparticles for Hg0 removal under permeation temperature of 40 ˚C and the

adsorption temperature of 50 ˚C.

https://doi.org/10.1371/journal.pone.0304333.g005
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Fig 6. Effect of permeation temperature on Hg0 removal by MnFe2O4 nanoparticles under space velocity of 4.8×104 h-1 and adsorption temperature of 50

˚C.

https://doi.org/10.1371/journal.pone.0304333.g006

Table 1. Comparison of mercury adsorption from gases by as-prepared MnFe2O4 nanoparticles with other reported materials.

Adsorbing material Initial Hg0 concentration Adsorption time (min) Adsorption performance References

Powdered activated carbon 500 μg/m3 / 0.278 mg/g [34]

Sulfurizing activate carbon / 120 1227.5μg/g [35]

Se/SiO2 adsorbent 130 μg/m3 14,400 101.04 mg/g [36]

Fly ash 12.58 μg/m3 180 0.005 mg/g [37]

MnFe2O4 1.2 mg/m3 60 16.27 μg/g This work

https://doi.org/10.1371/journal.pone.0304333.t001
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intensity of the MnFe2O4 nanoparticles decreased to 70.21 A�m2/kg. Although the mag-

netic properties of the MnFe2O4 nanoparticles were slightly reduced, the overall saturation

magnetization intensity of the MnFe2O4 nanoparticles was still very superior, and gas-

solid separation could be achieved by magnetic separation, which avoided secondary

pollution.

Fig 8 showed the SEM morphology of the MnFe2O4 nanoparticles after adsorption of

Hg0. It could be seen that there was a slight agglomeration of the adsorbed MnFe2O4 nano-

particles with no significant change in the morphology compared with Fig 1A. This demon-

strated that the adsorption of Hg0 by MnFe2O4 nanoparticles did not damage the themselves

structure of the nanomaterials, which also indicated the possibility of recycling. The EDS

plot revealed that the adsorbed materials contained the four elements Mn, Fe, O, and Hg,

which demonstrated that Hg0 was successfully adsorbed onto the adsorbent of MnFe2O4

nanoparticles [38].

Fig 7. Hysteresis loops of MnFe2O4 nanoparticles before and after adsorption.

https://doi.org/10.1371/journal.pone.0304333.g007
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3.7 TG analyses of MnFe2O4 nanoparticles before and after adsorption

To further investigate the mechanism of Hg0 removal before and after adsorption, TG anal-

yses were performed on fresh and spent MnFe2O4 nanoparticles. As could be seen from Fig

9, the MnFe2O4 nanoparticles have about 1.7% mass loss below 140 ˚C, which was attrib-

uted to the loss of free water. At 140 ˚C-614 ˚C, fresh nanoparticles showed a mass loss of

3.7%, which might be caused by the evaporation of bound water in the nanomaterials and

the combustion breakdown of part of the carbon skeleton. The mass loss of the spent nano-

particles was more than 1.3% compared with the fresh nanoparticles, which could be due to

the desorption of the adsorbed mercury species. When the temperature exceeded 140 ˚C,

the adsorbed Hg0 on the MnFe2O4 nanoparticles was gradually thermally desorbed out,

which indicated the presence of physical adsorption in the adsorption process. A significant

mass loss was also observed in the range of 400 ˚C-600 ˚C, which was due to the decomposi-

tion of HgO, demonstrating the chemisorption of Hg0 by the MnFe2O4 nanoparticles [6, 13,

39].

4. Conclusion

In this project, magnetic MnFe2O4 nanoparticles were prepared by the rapid combustion

method, and the effects of absolute alcohol volume and calcination temperature on magnetic

properties and average grain size were investigated during the preparation process. The

adsorption effects of different experimental conditions on Hg0 were examined by a fixed-bed

experimental system. The experimental results revealed that the average particle size and the

saturation magnetization of MnFe2O4 nanoparticles prepared at the calcination temperature

of 500 ˚C with 30 mL of absolute ethanol were 25.3 nm and 79.53 A�m2/kg, and they exhibited

the excellent adsorption capacity of 16.27 μg/g for Hg0 at adsorption temperature of 50 ˚C and

a space velocity of 4.8×104 h-1. The comparison of the saturation magnetization intensity

before and after adsorption displayed the magnetic stability of the MnFe2O4 nanoparticles

after adsorption, which facilitated the separation and reuse in subsequent experiments. EDS

and TG plots demonstrated the successful adsorption of Hg0 onto the MnFe2O4 nanoparticles

with the formation of the mercury compound as HgO, and the presence of both physical and

chemical adsorption.

Fig 8. EDS plot of MnFe2O4 nanoparticles after adsorption.

https://doi.org/10.1371/journal.pone.0304333.g008
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Supporting information

S1 Fig. SEM morphology of magnetic MnFe2O4 nanoparticles obtained by calcination at

500 ˚C for 30 mL of absolute ethanol for 2 h.

(TIF)

S2 Fig. TEM image of magnetic MnFe2O4 nanoparticles obtained by calcination at 500 ˚C

for 30 mL of absolute ethanol for 2 h.

(BMP)

S3 Fig. XRD pattern of magnetic MnFe2O4 nanoparticles obtained by calcination at 500 ˚C

for 30 mL of absolute ethanol for 2 h.

(TIF)

Fig 9. TG curves of the fresh and the spent MnFe2O4 nanoparticles.

https://doi.org/10.1371/journal.pone.0304333.g009
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S4 Fig. XPS spectra of magnetic MnFe2O4 nanoparticles obtained by calcination at 500 ˚C

for 30 mL of absolute ethanol for 2 h.

(TIF)

S1 Table. Adsorption data of Hg0 by MnFe2O4 nanoparticles prepared with various alcohol

volumes under permeation temperature of 40 ˚C, space velocity of 4.8×104 h-1, and adsorp-

tion temperature of 30 ˚C.

(DOCX)

S2 Table. Adsorption data of Hg0 by MnFe2O4 nanoparticles prepared at different calcina-

tion temperatures under permeation temperature of 40 ˚C, space velocity of 4.8×104 h-1,

and adsorption temperature of 30 ˚C.

(DOCX)

S3 Table. Adsorption capacity of MnFe2O4 nanoparticles for Hg0 at different adsorption

temperatures under permeation temperature of 40 ˚C and space velocity of 4.8×104 h-1.

(DOCX)

S4 Table. Effect of the space velocity on the performance of MnFe2O4 nanoparticles for

Hg0 removal under permeation temperature of 40 ˚C and the adsorption temperature of

50 ˚C.

(DOCX)

S5 Table. Effect of permeation temperature on Hg0 removal by MnFe2O4 nanoparticles

under space velocity of 4.8×104 h-1 and adsorption temperature of 50 ˚C.
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