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Abstract

Magnetic MnFe,O,4 nanoparticles were successfully prepared by the rapid combustion
method at 500 °C for 2 h with 30 mL absolute ethanol, and were characterized by SEM,
TEM, XRD, VSM, and XPS techniques, their average particle size and the saturation mag-
netization were about 25.3 nm and 79.53 A-m?/kg, respectively. The magnetic MnFe,O,4
nanopatrticles were employed in a fixed bed experimental system to investigate the adsorp-
tion capacity of Hg® from air. The MnFe,O, nanoparticles exhibited the large adsorption per-
formance on HgP with the adsorption capacity of 16.27 ug/g at the adsorption temperature of
50 °C with the space velocity of 4.8x10* h™. The VSM and EDS results illustrated that the
prepared MnFe,O,4 nanoparticles were stable before and after adsorption and successfully
adsorbed HgP. The TG curves demonstrated that the mercury compound formed after
adsorption was HgO, and both physical and chemical adsorption processes were observed.
Magnetic MnFe,0, nanoparticles revealed excellent adsorbance of Hg® in air, which sug-
gested that MnFe,QO,4 nanoparticles be promising for the removal of Hg°.

1. Introduction

Mercury is harmful to ecosystems because of its long-range transport, persistence, and bioac-
cumulation [1-3]. Mercury can undergo various stages of transformation to produce methyl-
mercury (MeHg), a highly toxic form of mercury, the ingestion of which can have adverse
effects on human health [4]. The increasing concentration of mercury in the environment has
attracted the attention of governments and environmental organizations, and has become a
worldwide environmental problem. The Minamata Convention on mercury, which entered
into force in 2017, emphasizes cost-effective abatement and efficient decontamination of mer-
cury pollution, as well as the sound management and utilization of mercury-rich waste [5].
Coal-fired power plants are reported to be the most significant source of mercury emissions,
so in response to this problem, the Emission Standards for Air Pollutants from Power Plants
(GB 132232011), published in July 2011, for the first-time limit mercury emission concentra-
tions to no more than 0.03 mg/m’ of mercury and mercury compounds from coal-fired power
plants [6].
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Mercury in coal combustion flue gas exists in three main forms: elemental mercury (Hg"),
oxidized mercury (Hg*"), and particulate bound mercury (HgP) [7-9]. Hg>" is water soluble
and volatile, can be readily adsorbed and removed via a wet scrubber process. Hg" is suscepti-
ble to adsorption and charging, it has a short residence time in the atmosphere, and it is easily
removed by electric precipitators. Since Hg" is highly volatile and almost insoluble in water,
where it remains in the atmosphere for 0.5-2 years. More importantly, Hg" is one of the most
difficult form to control, and it is challenging to remove mercury from coal-fired flue gases
[10].

Catalysis and adsorption methods are the main methods for the removal of elemental mer-
cury [11-14]. In recent years, various catalysts and adsorbents have been reported for mercury
removal, such as activated carbon, precious metals, and metal oxides [8, 15, 16]. Among them,
magnetic ferrite nanomaterials are a new type of material that offers the advantages of easy
separation, recyclability, and environmental friendliness, so they have been widely applied in
organic and biological separations. Especially, they are excellent adsorbents due to their large
specific surface area, abundant active sites, and interfacial effect [17-19]. Simultaneously, man-
ganese oxides can impact the mercury cycle by adsorbing it, influencing the ambient redox
potential and regulating microorganism activity. Therefore, MnFe,O, is recognized as an
excellent adsorbent for removing singlet Hg from coal-fired flue gases. To enhance the
removal performance of MnFe,O, nanoparticles, researchers have proposed several construc-
tive ideas, such as applying organic or inorganic layers to coat the surface of nanomaterials
[20-22], modifying the structural composition and morphology parameters [23], and doping
transition metals [24].

Various approaches are available for the preparation of magnetic nanomaterials, such as
co-precipitation [25], hydrothermal methods [26], rapid combustion methods [27], and so on.
The birdnesting and the nonuniformity of composition are the largest problem owing to the
accession of precipitant. While, magnetic nanoparticles prepared by hydrothermal method
have long cycle time and small yield. The rapid combustion method has a short preparation
cycle, low cost, safe, reliable, and environmentally friendly process, it is easy to produce indus-
trially, and it can achieve the purpose of controlling the sizes and properties of magnetic nano-
particles by changing the amount of solvent and calcination temperature [28-30]. And the
application of adsorbents prepared by this method for the removal of elemental mercury from
coal combustion flue gas has not been reported.

In this paper, magnetic MnFe,O, nanomaterials were prepared from metal nitrates by a
rapid combustion method based on the ability of manganese compounds to oxidize mercury,
and the factors (volume of anhydrous ethanol and calcination temperature) affecting their
adsorption properties were optimized. The mercury removal performance of the magnetic
MnFe,0, nanomaterials was evaluated in a fixed bed system. Combined with vibrating sample
magnetometry (VSM), energy dispersive spectroscopy (EDS) mapping, and thermogravi-
metric (TG) curves, the mercury removal process was analyzed.

2. Experiment details
2.1 Preparation and characterization of magnetic MnFe,O,4 nanoparticles

Magnetic MnFe,0,4 nanoparticles were prepared via the rapid combustion process, typically,
Fe(NO3)3-9H,0 and Mn(NO3),-6H,0 were dissolved into 30 mL absolute ethanol according
to 1:2 molar ratio of them to form a homogeneous solution, ignited and burned until extin-
guished, and calcinated at 400-800 °C for 2 h with the heating rate of 3 “C/min to obtain mag-
netic MnFe,O,4 nanoparticles. In the rapid combustion process, anhydrous ethanol acted as
both a dispersant and a fuel, effectively dispersing the solute while serving as a catalyst for
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combustion. The product obtained at the end of the combustion of the solution incompletely
formed MnFe,Q, crystals in a sol state. Subsequently, the semi-finished product was trans-
ferred to the temperature-controlled furnace programmed for high-temperature calcination.
The purpose of this process was to provide sufficient heat for inducing the formation of
MnFe,0, nanoparticles and removed impurities such as activated carbon and nitrate.

The microscopic morphology and elemental distribution of MnFe,O,4 nanomaterials were
characterized by scanning electron microscopy (SEM), transmission electron microscopy
(TEM), and energy dispersive spectroscopy (EDS). The physical phase and crystallinity were
analyzed through X-ray diffractometer (XRD). Vibrating sample magnetometer (VSM) was
employed to measure the hysteresis loops of MnFe, O, nanoparticles before and after adsorp-
tion. The formation of the products in the adsorption process was determined by a thermogra-
vimetric curve (TG).

2.2 Elemental mercury adsorption experiments

The actual coal combustion flue gas contains a variety of gases such as N,, CO,, O,, and SO..
The influence of the various gases on the removal of mercury was complex, and considering
that most of the flue gas was N, only N, was chosen for the experiments (Fig 1). The gas flow
rate was controlled by a rotameter and adjusted according to the experimental requirements.
Various concentrations of mercury vapors were produced by means of a heated mercury per-
meation tube. The adsorbent was packed in a U-shaped tube with an inner diameter of 5 mm.
To prevent the adsorbent from falling or being blown up by the gas, cotton was inserted at
both ends for support and fixation. All experimental piping and connections were made of
poly tetra fluoroethylene (PTFE). The tail gas after the reaction is purified with 10% H,SO4-4%
KMnO, absorption solution and discharged. Once adsorbed, the solid nanoparticles were

Gas Mixer
Quartz wool

Adsorbent

=

Temperature control ﬁ/ /,“,\ -
device I

I — KMnO,-H,SO,

Mercury generator

DMA-80
Fig 1. Simple diagram of a fixed bed experimental setup.

https://doi.org/10.1371/journal.pone.0304333.9001
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detected by means of DMA-80 mercury analyzer. The experimental data were obtained after
three experiments.

3. Results and discussion
3.1 Characterization of magnetic MnFe,04 nanoparticles

Fig 2 showed the SEM morphology, TEM image, XRD pattern, and XPS spectra of the
MnFe, 04 nanomaterials calcinated at 500 °C for 2 h with 30 mL absolute ethanol. As shown in
Fig 2A (S1 Fig), the morphology of the prepared MnFe,0, nanomaterials exhibited a granular
shape with an average particle size of about 25.3 nm. The TEM image was shown in Fig 2B (S2
Fig), the measured morphology was granular and the average particle size was also around
25.3 nm, which was in general agreement with the observation from SEM morphology. The
excellent nano-size made the adsorption capacity extraordinarily large, making it an excellent
choice for absorbing Hg’. XRD pattern of MnFe,0, nanoparticles was shown in Fig 2C (S3
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Fig 2. (A) SEM morphology, (B) TEM image, (C) XRD pattern, and (D) XPS spectra of magnetic MnFe,0, nanoparticles obtained by calcination at 500
°C for 30 mL of absolute ethanol for 2 h.

https://doi.org/10.1371/journal.pone.0304333.9002
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Fig), the characteristic peaks were 29.62°, 34.82°, 43.13°, 62.29°, and 74.34°, corresponding to
the (220), (311), (400), (440), and (622) crystalline planes of the MnFe,O, standard card
(JCPDS No. 10-0319), which proved that the MnFe,O, nanoparticles were prepared success-
fully [31]. The prepared nanomaterials possessed four components, Mn, Fe, O, and C, as could
be seen from the XPS maps (Fig 2D, S4 Fig), which again demonstrated the successful prepara-
tion of MnFe,0, nanoparticles.

3.2 Effects of preparation factors for MnFe,0, nanoparticles on Hg"
adsorption

To understand the effect of MnFe,0, nanoparticles prepared with different alcohol volumes
and calcination temperatures on the performance of the mercury removal, it was investigated
by a fixed bed experimental system [32].

Anhydrous ethanol was essential in the rapid combustion process, which not only played a
role in distributing to the solute and ignition, but also effectively controlled the duration of
combustion. As could be seen from Fig 3A (S1 Table), when experimental conditions were
controlled at permeation temperature of 40 °C, space velocity of 4.8x10* h™', and adsorption
temperature of 30 °C, the adsorption capacity of Hg increased slowly with the volume of alco-
hol for the preparation of MnFe,O, nanoparticles increasing of from 15 mL to 25 mL, and
when the absolute alcohol volume rose to 30 mL, a significant increase of the adsorption capac-
ity could be seen. The reason for this phenomenon might be that the large volume of anhy-
drous ethanol caused the solute to be dispersed excessively in the solvent, resulting in the
formation of smaller grain sizes. However, as the volume of anhydrous ethanol increased fur-
ther, the adsorption capacity tended to decrease. This might be attributed that the large
amount of anhydrous ethanol dispersed the solute, while also prolonging the combustion
time. As a result, there was a greater degree of sintering, leading to larger grain size and
decreases in specific surface area and adsorption capacity [33]. Therefore, 30 mL was chosen
as the optimum volume of absolute alcohol.
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Fig 3. Adsorption curves of Hg° by MnFe,0,4 nanoparticles prepared at different calcination temperatures (B) with various alcohol volumes (A)
under permeation temperature of 40 °C, space velocity of 4.8x10* h”™", and adsorption temperature of 30 °C.

https://doi.org/10.1371/journal.pone.0304333.g003
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Fig 3B (S2 Table) showed the adsorption capacities of MnFe,O, nanoparticles prepared at
different calcination temperatures for Hg’ under permeation temperature of 40 °C, space
velocity of 4.8x10* h™, and adsorption temperature of 30 °C. As could be seen from the figures,
the adsorption capacity increased with the increase of calcination temperature, reached the
maximum adsorption capacity of 2.57 ug/g for MnFe,O, nanoparticles calcinated at 500 °C,
and then reduces. From previous experience, it could be seen that the crystallinity of the pro-
duced nanoparticle was poor at 400 °C of calcination temperature. And when the calcination
temperature was increased to 500 °C, the crystallinity improved greatly and the grain size was
relatively small. The growth rate of the grains increased with the increase of the calcination
temperature, and the crystallinity and grain size also increased, which in turn led to a decrease
of specific surface area and a reduction of adsorption capacity [30]. Therefore, 500 °C was cho-
sen as the optimum calcination temperature. In summary, the MnFe,0, nanoparticles were
prepared with alcohol volume of 30 mL and a calcination temperature of 500 °C for subse-
quent adsorption experiments.

3.3 Influence of adsorption temperature on the performance of Hg’
removal

As could be seen from Fig 4 (S3 Table), when the permeation temperature and space velocity
were controlled at 40 “C and 4.8x10* h™", respectively, the adsorption capacity of MnFe,O,
nanoparticles for Hg” increased from 7.68 pg/g to 16.27 ug/g at the adsorption temperature of
30-50 °C. With the further rise of the adsorption temperature, the adsorption capacity of Hg’
began to decline, and the adsorption capacity was only 8.0 pg/g at the adsorption temperature
of 120 °C. This could be due to the fact that the adsorption of Hg” by MnFe,O, nanoparticles
was both physical and chemical adsorption mechanism, and the high temperature would cause
the desorption of adsorbed Hg", and decrease the adsorption capacity, so the high temperature
was not conducive to the physical adsorption. Therefore, the temperature of 50 °C was the
optimum temperature for adsorption.

3.4 Effect of space velocity on the performance of mercury adsorption

In this experiment, the space velocity was varied by adjusting the flow rate of the simulated
flue gas and other experimental conditions were kept constants. When the permeation temper-
ature and the adsorption temperature were controlled at 40 °C and 50 °C, respectively, four
gas flow rates (30 mL/min, 40 mL/min, 50 mL/min, and 60 mL/min) were set, and four space
velocities were obtained by calculating 3.6x10* h™!, 4.8x10* h™", 6.0x10* h™', and 7.0x10* h™!
via equation. The adsorption capacities of MnFe,O, nanoparticles for Hg at different space
velocities were revealed in Fig 5 (S4 Table). It could be seen from the figure that, when the
space velocity was increased from 3.6x10* h™ to 4.8x10* h™, a large increase of the adsorption
capacity for Hg” onto MnFe,O, nanoparticles occurred. A reduction of adsorption capacity
began to occur when the space velocity was greater than 4.8x10* h™', which indicated that the
space velocity affected the performance of MnFe,0, nanoparticles for the removal of mercury.
The simulated flue gas would have a reduced contact time with the MnFe,O, nanoparticles
due to the rise in space velocity, and the chances of the MnFe,O, nanoparticles capturing Hg"
would be reduced, thus leading to a decline of adsorption capacity. Therefore, an airspeed
lower than 4.8x10* h™! was chosen to be more favorable for Hg” capture by MnFe,O,
nanoparticles.
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Fig 4. Adsorption capacity of MnFe,0, nanoparticles for Hg" at different adsorption temperatures under permeation temperature of 40 °C and space
velocity of 4.8x10* h™".

https://doi.org/10.1371/journal.pone.0304333.g004

3.5 Variation in adsorption capacity at different mercury permeation
temperatures

Fig 6 (S5 Table) presented a trend of the adsorption capacity of MnFe,O,4 nanoparticles for
Hg’ at different mercury permeation temperatures under space velocity of 4.8x10* h™" and
adsorption temperature of 50 *C. The MnFe,O,4 nanoparticles exhibited a relatively larger
adsorption capacity in all three permeation temperature ranges. As the permeation tempera-
ture rose, a large increase of adsorption capacity was observed. This was probably attributed to
the fact that the increase of the concentration gave the adsorbent an increased opportunity to
contact with Hg’, which led to an increase of adsorption capacity. And this trend was also
important in the practical application of coal-fired power plants, where the amount of adsor-
bent could be varied according to the actual needs of the plant.
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https://doi.org/10.1371/journal.pone.0304333.9005

Compared with the previously reported articles related to mercury adsorption in gases
(Table 1), the preparation method of MnFe,O, nanoparticles proposed in this paper was low
cost and easy to operate. In addition, the MnFe,O,4 nanoparticles had better adsorption perfor-
mance and short adsorption time, the biggest advantage was that MnFe,O,4 could utilize its
own magnetism to realize magnetic separation and recycling after adsorption, which effec-
tively avoided secondary pollution.

3.6 Characterization of MnFe,0, nanoparticles before and after adsorption

The magnetic properties of the MnFe,O,4 nanoparticles before and after adsorption of Hg’
were displayed in Fig 7. Obviously, the saturation magnetization of fresh MnFe,O, nano-
particles was 79.53 A-m?/kg, after adsorption of Hg’, the saturation magnetization
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Table 1. Comparison of mercury adsorption from gases by as-prepared MnFe,O, nanoparticles with other reported materials.

Adsorbing material Initial Hg’ concentration Adsorption time (min) Adsorption performance References
Powdered activated carbon 500 pg/m* / 0.278 mg/g [34]
Sulfurizing activate carbon / 120 1227.5pg/g [35]

Se/SiO, adsorbent 130 pg/m’ 14,400 101.04 mg/g [36]
Fly ash 12.58 pg/m’ 180 0.005 mg/g [37]
MnFe,0, 1.2 mg/m’ 60 16.27 uglg This work

https://doi.org/10.1371/journal.pone.0304333.t001
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Fig 7. Hysteresis loops of MnFe,0, nanoparticles before and after adsorption.
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intensity of the MnFe,O,4 nanoparticles decreased to 70.21 A-m?*/kg. Although the mag-
netic properties of the MnFe,0, nanoparticles were slightly reduced, the overall saturation
magnetization intensity of the MnFe,0,4 nanoparticles was still very superior, and gas-
solid separation could be achieved by magnetic separation, which avoided secondary
pollution.

Fig 8 showed the SEM morphology of the MnFe,O, nanoparticles after adsorption of
Hg’. It could be seen that there was a slight agglomeration of the adsorbed MnFe,O, nano-
particles with no significant change in the morphology compared with Fig 1A. This demon-
strated that the adsorption of Hg” by MnFe,O, nanoparticles did not damage the themselves
structure of the nanomaterials, which also indicated the possibility of recycling. The EDS
plot revealed that the adsorbed materials contained the four elements Mn, Fe, O, and Hg,
which demonstrated that Hg® was successfully adsorbed onto the adsorbent of MnFe,O,
nanoparticles [38].
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Fig 8. EDS plot of MnFe,0O, nanoparticles after adsorption.

https://doi.org/10.1371/journal.pone.0304333.g008

3.7 TG analyses of MnFe,0, nanoparticles before and after adsorption

To further investigate the mechanism of Hg” removal before and after adsorption, TG anal-
yses were performed on fresh and spent MnFe, O, nanoparticles. As could be seen from Fig
9, the MnFe,0,4 nanoparticles have about 1.7% mass loss below 140 °C, which was attrib-
uted to the loss of free water. At 140 "C-614 °C, fresh nanoparticles showed a mass loss of
3.7%, which might be caused by the evaporation of bound water in the nanomaterials and
the combustion breakdown of part of the carbon skeleton. The mass loss of the spent nano-
particles was more than 1.3% compared with the fresh nanoparticles, which could be due to
the desorption of the adsorbed mercury species. When the temperature exceeded 140 °C,
the adsorbed Hg” on the MnFe,O, nanoparticles was gradually thermally desorbed out,
which indicated the presence of physical adsorption in the adsorption process. A significant
mass loss was also observed in the range of 400 °C-600 °C, which was due to the decomposi-
tion of HgO, demonstrating the chemisorption of Hg’ by the MnFe,O,4 nanoparticles [6, 13,
39].

4. Conclusion

In this project, magnetic MnFe,O, nanoparticles were prepared by the rapid combustion
method, and the effects of absolute alcohol volume and calcination temperature on magnetic
properties and average grain size were investigated during the preparation process. The
adsorption effects of different experimental conditions on Hg’ were examined by a fixed-bed
experimental system. The experimental results revealed that the average particle size and the
saturation magnetization of MnFe,O,4 nanoparticles prepared at the calcination temperature
of 500 °C with 30 mL of absolute ethanol were 25.3 nm and 79.53 A-m*/kg, and they exhibited
the excellent adsorption capacity of 16.27 ug/g for Hg’ at adsorption temperature of 50 °C and
a space velocity of 4.8x10* h™'. The comparison of the saturation magnetization intensity
before and after adsorption displayed the magnetic stability of the MnFe,O,4 nanoparticles
after adsorption, which facilitated the separation and reuse in subsequent experiments. EDS
and TG plots demonstrated the successful adsorption of Hg’ onto the MnFe,O4 nanoparticles
with the formation of the mercury compound as HgO, and the presence of both physical and
chemical adsorption.
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Supporting information

S1 Fig. SEM morphology of magnetic MnFe,O, nanoparticles obtained by calcination at
500 °C for 30 mL of absolute ethanol for 2 h.
(TIF)

S2 Fig. TEM image of magnetic MnFe,0, nanoparticles obtained by calcination at 500 °C
for 30 mL of absolute ethanol for 2 h.
(BMP)

$3 Fig. XRD pattern of magnetic MnFe,0, nanoparticles obtained by calcination at 500 °C
for 30 mL of absolute ethanol for 2 h.
(TIF)
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S4 Fig. XPS spectra of magnetic MnFe,0,4 nanoparticles obtained by calcination at 500 °C
for 30 mL of absolute ethanol for 2 h.
(TIF)
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volumes under permeation temperature of 40 °C, space velocity of 4.8x10* h™, and adsorp-
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