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Abstract

Background

Numerous observational studies have reported an association between frailty and athero-

sclerosis. However, the causal relationship between frailty and the occurrence of athero-

sclerosis in different anatomical sites remains unclear. we conducted a bidirectional

Mendelian randomization (MR) study to evaluate the causal relationship between the frailty

index (FI), and both systemic atherosclerosis and lipids.

Methods

We obtained summary statistics from large-scale genome-wide association studies

(GWAS) of various phenotypes, including frailty (n = 175,226), coronary atherosclerosis (n

= 56,685), cerebral atherosclerosis (n = 150,765), peripheral arterial disease (PAD) (n =

361,194), atherosclerosis at other sites (n = 17,832), LDL-C (n = 201,678), HDL-C (n =

77,409), and triglycerides (n = 78,700). The primary MR analysis employed the inverse vari-

ance weighted (IVW) method. Furthermore, to assess reverse causality, we employed

inverse MR and multivariate MR analysis.

Results

Genetically predicted FI showed positive associations with the risk of coronary atherosclero-

sis (OR = 1.47, 95% CI 1.12–1.93) and cerebral atherosclerosis (OR = 1.99, 95% CI 1.05–

3.78), with no significant association (p >0.05) applied to peripheral arterial disease and ath-

erosclerosis at other sites. Genetically predicted FI was positively associated with the risk of

triglycerides (OR = 1.31, 95% CI 1.08–1.59), negatively associated with the risk of LDL-C

(OR = 0.87, 95% CI 0.78–0.97), and showed no significant association with the risk of HDL-

C (p >0.05). Furthermore, both reverse MR and multivariate MR analyses demonstrated a

correlation between systemic atherosclerosis, lipids, and increased FI.
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Conclusion

Our study elucidated that genetically predicted FI is associated with the risk of coronary ath-

erosclerosis and cerebral atherosclerosis by the MR analysis method, and they have a bidi-

rectional causal relationship. Moreover, genetically predicted FI was causally associated

with triglyceride and LDL-C levels. Further understanding of this association is crucial for

optimizing medical practice and care models specifically tailored to frail populations.

Introduction

Frailty, an age-related physical state, manifests as impaired physiological function in multiple

organs or systems [1]. It contributes to the aging process across various bodily systems [2],

leading to an enduring state that heightens the risk of cardiovascular events, falls, and disability

in response to stressors [2–4]. Frail populations often exhibit a range of chronic conditions,

such as coronary heart disease, heart failure, and ischemic stroke, which can result in varying

degrees of physical disability. Observational studies have consistently linked frailty with coro-

nary heart disease [5,6], ischemic stroke [7,8], and peripheral arterial disease [9] (PAD), all of

which are associated with the underlying pathology of atherosclerosis. However, observational

studies are susceptible to confounding bias and reverse causal associations, and whether a bidi-

rectional association exists between frailty and systemic atherosclerosis with lipids remains

uncertain.

Mendelian randomization (MR) is a genetic epidemiological approach that relies on data

from genome-wide association studies (GWAS). It utilizes independent genetic variants as

instrumental variables to investigate causal relationships between an exposure and an outcome

[10]. The fundamental principle behind MR is that an individual’s genotype is randomly

assigned during gamete formation. This helps to eliminate the possibility of confounding bias

and reverse causal associations [10,11]. As a result, MR can effectively reduce the impact of

reverse causation and other confounding factors, thereby providing valuable insights into the

underlying relationship between frailty and systemic atherosclerosis. This is a significant find-

ing, with important implications for both the public and clinical sectors.

The frailty index (FI) is widely recognized as the preferred instrument for evaluating frailty

[1,12]. It assigns a continuous score ranging from 0 (no deficits) to 1 (all deficits) based on the

cumulative presence of health deficits, encompassing somatic symptoms, psychological factors,

comorbidities, and disability [1]. A higher FI score is associated with various clinical outcomes,

including a range of chronic conditions, disability, and mortality [13]. In our study, we

employed a bidirectional MR approach to examine the causal relationship between frailty, as

measured by the FI, and systemic atherosclerosis. We investigated different sites of atheroscle-

rosis, including coronary atherosclerosis, cerebral atherosclerosis, PAD, and atherosclerosis at

other sites. Additionally, we accounted for the assessment of lipids because lipid-driven intra-

vascular plaques are the pathological basis of atherosclerosis.

Materials and methods

We conducted a two-sample MR analysis using GWAS summary statistics to estimate the

causal associations between FI and systemic atherosclerosis as well as lipids. We utilized

GWAS summary statistics for frailty indices as the exposure variable and selected relevant sin-

gle nucleotide polymorphisms (SNPs) as instrumental variables (IVs). Systemic atherosclerosis
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summary statistics were used as the outcome. Additionally, we investigated the causal associa-

tion of FI with lipids, including LDL cholesterol (LDL-C), HDL cholesterol (HDL-C), and tri-

glycerides. To explore the reverse direction of causality, we employed bidirectional MR

analysis, and multivariate MR analysis was also used to estimate causal associations.

Exposure sources

Summary data for the frailty index were retrieved from the most recent GWAS meta-analysis

of the UK Biobank and TwinGene, we identified the frailty index as an exposure factor [14].

They measured frailty by the FI, which was based on the accumulation of 49 health deficits

during the life course and has been well-validated and widely used in clinical practice [1]. The

UK Biobank included a total of 164,610 participants aged 60 to 70 with European ancestry,

including 84,819 females, with data from 49 self-reported deficits. The TwinGene study

included 10,616 Swedish population samples, with ages ranging from 41 to 87, and females

accounted for 5,577 individuals (52.5%). The complete GWAS summary statistics can be

found in the GWAS catalog under study number GCST90020053 (https://www.ebi.ac.uk/

gwas/search?query=GCST90020053).

Outcome sources

The FinnGen study [15] integrated genomic data with healthcare information from the Finn-

ish National Health Registry, utilizing the Finnish biobank that currently encompasses over

370,000 samples. Data on coronary atherosclerosis and atherosclerosis at other sites can be

found (https://r9.finngen.fi/). Rainer Malik et al [7] conducted a study of over 520,000 Euro-

pean subjects in a GWAS meta-analysis examined the large artery atherosclerosis-related

ischemic stroke subtype, which we defined as cerebral atherosclerosis, and relevant data are

available in the Integrative Epidemiology Unit (IEU) OpenGWAS data infrastructure, study

number: ebi-a-GCST005840. (https://gwas.mrcieu.ac.uk/datasets/ebi-a-GCST005840/).

GWAS data based on the UK Biobank study pooled information from over approximately

500,000 samples [16] and PAD data with 361,194 European samples are available in the Neale

lab public database. The latest GWAS data for LDL-C, HDL-C, and Triglycerides are available

in the MRC IEU OpenGWAS data infrastructure under study numbers: ieu-b-5089, ieu-b-

4844, and ieu-b-4850. Data sources are summarized in Table 1.

Selection of instrumental variables

The requirements of MR analysis for instrumental variables must satisfy three assumptions

(Fig 1): (i) Relevance assumption: IVs must be correlated with exposure factors (FI). (ii)

Table 1. Overview of data sources.

Phenotype Source Region Year Sample size

FI UK Biobank and TwinGene European, Swedish 2021 175,226

Coronary arteriosclerosis Finngen Research Project Finnish 2021 56,685

Cerebral atherosclerosis IEU Open Gwas European 2018 150,765

Peripheral arterial disease UK Biobank European 2018 361,194

atherosclerosis of other sites Finngen Research Project Finnish 2021 17,832

LDL-C IEU Open Gwas European 2022 201,678

HDL-C IEU Open Gwas European 2022 77,409

Triglycerides IEU Open Gwas European 2022 78,700

FI, Frailty index; PAD, Peripheral arterial disease; LDL-C, Low-density lipoprotein cholesterol; HDL-C, High-density lipoprotein cholesterol.

https://doi.org/10.1371/journal.pone.0304300.t001
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Independence assumption: IVs must be independent of confounding factors. (iii) Exclusivity

hypothesis: IVs affect outcome only through FI and are not directly associated with outcome.

Those with a significant association with phenotype (p<5*10−8) were screened out first. A

total of 14 SNPs associated with FI were selected (p<5*10−8). SNPs that are similar in the

genome have similar genetic effects, referred to as linkage disequilibrium, which may affect

outcome effect values. To address this, we applied a threshold of r2 = 0.001 and a window size

of 10,000 kb to remove the potential influence of linkage disequilibrium. The online tool Phe-

noScanner V2 [17,18] was used to further remove the effects of confounding factors, and SNPs

associated with confounding factors such as obesity, adiposity, and smoking were excluded

from our analysis. The strength of the instrumental variables is often assessed using the F-sta-

tistic in the exposure regression [19]. In our study, instrumental variables with an F-statistic

<10 were considered weak and were excluded from further analysis.

Statistical analysis

The FI on systemic atherosclerosis and lipids was evaluated using a two-sample MR analysis.

The primary method employed to assess the causal association between FI and systemic ath-

erosclerosis and lipids was the inverse variance weighted (IVW) method. A significance

threshold of p<0.05 was set, and the results of causal associations were reported as odds ratio

(OR) with 95% confidence interval (CI). The IVW method utilized a meta-analysis approach,

combining Wald ratios for each genetic variant to generate combined estimates of the expo-

sure’s effect on the outcomes, thereby providing consistent causal estimates [20]. In addition

to the IVW method, other estimation methods such as the weighted median, simple median,

and penalized weighted median were also employed. The simple median estimator is equiva-

lent to a weighted median estimator with equal weights. While the simple median provides

consistent causal effect estimates when at least 50% of the IVs are valid, the weighted median

Fig 1. The study design. The MR analysis was based on three fundamental assumptions: The relevance assumption, independence assumption, and exclusivity

hypothesis. Red represents the positive MR analysis pathway (FI-related). Blue represents the reverse MR analysis pathway (atherosclerosis-related and lipid-

related). MR, Mendelian randomization; FI, Frailty index; SNP, Single nucleotide polymorphism.

https://doi.org/10.1371/journal.pone.0304300.g001
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requires at least 50% of the weights to come from valid IVs [21]. Heterogeneity was assessed

using Cochran’s Q test, and to evaluate pleiotropy, MR-Egger regression intercept and

MR-PRESSO methods were utilized. Leave-one-out analysis was performed in the IVW

method to determine if the results were driven by any specific SNP [22]. Reverse MR was used

to estimate the causal association between systemic atherosclerosis and FI in the opposite

direction. Multivariable MR, an expanded method of MR, was applied in situations where it is

challenging to find IVs that are exclusively related to only one exposure, allowing for directed

pleiotropy when IVs are associated with multiple exposures [23].

All statistical analyses were conducted using the "TwoSampleMR" and "MRPRESSO" pack-

ages in R version 4.3.0. A two-sided threshold of p<0.05 in the MR analysis was considered

statistically significant.

Results

After accounting for linkage disequilibrium effects, a total of 14 SNPs that showed an associa-

tion with the FI at a significance level of p<5*10−8 were initially selected. However, further

examination revealed that four of these SNPs (rs2071207, rs583514, rs1363103, and

rs10891490) were associated with confounding factors such as weight, waist circumference, leg

fat mass, smoking, and systolic blood pressure. Since this violated assumption (ii) of indepen-

dence, these four SNPs were excluded from the IVs. As a result, a final set of 10 SNPs was

defined as IVs to assess the causal relationship between the FI as the exposure factor and the

outcome of interest (Table 2). These 10 SNPs were selected based on their relevance to the FI

and their independence from confounding factors, meeting the requirements for conducting a

robust Mendelian randomization analysis.

Genetically predicted FI and systemic atherosclerosis

We assessed the causal relationship between genetically predicted FI and systemic atheroscle-

rosis, including coronary artery atherosclerosis, cerebral artery atherosclerosis, PAD, and ath-

erosclerosis at other sites. The two-sample MR analysis using the IVW method revealed a

positive association between genetically predicted FI and the risk of coronary artery atheroscle-

rosis (OR = 1.47, 95% CI 1.12 to 1.93, p = 0.005) and cerebral artery atherosclerosis

(OR = 1.99, 95% CI 1.05 to 3.78, p = 0.034). However, there was no significant causal relation-

ship observed between genetically predicted FI and PAD (OR = 1, 95% CI 1 to 1.01, p = 0.242),

or atherosclerosis at other sites (OR = 1.27, CI 0.79 to 2.07, p = 0.324) (Fig 2) (S1 File).

Table 2. Genetic variants significantly associated with the frailty index.

SNP CHR:BP Nearby gene EA:OA EAF SE beta p F-statistic

rs12739243 1:210302043 SYT14 T:C 0.78 0.004 0.024 1.28E-09 34.6

rs4952693 2:44151808 LRPPRC T:C 0.37 0.003 -0.019 1.47E-08 29.5

rs82334 4:3225371 HTT A:C 0.68 0.004 0.022 3.13E-10 36.9

rs9275160 6:32652620 HLA-DQB1 A:G 0.34 0.004 0.038 7.18E-28 113.6

rs2396766 7:114318071 FOXP2 A:G 0.47 0.003 0.020 1.22E-09 34.9

rs56299474 8:21992804 REEP4 A:C 0.17 0.004 0.024 3.94E-08 28.5

rs4146140 10:61885362 ANK3 T:C 0.38 0.003 -0.020 6.83E-09 33.0

rs3959554 15:41443924 EXD1, INO80 A:G 0.58 0.003 -0.019 1.74E-08 30.8

rs17612102 15:52264094 LEO1, MAPK6 T:C 0.41 0.003 -0.019 2.85E-08 30.6

rs8089807 18:39322639 KC6, PIK3C3 T:C 0.19 0.004 -0.025 6.50E-09 30.7

Chr, Chromosome; BP, Base pairs; EA, Effect allele; EAF, Effect allele frequency; OA, Other allele; SNP, Single nucleotide polymorphism.

https://doi.org/10.1371/journal.pone.0304300.t002
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Cochran’s Q test indicated that the estimates of IVs on the associations with coronary artery

atherosclerosis and cerebral artery atherosclerosis did not exhibit heterogeneity (p>0.05). The

MR-Egger regression intercept and MR-PRESSO methods provided no evidence of pleiotropy

(p>0.05) (S2 File). Leave-one-out analysis indicated that the influence of FI on coronary

artery atherosclerosis and cerebral artery atherosclerosis was not driven by a single SNP, indi-

cating the overall stability of the results (Fig 3).

Genetically predicted FI and lipids

We further evaluated the causal relationship between genetically predicted FI and lipids,

including LDL-C, HDL-C, and triglycerides. The two-sample MR analysis using the IVW

method revealed a positive association between genetically predicted FI and triglyceride levels

(OR = 1.31, CI 1.08 to 1.59, p = 0.005). There was a negative association between genetically

predicted FI and LDL-C levels (OR = 0.87, CI 0.78 to 0.97, p = 0.011). However, there was no

significant association observed between genetically predicted FI and HDL-C levels

(OR = 0.96, CI 0.82 to 1.13, p = 0.658) (Fig 2) (S3 File). Cochran’s Q test indicated that the esti-

mates of IVs on LDL-C, HDL-C, and triglyceride levels did not exhibit heterogeneity (p
>0.05). The MR-Egger regression intercept and MR-PRESSO methods showed no evidence of

pleiotropy (p>0.05) (S2 File). Leave-one-out analysis indicated that the influence of FI on

LDL-C and triglyceride levels was not driven by a single SNP (Fig 3).

Reverse MR and multivariate MR

To investigate the causal relationship between systemic atherosclerosis and FI, we performed a

reverse MR analysis. The results revealed a significant causal association between atherosclero-

sis at different anatomical locations and FI. Specifically, coronary artery atherosclerosis

(OR = 1.06, 95% CI 1.04 to 1.07, p<0.001), cerebral artery atherosclerosis (OR = 1.03, 95% CI

Fig 2. Genetically predicted FI on atherosclerosis and lipids. (a) Effect of genetically predicted FI on atherosclerosis, including coronary

atherosclerosis, cerebral atherosclerosis, peripheral arterial disease, and atherosclerosis at other sites. (b) Effect of genetically predicted FI on

lipids, including LDL-C, HDL-C, and triglycerides. MR, Mendelian randomization; FI, frailty index; LDL-C, LDL cholesterol; HDL-C, HDL

cholesterol; OR, odds ratio; CI, confidence interval.

https://doi.org/10.1371/journal.pone.0304300.g002
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1.01 to 1.05, p<0.001), PAD (p<0.001), and atherosclerosis at other sites (OR = 1.10, 95% CI

1.08 to 1.12, p<0.001) exhibited a clear causal association with FI (S4 File).

Furthermore, we employed multivariable MR analysis to assess the causal relationship

between lipids and FI. The results indicated that LDL-C (OR = 1.08, CI 1.04 to 1.12, p<0.001),

HDL-C (OR = 0.97, 95% CI 0.96 to 0.98, p<0.001), and triglycerides (OR = 0.96, CI 0.93 to

0.99, p = 0.008) had a significant causal association with FI (S5 File). Among these lipids,

LDL-C and HDL-C showed a stronger correlation with FI than triglycerides.

Discussion

Our results indicate that the genetically predicted FI is associated with a higher risk of coro-

nary artery atherosclerosis and cerebral artery atherosclerosis, while no significant associations

were found with PAD and atherosclerosis at other sites. Moreover, genetically predicted FI is

positively correlated with triglyceride levels, negatively correlated with LDL-C levels, and not

significantly associated with HDL-C levels.

One of the pressing challenges in public health management is the global phenomenon of

population aging [24]. As the number of frail individuals continues to rise, there are growing

concerns about the decline in quality of life and the substantial economic burden associated

with cardiovascular diseases. In the past decade, there has been increasing interest in under-

standing the relationship between frailty and cardiovascular diseases. A prospective cohort

study [25] identified frailty as a significant risk factor for adverse cardiovascular events. Even

after accounting for baseline factors such as age, sex, and ethnicity, frail individuals exhibited

notably higher rates of cardiovascular events, including coronary heart disease, stroke, and

Fig 3. Leave-one-out analysis of the association between genetically predicted FI and risk of atherosclerosis and lipids. (a) coronary atherosclerosis; (b)

cerebral atherosclerosis; (c) peripheral arterial disease; (d) atherosclerosis at other sites; (e) LDL-C; (f) HDL-C; (g) triglycerides. LDL-C, LDL cholesterol;

HDL-C, HDL cholesterol.

https://doi.org/10.1371/journal.pone.0304300.g003
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PAD, than their non-frail counterparts. This highlights the importance of addressing frailty as

a means of preventing and potentially reversing the occurrence of cardiovascular events. Prior-

ity should be given to strategies that target frail populations for screening for coronary athero-

sclerosis and cerebral atherosclerosis. By focusing on interventions that target frailty, it may be

possible to have a positive impact on reducing the burden of cardiovascular diseases.

The FI is a well-established and validated instrument that relies on a questionnaire survey

assessing functional deficits [1]. In frail individuals, the underlying pathological mechanisms

for cardiovascular events are related to atherosclerosis and abnormal lipids. Observational

studies have consistently indicated a connection between FI and cardiovascular events or sub-

clinical atherosclerosis. Several cross-sectional analyses [26–28] have demonstrated that indi-

viduals with higher FI scores or in a prefrail state are more susceptible to cardiovascular

diseases. Moreover, elevated FI scores have been associated with increased cardiovascular mor-

tality rates [29]. A longitudinal study conducted over a 16-year period found that for every 0.1

increase in FI, the risk of all-cause mortality increased by 4% and the risk of cardiovascular dis-

ease-related mortality increased by 3–5% [30].

In patients with acute stroke, frailty can be exacerbated, as confirmed by a meta-analysis.

Although certain studies may carry a risk of bias, frailty is commonly observed in individuals

with acute stroke, regardless of the specific measurement method used. Two meta-analyses

[9,31] have demonstrated a significantly higher prevalence of frailty among individuals with

PAD. Additionally, research has shown an independent association between subclinical cardio-

vascular diseases, such as carotid artery atherosclerosis and femoral artery sclerosis, and frailty,

irrespective of the presence of coronary heart disease, stroke, or myocardial infarction [32].

The relationship between PAD and frailty remains a topic of debate. While frailty is often

observed in individuals with PAD, observational studies have not definitively established a

bidirectional causal relationship between PAD and frailty. A study conducted by Brutto sug-

gested that there is no independent correlation between frailty and large artery atherosclerosis

in the peripheral vascular bed [33]. This could be due to the onset of frailty affecting various

anatomical districts. In fact, frailty is a state of multi-organ fictional decline resulting from the

disruption of the balance among multiple organs, which are unable to support each other [34].

Vital organs such as the heart and brain, which are supplied by major blood vessels, are more

likely to be involved. In other words, individuals with a high FI have an increased risk of devel-

oping cardiovascular diseases affecting the heart and brain but not necessarily an increased

risk of peripheral artery atherosclerosis or atherosclerosis in other arteries. This may explain

the varying relationship between frailty and different types of atherosclerosis.

Blood lipids, such as triglycerides and LDL-C, play a significant role in the development of

atherosclerosis, and research indicates that lowering these lipid levels can reduce the risk of

cardiovascular diseases [35]. A Bayesian network analysis conducted on community-dwelling

older people suggested that HDL-C levels may be associated with malnutrition and can have

an impact on frailty status [36]. This finding aligns with the results of our reverse MR analysis.

It is worth noting that HDL-C levels are more closely associated with age, with LDL-C levels

declining further in older individuals [37]. However, frailty is not solely determined by age

and does not exhibit a clear positive causal relationship with HDL-C levels. This discrepancy

may be attributed to the complex interplay of multiple factors influencing frailty beyond chro-

nological age.

Our study provides a systematic evaluation of the causal relationship between frailty and

atherosclerosis occurring in different parts of the body, incorporating the association estimates

of blood lipids. We utilized the latest GWAS data with an adequate sample size to ensure reli-

able results. However, our study still has limitations. First, the potential bias in MR analysis

due to population and age structure should be considered. The GWAS data used in our study
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primarily originated from European, Swedish and Finnish populations, predominantly con-

sisting of older adults and females [25], which may limit the generalizability of our findings to

other populations. Second, despite our efforts to address pleiotropic effects, such as removing

linkage disequilibrium effects and weak instrument variables and applying methods such as

MR-Egger regression intercept and MR-PRESSO to account for horizontal pleiotropy, these

methods have their inherent limitations. Although we utilized the PhenoScanner V2 tool to

control for confounders, it is challenging to eliminate the influence of horizontal pleiotropy.

Third, our assessment of blood lipids focused on LDL-C, HDL-C, and triglycerides, while

other lipid measures were not included in our analysis. Future research should explore addi-

tional lipid indicators, such as apolipoprotein A1 and apolipoprotein B, to gain a more com-

prehensive understanding of lipid metabolism in relation to frailty and atherosclerosis.

Overall, our study highlights the bidirectional causal relationship between FI and systemic

atherosclerosis, as well as the association between FI and lipids, taking into account the specific

locations of arterial atherosclerosis. These findings contribute to a better understanding of the

complex interplay between frailty, atherosclerosis, and lipid metabolism.

Conclusion

Our study elucidated that genetically predicted FI is associated with the risk of coronary ath-

erosclerosis and cerebral atherosclerosis by the MR analysis method, and they have a bidirec-

tional causal relationship. Moreover, genetically predicted FI was causally associated with

triglyceride and LDL-C levels. Further understanding of this association is crucial for optimiz-

ing medical practice and care models specifically tailored to frail populations.
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