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Abstract

Background

The purpose of this study was to develop a model that can predict the postoperative visual

acuity in eyes that had undergone vitrectomy for an epiretinal membrane (ERM). The Light

Gradient Boosting Machine (LightGBM) was used to evaluate the accuracy of the prediction

and the contribution of the explanatory variables. Two models were designed to predict the

postoperative visual acuity in 67 ERM patients. Model 1 used the age, sex, affected eye,

axial length, preoperative visual acuity, Govetto’s classification stage, and OCT-derived

vector information as features to predict the visual acuity at 1, 3, and 6 months postopera-

tively. Model 2 incorporated the early postoperative visual acuity as an additional variable to

predict the visual acuity at 3, and 6 months postoperatively. LightGBM with 100 iterations of

5-fold cross-validation was used to tune the hyperparameters and train the model. This

involved addressing multicollinearity and selecting the explanatory variables. The general-

ized performance of these models was evaluated using the root mean squared error

(RMSE) in a 5-fold cross-validation, and the contributions of the explanatory variables were

visualized using the average Shapley Additive exPlanations (SHAP) values.

Results

The RMSEs for the predicted visual acuity of Model 1 were 0.14 ± 0.02 logMAR units at 1

month, 0.12 ± 0.03 logMAR units at 3 months, and 0.13 ± 0.04 logMAR units at 6 months.

High SHAP values were observed for the preoperative visual acuity and the ectopic inner

foveal layer (EIFL) area with significant and positive correlations across all models. Model 2

that incorporated the postoperative visual acuity was used to predict the visual acuity at 3

and 6 months, and it had superior accuracy with RMSEs of 0.10 ± 0.02 logMAR units at 3
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months and 0.10 ± 0.04 logMAR units at 6 months. High SHAP values were observed for

the postoperative visual acuity in Model 2.

Conclusion

Predicting the postoperative visual acuity in ERM patients is possible using the preoperative

clinical data and OCT images with LightGBM. The contribution of the explanatory variables

can be visualized using the SHAP values, and the accuracy of the prediction models

improved when the postoperative visual acuity is included as an explanatory variable. Our

data-driven machine learning models reveal that preoperative visual acuity and the size of

the EIFL significantly influence postoperative visual acuity. Early intervention may be crucial

for achieving favorable visual outcomes in eyes with an ERM.

Introduction

An epiretinal membrane (ERM) is a fibrous proliferative tissue formed on the internal limiting

membrane (ILM) of the retina. It commonly occurs in individuals >50-years-of-age and is

characterized by vision impairment and metamorphopsia. In severe cases, vitrectomy with

ERM peeling is performed. Earlier studies have shown that the factors influencing the postop-

erative visual acuity include the preoperative visual acuity, age, axial length, retinal thickness,

and the morphological status of the inner retinal layers and the photoreceptor outer segments.

These findings indicated the importance of the preoperative information in determining the

postoperative visual acuity [1, 2].

In recent years, there have been efforts made to predict the postoperative visual acuity using

the information of the patients and OCT images by deep learning (DL) methods [3, 4]. How-

ever, due to the complex algorithms of the DL systems, it is difficult to create an explainable

model that can assess the contribution of each explanatory variable on the postoperative visual

acuity. This makes it difficult to use these models as a clinical decision support system (CDSS)

for preoperative patients.

To overcome this limitation, we have developed two models to predict the postoperative

visual acuity at 1, 3, and 6 months after the vitrectomy in eyes with an ERM using Light Gradi-

ent Boosting Machine (LightGBM), a decision tree algorithm within non-linear classifiers.

Model 1 makes predictions based solely on the preoperative patient information, while Model

2 incorporates the early postoperative visual acuity as an additional feature.

The purpose of this study was to determine the accuracy of these models in predicting the

visual acuity at 1, 3, and 6 months after vitrectomy for an ERM. We also report the findings of

the Shapley Additive exPlanations (SHAP) values that assessed the contribution of each

explanatory variable. This improved the explanation of the models and visualization of the

individual prediction process for each patient.

Materials and methods

Study design and participants

We studied 67 eyes of 67 patients who had undergone vitrectomy for an ERM between Decem-

ber 2013 and December 2022 at the Mie University Hospital (Mie Prefecture, Japan). The

patients were followed for at least six months postoperatively. The surgeries included stand-

alone vitrectomy and surgeries in which cataract surgery was performed with the vitrectomy.
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There were also cases in which the ILM was peeled. The exclusion criteria are 1) cases with dif-

ferent degrees of cataract between the two eyes of a single patient, 2) cases with a Snellen visual

acuity of less than 20/20 in the fellow eye, 3) cases with ocular disease causing visual

impairment other than ERM in the subject eye, 4) poor quality OCT images making it difficult

to determine the boundary of the different retinal layers, and 5) OCT images not from the

Spectralis1 device (Heidelberg Engineering, Heidelberg, Germany). Subjects included in this

study were consecutive cases that did not meet any of the exclusion criteria.

Ethical considerations

The procedures used in this study adhered to the tenets of the Declaration of Helsinki. All pro-

tocols were approved by the Ethics Committee of Mie University Hospital (approval number:

H2019-219). This study employed an opt-out consent process. The data for this study were

analyzed anonymously to ensure participant privacy and confidentiality. The data were

accessed between the 20th and 27th of December 2022. The authors had no access to informa-

tion that could identify individual participants during or after data collection.

Explanatory variables

For Model 1, the explanatory variables were selected from 22 preoperative features using the

variance inflation factor (VIF). These 22 features included the age, sex, affected eye, axial

length, preoperative best-corrected visual acuity (BCVA), ERM stage [5], and 16 vector infor-

mation features identified in the preoperative OCT images that have been reported to be corre-

lated with the postoperative BCVA. For Model 2, the BCVA at 1 month postoperative was

added to the features of Model 1 for predicting the 3-month postoperative BCVA. In addition,

the BCVA at 1 and 3 months was used to predict the 6-month postoperative BCVA.

Features extracted from OCT images

Two ophthalmologists agreed on the location of a single pixel of the foveal bulge in the 9 mm

vertical and horizontal B-scan OCT images, and annotated this pixel in each image. The anno-

tated images were cropped around the foveal bulge at 3 mm (parafovea region), 1.5 mm (fovea

region), and 0.5 mm (foveal avascular zone, FAZ), and necessary annotations were made for

each feature (Fig 1). A one-pixel wide line annotation was placed on the inner nuclear layer

and inner plexiform layer boundary (INL-IPL), and on the high-intensity line of the retinal

pigment epithelium (RPE) in the 3 mm cropped image by the two evaluators. The ratio of the

length of the INL-IPL to the RPE was calculated as “the inner retinal irregularity index (IRII)

of 3 mm.” In the images of the 1.5 mm area, the high-intensity reflection lines of the ILM,

outer plexiform layer (OPL), and RPE were identified, and a one-pixel wide line was annotated

in each image. The area enclosed by the high-intensity reflection line of the ILM and the high-

intensity reflection OPL line in the annotated images was quantified as “the ectopic inner

foveal layer (EIFL) area of 1.5 mm”. The area between the high-intensity ILM reflection line

and the high-intensity RPE reflection line was “the central macular thickness (CMT) of 1.5

mm”. Additionally, the area enclosed by the high intensity reflection lines of the ellipsoid zone

(EZ) and RPE was identified by the two evaluators and annotated in the region of the 0.5 mm

images and quantified as “the photoreceptor outer segment (PROS) area of 0.5 mm”. The con-

tinuity of the high intensity external limiting membrane (ELM) line and high intensity EZ line

was subjectively classified into three categories: defective, discontinuous, or continuous, and

quantified as”ELM continuity of 0.5 mm” and “EZ continuity of 0.5 mm”. Finally, the images

of “EIFL area of 1.5 mm” and “CMT of 1.5 mm” were further cropped to a 0.5 mm area
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centered on the foveal bulge and were quantified as “EIFL area of 0.5 mm” and “CMT of 0.5

mm” (Fig 1).

Feature selection

We addressed the multicollinearity by iteratively dropping variables based on their variance

inflation factor (VIF). The VIF f for the jth predictor can be calculated using the formula:

VIFj ¼
1

1 � R2
j

where R2
j is the R-squared value obtained when the jth predictor is regressed against all other

predictors. As a general guideline, a VIF higher than 10 indicates significant multicollinearity,

suggesting a need for correction. Initially, we ran the model and identified the variable with

the highest VIF. This variable was then removed, and the model was rerun. This process of

Fig 1. Annotation of preoperative OCT images. (A) Optical coherence tomographic (OCT) images that represent the central 3 mm region (parafovea area) in

a 9 mm B-scan image at the fixation point. Annotations of the INL-IPL boundary line (cyan line) and retinal pigment epithelium (RPE) high-intensity

reflection line (pink line) were made by two ophthalmologists. The ratio of the length of inner nuclear layer and inner plexiform layer boundary (INL-IPL) to

the length of RPE was used as the "inner retinal irregularity index (IRII) of 3 mm." (B) OCT image shows a 1.5 mm region (fovea area) centered around the

foveal bulge in a B-scan image at the fixation point. The area enclosed by the high-intensity internal limiting membrane (ILM) reflection line and the outer

plexiform layer (OPL) high-intensity reflection line (red line) was annotated based on the agreement of two ophthalmologists and used as the "ectopic inner

foveal layer (EIFL) area of 1.5 mm." Additionally, the area enclosed by the ILM high-intensity reflection line and the RPE high-intensity reflection line (blue

line) was also annotated and used as the "central macular thickness (CMT) of 1.5 mm." (C) The image is a cropped view of a B-scan image centered on the

foveal bulge, covering the 0.5 mm region, the foveal avascular zone (FAZ). The area enclosed by the ILM and OPL high-intensity reflection lines was designated

as the "EIFL area of 0.5 mm" (red line), and the area enclosed by the ILM and RPE high-intensity reflection lines as the "CMT of 0.5 mm" (blue line). The area

enclosed by the EZ high-intensity reflection line and RPE high-intensity reflection line (pink line) was annotated based on the two ophthalmologists and used

as the "photoreceptor outer segment (PROS) area of 0.5 mm".

https://doi.org/10.1371/journal.pone.0304281.g001
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identifying and dropping the highest VIF variable was repeated until all remaining variables in

the model had a VIF of 10 or less.

Development of machine learning model

An overview of the development of the model is presented in Fig 2. To create the postoperative

prediction model for the visual acuity of eyes with an ERM, Light GBM, a decision tree algo-

rithm within non-linear classifiers, was used as the analysis algorithm. Two types of predictive

models were developed. Model 1 used the explanatory variables selected from the 22 preopera-

tive features to predict the visual acuity at 1, 3, and 6 months as the target variables. In Model

2, the postoperative visual acuity at 1 month was added as an explanatory variable with the

postoperative visual acuity at 3 months as the target variable. Additionally, the postoperative

visual acuity at 1 month and 3 months were included as explanatory variables with the postop-

erative visual acuity at 6 months as the target variable.

For hyperparameter tuning of the predictive models, the entire dataset was divided into 5

parts, and one part was used for validation and the other four for training. A 4-fold cross-vali-

dation was performed on the four training folds (Fig 2). After this process, the features with a

Fig 2. Overview of the predictive model. Feature extraction was performed from the preoperative background information and the OCT image data,

converting each feature into numerical data. These data were randomly divided into 5 folds with one-fold used for testing and four-folds for training. Then

5-cross validation was conducted, and during this process, multicollinearity of the features was eliminated, and explanatory variables were selected for each

model. This random assignment to the 5 folds and 5-cross validation was repeated 100 times. The postoperative visual acuity was predicted using the nonlinear

regression algorithm, LightGBM, with prediction accuracy evaluated by the root mean squared error (RMSE). The process involved two stages: the first stage

searched for hyperparameters that minimized the RMSE, and the second stage evaluated the generalization performance of both models using the average

RMSE with fixed optimal hyperparameters. Finally, the contribution of the explanatory variables in each model’s prediction results was visualized using

beeswarm plots, and in individual cases using waterfall plots. This figure was created by combining elements from "Human" by Arif Hariyanto, "Eye" by Seaful

Muslim, "Data" by AzizGdt, "Brain" by Leo Antho and “Crown” by Kiran Shastry from the Noun Project (https://thenounproject.com). The SHAP logo design

is under the MIT License.

https://doi.org/10.1371/journal.pone.0304281.g002
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VIF greater than 10 (R2 score over 0.9) were excluded to address multicollinearity. Subse-

quently, the model with the best root mean square error (RMSE) was produced and evaluated

using the validation fold. The data allocation to each fold and the 5-cross validations were ran-

domly repeated 100 times to search for hyperparameters that minimized the RMSE in the vali-

dation data using Bayesian optimization.

With the optimal hyperparameters fixed, the entire data set was divided into 5 parts again,

and 5-cross validations were performed (Fig 2) to evaluate the generalization performance of

the model based on the average RMSE of five folds.

Visualization of contributions of explanatory variables

In evaluating the generalized performance of the models, we used the SHAP values to evaluate

the ability of the model to analyze the data which is a feature attribution method based on the

Shapley value [6]. The SHAP values of the explanatory variables were calculated for each of the

five folds. The Shapley value is represented by the following equation copied from the original

SHAP paper:

�i ¼
X

S�Fni

jSj!ðjFj � jSj � 1Þ!

jFj!
fS[figðxS[figÞ � fSðxSÞ
h i

Where ϕi represents the Shapley value of each feature i. S is any subset obtained from the

feature set F by removing feature i. fS[{i} and fS denote the prediction functions of the model

with and without including feature i.
SHAP is a unified approach that features the importance and offers explanations for both

the model structure and the specific features. The SHAP values attributed to each feature

change in the expected model prediction when conditioning that feature. They indicate the

influence of the prediction value where negative values represent a negative impact and posi-

tive values indicate a positive impact on the prediction. Then, their mean absolute values were

used to assess the contribution of the explanatory variables in the models.

Additionally, the magnitude and distribution of the contributions of the explanatory vari-

ables to the target variable of the model along with the values of each feature, were visualized

in beeswarm plots. To interpret the prediction process of each case, the relationship of the

SHAP values of each explanatory variable was visualized using waterfall plots.

Results

Demographics and clinical characteristics of patients

The background information of the 67 eyes of the patients is summarized in Table 1. The aver-

age age of the patients was 69.03 ± 7.39 years with a range of 50 to 81 years. Thirty-six were 36

men (53.7%) and 31 were women (46.3%). On the subject of the stage classification, 7 eyes

(10.4%) were at stage 1, 18 eyes (26.9%) at stage 2, 37 eyes (55.2%) at stage 3, and 5 eyes (7.5%)

at stage 4. The mean preoperative BCVA was 0.17 ± 0.16 logMAR units, and the postoperative

BCVA was 0.08 ± 0.15 logMAR units at 1 month, 0.02 ± 0.12 logMAR units at 3 months, and

0.00 ± 0.13 logMAR units at 6 months. The improvements in the BCVA at each interval were

statistically significant (P<0.0005). In the context of surgical procedure, there was one group

that underwent vitrectomy alone (one case) and another group that underwent a combination

of vitrectomy and cataract surgery (66 cases), and the preoperative BCVA of the vitrectomy

alone group was -0.079 logMAR units. Visual acuity at 1, 3, and 6 months postoperatively was

0.222 logMAR units, 0.0 logMAR units, and -0.079 logMAR units, respectively. The mean pre-

operative BCVA in the group that underwent cataract surgery combined with vitrectomy was
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0.172 ± 0.165 logMAR units. The average postoperative BCVA at 1, 3, and 6 months was

0.082 ± 0.150 logMAR units, 0.019 ± 0.120 logMAR units, and 0.004 ± 0.128 logMAR units,

respectively. One patient in the vitrectomy-alone group treated with lens preservation had no

worsening of cataracts at 6 months postoperatively. In addition, comparing outcomes of ERM

peeling alone (24 patients) versus combined ERM and ILM peeling (43 patients), initial visual

acuity improved more in the combined peeling group. Preoperative BCVA was 0.118 logMAR

units for ERM alone and 0.196 logMAR units on the average for combined peeling. Visual acu-

ity improvements at 1, 3, and 6 months post-surgery were observed in both groups, with the

combined group showing greater improvements. The Kolmogorov-Smirnov (K-S) test indi-

cated significant differences at baseline (p = 0.001) but not at later points (p = 0.299, 0.475, and

0.068).

In addition, the mean and standard deviation of each feature obtained from the preopera-

tive OCT images are shown in Table 2. There were 5 cases of stage 4 of Govetto’s classification

among the subjects, whereas the INL-IPL boundary was identified in all of them, and the area

of IRII (Fig 1A) that we used for our features was not affected.

Feature selection

In Model 1, six features for the 1-month and five features for the 3 and 6-month prediction

models were extracted as explanatory variables through VIF during the hyperparameter

adjustments (Table 3). The preoperative visual acuity, affected eye, sex, EIFL area of 0.5 mm,

and EZ continuity were consistently selected in all predictions. In Model 2, seven features were

selected as explanatory variables for both the 3-month and 6-month prediction of the visual

acuity (Table 4). The common features include the preoperative visual acuity, 1-month postop-

erative visual acuity, sex, affected eye, EIFL area of 0.5 mm and EZ continuity.

Prediction accuracy

The accuracy of the predictions of each model is presented in Table 5. The RMSE for the 1, 3,

and 6 months postoperative visual acuity prediction models were 0.14 ± 0.02 logMAR units,

0.12 ± 0.02 logMAR units, and 0.13 ± 0.03 logMAR units, respectively. For the models that

included the postoperative BCVA as an explanatory variable (Model 2), the RMSEs improved

Table 1. Clinical characteristics and visual outcomes (n = 67).

Variables

Mean Age (yrs, range) 69.03 ± 7.39 (50 to 81)

Sex (male, %) 36 (53.7)

Laterality (OD, %) 28 (41.8)

Axial Length (mm, range) 24.33 ±v1.80 (21.28–30.52)

Surgical Procedure(vitrectomy combined with cataract surgery, %) 66 (98.5)

ILM peeling (Yes, %) 43 (64.2)

ERM Stage, 1/2/3/4 7 / 18 / 37 / 5

BCVA at baseline (logMAR, range) 0.17 ± 0.16 (-0.18–0.70)

BCVA at 1 month postoperatively (logMAR, range) 0.084 ± 0.273 (-0.18–0.52)

BCVA at 3 months postoperatively (logMAR, range) 0.019 ± 0.12 (-0.18–0.40)

BCVA at 6 months postoperatively (logMAR, range) 0.0031 ± 0.13 (-0.18–0.52)

The values are the means ± standard deviations. ILM = inner limiting membrane; BCVA = best-corrected visual

acuity; logMAR = logarithm of the minimum angle of resolution.

https://doi.org/10.1371/journal.pone.0304281.t001
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to 0.10 ± 0.02 logMAR units and 0.10 ± 0.03 logMAR units for 3 and 6 months, respectively

(P = 0.03, P<0.01).

Visualization of contribution of each explanatory variable

The mean absolute SHAP values of the explanatory variables of each model are presented in

Fig 3. In Model 1 for the one-month postoperative period, the mean absolute SHAP values of

Table 3. Evaluation of multicollinearity in Model 1.

Variables VIF Factor

Post-op 1M Post-op 3M Post-op 6M

Sex 2.02 1.68 1.68

Affected eye 2.29 2.30 2.30

logMAR BCVA at baseline 2.50 2.24 2.24

EZ continuity of 0.5mm horizontal image 8.27 3.57 3.57

EIFL area of 0.5mm horizontal image 4.94 4.94

EIFL area of 0.5mm vertical image 5.47

PROS area of 0.5mm vertical image 9.56

logMAR = logarithm of minimum angle of resolution; BCVA = best-corrected visual acuity; IRII = inner-retinal

irregularity index; EIFL = ectopic inner foveal layer; CMT = central macular thickness; ELM = external limiting

membrane; EZ = ellipsoid zone; PROS = photoreceptor outer segment; VIF = variance inflation factor.

https://doi.org/10.1371/journal.pone.0304281.t003

Table 2. Features of OCT images (n = 67).

Variables

IRII of 3mm horizontal image 1.16 ± 0.13

IRII of 3mm vertical image 1.28 ± 0.21

EIFL area of 1.5mm horizontal image 10252.08 ± 3562.04

EIFL area of 1.5mm vertical image 11048.33 ± 3451.92

CMT of 1.5mm horizontal image 21550.58 ± 4083.82

CMT of 1.5mm vertical image 21396.89 ± 4041.07

ELM continuity of 0.5mm horizontal image 1 (1.5) / 12 (17.9) / 54 (80.6)

defective/discontinuous/continuous (%)

ELM continuity of 0.5mm vertical image 1 (1.5) / 13 (19.4) / 53 (79.1)

defective/discontinuous/continuous (%)

EZ continuity of 0.5mm horizontal image 1 (1.5) / 17 (25.4) / 49 (73.1)

defective/discontinuous/continuous (%)

EZ continuity of 0.5mm vertical image 1 (1.5) / 17 (25.4) / 49 (73.1)

defective/discontinuous/continuous (%)

EIFL area of 0.5mm horizontal image 2667.49 ± 1463.12

EIFL area of 0.5mm vertical image 2705.25 ± 1415.94

CMT of 0.5mm horizontal image 7188.24 ± 1658.56

CMT of 0.5mm vertical image 7165.15 ± 1725.79

PROS area of 0.5mm horizontal image 965.11 ± 216.08

PROS area of 0.5mm vertical image 965.93 ± 220.20

Values are the means ± standard deviations.

IRII = inner retinal irregularity index; EIFL = ectopic inner foveal layer; CMT = central macular thickness;

ELM = external limiting membrane; EZ = ellipsoid zone; PROS = photoreceptor outer segment.

https://doi.org/10.1371/journal.pone.0304281.t002
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each explanatory variable (Fig 3A) were in descending order;”EIFL area of 0.5 mm vertical

image” was 0.064 logMAR units,”preoperative visual acuity” was 0.027 logMAR units,”PROS

area 0.5 mm vertical image” was 0.026 logMAR units,”affected eye” was 0.011 logMAR uni-

ts,”sex” was 0.0042 logMAR units, and”EZ continuity of 0.5 mm horizontal image” was 0 log-

MAR units. For the visual acuity at 3 months postoperative time,”preoperative visual acuity”

was 0.029,”EIFL area of 0.5 mm horizontal image” was 0.015 logMAR units,”affected eye” was

0.010 logMAR units,”sex” was 0.005 logMAR units, and for the”EZ continuity of 0.5 mm hori-

zontal image” 0 logMAR units. At 6 months postoperative time (Fig 3C),”preoperative visual

acuity” was 0.033 logMAR units, “EIFL area of 0.5 mm horizontal image” was 0.014 logMAR

units,”sex” was 0.011 logMAR units,”affected eye” was 0.007 logMAR units, and”EZ continuity

of 0.5 mm horizontal image” was 0 logMAR units. In Model 2 for the 3 months postoperative

time (Fig 3D),”1-month postoperative visual acuity” was 0.055 logMAR units, "preoperative

visual acuity” was 0.022 logMAR units,”PROS area of 0.5 mm vertical image” was 0.020 log-

MAR units,”EIFL area of 0.5 mm horizontal image” was 0.0060 logMAR units,”sex” was

0.0023 logMAR units,”affected eye” was 0.00065 logMAR units, and”EZ continuity of 0.5 mm

horizontal image” was 0 logMAR units. At the 6 months postoperative period (Fig

3E),”3-month postoperative visual acuity” was 0.034 logMAR units,”1-month postoperative

visual acuity” was 0.028 logMAR units,”preoperative visual acuity” was 0.019 logMAR uni-

ts,”EIFL area of 0.5 mm horizontal image” was 0.0088 logMAR units,”sex” was 0.0021 logMAR

Table 4. Evaluation of multicollinearity in Model 2.

Variables VIF Factor

Post-op 3M Post-op 6M

Sex 1.89 1.79

Affected eye 2.78 7.47

logMAR BCVA at baseline 2.83 2.42

logMAR BCVA at 1 month postoperatively 1.83 2.63

logMAR BCVA at 3 month postoperatively 2.04

EZ continuity of 0.5mm horizontal image 7.77

EZ continuity of 0.5mm vertical image 4.38

EIFL area of 0.5mm horizontal image 5.61

EIFL area of 0.5mm vertical image 5.66

PROS area of 0.5mm vertical image 9.61

logMAR = logarithm of minimum angle of resolution; BCVA = best-corrected visual acuity; IRII = inner-retinal

irregularity index; EIFL = ectopic inner foveal layer; CMT = central macular thickness; ELM = external limiting

membrane; EZ = ellipsoid zone; PROS = photoreceptor outer segment; VIF = variance inflation factor.

https://doi.org/10.1371/journal.pone.0304281.t004

Table 5. Prediction results.

Prediction Results (Mean ± SD)

Feature Combinations RMSE

1 month 3 month 6 month

Model 1 0.136 0.120 0.128

±0.015 ±0.0238 ±0.0334

Model 2 0.101 0.100

±0.0194 ±0.0312

SD = standard deviations; RMSE = best root mean square error RMSE)

https://doi.org/10.1371/journal.pone.0304281.t005
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units,”affected eye” was 0.00081 logMAR units, and”EZ continuity of 0.5 mm vertical image”

was 0 logMAR units.

For the BCVA, beeswarm plots were made for a given fold at each time point of prediction

for the two models (Fig 4). In Model 1, the 1-month postoperative beeswarm plot (Fig 4A)

showed that the”EIFL area of 0.5 mm vertical image” had the largest horizontal axis distribu-

tion of the SHAP values. This indicated that it was a highly influential explanatory variable.

For data with larger values, the SHAP values were positive and high, but this trend was not

consistent for data with lower values. This indicated a non-linear relationship. Conversely,”-

preoperative visual acuity”, which had a wide distribution of SHAP values, had a positive cor-

relation in which the lower values led to more negative SHAP values, and larger values led to

more positive SHAP values. At 3 months postoperative (Fig 4B),”preoperative visual acuity”

had the largest horizontal axis distribution of SHAP values and a significant and positive corre-

lation.”EIFL area of 0.5 mm horizontal image” also had a significant effect on the prediction

with a positive correlation. At 6 months postoperative time (Fig 4C),”preoperative visual acu-

ity” had the largest distribution, followed by “sex” and”EIFL area of 0.5 mm horizontal image”

with both showing a positive correlation with the SHAP values. This was similar to the 3

months postoperative model. For 3 and 6 months postoperative in terms of “sex” and”affected

eye”, the female patients and left eyes contributed positively towards better outcomes.

Beeswarm plots for Model 2 at 3 and 6 months postoperative are shown in Fig 4D and 4E,

respectively. At 3 months,”1-month postoperative visual acuity” and at 6 months,”3-month

postoperative visual acuity” followed by”1-month postoperative visual acuity”, had the largest

SHAP value distributions and were significantly and positively correlated. The”preoperative

Fig 3. Mean absolute SHAP values of explanatory variables. This figure shows the mean absolute Shapley Additive exPlanations (SHAP) values of the

explanatory variables in each model. The absolute mean of the SHAP values is represented as a bar graph with only positive values.

https://doi.org/10.1371/journal.pone.0304281.g003
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visual acuity” also had a positive correlation. In the OCT image features at 3 months postoper-

ative time,”PROS area of 0.5 mm vertical image” and”EIFL area of 0.5 mm horizontal image”,"

and at 6 months postoperative,”EIFL area of 0.5 mm vertical image” were significantly and

positively correlated.

Visualization of individual prediction processes

The individual postoperative visual acuity prediction processes for each case are visualized in

Fig 5. E[f(x)] represents the average visual acuity in logMAR units of the model’s predictions

for the training data, which served as the baseline. Against this baseline, the contribution of

each explanatory variable to the individual output, f(x), of the cases, the postoperative visual

acuity in logMAR units was added in the order of increasing SHAP values and direction. Fig 5

presents cases of both Model 1 and Model 2 where the predicted visual acuity is worse and bet-

ter than the baseline values, respectively.

Discussion

OCT has simplified the diagnosis of ERM but there are no standardized criteria for the optimal

time for vitrectomy to treat an ERM. One reason for this is the difficulty in assessing the rela-

tionship between preoperative information and postoperative visual acuity quantitatively. One

possible solution might be the use of an explainable machine learning-based CDSS which

would enable a more objective and convincing determination of the optimal time. Using the

Explainable Artificial Intelligence (XAI) in CDSS can enhance the reliability of decision-mak-

ing, generate hypotheses about causal relationships, and increase both the system’s

Fig 4. Visualization of explanatory variable contributions in the models (beeswarm plots). Each point on the summary plot corresponds to a Shapley

Additive exPlanations (SHAP) value for a feature and an instance. Each individual datum of patients with ERM after vitrectomy is represented by a single dot

on each feature row. The features on the y-axis are sorted based on their importance; color shows the feature value from low (blue) to high (red). The SHAP

value is displayed on the x-axis, with the minus values on the left side show a negative impact and the plus values on the right side show a positive impact. (A)

The beeswarm plot for a specific fold of the 1-month postoperative visual acuity prediction in Model 1. (B) Beeswarm plot for a specific fold of the 3-month

postoperative visual acuity prediction in Model 1. (C) Beeswarm plot for a specific fold of the 6-month postoperative visual acuity prediction in Model 1. (D)

Beeswarm plot for a specific fold of the 3-month postoperative visual acuity prediction in Model 2. (E) Beeswarm plot for a specific fold of the 6-month

postoperative visual acuity prediction in Model 2.

https://doi.org/10.1371/journal.pone.0304281.g004
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acceptability and trustworthiness. In fact, recent efforts have been made to create models more

acceptable and reliable for clinicians by explaining them with game-theoretical XAI methods

such as SHAP [7]. Therefore, we attempted to predict the postoperative visual acuity after

removal of an ERM by vitrectomy using a nonlinear regression machine learning model. We

also simultaneously visualized the contributing factors and prediction process in the models

created.

Our machine learning models were created using LightGBM [8]. During the development

of the models, explanatory variables were selected from the features obtained during hyper-

parameter tuning using cross-validations. Multicollinearity was addressed using the VIF

which excluded variables with strong correlations.

General multivariate analysis methods are capable of evaluating the relationships between

numerous explanatory variables and a target variable. However, they assume that each variable

is independent, and when dealing with variables that have a nonlinear higher-order variable

interactions, it is necessary to add interaction terms. In the case of extracting features from

OCT images, even explanatory variables representing distinct retinal layers cannot be assumed

to be independent of interactions with each other. This then makes these features not suitable

for analysis with traditional multivariate methods that do not account for such interactions.

Fig 5. Visualization of contributions of explanatory variables in individual cases (waterfall plot). (A) The predictive process for a specific case for the

3-month postoperative visual acuity prediction using Model 1. The process begins with the baseline average visual acuity in logMAR units E[f(X)] from the

model’s predictions on the training data, to which Shapley Additive exPlanations (SHAP) values of smaller magnitude (indicating lesser influence) are

sequentially added. The individual output, f(x), for this case represents the postoperative visual acuity in logMAR units. This case exemplifies an instance where

the postoperative visual acuity is better than the baseline due to the contribution of the explanatory variables. In this case, starting from the baseline value E[f

(X)] = 0.01, "EZ continuity of 0.5 mm horizontal image" (feature value 2, continuous) and "affected eye" (feature value 0, right) make no contribution. This is

followed by a slight positive contribution by "sex" (feature value 0, male), "EIFL area of 0.5 mm horizontal image" (feature value 3752) contributes a negative

value of 0.01, and "preoperative visual acuity" (feature value 0.46) contributes a negative value of 0.05, resulting in a predicted outcome f(x) = -0.03. (B)

Prediction at 3 months by Model 1 where the postoperative visual acuity is worse than the baseline because of the explanatory variables. (C) and (D): Model 2

show the prediction processes for different cases for the 3-month postoperative visual acuity. C is a case with better-than-baseline visual acuity, while D is a case

with worse-than-baseline acuity, both due to the influence of the explanatory variables.

https://doi.org/10.1371/journal.pone.0304281.g005
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However, nonlinear classifiers such as LightGBM can learn nonlinear relationships and

higher-order interactions from data which reduce the need to explicitly add interaction terms

to the model. Moreover, LightGBM incorporates regularization methods to prevent overfitting

to control the complexity of the interactions. Thus, it can analyze a large number of variables

and determine their interactions. Our machine learning model is noteworthy not only for the

prognosis but also as a method for statistical analyses.

The importance of each feature was calculated by the averaged absolute SHAP values of the

entire independent test set for each feature to help users gain an insight of the overall behavior

of the model in our models. We also used the SHAP values of a particular instance to explain

how each feature and its value contributed to the predicted postoperative visual acuity.

General explanations for each model structure were represented in the beeswarm plots, and

the specific feature explanations in the waterfall plots. These plots helped interpret the results

of each prediction model and the predictions for individual patients.

The accuracy of the predictions of our postoperative visual acuity model was comparable to

the RMSE of the reported DL models for post-ERM surgery [3, 4]. Although there is some

complexity involved in creating features from OCT images, as opposed to using images

directly in the DL, the ability to achieve predictions with a comparable RMSE is noteworthy.

Furthermore, a major advantage of our model is its ability to visualize the extent of the impact

of each explanatory variable on the predictions. This visualization may make our model more

useful by offering an enhanced understanding of the predictive factors on the postoperative

visual acuity following ERM surgery.

In Model 1, the preoperative visual acuity had the highest SHAP value among the different

information about the patient. The beeswarm plot also showed a positive correlation between

the preoperative visual acuity and the postoperative predicted visual acuity. This reaffirms that

surgery performed at a time when the preoperative visual acuity is good can lead to a better

postoperative visual acuity.

In Model 2, which added the 1 and 3 months postoperative visual acuity information

ranked high in the SHAP values. This indicated that the postoperative visual acuities had a sig-

nificant impact on the predictions. The beeswarm plot showed a positive correlation between

the postoperative visual acuity and the predicted visual acuity. This is consistent with the ten-

dency that the long-term postoperative visual acuity in patients following ERM removal by vit-

rectomy continues to improve [9]. Additionally, the prediction accuracy was better in Model 2

than in Model 1 with a significant reduction in the RMSE. This indicated that the postopera-

tive visual acuity is important for more accurate predictions.

Among the OCT features, the area of the EIFL within the 0.5 mm area of the foveal bulge

had higher SHAP values. The beeswarm plot showed a significant and positive correlation of

EIFL with the postoperative predicted visual acuity. We adopted the OCT features such as the

distance and area as vector data. The presence of EIFL as part of Govetto’s classification is

already known to be an important factor in the prognosis of the postoperative visual acuity [5].

Our model showed that a larger EIFL area within the 0.5 mm range had a worse predicted

visual acuity which suggests that early intervention in the stages of Govetto’s classification pos-

itively impacts the visual prognosis [10].

On the other hand, the region we defined as the EIFL is not exactly the same as the EIFL

defined by Govetto. We evaluated the inner retinal layers present in the FAZ as a continuously

varying quantity. This included both the normal inner layer structure and EIFL, with larger

values corresponding to an increase in the EIFL. This approach could potentially offer a more

accurate assessment of the impact of EIFL on the prognosis rather than an evaluation based

solely on the stage of the disease.
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In the patients’ background information, sex emerged as a significant explanatory variable

with females positively influencing a better postoperative visual acuity. This agreed with other

reports indicating that males have an adverse prognostic factor for post-ERM surgical out-

comes [11]. A possible explanation for this could be the differential roles of the sex hormones.

The androgens are known to promote inflammation whereas estrogens have been associated

with the resolution of inflammation and facilitation of tissue repair [12, 13]. However, an ear-

lier study reported no statistically significant impact of sex on the postoperative visual acuity

after ERM surgery [1]. These contradictory findings indicate a need for further research to

determine the influence of sex on the visual acuities in postsurgical ERM patients.

There are limitations in this study. An important limitation was its retrospective nature and

the small sample size. Because our experiment used a data-driven model, increasing the sample

size is crucial. As the research is based on a single institution, performing a multi-center pro-

spective studies in the future will be essential to verify the reproducibility of our findings.

In conclusion, we have developed a model for predicting the postoperative visual acuity

after vitrectomy for an ERM. We use a nonlinear algorithm-based machine learning model

and achieved moderate success. By calculating the SHAP values, we were able to examine the

contribution of each explanatory variable making the model more interpretable and demon-

strated the potential of XAI in CDSS. Despite being data-driven, our machine learning models

indicated that the preoperative visual acuity and the area of EIFL significantly influenced the

postoperative visual acuity. This indicates that early intervention is critical in achieving favor-

able visual outcomes in eyes with an ERM.
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