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Abstract

Two hybrid flow shop scheduling lines must be coordinated to assemble batches of termi-

nated products at their last stage. Each product is thus composed of two jobs, each pro-

duced in one of the lines. The set of jobs is to be processed in a series of stages to minimize

the makespan of the scheduling, but jobs forming a product must arrive at the assembly line

simultaneously. We propose a mixed integer linear programming model. Then, based on

the model, we propose a pull-matheuristic algorithm. Finally, we present two metaheuristics,

a greedy randomized adaptive search procedure and a biased random key genetic algo-

rithm, and compare all the methodologies with real-based instances of a production sched-

uling problem in the automobile manufacturing industry. The greedy algorithm yields high-

quality solutions, while the genetic one offers the best computational times.

1 Introduction

The scheduling of flow shops with multiple parallel machines per stage, referred to in the liter-

ature as the hybrid flow shop (HFS), flexible flow shop, or multi-processor flow shop [1–3], is

a complex combinatorial problem encountered in many real-world manufacturing processes.

In this article, two HFS must be coordinated to assemble batches of terminated products at

the end of the lines, as shown in Fig 1. Each product is thus composed of two jobs, each pro-

duced in one of the HFS. In both HFS, the set of jobs are to be processed in a series of stages to

minimize the time that elapses from the start of jobs to their end, that is, to minimize the maxi-

mal completion time or makespan of the scheduling. The jobs forming a product must arrive

at the assembly line simultaneously, even if one HFS is, on average, faster than the other. Each

stage of the HFS lines has several unrelated parallel machines. In each HFS, jobs pass through

the stages of the shop floor in a flow sequence, but a job might skip some stages if they are not

necessary for its manufacture. Each job j requires a processing time pjk in stage k. We name

this problem the 2-Hybrid Flow Shop with Assemble stage (2-HFSA).

As is usual in HFS [4], we suppose that all jobs and machines are available at time zero.

Machines can process only one job operation at a time, and job operations can be processed by

only one machine at a time. Moreover, operation preemption is not allowed.
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In [5], the shop problems are classified according to their configuration, constraints and

assumptions, and objective function. In our case, each HFS denoted as HFS1 and HFS2, can be

described as FHml; ðRMðkÞÞ
ml

k¼1
j prmu;Mj; Ssd j Cmax, for l = {1, 2}. FHml indicates a hybrid flow

shop with ml stages. ðRMðkÞÞ
ml

k¼1
means that in all stages, k = 1, . . ., ml, there are any number of

unrelated parallel machines. The term prmu indicates that the jobs are processed in every stage

in the same order. The processing of job j is restricted to the set of machines Mj at stage k,

known as eligibility. Ssd indicates that the setup times depend on the sequence of operations.

Finally, Cmax is the maximum completion time.

Solving a single of our HFS problems is NP-hard. Indeed, our problem can be reduced to

an HFS with two stages, even when one stage contains two machines and the other one a single

machine, which is already NP-hard [6]. Notice that even if the objective functions of HFS1 and

HFS2 correspond to the minimization of their makespan, a solution to the 2-HFSA problem

may have long idle times because of the assembly constraint at the end of the production lines.

This is where the main challenge of the 2-HFSA problem resides, in the coordination at the

assembly stage that generates idle times.

This research’s case study takes place in the automobile parts production system, more pre-

cisely, in a tractor-truck parts manufacturer. Their main products are tractor axles, and their

essential elements are the crown-pinion assembly. The crown-pinion line’s production times

are significant and are the company’s bottleneck since it is the hardest to optimize. The HFS1

makes the crowns, while the HFS2 produces the pinions. These two pieces form a product.

Since the manufacturing process continues with the crown-pinion product, the batches of

these two pieces should arrive simultaneously at the assembly stage.

This work focuses on solving the 2-HFSA, which has an assembly stage of two HFS. First,

we propose a Mixed Integer Linear Programming model (MILP) to assert the exact assembly

time at which both parts should be assembled, together with the machine eligibility and

sequence-dependent setup times. The problem is NP-hard, so the size of the instances that can

be solved optimally is relatively small. Then, we propose a matheuristic algorithm that takes

advantage of our mathematical model. It first solves the sequence, and then the timing is

Fig 1. 2-HSFA: Two HFS must be coordinated to assemble batches of terminated products at the end of the lines.

https://doi.org/10.1371/journal.pone.0304119.g001
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determined. Still, we propose two metaheuristics to face larger instances: a Greedy Random-

ized Adaptive Search Procedure (GRASP) and a Biased Random Key Genetic Algorithm

(BRKGA). An extensive calibration of the different parameters and operators using experi-

mental designs was executed. To evaluate the proposed algorithms, we conducted several

experiments with 20 random instances based on real data from the case study company.

The rest of the paper is organized as follows. A literature review is presented in Section 1.

The problem description and its mathematical model are in Section 2.1. Section 2.2 describes

the matheuristic, while the metaheuristics algorithm GRASP and BRKGA are in Sections 2.3

and 2.4. Section 3 includes the experimental results, and Section 4 concludes the work.

1.1 Literature review

The HFS literature is large, but excellent reviews show the main tendencies in the field [1, 7, 8].

For the FHm; ðRMðkÞÞ
m
k¼1
jj Cmax problem, [9] propose branch-and-bound algorithms. Also,

[10, 11] determine lower bounds, while heuristics and metaheuristics are proposed in [12–15].

Moreover, neural networks are presented in [16], and ant-colony algorithms in [17]. The

authors include sequence-depending setup times in [18–21], propose mathematical formula-

tions and metaheuristics. For the FHm; ðRMðkÞÞ
m
k¼1
j Mj j Cmax problem, which is more related

to ours because of the restricted machines per stage, [22, 23] propose genetic algorithms. Nev-

ertheless, authors do not consider an assembly stage of the coordination of two lines.

Some applications require more specific characteristics. [24] deal with FHml; ðRMðkÞÞ
m
k¼1
j

reentry; batch; Ssd j Cmax problem in a cardboard company where the system required re-

entrant flows, external operations, and transfer batches between stations. [25] solve the

FHml; ðRMðkÞÞ
m
k¼1
j Mj; Ssd; buffer j Cmax problem with a genetic algorithm that takes into

account the sequence-dependent setup time, availability constraints, and limited buffers. [26]

solve the FHml; ðRMðkÞÞ
m
k¼1
j Mj; Ssd j Cmax problem in the textile industry and the synthetic

paint business with mathematical programming and genetic algorithms. In [27], the authors

study an agricultural product scheduling problem. They introduces a mixed integer linear pro-

gramming mathematical model to minimize work in process and maximize average machine

cell utilization. However, none of these works considers the coordination of two different lines

as the one proposed in this research.

[28] were among the first to consider assembly lines. They solve the FH2; ðð2ð1Þ; P2ð2ÞÞ
m
k¼1
j

assemblyð2Þ j �F problem with only two stages and only one of two machines per stage. The pro-

cessing of the second stage cannot begin until the processing of the first stage is finished. The

authors propose a lower bound, a branch-and-bound algorithm, and a simple heuristic algo-

rithm. [29] study an HFS with assembly operations. The parts are produced in a hybrid flow

shop, and an assembly stage produces the final products. A hierarchical branch-and-bound

algorithm is presented. [30] determine the assembly scheduling and transportation allocation

to minimize the waiting times. The main difference with our problem is that [30] consider

only one HFS.

[31] present a two-stage HFS problem followed by a single assembly machine as the one we

study in this article. As in our case, parts must be processed on the HFS stages and joined in

the assembly stage to produce the final product. The authors propose two metaheuristic tech-

niques. [32] propose a hybrid solving method that combines improved extended shifting bot-

tleneck procedure and genetic algorithm for the assembly job shop scheduling problem, which

differs from the one we propose here. [33] analyze a production line in an automobile assem-

bly plant, using simulation and dispatching rules, to define a production planning strategy for

the company. [34] focus on the green scheduling problem in a flexible job shop system. The
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authors formulate a mixed integer linear multiobjective optimization model. Recently, [35]

tackle the hybrid flow shop scheduling problem with a heterogeneous graph neural network to

learn an optimal scheduling policy.

2 Materials and methods

2.1 Mixed integer linear programming for the 2-HFSA problem

Let set Jl be the set of jobs manufactured by the HFSl, and J = J1 [ J2 be the set of jobs of the

2-HFSA problem. Let N = {(i, j)ji 2 J1, j 2 J2} be the set of final products to be assembled. The

stages of the 2-HFSA problem are the set K = K1 [ K2 [ a where a corresponds to the assembly

stage (see Fig 1). Similarly, we define the machine set as M ¼ [l2L;k2KlMl
k.

The processing time of job j 2 Jl in stage k 2 Kl on machine m 2 Ml
k is pljkm. Note that every

job’s processing time in the assembly stage a is null. Thus, plja ¼ 0, for j 2 J. Jobs pass through

the stages of the shop floor in a flow sequence, but a job might skip some stages if they are not

necessary for its manufacture. Thus, eligibility is represented by the parameter eljkm, which

takes a value of one when job j 2 Jl must be executed with machine m 2 Ml
k of stage k 2 Kl for

component l 2 L. Moreover, let tl
ði;jÞkm represent the setup time between the job pair (i, j) in

machine m 2 Ml
k, for i, j 2 Jl and component l 2 L.

To model the 2-HFSA problem with a mixed integer linear programming formulation, let

binary decision variables yljkm take a value of one if job j 2 Jl is assigned to machine m 2 Ml
k in

stage k 2 Kl, for component l 2 L, and zero, otherwise. To determine the sequence of the jobs,

let binary variables xl
ði;jÞkm take a value of one if job i 2 Jl is scheduled immediately before job j

2 Jl in machine m 2 Ml
k, at stage k 2 Kl, component l 2 L, and zero, otherwise. Auxiliary vari-

ables Cl
jk represent the completion time of job j 2 Jl in stage k 2 Kl [ a for component l 2 L.

Similarly, Sl
ði;jÞkm denotes the starting time of job j 2 Jl, scheduled immediately after job i in

stage k 2 Kl in machine m 2 Ml
k, and component l 2 L. Finally, Cmax represents the makespan

of the 2-HFSA problem. The mathematical model for the 2-HFSA is as follows.

min Cmax ð1Þ

Cl
ja � Cmax j 2 Jl; l 2 L ð2Þ

yljkm � eljkm i 2 Jl; k 2 Kl;m 2 Ml
k; l 2 L ð3Þ

X

m2Ml
k

eljkmy
l
jkm ¼ 1 k 2 Kl; j 2 Jl; l 2 L

ð4Þ

xl
ði;jÞkm � xl

ðj;iÞkm � 1 i; j 2 Jl; k 2 Kl;m 2 Ml
k; l 2 L ð5Þ

xl
ði;jÞkm � yljkm i; j 2 Jl; k 2 Kl;m 2 Ml

k; l 2 L ð6Þ

X

j2Jl

eljkmx
l
ð0;jÞkm � 1 k 2 Kl;m 2 Ml

k; l 2 L ð7Þ

X

i2Jl[0

xl
ði;hÞkm �

X

j2Jl[0

xl
ðh;jÞkm ¼ 0 h 2 Jl;m 2 Ml

k; k 2 K
l; l 2 L

ð8Þ
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X

j2Jl

eljkmx
l
ðj;0Þkm � 1 m 2 Ml

k; k 2 K
l; l 2 L

ð9Þ

Cl
jk � Sl

ði;jÞkm þ pljkmy
l
jkm þ t

l
ði;jÞkmx

l
ði;jÞkm � Bð1 � xl

ði;jÞkmÞ

i; j 2 Jl; k 2 Kl;m 2 Ml
k; l 2 L

ð10Þ

Sl
ði;jÞkm � Cl

jk� 1
i; j 2 Jl; k 2 Kl; k > 1; l 2 L ð11Þ

C1
ia � C2

ja ¼ 0 ði; jÞ 2 N ð12Þ

xl
ði;jÞkm; y

l
ikm 2 f0; 1g i; j 2 Jl;m 2 Ml

k; k 2 K
l; l 2 L

Cl
jk; S

l
ði;jÞkm;Cmax � 0 i; j 2 Jl;m 2 Ml

k; k 2 K
l; l 2 L

Expression (1) represents the makespan objective function. Constraints (2) define the

makespan as the completion time of the last job processed in the assembly stage a. Expressions

(3) assign a job j 2 Jl to a machine m 2 Ml
k in stage k 2 Kl only if the machine is eligible, l 2 L.

Eq (4) imply that each job j 2 Jl must be assigned to a machine m 2 Ml
k in every stage k 2 Kl,

for l 2 L. Constraints (5) prevent cycling between two consecutive jobs and define a unique

sequence. Constraints (6) state that a job j 2 Jl cannot be sequenced in machine m 2 Ml
k in

stage k 2 Kl if not assigned to that machine. Constraints (7)–(9) ensure flow conservation in

each machine by considering a dummy job 0 at the beginning and the end of the sequence.

Constraints (10)) follow the idea proposed by [36] for sub-tours elimination purposes and

establish the completion time of the jobs by considering the setup and the processing times; B
is a big number that can be easily bounded. Constraints (12) indicate the simultaneous arrival

of a product’s components at the assembly stage. Finally, the last two constraints establish the

nature of the variables.

This mixed integer linear programming can solve small instances, as shown in Section 3. In

the following, we propose a matheuristic, a GRASP, and a BRKGA to solve larger instances.

2.2 Matheuristic for the 2-HFSA problem

Matheuristics are hybrid methods that combine exact approaches with metaheuristic strategies

that aim to acquire the accuracy of mathematical programming and the benefits of computa-

tional time consumption that heuristics offer. According to [37], matheuristics often exhibit a

“master-slave” scheme, where one of the elements (exact or approximated approach) takes the

master’s place and controls the other element. In the 2-HFSA problem, the job assignment to

the machine stages corresponds to the master problem, while the scheduling of the jobs in the

different machines is the slave problem. Both sub-problems are solved with a MILP but linked

with a pull-planning heuristic method.

A pull system is a scheduling technique that fixes the project makespan of the jobs and then

works backward to outline the steps to achieve the planned makespan quickly and efficiently

[38]. In this manner, in our pull-planning matheuristic we aim for the simultaneous arrival of

both product components at the assembly stage by finding feasible complying schedulings

with our assignment subproblem. Unfeasible assignments are stored on a forbidden list to

avoid cycling.

Algorithm 1 Pull-matheuristic

PLOS ONE 2HFS with assembly and compatibility constraints
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1: Forbidden assignment solutions Γ = ;
2: �Cmax ¼j J j ðmaxj2Jl ;k2Kl ;m2Mlk ;l2L

pljkm þ maxj2Jl ;k2Kl ;m2Mlk ;l2L
tljkmÞ

3: while maximum iterations without improvement not reached do
4: solve AS(Γ) to obtain a non forbidden assignment �Y
5: solve SSð�Y ; �CmaxÞ to obtain a job scheduling γ
6: while time limit is not reached do
7: if SSð�Y ; �CmaxÞ is feasible then
8: if SSð�Y ; �CmaxÞ objective function value > 0 then
9: Γ  Γ [ γ, �Cmax  ð1þ bÞ�Cmax

10: else �Cmax  ð1 � b
0
Þ�Cmax, update Y∗;C∗max

11: end if
12: else if
13: then �Cmax  ð1þ bÞ�Cmax

14: end if
15: end while
16: end while

Algorithm 1 presents the pull-planning matheuristic pseudocode. First, the forbidden

assignment set Γ is empty, and the trivial bound �Cmax on the optimal makespan is set. While a

maximum number of iterations without improvement has not been reached, the assignment

subproblem AS(Γ) is solved, yielding a job-stage-machine unforbidden assignment �Y . This

assignment is a parameter when solving the SSð�Y ; �CmaxÞmodel as well as �Cmax. While the

SSð�Y ; �CmaxÞmodel yields a positive solution (step 8), the algorithm increases the �Cmax by a per-

centage of β and the algorithms iterates again after adding the job sequence gamma to the for-

bidden in set Γ. Indeed, an objective function value greater than zero means that the current

solution presents some differences between the arrival times of the same product components.

If the feasible solution has a value of 0 (step 11), then a feasible solution for the 2-HSFA has

been found because the current solution has all the product components arriving simulta-

neously at the assembly stage. Thus, the �Cmax is reduced by a percentage β0 to explore a tighter

makespan. If no feasible solution is found, then the �Cmax is increased (step 14). The algorithm

iterates until a maximum number of iterations without improvement is reached or a time limit

is reached (verified in the inner while loop).

The assignment stage of the pull-matheuristic determines the job assignment to the

machines at the different stages by minimizing the completion time of the jobs at each stage.

In this parametric model, we do not consider the job sequence but only ensure that the pro-

posed assignment is not forbidden and, thus, is not in the Γ set. For this, we solve the following

parametric MILP named AS(Γ) where the variable Cl
km corresponds to the maximum accumu-

lated processing times in stage k 2 Kl, calculated considering all batches of component l 2 L
assigned to any machine.

min
X

l2L

X

k2Kl

X

m2Ml
k

Cl
km ð13Þ

X

j2Jl

X

m2Ml
k

pljkmy
l
jkm � Cl

km k 2 Kl; l 2 L
ð14Þ

(3)–(4)

X

l2L

X

j2Jl

X

k2Kl

X

m2Ml
k

yljkm � jgj � 1 g 2 G
ð15Þ
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yljkm 2 f0; 1g j 2 Jl;m 2 Ml
k; k 2 K

l; l 2 L

Cl
mk � 0 m 2 Ml

k; k 2 K
l; l 2 L

In the AS(Γ) mathematical model, the objective function (13) goal is to bound the process-

ing time used in each stage by minimizing the sum of the maximum processing times for every

component and every stage. Constraints set (14) establish the value of the Cl
mk variables; these

constraints do not consider the setup times because this model does not perform a schedule.

Constraints set (15) make the connection between the AS(Γ) and the scheduling models in the

matheuristic by forbidding all the unfeasible job sequences γ 2 Γ. The last constraint sets

establish the nature of the variables.

The scheduling stage pull-matheuristic is also a parametric MILP that determines the

schedule of jobs for each machine at each stage of the 2-HFSA. For this, we consider the

assignment solution �ðYÞ ¼ fyljkmg yielded by the AS(Γ) model and the actual bound on the

makespan �Cmax. This model is named SSð�Y ; �CmaxÞ and requires excess variables D(i, j) that rep-

resent the difference in the completion time of a pair of jobs forming a product at the assembly

stage, (i, j) 2 N.

min
X

l2L

X

ði;jÞ2N

Dði;jÞ ð16Þ

Cl
ja �

�Cmax j 2 Jl; l 2 L ð17Þ

(5)–(9), (11)

xl
ði;jÞkm � �yljkm i; j 2 Jl;m 2 Ml

k; k 2 K
l; l 2 L ð18Þ

Cl
jk � Sl

ði;jÞkm þ pljkm�yljkm þ t
l
ði;jÞkmx

l
ði;jÞkm � Bð1 � xl

ði;jÞkmÞ

i; j 2 Jl; k 2 Kl;m 2 Ml
k; l 2 L

ð19Þ

C1
ia � C2

ja � Dði;jÞ ði; jÞ 2 N ð20Þ

C2
ja � C1

ia � Dði;jÞ ði; jÞ 2 N ð21Þ

xl
ði;jÞkm 2 f0; 1g i; j 2 Jl;m 2 Ml

k; k 2 K
l; l 2 L ð22Þ

Cl
jk; S

l
ði;jÞkm � i; j 2 Jl;m 2 Ml

k; k 2 K
l; l 2 L ð23Þ

Dði;jÞ � 0 ði; jÞ 2 N ð24Þ

In the SSð�Y ; �CmaxÞmodel, the objective function (16) minimizes the sum of the differences

between the completion times of the pair of jobs forming a product at the assembly stage. The

completion time of the jobs at the assembly stage is bounded by parameter �Cmax in the con-

straint set (17). Constraint sets (5)–(9) amd (11) are the ones presented previously, defining

the job sequence in the stages of the 2-HFSA problem. Constraints (18) define the sequence

variables with the parameter values �yljkm obtained by solving the AS(Γ) model. Constraints (19)

determine the starting and completion times of the jobs in the different stages, taking into
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account the already computed jog assignment �Y . Eq sets (20) and (21) define the time differ-

ence D(i, j) between each pair of jobs forming a product in the assembly stage. The rest of the

equations are the variable’s nature.

Experimental results of the pull-matheuristic will be presented in Section 3.

2.3 GRASP for the 2-HFSA problem

The greedy randomized adaptive search procedure (GRASP) is a metaheuristic consisting of

constructive iterations of greedily built randomized solutions that are then improved by a local

search stage. GRASP was introduced in, and there are several surveys about this topic [39, 40].

Algorithm 2 displays our GRASP procedure to solve the 2-HFSA problem. While a maxi-

mum number of iterations is not reached, our GRASP generates a partial solution for HFS2 by

adding jobs to the problem’s solution from a list of elements ranked by a greedy function

according to the partial makespan per stage (GreedySolutionHFS2). Then, with GreedySolu-

tionHFS1, we sequence the jobs in HFS1. As mentioned in the introduction, it is usual that one

line is faster than the other. In our case study, HFS1 is the fastest, so we start the greedy solu-

tion with the HFS2 and then set the other line accordingly. Combining the two greedy func-

tions forms a feasible solution for the 2-HFSA that is then improved by a local search

procedure.

Algorithm 2 GRASP Algorithm for 2-HFSA
1: Y*, X*  ;, C∗max  1
2: for i � MaxIter do
3: �Y ; �X  GreedySolutionHFS2

4: �Y ; �X  GreedySolutionHFS1 ð�Y ; �XÞ
5: Cmax LocalSearchð�Y ; �XÞ
6: if C∗max > Cmax then Y∗ ¼ �Y ;X∗ ¼ �X, C∗max ¼ Cmax
7: end for
8: return Y∗;X∗;C∗max

Algorithm 3 details the GreedySolutionHFS2 procedure that corresponds to the greedy con-

struction of a partial solution by scheduling jobs to line HFS2. First, the candidate list C com-

prises the jobs in J2, and an empty solution is set. While the list is not empty, for each stage,

each job j is greedily assigned to the best machine by evaluating its partial completion time in

this stage (step 5). Then, we denote by CJ2nC[j
max the partial makespan of the elements in J2\C

union job j. To obtain variability in the candidate set of greedy solutions, the ranked jobs

according to their corresponding CJ2nC[j
max are placed in the restricted candidate list RCL (step 9),

where α 2 (0, 1) is responsible for the size of the RCL. A job j* is chosen randomly when build-

ing the solution (step 10). The completion time of the assembly stage for the HFS1 is then

equal to the one obtained in the HFS2.

Algorithm 3 GreedySolutionHFS2

1: Candidate list C = J2, current solution �Y ¼ ; and �X ¼ ;
2: while C 6¼ ; do
3: for j 2 C do
4: for k 2 K2 do
5: Determine compatible machine m 2 M2

k minimizing C2
jk

6: end for
7: Compute partial makespan of HFS2: CJ2nC[j

max

8: end for
9: RCL composed by j 2 C such that

CJ2nC[j
max < minj02CfC

J2nC[j0
max g þ a maxj02C CJ2nC[j0

max

� �
� minj02C CJ2nC[j0

max

� �� �

10: Randomly select j* in the RCL
11: Update �Y ; �X with j* sequenced in the chosen machines of the stages
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12: C2
j∗a ¼ C1

ia, for (i, j*)2N
13: C = C\j
14: end while
15: Return �Y ; �X

Production line one must end simultaneously with production line two; therefore, the con-

structive algorithm GreedySolutionHFS1 ð�Y ; �XÞ (pseudocode in Algorithm 4) takes the partial

solution ð�Y ; �XÞ together with its completion time as input. The greedy scheduling construc-

tion of HSF1 is performed from the assembly stage to the first stage, assigning jobs to machines

following the sequence order of HFS2 obtained by Algorithm 3. Algorithm 4 assigns each

batch to a machine, using the best greedy insertion value in every stage. Note that this proce-

dure may lead to completion time unfeasibility, which is solved by adjusting (increasing) the

completion times in line HFS2.

Algorithm 4 GreedySolutionHFS1 ð�Y ; �XÞ
1: for i 2 J2 ordered with respect to �ðXÞ do
2: for k = a, . . ., 1 do
3: Determine compatible machine m 2 M1

k minimizing C1
jk

4: Update �Y ; �X with the assignment of i
5: if resulting partial solution is unfeasible then
6: adjust completion times of (i, j) in HSF2

7: end if
8: end for
9: end for
10: Return �Y ; �X

The obtained solution after the two greedy construction phases is given as input to the

Local Search (see Algorithm 2) as an attempt to reduce its objective function. In our GRASP,

the local search takes the sequence of the jobs and their scheduling from HFS2 since it is the

bottleneck line. Then, we apply the remove/insert operator for every job: we remove the job

from its sequence and insert it at the end of the sequence in both lines HFS1 and HFS2 in its

best compatible machine. We make their completion time coincide at stage a and then shift all

the other jobs and update the total completion time. After obtaining all the possible neighbors

of the current solution, we keep the best one and continue with the iterations of the GRASP

algorithm.

Fig 2 represents a solution to the 2-HFSA problem after applying our GRASP procedure.

The instance has nine pairs of jobs, four stages in each HFS, and unrelated parallel machines.

Note that the completion times of each pair at the end of the last stage k = 4 of each HFS are

simultaneous. This way, the pair of jobs can go into the assembly stage.

2.4 BRKGA for the 2-HFSA problem

Genetic Algorithms have been used to solve scheduling problems [41–43]. [44] present the

Biased Random Key Genetic Algorithm, BRKGA. In this section, we present a BRKGA to

solve the 2-HFSA problem.

As mentioned by [45, 46], BRKGAs start with a population of p chromosomes that will

evolve with the next generations until MaxG. Each chromosome has R random keys for several

generations until a total number of generations is reached. In a given generation r, the evolu-

tionary process is as follows.

1. Each chromosome is decoded, and its objective value (or fitness) is computed.

2. The population is partitioned into an elite set containing pe individuals with the best fitness

values and the non-elite set with the rest of the individuals.
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3. The population at generation g + 1 consists of pe elite individuals of the current generation,

pm mutants that are randomly generated chromosomes, and po = p − pm − pe offspring chro-

mosomes produced by crossover operation between random individuals with replacement,

one from the elite and another from the non-elite set. In the crossover, the v-th allele of off-

spring u is defined by a uniform random number in [0, 1); if this value is larger than the

biased probability ρ> 0.5, then offspring u inherits the v-th allele of its elite parent; other-

wise, it inherits the v-th allele of the non-elite parent.

The encoding and decoding algorithms are the only problem-dependent stages of the

BRKGA. For the 2-HFSA problem, each chromosome of the population will be a vector of size

R = |N|(1 + |K2| + |K1|): the first |N| alleles represent the sequence of the jobs in both lines, the

second |K2||N| alleles indicate the job assignment to the machines of each stage of HFS2, and

the final |K1||N| alleles represents the job machine assignment for each batch for HFS1.

We use the decoding method to transform the [0,1) random key of size R and obtain a solu-

tion related to the 2-HFSA problem with its total completion time. Fig 3 shows an example of

our decoding algorithm for an instance with three pairs of jobs and two stages per line. Note

that HSF1 has three machines in stage 2. To obtain the sequence of the jobs in HFS2, we sort

the first |N| alleles in non-decreasing order. In our example, the sequence would be (3,1,2).

Then, the following |k2N| alleles indicate the machine to which the job will be assigned in the

HFS2: the [0,1) interval is divided into the number of machines in the stage. Each machine is

then associated with one of the subdivided intervals. In our example, stage 1 has two machines;

Fig 2. Solution of the 2-HFSA problem after applying our GRASP procedure to an instance with nine pairs of

jobs, four stages in each HFS, and unrelated parallel machines.

https://doi.org/10.1371/journal.pone.0304119.g002
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thus, job i2 is in Machine 1 and i3 and i1 in Machine 2. Similarly, the final |k2N| alleles are for

the HFS1. Note that for Stage 2, there are three machines. Once the jobs are sequenced and

forced to end simultaneously at the end of the last stage of the lines, the makespan of the indi-

vidual can be computed.

3 Results and discussion

This section describes the computational experiments to validate and compare the mathemati-

cal model with the proposed heuristic algorithms. First, we describe the instance’s characteris-

tics. Then, we present a parameter-tuning procedure for the different algorithms. Finally, we

compare the algorithm’s performance.

We used an Intel (R) Core™ processor with 2.9GHz and 8GB RAM speed for computational

experimentation. The codes were implemented in C++, using Microsoft Visual Studio 2012

and ILOG CPLEX 12.5 as a solver for the mathematical model. All the instances and the

detailed results are in https://doi.org/10.6084/m9.figshare.24246547.

Experimentation includes four types of instances. Each instance type’s size depends on the

number of jobs, stages, and machines per stage. We create five instances of each type for a total

of twenty instances. In Table 1, we present the values used for each type of instance: number of

jobs |N|, number of stages for HSF1 and HFS2 (|K1| and |K2|, respectively), maximum number

Fig 3. Random key decoding example for an instance with three pairs of jobs and two stages per line.

https://doi.org/10.1371/journal.pone.0304119.g003

Table 1. Description of the instance benchmark.

Type |N| |K1| |K2| maxjM1
k j maxjM2

k j p1
ikm p2

jkm tl
ði;jÞkm

1 [10,12] 2 2 4 3 [40, 70] [10, 12] [25, 45]

2 [29, 35] 3 3 5 5 [40, 70] [15, 25] [25, 45]

3 [50, 60] 5 6 10 12 [60, 90] [20, 30] [25, 45]

4 [90, 125] 12 14 25 29 [40, 65] [10, 12] [25, 45]

https://doi.org/10.1371/journal.pone.0304119.t001
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of machines per line (maxjM1
k j and maxjM2

k j), processing times for HSF1 and HFS2, and setup

times values in the last column. In each instance, the last stage is considered as the assembly

stage. Type 3 instances emulate the usual production line of our case study, while Type 4

instances are rare but may sometimes occur. Since no similar article exists in the literature,

comparing our approach with other approaches is difficult without removing strong compo-

nents of our problem, like the assembly stage or the two related HFS. Nevertheless, we com-

pare exact and approximated methods to evaluate our methodologies’ performance in terms of

quality and time.

The algorithm parameters for our GRASP and the BRKGA were tuned using Calibra [47], a

software based on a Taguchi Fractional design of experiments enhanced with a local search

procedure. Table 2 shows the test values and the results obtained by Calibra for our algorithms.

For each parameter, the Range is the interval tested by Calibra, and column Value is the yielded

parameter. For the GRASP, only two parameters must be tuned: the size of the restricted can-

didate list controlled by α and the maximum number of iterations.

For the pull-matheuristic, at each iteration β, β0 are uniformly drawn 2 [0, 0.5), the maxi-

mum number of iterations without improvements is set to five, and a total of three hours time

limit of the inner loop.

Table 3 presents the results obtained with the mathematical model and the three approxi-

mated solution approaches that we proposed. The first column corresponds to the instance

type. Columns 2 to 4 show the results obtained with the mathematical model. Columns 5 to 9

are for the pull-matheuristic, the next four columns are for the GRASP, and the last four are

for the BRKGA. For the mathematical model, we present the objective value (“Obj.”), the per-

centage gap (“Gap”) computed as 100(best dual—best feasible solution)/(best feasible solu-

tion), and the time in seconds (“T.”). We executed the algorithm 20 times for the three

approximated algorithms because of their random components. We present the best objective

value (columns“Obj.”), the average objective function values (columns “Ave.”), the average

time in seconds (“T.”), and the percentage difference (“Dif.”) with the best feasible solution

found by all the methods computed as 100(Obj.—best Obj.)/(best Obj.). The best objective

function values are marked in bold.

For small instances of Type 1, the mathematical model solved with the integer linear solver

obtains solutions with a gap average of less than 61%. The solver could not find feasible solu-

tions for many Type 2 instances, moreover, the average gaps are almost 100%. It is important

to highlight that the relevance of the model lies in guaranteeing the optimal solution, even if it

is only for smaller instances.

The pull-matheuristic finds high-quality solutions for Type 1 instances and better solutions

than the exact mathematical model, considering that the gaps were large. Note that the pull-

matheuristic resides on exact models; therefore, as expected, it presents more computational

time than the GRASP and the BRKGA ones. The pull-matheuristic yields feasible solutions for

Table 2. Parameter tuning for the GRASP and the BRKGA algorithms obtained by Calibra.

GRASP BRKGA

Parameter Range Value Parameter Range Value

α [0,1) 0.3 p [100,1000] 887

MaxIter [100, 1000] 763 pm [0, 0.3pe d0.3pe
pe d0, 0.7pe d0.6pe
ρ [0.5,1] 0.9

MaxG [10, 100] 78

https://doi.org/10.1371/journal.pone.0304119.t002
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Type 2 and 3 ones. However, it could only solve one for Type 4 instances within the time limit.

The complexity of the instances for the pull-matheursitic resides mainly in the number of jobs

in the flow shops.

Regarding the GRASP and the BRKGA, both algorithms are very efficient in terms of time

compared with the mathematical model and the pull-matheuristic. The GRASP algorithm

finds the best solutions in the Type 3 and 4 instances, while the BRKGA performs well for the

Type 2 instances. Nevertheless, the computational time of the BRKGA is very efficient, even

compared to the GRASP for the larger instances. When solved with GRASP or the BRKGA,

the complexity of an instance is in the number of jobs that must be processed and assembled

in the system. Nevertheless, note that the BRKGA yields solutions in less than two minutes for

real-life applications.

4 Conclusions

This article studies the 2-Hybrid Flow Shop with Assemble stage, where two HFS must be

coordinated to assemble batches of terminated products at the end of the lines. Each product

comprises two jobs, each produced in one of the HFSs. In both HFSs, the jobs will be processed

in multiple stages with multiple parallel machines to minimize the scheduling time span. The

jobs forming a product must arrive at the assembly line simultaneously.

To the best of our knowledge, there is no similar problem in the literature, and since it is

based on a real case study, we aimed to solve it exactly and heuristically. This paper proposes a

mathematical model for the 2-HFSA and three approximated solution approaches: a

Table 3. Experimental results obtained with the mathematical model, the pull-matheuristic, the GRASP, and the BRKGA.

Type Mathematical model Pull-matheuristic GRASP BRKGA

Obj. T. Gap Obj. Ave. T. Dif. Obj. Ave. T. Dif. Obj. Ave. T. Dif.

1 1365.8 3600 68 1389.1 1396.3 2117 1 1420.3 1420.3 0 2 1402.9 1411.6 0 1

891.6 3600 24 880.9 885.4 1176 0 949.81 1033.2 0 8 881.6 929.1 1 0

1297.9 3600 73 1289.8 1300.9 2287 0 1320.3 1320.3 0 2 1300.2 1308.2 1 1

1106.7 3600 68 1132.6 1137.2 2227 0 1200.5 1200.5 0 6 1154.3 1165.1 0 2

1194.0 3600 70 1197.2 1213.2 2241 0 1229.0 1236.1 0 3 1212.0 1218.5 0 1

2 - 3600 - 6589.0 6698.5 8145 38 4775.2 4826.7 1 0 4778.1 4799.2 1 0

3411.0 3600 97 4693.7 5017.5 7645 71 2779.0 2829.5 1 1 2749.8 2924.0 8 0

4722.1 3600 100 5131.7 5205.0 7294 26 4061.0 4067.9 1 0 4062.1 4067.1 1 0

4180.9 3600 100 5368.2 5368.2 7585 46 3674.5 3700.3 2 0 3665.9 3678.7 4 0

- 3600 - 6388.9 6408.2 8121 32 4824.7 4863.1 1 0 4824.2 4835.2 2 0

3 - 3600 - 3754.3 3754.3 7958 5 3564.1 3667.8 14 0 3638.2 3917.2 24 2

- 3600 - 5310.2 5310.2 13225 41 3755.3 4199.9 19 0 3805.7 4228.3 28 1

- 3600 - 3590.6 3590.6 9243 7 3363.4 3857.1 14 0 3457.5 3964.6 23 3

- 3600 - 5271.0 5271.0 7117 76 2990.0 3229.9 11 0 3047.8 3309.1 22 2

- 3600 - 4037.5 4037.5 7659 1 3983.1 4199.8 15 0 3985.1 4127.7 24 0

4 - 3600 - 33730.5 33730.5 3490 161 12900.4 14201.2 291 0 14241.4 18393.7 102 10

- 3600 - - - 40300 - 11085.0 12486.8 320 0 14103.2 20660.2 107 27

- 3600 - - - 45242 - 12893.4 14377.9 338 0 16528.4 25785.5 110 28

- 3600 - - - - - 14888.0 16095.6 493 0 22467.8 45194.9 134 51

- 3600 - - - - - 11638.5 12854.1 360 0 14443.6 19757.2 113 24

Average 75 32 1 8

https://doi.org/10.1371/journal.pone.0304119.t003
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matheuristic based on the decomposition of the exact mathematical model and two metaheur-

istic algorithms, a GRASP and a BRKGA.

The computational experiments include up to 14 stages and 29 machine instances, includ-

ing a stage of assembly. According to a literature review, no studies include experimentation

with the size of Type 4 instances, which emulates some of the real case scenarios. The compu-

tational results give evidence of the suitability of that GRASP-based methodology for company

implementation due to the computation elapsed time required by the algorithm for quality

solutions.
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Project administration: Iris Martı́nez-Salazar.

Validation: Rafael Muñoz-Sánchez, Iris Martı́nez-Salazar, Yasmı́n Á. Rı́os Solı́s.
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