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Abstract

The suitability of Fourier transform infrared spectroscopy as a metastasis prognostic tool

has not been reported for some cancer types. Our main aim was to show spectroscopic dif-

ferences between live un-preprocessed cancer cells of different metastatic levels. Spectra

of four cancer cell pairs, including colon cancer (SW480, SW620); human melanoma

(WM115, WM266.4); murine melanoma (B16F01, B16F10); and breast cancer (MCF7,

MDA-MB-231); each pair having the same genetic background, but different metastatic

level were analyzed in the regions 1400–1700 cm-1 and 3100–3500 cm-1 using Principal

Component Analysis, curve fitting, multifractal dimension and receiver operating character-

istic (ROC) curves. The results show spectral markers I1540/I1473, I1652/I1473,
A3400

A3200
, and multi-

fractal dimension of the spectral images are significantly different for the cells based on their

metastatic levels. ROC curve analysis showed good diagnostic performance of the spectral

markers in separating cells based on metastatic degree, with areas under the ROC curves

having 95% confidence interval lower limits greater than 0.5 for most instances. These spec-

tral features can be important in predicting the probability of metastasis in primary tumors,

providing useful guidance for treatment planning. Our markers are effective in differentiating

metastatic levels without sample fixation or drying and therefore could be compactible for

future use in in-vivo procedures involving spectroscopic cancer diagnosis.

Introduction

Metastasis constitutes the primary cause of death for more than 90% of patients with cancer

and a major factor for failure of cancer therapy [1,2]. Most types of primary carcinoma have a

five-year survival rate of 80%, but this drops to around 30% once the tumor metastasizes [3].

When choosing a treatment regime for a cancer patient, it is important to correctly identify

the tumor’s metastatic potential. Currently, diagnosis of metastasis is based mainly on methods

such as lymph node status, morphological classification of tumors, imaging, genetic testing of

tumors, and molecular analysis of cancer signatures. However, these methods are limited in

many cases, such as low specificity and poor negative predictive value of biomarker antigens in

prostate and gallbladder cancer [4,5]. Methods based on genetic testing of tumors are
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expensive and time-consuming [6]. Some tumor markers may be elevated in non-cancerous

conditions, leading to false-positive results [7,8]. Imaging techniques such as CT scans, MRIs,

and PET are expensive, may expose patients to radiation risks [9] and may show low specificity

or poor positive predictive value in some types of cancer [10]. A new method for diagnosis is

therefore desirable.

Fourier transform infrared (FTIR) spectroscopy in the mid-IR (400–4000 cm-1) has been

shown to be a suitable diagnostic method for early cancer detection [11–13]. It is highly sensi-

tive, minimally invasive, relatively simple [14], and can give highly reproducible results [15]. It

gives information on the biochemical components (proteins, lipids, carbohydrates, and nucleic

acids) of the material under analysis, detecting metabolic differences between healthy and

cancerous cells and tissues based on variations in these components. However, the presence of

water in biological samples creates challenges for biological applications of mid-IR spectros-

copy. Water’s strong absorption within the mid-IR range, especially in the biologically relevant

spectral window, affects signal detection and masks the absorption of cells or tissue compo-

nents [16]. While dry samples can be used to reduce water interference [17], differences exist

between the mid-IR spectra of dehydrated and hydrated cells [18,19]. Fourier Transform Infra-

red (FTIR) spectrometer with an attenuated total reflection (ATR) element helps minimize

this problem while enabling the study of mid-IR absorption of cells and tissues in their

hydrated state [20].

Various studies have employed FTIR spectroscopy to study malignancy in cell lines, includ-

ing melanoma [16,21], colon cancer [22,23] and breast cancer [24–26]. However, many of

these studies employed formalin-fixed and paraffin-embedded (FFPE) cells. It has been shown

that paraffin can interfere with FTIR measurements due to its strong absorption of infrared

radiation. Also, deparaffinization procedures typically performed on samples can result in the

loss of spectral information about free and unbound lipids as well as the potential modification

of protein contents [27–29]. FTIR measurements are therefore best carried out on fresh tissues

or live cells in their unprocessed state.

In previous works from our laboratory [16,30], significant ATR-FTIR spectroscopic differ-

ences between cancer cells based on their metastatic levels were presented. Membrane hydra-

tion and amide I protein intensity were employed to show difference in metastatic potential in

human and in murine melanoma [16] while multifractal dimension of spectral images was

used to differentiate murine melanoma cell pair; and colon cancer cell pair [30] of different

metastatic potentials. The markers based on membrane hydration level have not been investi-

gated for colon and breast cancer cells, while that of the spectral multifractal dimension has

not been investigated for human melanoma and breast cancer cells. Here, the spectroscopic

markers of metastasis presented in these prior works have been tested for their discriminatory

performance in each of the cell lines including colon cancer, human melanoma, murine mela-

noma, and a new pair, breast cancer cell lines. The previous work results showed that higher

metastatic potential correlates with membrane hydration level, protein absorption intensity

and spectral multifractal dimension. Other groups have employed water absorption related

signatures to study protein hydration and to distinguish oral cavity squamous cell carcinoma

from neighboring healthy tissues [31–33]. Using ATR-FTIR spectroscopy, Shinzawa’s group

[31] showed the existence within mammalian cells of distinct water absorption peaks around

3420 and 3220 cm-1 and that these peaks varied spatially, depending on interaction with intra-

cellular proteins. In a separate study, increased Raman bands of the OH-stretching vibrations

was observed in squamous cell carcinoma compared to surrounding healthy tissues [32]. This

difference in water concentration was utilized to differentiate between tumor and surgical

margins of oral cavity squamous cell carcinoma using the ratio of the Raman bands at 3390

and 2935 cm-1 [33]. Spectroscopic differences between cells of different metastatic levels can
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serve to complement current methods of metastasis diagnosis as well as minimize limitations

associated with them. In this study, we aim to employ univariate and multivariate analysis of

proteins and water absorption related FTIR spectroscopic biomarkers to evaluate differences

between colon cancer, human and murine melanoma, and breast cancer cell lines of different

metastatic level.

Materials and methods

Cell lines, culture and preparation

WM-115 and WM-266.4 cells are human melanoma cells isolated from the primary tumor

and a metastasis of the same patient. WM-266.4 cells are known for their aggressive subcutane-

ous growth in mice [34]. SW480 and SW620 are, respectively, primary tumor and metastasis

derived human colon carcinoma cells isolated from a single patient. B16F01 and B16F10 are

murine melanoma cells of the same parental origin. B16F10 are known to be more metastatic

than B16F01 [16]. MCF7 and MDA-MB-231 are non-metastatic malignant and metastatic

breast cancer cells, respectively.

For all the cell lines used, growth protocol and medium information is as presented in [16].

The cells were then washed 1x with PBS (02-023-1A Biological Industries, Beit Haemek, Israel)

and then removed with Trypsin EDTA solution B (03-052- 1B Biological Industries, Beit Hae-

mek, Israel). The cells were spun down and re-suspended in normal growth medium in final

concentrations of 1 x 105, 2 x 105, 4 x 105, and 1 × 106 cells per ml for all the cell lines and a sin-

gle concentration of 1 × 106 cells per ml for the human melanoma cells.

ATR-FTIR spectral measurement

FTIR measurements were carried out using an FTIR spectrometer (Jasco, FTIR 6800)

equipped with a single-reflection diamond ATR device with an effective dimensions of 1.8

mm diameter. The refractive index of the diamond is 2.42, and the angle of incidence is 45

degrees, generating a single reflection. At 1000 cm-1, the calculated depth of penetration is

2.005 μm, assuming a sample refractive index of 1.5. The instrument is coupled to a liquid

nitrogen-cooled MCT (mercury cadmium telluride) detector. Measurements were carried out

in the spectral range 650–4000 cm−1 and with a resolution of 4 cm-1, coadding 64 scans for

every spectrum.

For each cell concentration level, three spectra measurements were obtained while for the

human melanoma, each measurement was recorded in five spectra replicates. A medium layer

of 10μl was placed on the diamond ATR crystal after background measurement. The back-

ground measurement was obtained using a cell-free suspension medium. Prior to every new

sample measurement, the ATR crystal was cleaned with 70% ethanol, and a new background

measurement was taken.

Data processing

Obtained spectra were cut to the region 1400–1700 cm-1 wavenumbers, followed by simple

baseline subtraction and vector normalization. Calculations and data processing procedures

were performed using OriginPro software (OriginPro Version 2023b, OriginLab Corporation,

Northampton, MA, USA). Curve fitting of a Gaussians-sum model to the spectra was per-

formed using the non-linear curve fitting algorithm implemented in OriginPro software. The

FracLac plugin (version2015) of the ImageJ software version 1.54f (Image Processing and

Analysis in Java–Wayne Rasband and contributors, National Institutes of Health, Bethesda,
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MD, USA, public domain license, https://imagej.nih.gov/ij/) was used to perform multifractal

analysis of the preprocessed spectral images of all samples.

The ROC curve analysis was carried out using the ROC curve algorithm in OriginPro.

Given that x_ denotes x values for cases with negative actual states and x+ for cases with posi-

tive actual states (where x is the scale of the test result variable), the AUC is calculated as the

non-parametric approximation of the area under the ROC curve A, such that:

A ¼
1

nþn�

Xn�

j¼1

Xnþ

i¼1
C xþx�
� �

ð1Þ

Where n+ is the sample size of positive instances (more metastatic), n- is the sample size of

negative instances (less metastatic) and

C xþ; x�
� �

¼

1; if xþ > x�
0:5; if xþ ¼ x�
0; if xþ < x�

ð2Þ

8
><

>:

The cutoffs used to construct the ROC curves were determined by the interpolation of data

points method and defined as the midpoints between successive pairs of ordered marker

scores xi, with two additional points, max(xi) + 1 and min(xi) - 1, where max(xi) and min(xi)
represents the maximum and minimum scores respectively for a given marker.

Results

The absorption intensities of proteins increase with metastatic level of

cancer cells

Fig 1 presents the mean preprocessed absorbance spectra in the region 1400–1700 cm-1 for all

cell lines used in this study. Preprocessing steps included simple baseline subtraction and vec-

tor normalization. Vector normalization was used to allow for amide II peak comparison of

the cells since the amide II band was observed to be the most intense peak [35].

The peaks at 1540 and 1652 cm-1 are associated with the Amide II and Amide I proteins,

respectively, while the peak at 1456 cm-1 is related to the asymmetric CH3 bending vibrations

of the methyl groups of proteins [36,37]. Table 1 presents the relative intensities (Ipeak1/Ipeak2)

of these protein-related peaks with respect to a peak around 1473 cm-1, related to the CH2

bending of the methylene chains in lipids [38].

The measured intensity ratios I1456/I1473, I1540/I1473, and I1652/I1473 are shown in a bar chart

in Fig 2 for all the cell pairs. Bars represent mean values and error bars represent standard

errors of the means for this figure and all charts presented in this study. For all cell pairs inves-

tigated, the ratios were higher for the more metastatic cells than their corresponding less meta-

static cells, except for the breast cancer cell pair. Higher relative protein intensities observed

for metastatic colon, human melanoma, and murine melanoma cells are consistent with obser-

vations reported by [16] for murine melanoma (B16-F1 and B16-F10) cells and human mela-

noma cells (WM-115 and WM-266.4). The study showed higher amide II intensities for more

metastatic cells compared to less metastatic ones and suggested the difference in protein inten-

sities could indicate the membrane hydration level (and hence motility) of the cells. The pro-

tein peaks for the breast cancer cells showed higher intensities in the malignant MCF7 cells

than in the metastatic MDA-MB-231 cells. A similar observation was reported by [25] when

they compared the FTIR spectra of three types of breast cancer cells, including the MCF7 and

the MDA-MB-231. This could be due to the fact that MDA-MB-231 is a triple negative breast

cancer cell line and lacks certain receptors, which may affect their protein expression profiles.
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PCA for the 1400–1700 cm-1 region separates cancer cells based on

metastatic level

A PCA was applied to the spectral data in the 1400–1700 cm-1 region for all cell pairs. Fig 3 pres-

ents scatterplots of the percentage of each sample spectrum captured along the first two princi-

pal component axes, with each point on the plot representing a sample. This approach presents

the scores with a more intuitive interpretation than the usual positive and negative scores.

To obtain these percentages, the scores obtained from PCA were first transformed along

the PC axes by adding the respective score ranges across samples in order to remove negative

values. Given that the spectra data X, can be written in terms of the scores and principal com-

ponents as:

X ¼ a1PC1 þ a2PC2 þ a3PC3 þ akPCk þ � � � þ anPCn ð3Þ

Fig 1. Mean ATR-FTIR absorption spectra for all cell lines in the region 1400–1700 cm-1. (A) SW480 and SW620. (B) WM115 and WM266.4 (C) B16F01

and B16F10 (D) MCF7 and MDA-MB-231.

https://doi.org/10.1371/journal.pone.0304071.g001
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Table 1. Relative intensities of the peaks at 1456, 1540, and 1652 cm-1 with respect to the intensity of the peak at 1473 cm-1.

I1456/I1473 I1540/I1473 I1652/I1473

SW480 1.045 ± 0.007 1.21 ± 0.03 0.46 ± 0.02

SW620 1.076 ± 0.002 1.412 ± 0.008 0.616 ± 0.005

p-value* 0.0002 <0.0001 <0.0001

WM115 1.13 ± 0.02 1.2 ± 0.1 0.57 ± 0.08

WM266.4 1.26 ± 0.03 1.9 ± 0.2 1.2 ± 0.2

p-value* <0.0001 <0.0001 <0.0001

B16F01 1.053 ± 0.003 1.36 ± 0.03 0.56 ± 0.02

B16F10 1.052 ± 0.006 1.49 ± 0.03 0.62 ± 0.02

p-value* 0.507 0.007 0.026

MCF7 1.040 ± 0.005 1.26 ± 0.03 0.489 ± 0.007

MDA-MB-231 1.015 ± 0.002 1.19 ± 0.01 0.461 ± 0.007

p-value* 0.001 0.260 0.157

*Significant if the p-value is less than 0.05 (p<0.05) using the Mann-Whitney U test.

https://doi.org/10.1371/journal.pone.0304071.t001

Fig 2. Relative intensities of the peaks at 1456, 1540, and 1652 cm-1 with respect to the intensity of the peak at 1473 cm-1. (A) SW480 and SW620 (B)

WM115 and WM266.4 (C) B16F01 and B16F10 (D) MCF7 and MDA-MB-231 cells.

https://doi.org/10.1371/journal.pone.0304071.g002
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Where αk represents the kth score/projection of a given sample onto the kth PC. The per-

centage of each sample accounted for along a given PC was computed as:

fraction of X on PCk ¼
ak=PCk=Pn

1
an=PCn=ð Þ

ð4Þ

Where /PCk/ represents the Euclidian norm of the kth loading vector, PCk, and n is the

number of PCs for which 100 percent of variability within the data is accounted for.

The more metastatic cells showed higher percentage values along PC1 (Fig 3). This indi-

cates that these cells contain relatively higher levels of the functional groups which PC1

Fig 3. A scatter plot of percentage of sample spectra captured on PC1 and PC2. (A) SW480 and SW620 cells (B) WM115 and WM266.4 (C) B16F01 and

B16F10 (D) MCF7 and MDA-MB-231.

https://doi.org/10.1371/journal.pone.0304071.g003
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represents, including the protein peaks at 1540 and 1652 cm-1. Fig 3C shows more metastatic

B16F10 clustering towards lower percentages than the less metastatic B16F01 along the PC1

axis. However, its loading vector (Fig E in S1 File) pointed in the negative direction, and one

can conclude that the lower percentages correspond to higher contents of the functional

groups represented by the PC1 axis, including the amide I and II proteins. MCF7 and

MDA-MB-231 cells (Fig 3D) similarly presented negative loadings (Fig G in S1 File) indicating

the malignant MCF7 cells have relatively higher amide I and II protein content than the meta-

static MDA-MB-231 cells.

The intermolecular structure of water distinguishes cells based on

metastatic levels

Water molecules can form two types of structures: low-density water (LDW), with water

hydrogen-bonded to other water molecules, forming crystal-like patterns; and high-density

water (HDW), with water bonded to non-water molecules. The different bonding patterns

give rise to variations in water IR vibrations, particularly in the O-H stretch mode. This differ-

ence in vibration leads to distinct absorption peaks for LDW and HDW. It has been shown

that liquid water can be thought of as being composed of a mixture of these structural types

[39]. Each type has its characteristic O-H stretch mode absorption peak; the LDW is around

3200 cm−1 and the HDW is around 3400 cm−1. The HDW-to-LDW ratio can measure the dif-

ference in cell membrane hydration level. This is because a higher membrane hydration level

(i.e., water molecules are in interaction with a hydrophilic surface) implies a higher probability

of breaking the intermolecular hydrogen bonds that form the structural order [16,40].

To access the HDW-to-LDW ratio, an analysis based on a two-component mixture model

presented by Minnes et al. [16] (a simplified version of the 4-component mixture model from

[41] was adopted. The absorption spectrum of each measurement in the range of 3100–3500

cm−1 was fitted to a mathematical model consisting of the sum of two Gaussians using the

Levenberg–Marquardt iterative optimization algorithm. The model is of the form yo þ

A1

w
ffiffi
p
2

p e� 2 x� m1ð Þ2

w2 þ
A2

w
ffiffi
p
2

p e� 2 x� m2ð Þ2

w2 (the area version of the gaussian function in Origin software),

where y0 = offset, μ1 and μ2 = peak centers (set to be around 3200 and 3400 cm-1, respectively),

w = peak width = 2σ, and A = area. An example of the absorption spectrum and its fitted Gaus-

sians is shown in Fig 4, with an adjusted R2 value of 0.9976.

The ratio of the area of the Gaussian centered around 3400 cm-1 to that of the Gaussian cen-

tered around 3200 cm-1 was obtained as
A3400

A3200
. The average area ratio for SW480 was found to

be 6.7 ± 0.1 and for SW620 it was 5.9 ± 0.2. The average area ratio for WM115 was found to be

18.3 ± 0.7 and for WM266.4 it was 12.5 ± 1.4.
A3400

A3200
showed averages of 6.3 ± 0.2 and 5.8 ± 0.2

for the B16F01 and B16F10 cells; 7.4 ± 0.2 and 7.0 ± 0.2 for MCF7 and MDA-MB-231 cells,

respectively. The Mann-Whitney U test indicated the ratios do significantly tend to be less for

the more metastatic than the less metastatic colon and human melanoma cells (p values at 0.05

significance level were 0.003, 0.002, 0.253, and 0.130 respectively, for colon, human melanoma,

murine melanoma, and the breast cancer cells). Using the proposal by [16], for negative water

peaks such as those observed in this experiment, we can assume that
A3400

A3200
a

NHDW
NLDW

� �� 1

. Therefore,

the area ratios show that the less metastatic cells have more LDW (or less HDW) than the

more metastatic ones, as previously reported in [16]. This suggests that for the more metastatic

cells, in comparison with the less metastatic, more water molecules are in interaction with the

hydrophilic cell membrane surface. A bar chart of the water area ratios is presented in Fig 5.
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Multifractal dimension of spectral image increases with metastatic level

The multifractal dimension f(α) was obtained from the multifractal spectrum curve f(α) vs α,

at the limit Q = 0, f(α) = capacity dimension = box counting dimension, where Q represents a

range of exponents used to calculate the variables in multifractal analysis, and α, the singularity

exponent. It has been shown that the multifractal dimensions of ATR-FTIR spectrum can

identify and quantify cancer cell metastatic level [30]. The average fractal dimensions for each

cell pair are presented in Fig 6, with the spectral images of the more metastatic cells showing

higher fractal dimensions compared to those of less metastatic cells (p values at 0.05 signifi-

cance level were 0.001,<0.001, 0.03, and 0.19 for colon, human melanoma, murine melanoma,

and breast cancer cells respectively, using the Mann-Whitney U test). This shows that the IR

Fig 4. An example of the two-Gaussian fit model for one of the samples.

https://doi.org/10.1371/journal.pone.0304071.g004
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absorption profiles of less metastatic and more metastatic cells show varying degrees of self-

similarity that may be due to the variations in peak heights, positions, or broadness.

Receiver operating characteristic (ROC) curve analysis of spectral markers

of metastasis

The discrimination between less metastatic and more metastatic cells was further evaluated

using ROC curve analysis. Fig 7 presents the performance of each marker for colon cancer,

human melanoma, murine melanoma, and the breast cancer cell lines. The accuracy of each of

the spectroscopic marker including the relative peak at 1540 cm-1, water areal ratio
A3400

A3200
and

the multifractal dimension of the spectral images, was determined using the area under the

ROC curve (AUC-ROC). The sensitivity and specificity for the detection of the more

Fig 5. Mean area ratios of the fitted Gaussians centered around 3400 and 3200 cm-1. (A) SW480 and SW620 cells (B) WM115 and WM266.4 (C) B16F01

and B16F10 (D) MCF7 and MDA-MB-231. * represents statistically significant differences at p<0.05 using the Mann-Whitney U test, while n.s. shows lack of

statistical significance at the same p threshold.

https://doi.org/10.1371/journal.pone.0304071.g005
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metastatic cells relative to the less metastatic ones are presented in Table 2, along with the area

under the curve (AUC).

Fig 7 shows plots of sensitivity (the true positive rate) against the false positive rate (1 - spec-

ificity) at different thresholds. Point (0,0) represents 0% sensitivity and 100% specificity; (1,0)

represents 100% sensitivity, 100% specificity; (1,1) represents 100% sensitivity and 0% specific-

ity while (0,1) represents 0% sensitivity, 0% specificity. The top-left corner (1,0) therefore rep-

resents the best point corresponding to a perfect classifier that correctly identifies all positive

cases while avoiding all false positives.

The AUC-ROC is a scalar value which estimates the overall model accuracy, independent

of threshold. It is probability that the classifier will rank a randomly chosen positive instance

higher than a randomly chosen negative instance or the average value of sensitivity for all pos-

sible values of specificity. It ranges from 0 to 1, indicating poor to perfect performance respec-

tively while 0.5 indicates performance equivalent to random chance. The reference line

segment from (0,0) to (1,1) called the chance diagonal has an AUC of 0.5 and represents the

practical lower limit for the AUC-ROC of an acceptable diagnostic test. Table 2 shows AUC

values indicating good marker accuracy within an acceptable 95% confidence interval for most

of our markers.

To further evaluate the classification performance of the presented markers, the trans-

formed scores on the first four principal components according to Eq 4, along with the ratios

I1540/I1473, I1652/I1473,
A3400

A3200
and the multifractal dimensions were used as input for a linear

Fig 6. Mean fractal dimensions of images of sample spectra in the region 1400–1700 cm-1 for more metastatic and less metastatic cell pairs. * represents statistically

significant differences at p<0.05 using the Mann-Whitney U test, while n.s. shows lack of statistical significance at the same p threshold.

https://doi.org/10.1371/journal.pone.0304071.g006
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discriminant analysis (LDA) model. Using the leave one out cross validation, an accuracy of

95.8%, with sensitivity and specificity of 100.0% and 91.7% respectively, were obtained for the

colon cancer cells. For the murine melanoma, accuracy, sensitivity, and specificity respectively,

were 83.3%, 75.0%, and 91.7%. For the breast cancer cells, 70.8% accuracy, 66.7% sensitivity,

and 75.0% specificity were obtained. The number of variables was more than the sample size

for the human melanoma, and it was left out of the classification analysis. A plot of the scores

on the canonical variable axis is presented in Fig 8 for the analyzed cell types, with the more

metastatic well separated from the less metastatic cells.

Fig 7. Receiver operating characteristic curves (ROC) showing diagnostic accuracy of spectral markers. (A) Colon cancer (B) Human melanoma (C)

Murine melanoma (D) Breast cancer.

https://doi.org/10.1371/journal.pone.0304071.g007
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Discussion

Here, we extended the studies in [16,30] by investigating the discrimination performance of

the therein proposed ATR-FTIR spectral markers of metastasis, for distinguishing melanoma,

colon cancer and for the first time, breast cancer cells of different metastatic levels. Our new

results show good classification performance based on the tested markers, suggesting that

these markers may be important spectral indicators for the prognosis of metastasis. The best

classification performance of the markers was for the colon cancer cells with accuracy of

95.8%. Colorectal cancer remains a high mortality malignancy for which clinicopathological

prognostic indicators like lymphovascular invasion are insufficient especially for stage II dis-

ease, while multigene expression indicators are limited by high cost and complex scoring

threshold system [42]. Spectroscopic markers such as those analyzed here can be useful in pro-

viding cheap and rapid complementary indicators to improve the prognosis of colon cancer

and ultimately patient outcome. AUC-ROC and LDA classification also show promising accu-

racy for the two melanoma cell types. The clinical utility of gene expression profile for the

identification of stage I melanoma patients at risk of recurrence remains unclear [43] while

pathological prognosis can be challenging and may be subjective especially in terms of measur-

ing features like tumor thickness [44]. The biochemical contrast provided by our markers can

therefore serve as an additional tool for the pathologist for staging and prognostic purposes.

The breast cancer cell lines showed lower confidence interval of AUC-ROC of the investigated

markers that were generally below 50 percent (Table 2). Although combining the markers by

LDA improved the accuracy for discriminating the breast cancer cells, the sensitivity towards

the more metastatic breast cancer cell line was low at 66.7%. This may imply the markers here

analyzed may not be universal and could be less useful for monitoring metastasis in breast

cancer.

The presented spectroscopic differences in metastasis levels can be useful in predicting the

probability of metastasis in primary tumors, for rapidly identifying primary tumors that are at

premetastatic stage, providing important guidance for therapy and treatment planning. The

discriminating spectral features (I1540/I1473, I1652/I1473, and
A3400

A3200
) provide complementary evi-

dence that the membrane hydration level is higher for cells of higher level of metastasis as ear-

lier reported in [16]. The amide I and II peaks may therefore be considered significant

measures of the spectroscopic difference between cells at different levels of metastasis. The

Table 2. Sensitivity, Specificity, and Accuracy (AUC) of each spectroscopic marker for the different cancer cells.

Relative Peak

at 1540 cm-1
Water Areal Ratio Fractal Dimension

Colon Cancer

Sensitivity 1.00 0.92 0.92

Specificity 1.00 0.83 0.92

AUC (95% CI) 1.00 (1.00 to 1.00) 0.83 (0.64 to 1.02) 0.90 (0.74 to 1.05)

Human Melanoma

Sensitivity 1.00 0.76 1.00

Specificity 0.80 0.56 0.64

AUC (95% CI) 0.96 (0.84 to 1.08) 0.74 (0.59 to 0.89) 0.93 (0.87 to 0.99)

Murine Melanoma

Sensitivity 0.92 0.58 0.83

Specificity 0.50 0.33 0.67

AUC (95% CI) 0.83 (0.66 to 0.99) 0.58 (0.34 to 0.83) 0.72 (0.51 to 0.94)

Breast Cancer

Sensitivity 0.92 0.75 0.67

Specificity 0.50 0.50 0.42

AUC (95% CI) 0.64 (0.40 to 0.88) 0.64 (0.41 to 0.87) 0.61 (0.37 to 0.84)

https://doi.org/10.1371/journal.pone.0304071.t002
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relative intensity I1456/I1473 did not show consistency in discriminating the cell pairs at the req-

uisite significance level as can be seen in its values for the B16 cells in Table 1. This was further

indicated by its low loading coefficients along the first principal components in PCA. This

ratio may therefore not be very useful in differentiating cells based on their level of metastasis.

The experiments were performed using live cells without the complications of fixation or

freezing. This is important as most sample preparation procedures may not be compatible for

any future in-vivo diagnostic or therapeutic procedures involving spectroscopic diagnosis of

primary cancer or delineation of cancer margins during surgeries. A spectroscopic technique

that will be useful for these procedures must be able to discriminate disease states in the pres-

ence of barriers such as tissue wetness. Biomarkers such as those presented here take advantage

Fig 8. LDA score plots showing separation of cells according to metastatic level. (A) Colon cancer (B) Murine melanoma (C) Breast cancer.

https://doi.org/10.1371/journal.pone.0304071.g008

PLOS ONE Metastasis diagnosis using Attenuated Total Reflection-Fourier Transform Infra-Red (ATR-FTIR) spectroscopy

PLOS ONE | https://doi.org/10.1371/journal.pone.0304071 May 31, 2024 14 / 18

https://doi.org/10.1371/journal.pone.0304071.g008
https://doi.org/10.1371/journal.pone.0304071


of the water and protein absorption peaks which are prominent spectral features with high

detection probability to achieve this. However, it is important to note that these peaks may

contain contribution from atmospheric water and a way to minimize this is to measure a back-

ground for each sample and to keep the interval between background and sample scan as close

as possible to each other. Successful discrimination by this technique could provide a basis for

a technology that takes advantage of these prominent peaks for diagnosis of metastasis in pri-

mary carcinomas.

The experiments were carried out using different concentrations of cells, which could show

the suitability of the spectroscopic technique as a diagnostic technique in the presence of het-

erogeneity commonly observed in actual cancer tissues. ROC curves show that by carefully

choosing an appropriate cutoff for a given spectral property, high sensitivity can be achieved.

The choice of the cutoffs was made to optimize sensitivity since an ideal diagnostic procedure

should not miss any positive case. It is necessary to note however, that the cutoffs varied across

cell lines for a given spectral property and may depend on experimental setup which must be

kept uniform for practical purposes. To achieve good cell contact with the diamond ATR ele-

ment, a screw top knob was used to apply pressure onto samples during measurements. Also,

multifractal analysis of spectral images depends on image sampling procedure and requires

pixel sizes and other image properties to be kept constant in all cases. This study could be

taken further by confirming the results using ex-vivo cells exfoliated from metastatic biopsies

from patients and combining all the identified spectral indicators through a machine learning

algorithm to give a summative probability of metastasis for a given sample of primary cancer.
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