
RESEARCH ARTICLE

Attribution classification method of APT

malware based on multi-feature fusion

Jian ZhangID, Shengquan LiuID*, Zhihua Liu

School of Computer Science and Technology, Xinjiang University, Xinjiang Uygur Autonomous Region,

Urumqi, People’s Republic of China

* liu@xju.edu.cn

Abstract

In recent years, with the development of the Internet, the attribution classification of APT

malware remains an important issue in society. Existing methods have yet to consider the

DLL link library and hidden file address during the execution process, and there are short-

comings in capturing the local and global correlation of event behaviors. Compared to the

structural features of binary code, opcode features reflect the runtime instructions and do

not consider the issue of multiple reuse of local operation behaviors within the same APT

organization. Obfuscation techniques more easily influence attribution classification based

on single features. To address the above issues, (1) an event behavior graph based on API

instructions and related operations is constructed to capture the execution traces on the

host using the GNNs model. (2) ImageCNTM captures the local spatial correlation and con-

tinuous long-term dependency of opcode images. (3) The word frequency and behavior fea-

tures are concatenated and fused, proposing a multi-feature, multi-input deep learning

model. We collected a publicly available dataset of APT malware to evaluate our method.

The attribution classification results of the model based on a single feature reached 89.24%

and 91.91%. Finally, compared to single-feature classifiers, the multi-feature fusion model

achieves better classification performance.

1 Introduction

With the advancement of artificial intelligence, APT organizations are launching more com-

plex attacks on computer systems using malware. In the current cyberspace environment,

Advanced Persistent Threat (APT) [1] is one of the most representative attacks, and its persis-

tent outbreaks have brought unprecedented security challenges [2]. Therefore, APT attacks

have attracted high attention from many researchers and governments. APT attacks refer to

individuals or organizations using advanced techniques to conduct long-term and persistent

network attacks on specific targets. The difference between APT attacks and traditional net-

work attacks lies in their characteristics of stealthiness, targeting, persistence, and organization

[3]. APT attacks employ diverse attack techniques, yielding significant impact and being chal-

lenging to defend against, as demonstrated by the notorious Advanced Persistent Threat attack

“Stuxnet” [4]. This virus emerged in 2010 and featured sophisticated and covert detection

PLOS ONE

PLOS ONE | https://doi.org/10.1371/journal.pone.0304066 June 27, 2024 1 / 28

a1111111111

a1111111111

a1111111111

a1111111111

a1111111111

OPEN ACCESS

Citation: Zhang J, Liu S, Liu Z (2024) Attribution

classification method of APT malware based on

multi-feature fusion. PLoS ONE 19(6): e0304066.

https://doi.org/10.1371/journal.pone.0304066

Editor: Hua Wang, Victoria University, AUSTRALIA

Received: October 17, 2023

Accepted: May 6, 2024

Published: June 27, 2024

Copyright: © 2024 Zhang et al. This is an open

access article distributed under the terms of the

Creative Commons Attribution License, which

permits unrestricted use, distribution, and

reproduction in any medium, provided the original

author and source are credited.

Data Availability Statement: Publicly available

datasets were analyzed in this study. The APT

malware dataset from a public environment(https://

github.com/cyber-research/APTMalware).

Funding: The research presented in this paper was

supported by the Major Science and Technology

Projects in Xinjiang Uygur Autonomous Region

(Project No. 2022A02012-1) and the Science and

Technology Program of Xinjiang (Project No.

2022B01008).

Competing interests: The authors have declared

that no competing interests exist.

https://orcid.org/0009-0005-4309-7337
https://orcid.org/0000-0001-9623-4714
https://doi.org/10.1371/journal.pone.0304066
http://crossmark.crossref.org/dialog/?doi=10.1371/journal.pone.0304066&domain=pdf&date_stamp=2024-06-27
http://crossmark.crossref.org/dialog/?doi=10.1371/journal.pone.0304066&domain=pdf&date_stamp=2024-06-27
http://crossmark.crossref.org/dialog/?doi=10.1371/journal.pone.0304066&domain=pdf&date_stamp=2024-06-27
http://crossmark.crossref.org/dialog/?doi=10.1371/journal.pone.0304066&domain=pdf&date_stamp=2024-06-27
http://crossmark.crossref.org/dialog/?doi=10.1371/journal.pone.0304066&domain=pdf&date_stamp=2024-06-27
http://crossmark.crossref.org/dialog/?doi=10.1371/journal.pone.0304066&domain=pdf&date_stamp=2024-06-27
https://doi.org/10.1371/journal.pone.0304066
http://creativecommons.org/licenses/by/4.0/
https://github.com/cyber-research/APTMalware
https://github.com/cyber-research/APTMalware

techniques, resulting in a lengthy discovery and analysis process. Moreover, the Stuxnet virus

primarily targeted Iran’s nuclear facilities, significantly influencing their nuclear program.

This incident is regarded as an organized state-sponsored act.

In traditional malware, the Windows API and its parameters provide information about

the software’s access to system resources, thus revealing potential intentions [5]. The opcode

represents a runtime instruction, and analyzing the opcode can provide insights into malicious

intentions.

Like traditional attacks, APT attackers need to use malware as their attack weapon to launch

cyber attacks [6]. Therefore, analyzing the malicious software used in APT attacks provides a

feasible method for APT attack research. However, APT malware differs from traditional mal-

ware in many ways [7, 8]. The advancement is evident in the highly customized malware cre-

ated by APT organizations. They achieve this by combining various benign and malicious

behaviors, resulting in customization, which allows them to employ different attack methods

against different targets and achieve stealthiness by generating fake executable files. Moreover,

compared to ordinary malware, APT malware exhibits more instances of network events and

other behavioral activities, showcasing the persistence of APT malware.

At present, industrial analysis on the attribution of APT samples mainly relies on the man-

ual analysis by safety experts, which is greatly affected by the expert experience [9]. Moreover,

it cannot meet the demand for many samples, resulting in low efficiency and long processing

time. In the academic field, the tracing of attack samples still relies on single features, which

can be categorized into structural and behavioral features. Shen G et al. [10] employed a tech-

nique that converted the original binary file into a grayscale image. They then extracted both

local and global texture features from the image. This approach aimed to capture both fine-

grained details and overall structural characteristics of the data. Kida M et al. [11] used fuzzy

hashing to classify the original binary file using machine learning methods. Zhang Y et al. [12]

represented the opcode as a vector using n-grams and used the BinMLM model based on

RNN to extract the long-term dependency of APT malware but did not consider the issue of

multiple code reuse in the local code during the development of APT malware. Rosenberg I

et al. [13] used DNN (deep neural network) as a classifier and trained the classifier by inputting

the API sequence obtained from sandbox runtime behavior to classify APT organizations.

However, the API sequence did not consider the DLL link library or the generated hidden file

address during the execution of the behavior, nor did it consider the correlation between event

behaviors. Compared to binary files, opcodes can reflect the instructions during software run-

time. At the same time, single-feature tracing methods are easily influenced by confusion [14].

Therefore, we propose a multi-feature fusion approach that combines Opcode word fre-

quency image features, dynamic behavior features, and deep learning techniques for effective

APT malware tracing. Our objective has three parts: (1) Obtaining opcode and dynamic

behavior reports from APT malware. (2) Automatically extracting corresponding features

using deep learning methods. (3) Improving overall classification accuracy by building a

multi-feature fusion framework.

To achieve our goals, we collected 2809 executable files from the publicly available dataset

cyber-research, which includes 12 related APT organizations. Firstly, we developed an event

behavior graph incorporating information such as API, DLL linkage, and file addresses to

address the lack of event correlation in the API sequence. We design the graph neural net-

works(GNNs), which contain gated graph sequence neural networks(GGNN) [15] and graph

attention network(GAT) [16] to learn the features of the event behavior graph. Secondly, com-

pared to binary code, opcodes can better reflect the running instructions of the operating sys-

tem. For the first time, we constructed an opcode word frequency image to simplify the

analysis process of the opcode. We used CNN-LSTM(ImageCNTM) to learn the image’s local

PLOS ONE Attribution classification method of APT malware based on multi-feature fusion

PLOS ONE | https://doi.org/10.1371/journal.pone.0304066 June 27, 2024 2 / 28

https://doi.org/10.1371/journal.pone.0304066

spatial correlation and continuous long-term dependency relationship. Finally, as single fea-

tures can easily be influenced by confusion, the interaction between opcode structure features

and behavior features can reflect the basic operations of disassembled opcode instructions and

operating systems interactions, as well as operations on files, processes, registries, module

loading, and networks. Therefore, we implement our deep learning-based multi-feature fusion

framework by integrating the learning features from each subcomponent through a neural net-

work classification.

The main contributions of this paper are as follows:

• Considering that APT malware is prone to confusion, we combine the advantages of struc-

tural and behavioral features with deep learning technology to introduce a more comprehen-

sive method for analyzing APT attacker behavior. While the behavior tends to be similar

within the same APT family, we found that the proposed method, which considers opcode

image features and event behavior graph features, can be used for effective classification.

• We designed the GNNs model using GGNN and GAT to learn the graph’s content features

and association features. Additionally, we constructed an image based on opcode word fre-

quency and used the ImageCNTM model to learn image features.

• The multi-feature fusion model based on deep learning demonstrated superior performance,

yielding improved results. Additionally, for a single feature, the model based on opcode

word frequency performed better in classification than similar papers based on structural

features. Finally, we validated the effectiveness of each module in the ablation experiments.

2 Related works

APT attacks are complex network attacks with an obvious purpose. They gradually attack the

target network through various stages, maintaining long-term access to the target [17]. With

the help of APT malware, attackers can remotely control infected machines and steal sensitive

information [18]. Analyzing the characteristics of malware samples enables the attribution

classification for malware [19]. Given the integral role of malware in Advanced Persistent

Threat (APT) attacks, the attributes exhibited by malware can indicate the characteristics of

the APT attack entity. In other words, the distinctive features observed in the malware utilized

by APT attackers can provide valuable insights into the traits and capabilities of the APT orga-

nization itself [20]. Malware feature extraction methods mainly include static structural feature

extraction and dynamic behavior feature extraction [21].

2.1 Malware characteristics

During APT attacks, perpetrators frequently employ malware as a carrier. Hence, when attrib-

uting APT malware, it is necessary to engage in cognitive analysis by considering its behavioral

and structural characteristics. By comprehensively understanding the behavior exhibited by

the malware during execution and examining its underlying code and structure, we can gain

valuable insights that aid in accurately attributing the malware to specific APT groups or threat

actors. This multi-faceted approach enables a more informed and nuanced understanding of

the origins and intentions behind APT attacks.

2.1.1 Dynamic behavioral characteristics. It is relatively difficult to determine whether a

software will execute malicious behavior. Assessing the alignment of a program’s behavior

with user requirements is crucial in identifying whether it is malicious. By closely observing

the program’s actions and evaluating whether they adhere to the expected behavior defined by

PLOS ONE Attribution classification method of APT malware based on multi-feature fusion

PLOS ONE | https://doi.org/10.1371/journal.pone.0304066 June 27, 2024 3 / 28

https://doi.org/10.1371/journal.pone.0304066

the user, we can determine its malicious intent [22]. Dynamic behavior data is obtained with

little human involvement and can be analyzed quickly through automated analysis of batch

samples. Dynamic behavior data generally includes registry events (registry field), file events

(file field), network events (network field), process events (process field), system events (sys-

tem field), and other data [22]. There is a connection between each event, as APT attackers use

different C&C servers or malicious payloads to establish multiple network events and other

events to prevent the association of the same APT family when designing APT malware.

Therefore, obtaining the relationship between events and the characteristics of the events

themselves is very important in the attribution and classification process of APT malware.

Table 1 describes the purpose and operation of each event.

2.1.2 Static structural features. The static structural characteristics of malware mainly

include binary code features and disassembly code features [23]. Converting binary files into

images [10, 24–27] has become an increasingly popular research topic. However, this method

often involves compression and deformation operations such as resizing, which makes it chal-

lenging to recover resources such as import tables and export tables, resulting in information

loss [28]. At the same time, because the development of APT malware involves multiple devel-

opers, some of whom may be replaced during the development process, the attribution classifi-

cation of APT malware is not a conventional single-author attribution problem. In addition,

assembly operation code is another common feature in static detection during development.

Compared with binary code, opcode represents the operation instruction at runtime. Studies

have shown that opcodes with lower frequency can better distinguish malware [29].

2.2 Attributional classification methods based on dynamic structural

features

The attribution classification method for dynamic behavioral characteristics of APT malware

primarily relies on the analysis and classification of information obtained during the execution

of the malware. Rosenberg I et al. [13]used Deep Neural Network (DNN) as a classifier by

obtaining behaviors during sandbox operation as input, training the classifier, and completing

the classification of APT organizations. The detection accuracy of the model is 98.6%, but the

experimental data samples of the test set only include samples of APT organizations from

China and Russia. Wei C et al. [30] extracted the API of dynamic behavior as behavioral fea-

tures, applied dynamic long short-term memory(LSTM) and attention algorithms to express

data as feature vectors, and then used transfer learning to conduct multi-classification for APT

families. Han et al. [8] proposed a new APT malicious software detection and cognitive frame-

work, APTMalnsight, which extracts dynamic API information to describe behavioral features

and uses machine learning methods to attribute to its respective families based on the

Table 1. The purpose and operation of each event.

Behavior Target Operation Purpose

Registryevent Registry - Self-launching, collect critical information

Fileevent File System Create and read etc. Gather and illicitly acquire vital data, compromise the system and create a

backdoor entry.

Networkevent Network Network query, Transmission of data and

commands

Connection to C&C servers, malicious downloads and distribution

Processevent Process and thread Create, terminate and inject Infected systems, elevated privileges

Systemevent Resources and

kernel

Create, modify and shutdown Attacking the local system and hiding your tracks to monitor the system

https://doi.org/10.1371/journal.pone.0304066.t001

PLOS ONE Attribution classification method of APT malware based on multi-feature fusion

PLOS ONE | https://doi.org/10.1371/journal.pone.0304066 June 27, 2024 4 / 28

https://doi.org/10.1371/journal.pone.0304066.t001
https://doi.org/10.1371/journal.pone.0304066

established API sequence feature vector. Li S et al. [9] aimed at APT malicious software in the

Internet of Things, pre-processed accurate dynamic behavioral data, used the TF-IDF method

for feature vector representation, and designed a multi-class model based on machine learning

SMOTERF to solve the problem of multi-classification and sample imbalance. Dong S et al.

[31] proposed a multi-scale feature fusion method based on CNN and DNN, cleverly utilizing

permission features and API call graphs. They employed DNN to learn high-level abstract rep-

resentations and combined them with CNN to construct multi-scale feature representations

for classification tasks. Naeem H et al. [32] proposed a deep-stacked ensemble model based on

process images. This method maps process files into images and utilizes a stacked CNN net-

work for ensemble learning, enabling the completion of detection and classification tasks.

2.3 Attributional classification methods based on static structural features

The attribution classification method of APT malware based on static structural characteristics

mainly relies on homology analysis and organizational classification of malicious code. Shen G

et al. [10] proposed a model based on a dual attention mechanism and bidirectional long

short-term memory. This method performs the attribution classification using a dual attention

mechanism module to extract local texture features and a bidirectional long short-term mem-

ory module to extract global texture structure features. However, this method often involves

resizing and other compression and deformation operations, making it challenging to recover

resources such as import and export tables, leading to information loss. Chen W et al. [33] pro-

posed a new gene model based on a malicious software behavior knowledge graph. An APT

organization gene library is obtained by filling the malware information into the gene model.

The genetic similarity algorithm is used to calculate the genetic feature similarity, thereby iden-

tifying the APT organization to which the malware belongs. The experimental dataset includes

237 samples from 6 APT organizations, with an accuracy of around 85%. Laurenza G et al. [7]

collected more than 2,000 training datasets belonging to different APT organizations,

extracted static features of malicious software, and used machine learning technology for iden-

tification, with an accuracy of over 90%. Bolton AD et al. [34] constructed call graphs (where

nodes represent subroutines and directed edges represent call relationships between subrou-

tines), measured the similarity between graphs using a simulated annealing algorithm, and

finally used a random forest classifier to predict the family to which a sample belongs. Zhang Y

et al. [12] represented opcode as a vector using n-gram and put forward an RNN-based

BinMLM model to extract long-term dependencies of APT malicious software, representing

the coding instruction style of the development team, thereby attributing classification to the

APT malicious software corresponding to the family. However, the researchers did not con-

sider the reuse issue of local opcode.

3 The proposed method

Fig 1 describes a multi-feature deep learning framework for APT malware attribution classifi-

cation. The framework aims to assist security personnel. The framework mainly consists of

three components:(1) Event behavior graph based on dynamic behavior, proposing a GNNs

model to learn graph features automatically. Graph features reflect the advanced persistence of

APT. (2) Transforming the original opcode into an easy-to-read word frequency image is ben-

eficial for people without any security knowledge to understand, proposing a convolutional

ImageCNTM model to learn image features. Opcode image features reflect the persistence of

APT. (3)Opcode and dynamic behavior reports reflect the basic operations of operating system

interaction and file, process, registry, system module, and network operations. Therefore,

concatenating and fusing the two types of features to reflect the advanced persistence features

PLOS ONE Attribution classification method of APT malware based on multi-feature fusion

PLOS ONE | https://doi.org/10.1371/journal.pone.0304066 June 27, 2024 5 / 28

https://doi.org/10.1371/journal.pone.0304066

of the overall sample. Finally, we conduct an attribution classification based on the overall fea-

tures. The following sections provide an in-depth analysis of APT malicious software, data

processing, and different sub-components and feature types.

3.1 APT malicious software feature analysis

Compared to traditional malware, APT malicious software has advanced capabilities and sus-

tainability. Various APT organizations reflect the advanced nature of their malware through

highly customized approaches and significant differences in their targets and activity behavior.

They will use various means to hide their malicious behavior, such as disguising, encrypting,

and self-deleting files. The persistence of APT malware manifests primarily in the frequency of

network event behaviors and other event behaviors, which are notably higher compared to

ordinary malware [8]. In the following sections 3.1.1 and 3.1.2, we conduct a detailed analysis

of the behavior manifestations exhibited by the APT malware family.

3.1.1 Analyzing the APT30 family. During the analysis of the APT30 family, we have

conducted a preliminary extraction of the attack behaviors, as depicted in Fig 2. Figs 3–6 pres-

ent specific examples of each type of attack behavior. As shown in Fig 3, the attacker generates

a fake Word file for deceptive purposes, which serves as a temporary storage for the results of

the malicious software execution process. As shown in Fig 4, The APT30 series server

Fig 1. Classification framework for APT malicious software based on multi-feature fusion.

https://doi.org/10.1371/journal.pone.0304066.g001

Fig 2. Typical malicious software behavior of the APT30 family.

https://doi.org/10.1371/journal.pone.0304066.g002

PLOS ONE Attribution classification method of APT malware based on multi-feature fusion

PLOS ONE | https://doi.org/10.1371/journal.pone.0304066 June 27, 2024 6 / 28

https://doi.org/10.1371/journal.pone.0304066.g001
https://doi.org/10.1371/journal.pone.0304066.g002
https://doi.org/10.1371/journal.pone.0304066

Fig 3. APT30 sample behavior of creating forged Word files.

https://doi.org/10.1371/journal.pone.0304066.g003

Fig 4. Connecting to a remote C&C server.

https://doi.org/10.1371/journal.pone.0304066.g004

Fig 5. Generating malicious executable files of APT30 samples.

https://doi.org/10.1371/journal.pone.0304066.g005

PLOS ONE Attribution classification method of APT malware based on multi-feature fusion

PLOS ONE | https://doi.org/10.1371/journal.pone.0304066 June 27, 2024 7 / 28

https://doi.org/10.1371/journal.pone.0304066.g003
https://doi.org/10.1371/journal.pone.0304066.g004
https://doi.org/10.1371/journal.pone.0304066.g005
https://doi.org/10.1371/journal.pone.0304066

establishes a remote connection to the command and control (C&C) server, enabling it to

receive malicious data and commands. As shown in Fig 5, The APT30 series generates a mali-

cious executable file named “svapro.exe” and initiates a process for executing this file. As

shown in Fig 6, The APT30 family possesses the capability to self-delete, as demonstrated by

its action of removing the malicious executable file “svapro.exe.” This ability allows the APT30

family to conceal its attack activities and cover up the traces of its intrusion.

3.1.2 Analyzing the DarkHotel family. During the analysis of the DarkHotel family, we

have conducted a preliminary extraction of the attack behaviors, as depicted in Fig 7. Specific

examples of each type of attack behavior are shown in Figs 8–11. As shown in Fig 8, the Dar-

kHotel family establishes a connection to the remote malicious domain “autoprolace.twilight-

paradox.com.” Upon successful connection, the malicious sample receives commands from

this domain. As shown in Fig 9, The malicious sample within the DarkHotel family traverses

the system’s process list to identify a specific target. Once identified, it employs a hooking tech-

nique to inject itself into the memory of the chosen process. So, the malicious sample estab-

lishes a presence within the targeted process. As shown in Fig 10, The DarkHotel family

creates a malicious executable file to ensure encryption and authentication. During this pro-

cess, the file undergoes encryption using the DES algorithm. The encrypted file is a container

for storing and encrypting sensitive data, facilitating secure transmission, and concealing the

underlying attack behavior. As shown in Fig 11, As a stealthy measure, the DarkHotel family

generates a disguised file named “acroproedit” to store the data it steals from the compromised

Fig 6. Deleting the malicious executable file generated by the APT30 sample.

https://doi.org/10.1371/journal.pone.0304066.g006

Fig 7. Typical malicious software behavior of the DarkHotel family.

https://doi.org/10.1371/journal.pone.0304066.g007

PLOS ONE Attribution classification method of APT malware based on multi-feature fusion

PLOS ONE | https://doi.org/10.1371/journal.pone.0304066 June 27, 2024 8 / 28

https://doi.org/10.1371/journal.pone.0304066.g006
https://doi.org/10.1371/journal.pone.0304066.g007
https://doi.org/10.1371/journal.pone.0304066

Fig 8. Connecting to the remote malicious domain.

https://doi.org/10.1371/journal.pone.0304066.g008

Fig 9. Traversing the system process list.

https://doi.org/10.1371/journal.pone.0304066.g009

Fig 10. Generating a malicious executable file for encryption and authentication purposes.

https://doi.org/10.1371/journal.pone.0304066.g010

PLOS ONE Attribution classification method of APT malware based on multi-feature fusion

PLOS ONE | https://doi.org/10.1371/journal.pone.0304066 June 27, 2024 9 / 28

https://doi.org/10.1371/journal.pone.0304066.g008
https://doi.org/10.1371/journal.pone.0304066.g009
https://doi.org/10.1371/journal.pone.0304066.g010
https://doi.org/10.1371/journal.pone.0304066

host. By adopting this disguise, the malware can elude security checks and remain hidden,

thereby evading detection by the system.

3.2 Process event behavior graph feature

Using the upgraded cuckoo sandbox to batch-process original samples, we get a runtime JSON

report. The analysis report is in JSON format, where the ‘behavior’ field contains general and

process behavior. The process behavior includes registry events (registry field), file events (file

field), network events (network field), process events (process field), system events (system

field), etc. Fig 12 shows the process behavior information in the JSON report.

APT malware often uses data mining and theft techniques with different timelines to hide

their abnormal behavior during the attack. Due to the advanced nature of APT malware, APT

organizations often evade detection by combining benign and malicious behaviors to create a

new way of attack and generate fake executable files for attack to achieve stealthiness. Regard-

ing the sustainability of APT malware, there will be more event behavior occurrences and

interactions between them. Traditional feature extraction methods are inadequate in extract-

ing features representing malicious software behavior. Studies [4, 7] also point out that one of

the significant difficulties in detecting APT attacks, compared to other attack techniques, is the

lack of correlation in attack events [35]. Therefore, existing methods lack the behavior of APT

malware and sufficient correlation in these behavioral manifestations. This paper constructs a

process event behavior graph for APT malware to address these issues.

3.2.1 Construct the graph. Fig 12 shows that each event in the process behavior exists

independently, the API name in the event is unique, and some information in the parameter

list can represent the call relationship between the events and the actions that occur in the

events. Table 2 lists some connections between relevant parameters and API calls. The API

calls listed in Table 2 are prone to occur in benign samples, but malicious samples may be

designed if combined. For example, the Advanced Persistent Threat (APT) malicious software

code snippet shown in Fig 13: (1) Firstly, the TCP file is created and then deleted (lines (1)-

(2)). (2) Create an IP file. Get information, read, read again, and set IP file information (lines

(3)-(7)). Fig 14 displays the behavior graph of the code snippet obtained according to the exe-

cution sequence. However, some nodes in Fig 14 are redundant. Therefore, we can merge

these redundant nodes to get a directed multi-graph of behavior homomorphisms. As shown

in Fig 15, it displays the specific behavior homomorphism graph.

Therefore, to construct an isomorphism graph, as shown in Fig 15, the API is taken as a

node, where the API name represents the node information. The parameters serve as the

Fig 11. Generate a disguised acroproedit file for the Dark Hotel sample.

https://doi.org/10.1371/journal.pone.0304066.g011

PLOS ONE Attribution classification method of APT malware based on multi-feature fusion

PLOS ONE | https://doi.org/10.1371/journal.pone.0304066 June 27, 2024 10 / 28

https://doi.org/10.1371/journal.pone.0304066.g011
https://doi.org/10.1371/journal.pone.0304066

behavior actions connecting two events, where the parameters mainly consider DLLs, IPs,

URLs, paths, and registries. The sequence of their execution forms the relationship between

events. The behavior graph we propose is defined as follows:

G ¼ ðV;E; AV ;AEÞ ð1Þ

Where V represents the set of nodes, E� V × V represents the set of edges, and ~AV represents

the node features, i.e., the API name. ~AE represents the edge features, i.e., the behavior actions

Fig 12. Process behavior information in json reports.

https://doi.org/10.1371/journal.pone.0304066.g012

Table 2. Operating system resource types and API calls.

Resource

types

API calls

Registryevent RegOpenKey, RegSetValue, RegCloseKey, RegDeleteValue, RegQueryValue, RegCreateKey,

NtOpenKey, NtQueryValueKey, RegEnumValue, RegEnumKey, NtQueryKey, RegQueryInfoKey

Fileevent NtCreateFile, NtReadFile, NtSetInformationFile, NtOpenFile, NtWriteFile, DeviceIoControl,

CreateDirectory, DeleteFile, FindFirstFile, NtDeviceIoControlFile, NtQueryInformationFile

Networkevent WSAStartup, getaddrinfo

Processevent NtOpenSection, ZwMapViewOfSection, NtFreeVirtualMemory, NtCreateSection,

CreateProcessInternal

Systemevent NtDelayExecution, FindWindow, SetWindowsHook, RemoveDirectory, GetSystemMetrics,

LookupPrivilegeValue

https://doi.org/10.1371/journal.pone.0304066.t002

PLOS ONE Attribution classification method of APT malware based on multi-feature fusion

PLOS ONE | https://doi.org/10.1371/journal.pone.0304066 June 27, 2024 11 / 28

https://doi.org/10.1371/journal.pone.0304066.g012
https://doi.org/10.1371/journal.pone.0304066.t002
https://doi.org/10.1371/journal.pone.0304066

(including DLLs, IPs, URLs, PATHs, and REGISTRY parameters). Algorithm 1 below

describes the construction process of nodes and edges.

Algorithm 1 Construct behavior graph from JSON report.
Input: report.json
Output: Behavior Graph
1: events initialize_Event(R)
2: api2Node_dir ={}
3: Node2api_dir = {Node_list=[], item_list=[],
4: edge_list=[], attr_edge=[]}
5: num = 0
6: for i 0 to |events| do
7: event get_parameter(event[i])
8: if event.api =2 Node_set then
9: Node_set.add(event.api)
10: api2Node_dir[event.api] = num
11: Node2api_dir[num] event.api
12: num num + 1
13: attr_edge.add(event.information)
14: for i 0 to |events| do
15: key api2Node [event.api] item_list.add(key)
16: for i 0 to |item_list| do edge_list.add(item_list[i], item_list

[i+1])
17: return construt_graph={Node_list, edge_list, Node2api_dir,

attr_edge}

Fig 13. APT malware code snippet.

https://doi.org/10.1371/journal.pone.0304066.g013

Fig 14. The behavior graph of the code snippet.

https://doi.org/10.1371/journal.pone.0304066.g014

PLOS ONE Attribution classification method of APT malware based on multi-feature fusion

PLOS ONE | https://doi.org/10.1371/journal.pone.0304066 June 27, 2024 12 / 28

https://doi.org/10.1371/journal.pone.0304066.g013
https://doi.org/10.1371/journal.pone.0304066.g014
https://doi.org/10.1371/journal.pone.0304066

3.2.2 Graph encoding. The API name is a string that represents a system call sequence

with semantic relationships in context. Therefore, We utilized Word2Vec with a skip-gram

model in this paper to generate a fixed-size vector space. Our training involved a substantial

corpus of API calls. Following training, we transformed each unique API name into a feature

vector of 32 dimensions. During the event analysis, the behavioral parameters were the file

paths, dynamic link libraries (DLLs), registry entries, URLs, and IP addresses. We considered

these parameters vital to capture the analyzed events’ behavioral characteristics. Since these

parameters are addresses and paths represented as strings, they do not have any meaningful

semantic relationships. However, we observed that there are similarities between paths and

between addresses. Therefore, we performed similarity encoding on the above parameter

information, with each type of parameter represented as a 16-dimensional feature vector. Ini-

tially designed for high-cardinality string variables in database learning, similarity encoding

[36] serves as a lightweight feature extraction technique. This method operates on the premise

that strings with a significant number of shared n-grams tend to possess similar meanings or

semantic relationships. By leveraging this concept, similarity encoding enables the representa-

tion of strings in a manner that captures their inherent similarities in meaning. Therefore, we

use similarity encoding to express the semantic information of event parameters. The similar-

ity encoder essentially represents string variables as semantic feature vectors. Given a training

corpus C containing N strings, the similarity encoder workflow can be dissected into three dis-

tinct steps:

(1) Definition of the similarity function. The similarity function is:

sim si; sj
� �

¼ J G sið Þ;G sj
� �� �

¼
jGðsiÞ \ GðsjÞj
jGðsiÞ [GðsjÞj

ð2Þ

Where GðsÞ represents the set of consecutive character n − grams of the string s, and the simi-

larity between si and sj is equal to the Jaccard index between GðsiÞ and GðsjÞ. For example, if we

consider 5 − grams, G 0C : =Program Files0ð Þ ¼ f
0C : =Pr0; 0 : =Pro0;0=Prog 0; � � � ;0File0;0Files0g,

G 0C : =ProgramFiles X86ð Þ
0

� �
¼ f

0C : =Pr0; } : =Pro0;0=Prog 0; � � � ;0 sðX860;0ðX86Þ
0
g, then

simð0C : =ProgramFiles0;0C : =Pro � ::gramFilesðX86Þ
0
Þ ¼ 12

17
, To obtain more string features,

we generate string sets using 3 − grams, 4 − grams, and 5 − grams.

Fig 15. Directed multi-edge behavior isomorphism graph.

https://doi.org/10.1371/journal.pone.0304066.g015

PLOS ONE Attribution classification method of APT malware based on multi-feature fusion

PLOS ONE | https://doi.org/10.1371/journal.pone.0304066 June 27, 2024 13 / 28

https://doi.org/10.1371/journal.pone.0304066.g015
https://doi.org/10.1371/journal.pone.0304066

(2) Training of the encoder. The strings that appear K times in the corpus C are extracted as

frequent item-sets D = {d1, d2, � � �, dk}, where D� C, and then D is encoded into feature

vectors.

(3) Feature encoding. The similarity function encodes the string s into a feature vector of

dimension size 16.

This research paper analyzes file paths, dynamic link libraries (DLLs), registry entries,

URLs, and IP addresses, as they are closely associated with process event behavior. We train a

separate similarity encoder for these five string types to facilitate the encoding process, result-

ing in five distinct encoders. During the feature encoding phase, we employ regular expression

matching to identify the string type and apply the relevant encoder to process that particular

string. This approach ensures that each string is encoded appropriately based on its corre-

sponding type, allowing for accurate data analysis and representation.

3.3 Opcode image feature

APT malware often uses different techniques to hide its malicious behavior during attacks.

Given the persistence of APT malware, a sample file may contain multiple repetitive com-

mands, which represent the sustainable process of the APT malware attack. At the same time,

the interaction of opcode structure features and behavior features can reflect the fundamental

operations of the interaction between disassembled opcode commands and the operating sys-

tem, as well as operations on files, processes, registries, module loading, and networks. There-

fore, we use IDA Pro and Python code to process the original samples in batch and obtain the

disassembled language. We extracted the standard opcodes from the disassembled code in the

initial step. These opcodes encompass a range of instructions, including data transfer, arithme-

tic logic, flow control, stack operations, string manipulation, floating-point operations, and

more. In total, there are 64 opcodes. We referenced Zhang’s work [37] in selecting opcodes,

and Table 3 shows the key opcodes that we extracted.

Then, based on these 64 opcodes, we obtained the word frequency for each sample.

Research has shown that opcodes with smaller word frequencies can better represent a sam-

ple’s characteristics [29]. Therefore, we arrange all opcodes in ascending order according to

the total word frequency and normalize them to the range [0, 255] using Eq 3.

scaler255 ¼ round
255� ðMaxðdecÞ � MinðdecÞÞ

MaxðdecÞ � MinðdecÞ

� �

ð3Þ

Where dec represents the set of all word frequencies of the same opcode, then apply the opera-

tion 255/(pixel + 1) for each opcode element. We perform an analysis of adjacent operations,

resulting in the derivation of a co-occurrence matrix. Subsequently, we map this matrix to an

image with [64, 64] dimensions. Fig 16 displays the generated co-occurrence matrix image.

The following Algorithm 2 describes the process of generating the word frequency co-occur-

rence matrix image.

Algorithm 2 By using the word frequency data, we obtain a matrix image.

Table 3. Primary extracted opcodes.

Categories Opcode

Operation ins, cld, jl, inc, endp, mul, imul, daa, test, ret, z, dec, xor, std, jmp, lea, cmp, pop, add, in, call, push, sub,

dw, mov, or, dd, xchg, shl, sbb, jb, jg, jnb, shr, not, ror, rol, fld, cli, stos, rep, sar, out, stc, rcl, sal, sti,

cdq, wait, jo, fstp, cmc, cwd, fdiv, fxch, rcr, scas, outs, sidt, fchs, fistp, faddp, fdivr, jno

https://doi.org/10.1371/journal.pone.0304066.t003

PLOS ONE Attribution classification method of APT malware based on multi-feature fusion

PLOS ONE | https://doi.org/10.1371/journal.pone.0304066 June 27, 2024 14 / 28

https://doi.org/10.1371/journal.pone.0304066.t003
https://doi.org/10.1371/journal.pone.0304066

Input: asm_opcode.csv(Opcode Form Files)
Output: matrix image
1: data initialize(asm_opcode.csv)
2: api2Node_dir ={}
3: asm_opcode_cols = data.opcode
4: for i 0 to |asm_opcode_cols| do
5: col_sum = df[col_name].sum()
6: asm_opcode_cols.append(col_sum)
7: df[cols] = sorted(asm_opcode_cols)
8: df[cols] scaler255(df[cols])
9: mat[len(asm_opcode_cols)][len(asm_opcode_cols)]
10: return img img(mat)

3.4 Component based on event behavior graph

Dynamic events encompass registry events (“registry” field), file events (“file” field), network

events (“network” field), process events (“process” field), and system events (“system” field).

The intrinsic features of each event and the associated features between events are of utmost

importance. Therefore, as depicted in Fig 17, GGNN [15] is employed to efficiently learn the

structural information and content features, which include hidden file paths and DLL libraries.

GAT+gpool learns the edge features of the graph structure and the associated features between

nodes, representing the long-term persistent behavior of APT malware during its operation.

Graph neural networks operate on the fundamental principle of aggregating feature infor-

mation from local graph domains using neural networks. This approach integrates neighbor-

ing node features and their relationships within the graph structure, enabling effective

learning and inference processes. In recent years, researchers have developed various methods

for analyzing graphs, including GGNN (Gated Graph Neural Networks) [15], GAT (Graph

Attention Networks) [16], and graph convolutional networks [38], among others., based on

different aggregation techniques. Due to the correlation between events and the events them-

selves, this paper introduces a graph neural network model (GNNs) that combines GGNN

(Gated Graph Neural Networks) and GAT (Graph Attention Networks) to extract graph fea-

tures. GGNN (Gated Graph Neural Networks) effectively learns the mutual dependencies

between content features and nodes. GGNN (Gated Graph Neural Network) builds upon the

Graph Convolutional Network (GCN) by incorporating the Gated Recurrent Unit (GRU). In

Fig 16. The opcode frequency co-occurrence matrix image.

https://doi.org/10.1371/journal.pone.0304066.g016

Fig 17. Behavior graph feature engineering module.

https://doi.org/10.1371/journal.pone.0304066.g017

PLOS ONE Attribution classification method of APT malware based on multi-feature fusion

PLOS ONE | https://doi.org/10.1371/journal.pone.0304066 June 27, 2024 15 / 28

https://doi.org/10.1371/journal.pone.0304066.g016
https://doi.org/10.1371/journal.pone.0304066.g017
https://doi.org/10.1371/journal.pone.0304066

this extension, the GRU considers the information from adjacent nodes as inputs, while the

node’s state serves as the hidden state. The inclusion of GRU introduces selective memory of

hidden information from neighboring nodes and selective memory during the iterative pro-

cess of each node. This enhancement significantly improves the model’s capacity to capture

and leverage contextual dependencies, leading to more effective utilization of information

throughout the network. Introducing a learnable parameter W becomes essential to handle

graphs consisting of nodes and edges of different types. This parameter enables the gated

graph neural networks to update and propagate the embedding information of nodes and

edges within graph G. Each node obtains information from its adjacent nodes through the

edges and combines it with its node information during the update process. Furthermore, in

addition to incorporating information from neighboring nodes, all nodes in the graph utilize

the previous time series results to achieve higher-order feature interactions at time t. The for-

mula is:

at ¼ Aht� 1Wa þ b ð4Þ

zt ¼ sðWzat þ Uzht� 1Þ ð5Þ

rt ¼ sðWrat þ Urht� 1Þ ð6Þ

ht ¼ tanhðWhat þ Uhðrt � ht� 1ÞÞ ð7Þ

ht ¼ ht � zt þ ht� 1 � ð1 � ztÞ ð8Þ

The initial feature values of nodes in the given equation are represented by the symbol h,

where d denotes the dimensionality of the nodes. A refers to the graph’s adjacency matrix,

while sigmoid represents the sigmoid function. The parametersW, U, and b are learnable

weights and biases. Z denotes the update gate; the reset gate is denoted by the symbol “r” in the

formula. The update gate controls the amount of new information the current state should

receive from the historical state. In contrast, The reset gate actively determines the degree to

which previous information is discarded for the candidate’s hidden state, making it a crucial

factor in the overall process. Fig 18 provides a visual representation of the operational process,

allowing for observing its intricacies and finer details.

In APT malicious samples, some events are benign, but their malicious nature becomes evi-

dent when these benign events are linked together. At the same time, in the entire behavior

graph, malicious behaviors only occupy a small portion. Therefore, the contribution of behav-

ior information from different parts of a malicious sample to the overall behavior graph varies,

hence the introduction of GAT.

Fig 18. Details of operations in the GGNN network.

https://doi.org/10.1371/journal.pone.0304066.g018

PLOS ONE Attribution classification method of APT malware based on multi-feature fusion

PLOS ONE | https://doi.org/10.1371/journal.pone.0304066 June 27, 2024 16 / 28

https://doi.org/10.1371/journal.pone.0304066.g018
https://doi.org/10.1371/journal.pone.0304066

3.5 Component based on opcode image

VGG16 is a deep learning framework based on Convolutional Neural Networks (CNN)

trained on the ImageNet dataset. The input to the VGG16 network architecture consists of

fixed-sized images with dimensions of 224 × 224 and three color channels. The image data is

then passed through a series of convolutional layers with a filter size of 3 × 3, including using

1 × 1 filters. The convolutional stride is set at 1 pixel, along with one padding, to maintain the

spatial dimensions of each activation map identical to the previous layer. ReLU (Rectified Lin-

ear Units) activation functions are employed in all hidden layers to expedite the training pro-

cess. Additionally, for downsampling purposes, the VGG16 network incorporates a max-

pooling layer that utilizes a 2 × 2 kernel filter, has no padding, and employs a stride of 2. This

layer helps reduce the spatial dimensions of the input data while retaining the most essential

features. BLSTM is a bidirectional neural network that captures long-term dependencies in

context by training on sequences both forwards and backwards.

To address the issue of local code reuse in the same APT malware family, taking into account

the simplicity of the word frequency co-occurrence matrix image and the significance of opcode

frequencies, we utilize a pre-trained VGG16 model to extract local spatial features from the

opcode images of disassembled language. BLSTM is used to capture the opcode sequence’s

long-term dependencies, representing the malware’s persistence features. Ultimately, the paper

construct the ImageCNTM model based on VGG16 and BLSTM, as shown in Fig 19.

3.6 Fusion component and classification

As shown in Fig 1, each sub-component in our framework extracts features from different rep-

resentations, that is, different data patterns. The fusion component combines the features

learned from multiple sub-components into a shared representation for the final classification.

Our approach involves several steps to ensure optimal performance before the final feature

fusion and classification. First, we train each component individually, allowing them to learn

specific patterns and representations. During this process, we carefully optimize the hyper-

parameters of each component to enhance their effectiveness. Next, we utilize the best pre-

trained weights obtained from the individual training to initialize the corresponding compo-

nents in the multimodal neural network. This initialization strategy helps prevent overfitting

to a subset of features from a single component [39]. It also facilitates faster convergence dur-

ing the subsequent training phase and improves classification results [39, 40]. This

Fig 19. ImageCNTM model.

https://doi.org/10.1371/journal.pone.0304066.g019

PLOS ONE Attribution classification method of APT malware based on multi-feature fusion

PLOS ONE | https://doi.org/10.1371/journal.pone.0304066 June 27, 2024 17 / 28

https://doi.org/10.1371/journal.pone.0304066.g019
https://doi.org/10.1371/journal.pone.0304066

comprehensive approach ensures that each component contributes effectively to the final clas-

sification task while leveraging the advantages of pretraining and weight initialization.

3.6.1 Feature fusion and classification. During training, the learned APT malware fea-

tures I (based on co-occurrence matrix word frequency features) and G (behavioral graph fea-

tures) are merged iteratively through multiple fusion layers. The merged feature representation

serves as the shared APT malware feature. Vectors I and G are fused to form a vector P of size

8192. Subsequently, vector P is passed through nine fully connected layers and eight dropout

layers for the classification of APT malware, with the last fully connected layer responsible for

capturing the shared features of APT malware. The specific process is as follows:

p ¼ softmaxðWcP þ bcÞ ð9Þ

Where p is a vector of size C(C = 12),Wc and bc are the weights and biases of the layer. The sof-
max function outputs the probability of belonging to an APT malware family’s executable file

in the training set. The network configuration process defines the sizes of vectors C and P.

4 Experimental results

The paper wrote all the necessary code for the experiments using the PyTorch framework. The

experimental environment utilizes a Windows 10 operating system with an Intel(R) Core(TM)

i7-4720HQ 2.60 GHz processor, 16GB of RAM, and a 3090 graphics card. In the experiment,

the paper utilized APT malware samples. The paper randomly split the training and test sets in

an 8:2 ratio.

4.1 Datasets

The paper collected 2809 standard samples of APT malware from a public environment

(https://github.com/cyber-research/APTMalware), belonging to 12 different families, includ-

ing APT1, APT10, APT19, APT21, APT28, APT29, APT30, Dark Hotel, Energetic Bear, Equa-

tion Group, Gorgon Group, and Winnti. The providers of APT malware used open-source

threat intelligence reports from multiple vendors. The paper collected multiple threat intelli-

gence reports from Value1, using the hash list of all files as indicators of compromise (IoCs),

and obtained Value2 target samples from VirusTotal. Table 4 shows the APT malware families

and the number of samples.

Table 4. APT family and sample size.

APT Family Sample Size

APT1 387

APT10 238

APT19 23

APT21 78

APT28 151

APT29 269

APT30 164

DarkHotel 263

EnergeticBear 132

EquationGroup 395

GorgonGroup 351

Winnti 358

https://doi.org/10.1371/journal.pone.0304066.t004

PLOS ONE Attribution classification method of APT malware based on multi-feature fusion

PLOS ONE | https://doi.org/10.1371/journal.pone.0304066 June 27, 2024 18 / 28

https://github.com/cyber-research/APTMalware
https://doi.org/10.1371/journal.pone.0304066.t004
https://doi.org/10.1371/journal.pone.0304066

4.2 Evaluation index

The experiment in this article is a multi-classification experiment. Due to the imbalance of

samples among different classes, precision, recall, and F1-score were chosen as evaluation indi-

cators to assess various classifications comprehensively. Furthermore, the paper used a confu-

sion matrix to represent the classification results. For the i-th class(1 ⩽ i� n), the precision

(Pi), recall (Ri), and F1_score (F_scorei) are:

Pi ¼
ciiP
jcji

ð10Þ

Ri ¼
ciiP
jcij

ð11Þ

Fscorei ¼ 2�
Pi � Ri
Pi þ Ri

ð12Þ

Finally, the paper calculates the arithmetic mean of the indicators for each category to

obtain the macro average, which measures the overall classification performance across vari-

ous algorithms.

Pmacro ¼
1

n

Xn

i¼1

Pi ð13Þ

Rmacro ¼
1

n

Xn

i¼1

Ri ð14Þ

Pscoremacro ¼ 2�
Pmacro � Rmacro
Pmacro þ Rmacro

ð15Þ

4.3 Evaluating the graph-based component

Unlike traditional malware, APT (Advanced Persistent Threat) attackers use different C&C

(Command and Control) servers or malicious payloads to establish network and other event

behaviors to prevent association within the same APT family. Therefore, the paper constructs

an event behavior graph in the dynamic behavior report by considering API calls and their cor-

responding event actions, such as file operations, network operations, and more. Existing meth-

ods have only used API sequences. Rosenberg I et al. [13] focused on the API sequences in the

dynamic behavior report, taking the top 50,000 words with the highest frequency as behavioral

features. Subsequently, they used a model based on the DNN architecture to trace the source of

APT malware. Chaoxian Wei et al. [30] extracted the dynamic behavior’s API as behavioral fea-

tures, applied dynamic LSTM and attention algorithms to represent the data as feature vectors,

and then utilized transfer learning to perform multi-classification on APT families.

As shown in Table 5, the precision of our proposed graph neural network-based method is

lower than the approach proposed by Wei C et al. [30], possibly due to incomplete behavior

reports resulting from the detection of virtual environments during the simulation of sample

behavior using upgraded cuckoo in the original sample, which led to incomplete construction

of the behavior timeline graph and hindered the graph neural network model from better

learning event-related feature correlations. However, we found that the precision was

PLOS ONE Attribution classification method of APT malware based on multi-feature fusion

PLOS ONE | https://doi.org/10.1371/journal.pone.0304066 June 27, 2024 19 / 28

https://doi.org/10.1371/journal.pone.0304066

significantly higher than the method proposed by Rosenberg I et al. [13], which also demon-

strates the importance of considering event and event correlation, as well as the operational

details of API instructions. The paper also emphasized the significance of hidden file addresses

and Dynamic Linked Libraries (DLLs) since APT malware frequently generates counterfeit

executable files to achieve stealth effects. The long-term dependency between events also illus-

trates the sustainability of APT malware. In general, the proposed Graph-GNNs in this paper

consider API instructions and related parameters, while Rosenberg et al. only consider API

instructions without related parameter information. Graph-GNNs achieve an improvement of

2.82% in precision.

4.4 Evaluating the image-based component

APT organizations involve multiple developers in the development of malware, making the

structure of the original binary code diverse and increasing the difficulty of tracing. Compared

to binary code, opcode can reflect software running instructions and is less likely to be obfus-

cated. Shen G et al. [10] focused on the malicious code itself and proposed a method for tracing

APT malware based on dual attention mechanisms and bidirectional Long Short-Term Mem-

ory (LSTM) using the grayscale images of the malicious code. This method only considers the

grayscale image features of the binary code, which can be easily affected by obfuscation mecha-

nisms, leading to a decline in classification performance. Kida M et al. [11] performed fuzzy

hashing on the original samples and then used machine learning methods for multi-classifica-

tion tasks. Fuzzy hashing usually only compares files locally and often needs to catch up on

some crucial information. Zhang Y et al. [12] performed n-gram operations on opcodes, then

input them into an RNN-based BinMLM model to capture the long-term dependencies of the

opcode sequence. However, they did not consider the issue of multiple reuses of local opera-

tion behavior within the same APT organization.

As shown in Table 6, the deep learning method proposed in this paper based on opcode

images outperforms related papers based on binary code in all indicators, further validating

that opcode instructions can better reflect software running behavior than binary code and are

less likely to be affected by code obfuscation, indicating that opcode behavior instructions can

reflect the sustainability of APT malware. Our proposed method outperforms the approach

proposed by Zhang Y et al. [12], demonstrating the importance of local spatial features and

solving the issue of multiple reuses of local operation behavior within the same APT family.

Table 5. Comparison of related papers based on dynamic behavior models.

Baseline Evaluation Index

Macro P(%) Macro Recall(%) Macro F1(%)

Rosenberg I et al. [13] 86.42 85.29 85.11

Wei C et al. [30] 93.08 92.65 92.83

Graph-GNNs (Our Method) 89.24 80.65 83.15

https://doi.org/10.1371/journal.pone.0304066.t005

Table 6. Comparison of related papers based on static structural models.

Baseline Feature Evaluation Index

Macro P(%) Macro Recall(%) Macro F1(%)

Shen G et al. [10] Binary code 86.25 86.02 85.89

Kida M et al. [11] Binary code 89.23 85.37 87.35

Zhang Y et al. [12] Opcode 91.74 88.44 89.26

ImageCNTM (Our Method) Opcode 91.97 90.61 91.15

https://doi.org/10.1371/journal.pone.0304066.t006

PLOS ONE Attribution classification method of APT malware based on multi-feature fusion

PLOS ONE | https://doi.org/10.1371/journal.pone.0304066 June 27, 2024 20 / 28

https://doi.org/10.1371/journal.pone.0304066.t005
https://doi.org/10.1371/journal.pone.0304066.t006
https://doi.org/10.1371/journal.pone.0304066

4.5 Evaluating multi-feature fusion model

Attribution classification based on opcode structural features or event behavior features both

have their shortcomings, as attribution classification methods based on a single feature can be

affected by attackers using evasion and obfuscation techniques, thereby evading detection

mechanisms. Both opcode and event behavior graphs reflect the interaction and operation of

the operating system, and they influence each other, both being about software running behav-

ior. Hence, the paper compares the classification results after feature fusion with those

reported in related papers.

From the experimental results in Table 7, the proposed feature fusion tracing method in

this paper performs the best among all related papers, with a precision of 93.65%, recall of

93.27%, and F1 score of 93.57%. This method can partially solve the problem of APT malware

being easily affected by obfuscation. Shen G. et al. [10] and Kida M et al. [11] only considered

the features of the sample code itself, which we found easily disturbed by obfuscation, resulting

in poor classification performance. Zhang Y et al. [12] only considered the long-term depen-

dency relationship of opcode sequences and did not consider the problem of local code reuse

of APT malware within the same family. Therefore, it performs better than methods lacking

local spatial features that result in poor detection performance. Additionally, opcode behavior

graphs represent the sustainability of APT malware, while event behavior graphs represent the

sophistication and persistence of APT malware. Therefore, the fusion of both reflects the

sophistication and persistence of APT malware.

Rosenberg I et al. [13] and Wei C et al. [30] considered higher-level features, namely behav-

ioral features. Rosenberg I et al. [13] focused on describing a sample’s behavior based on the

top 50,000 most frequently occurring words, while Wei C et al. [30] described a sample’s

behavior based on runtime API calls. API sequences pertain to runtime behavior, indicating

that although dynamic execution behavior can aptly represent the software running process, it

can also be affected by obfuscation and evasion techniques. So, features extracted using deep

learning methods might only partially represent the complete state of the sample during its

execution.

Fig 20 shows the confusion matrix generated by the APT malware classification architecture

on the APT malware testing set. The results indicate that, except for the APT10, APT21, and

Dark Hotel categories, the precision of all other APT malware categories can reach over 91%.

In order to comprehend the source of performance improvement, this study investigates a

multi-feature fusion model based on deep learning. The paper employs t-SNE (t-distributed

Stochastic Neighbor Embedding) to visualize the results. t-SNE [41] is a non-linear dimension-

ality reduction algorithm that maps data samples to a two-dimensional space. Figs 21–22 show

the visualization results. Fig 22 displays the t-SNE plot of the testing samples for the APT mal-

ware classification task. In this study, the paper utilized graphs and images as the original

Table 7. Comparison of APT malware related papers.

Baseline Feature Evaluation Index

Macro P(%) Macro Recall(%) Macro F1(%)

Shen G et al. [10] Binary code 86.25 86.02 85.89

Rosenberg I et al. [13] API 86.42 85.29 85.11

Wei C et al. [30] API 93.08 92.65 92.83

Kida M et al. [11] Binary code 89.23 85.37 87.35

Zhang Y et al. [12] Opcode 91.74 88.44 89.26

This Work Opcode-Graph 94.23 93.35 93.72

https://doi.org/10.1371/journal.pone.0304066.t007

PLOS ONE Attribution classification method of APT malware based on multi-feature fusion

PLOS ONE | https://doi.org/10.1371/journal.pone.0304066 June 27, 2024 21 / 28

https://doi.org/10.1371/journal.pone.0304066.t007
https://doi.org/10.1371/journal.pone.0304066

features of the samples. In order to visualize the sample data, the original features were pro-

jected onto a two-dimensional space, as shown in Fig 21. Lastly, the paper fused the features

learned from the two types of original data and mapped the fused features to a two-dimen-

sional space for comparison, as shown in Fig 22. The analysis revealed that the fused features

formed tighter clusters than the original ones.

4.6 Ablation study

In this section, we constructed variants of the proposed models to evaluate the impact of the

two types of features and feature fusion on the attribution classification results. The two types

used were behavioral graph features and opcode image features.

Fig 20. Confusion matrix for multiple classifications of APT malware.

https://doi.org/10.1371/journal.pone.0304066.g020

Fig 21. Original features.

https://doi.org/10.1371/journal.pone.0304066.g021

PLOS ONE Attribution classification method of APT malware based on multi-feature fusion

PLOS ONE | https://doi.org/10.1371/journal.pone.0304066 June 27, 2024 22 / 28

https://doi.org/10.1371/journal.pone.0304066.g020
https://doi.org/10.1371/journal.pone.0304066.g021
https://doi.org/10.1371/journal.pone.0304066

The paper explored and compared the performance of different modules in the model and

conducted ablation experiments from three aspects: the behavioral graph feature module, the

opcode image feature module, and the multi-feature fusion module.

4.6.1 Analysis of graph learning model. From a technical point, the GGNN is used to

capture the features of nodes and edges, which are then input into the GAT network to capture

the critical features of the graph. As a comparison, section 3.4 focuses on the connection

between the two. GGNN effectively learns content features and the interdependencies between

nodes. On the other hand, graph attention networks(GAT) extract behavioral information

from a deeper perspective. Therefore, we attempted to remove the GAT to see the impact of

the key features on the performance. As shown in Fig 23, the metrics of our proposed graph

neural network model (GGNN-GAT) are significantly higher than those without the GAT

module, indicating that when judging the category of APT malicious samples, the contribu-

tions of different parts of behavior to the overall behavior are different. Therefore, using GAT

to extract meaningful information is very crucial.

4.6.2 Analysis of image learning model. For opcode frequency, inspired by the transfor-

mation of binary code into a grayscale image, we mapped opcode frequency onto an image to

get an opcode frequency image. In dealing with this image, we used the VGG16-BLSTM.

Because of the influence of small samples, we used a pre-trained VGG16 to extract local fea-

tures and then utilized BLSTM to extract the sequence features of the opcode. Therefore, we

tried to remove BLSTM to see the impact of the continuous short-term dependency features

on the performance. As shown in Fig 24, the precision and F1 score are significantly higher

than after removing the BLSTM module, emphasizing the importance of the continuous long-

term dependency features in the opcode image. Continuous long-term dependencies can rep-

resent a sequence of continuous operations in an opcode instruction sequence, indicating the

Fig 22. The t-SNE plot after passing through the classification layer.

https://doi.org/10.1371/journal.pone.0304066.g022

PLOS ONE Attribution classification method of APT malware based on multi-feature fusion

PLOS ONE | https://doi.org/10.1371/journal.pone.0304066 June 27, 2024 23 / 28

https://doi.org/10.1371/journal.pone.0304066.g022
https://doi.org/10.1371/journal.pone.0304066

persistence of APT malware’s actions. These operations are interrelated, interdependent, and

interactive.

4.6.3 Analysis of multi-feature fusion model. In this paper, we have incorporated two

kinds of features: behavioral graph features and opcode image features. For these two types of

Fig 23. Ablation study of graph learning model.

https://doi.org/10.1371/journal.pone.0304066.g023

Fig 24. Ablation study of image learning model.

https://doi.org/10.1371/journal.pone.0304066.g024

PLOS ONE Attribution classification method of APT malware based on multi-feature fusion

PLOS ONE | https://doi.org/10.1371/journal.pone.0304066 June 27, 2024 24 / 28

https://doi.org/10.1371/journal.pone.0304066.g023
https://doi.org/10.1371/journal.pone.0304066.g024
https://doi.org/10.1371/journal.pone.0304066

features, we will merge them by removing the corresponding modules as per sections 4.6.1 and

4.6.2.

As shown in Fig 25, the indicators of multi-stage feature fusion are significantly higher than

other modules, indicating that the extraction of critical information by GAT and continuous

Fig 25. Comparison of multi-feature fusion modules.

https://doi.org/10.1371/journal.pone.0304066.g025

Fig 26. Comparison of single-feature and multi-feature fusion modules.

https://doi.org/10.1371/journal.pone.0304066.g026

PLOS ONE Attribution classification method of APT malware based on multi-feature fusion

PLOS ONE | https://doi.org/10.1371/journal.pone.0304066 June 27, 2024 25 / 28

https://doi.org/10.1371/journal.pone.0304066.g025
https://doi.org/10.1371/journal.pone.0304066.g026
https://doi.org/10.1371/journal.pone.0304066

long-term term dependency features by BLSTM are essential. For the behavior of APT mali-

cious software samples, when determining the category of APT malicious samples, the contri-

bution of different parts of the behavior to the overall behavior is different. Therefore, it is

crucial to use GAT to extract meaningful information. For APT malicious software, continu-

ous long-term dependencies can represent a sequence of continuous operations in an opcode

instruction sequence, and there is a relationship between instructions. Therefore, it is crucial

to use BLSTM to extract continuous long-term dependencies in the opcode sequence.

We considered behavioral graph features and opcode image features separately to compare

the differences between multi-feature fusion and single-feature fusion methods. Each single

feature still uses the original feature extraction method. We concatenated and fused each fea-

ture using a Multi-Layer Perceptron (MLP) for classification. As shown in Fig 26, the results

indicate that our multi-feature fusion method has a high precision, recall, and F1 Score. Simul-

taneously, we found that the multi-feature fusion model based on deep learning outperforms

the models based on opcode image and behavioral graph. Therefore, by proving that the

multi-feature fusion deep learning model, which learns and combines malware features from

various sources, can produce better classification results than the deep learning classifiers that

rely on a single data feature. So the multi-feature fusion deep learning model can largely avoid

the influence of confusion on the classification results. It also signifies that the features after

fusion can represent the advancement and persistence of APT malicious software.

5 Conclusion and future work

In this paper, we use a deep learning framework to implement and evaluate a new APT mal-

ware classification method and analyze various APT organizations’ attack behaviors and meth-

ods as examples to gain a deeper understanding of APT malware and propose corresponding

methods. This method combines multidimensional features extracted from the static structural

opcode images and dynamic behavioral event graphs.

We utilize 2809 APT malware samples from 12 families to experimentally demonstrate (1)

The effectiveness of event-related features and node and edge features, resulting in a specific

improvement in accuracy (89.24%). (2) Compared to binary codes in static structures, opcodes

better reflect software execution instructions and can represent the software’s behavioral fea-

tures, leading to a significant increase in accuracy (91.97%). (3) Compared to traditional mod-

els relying on a single data feature, the multi-feature fusion deep learning model showed a

notable improvement in accuracy (94.23%). In the future, we will research issues related to

adversarial machine learning under the assumption that APT attackers manipulate data and

use various techniques (static or dynamic features) to create adversarial examples to deceive

detection and classification models. Although our proposed framework accurately calculates

APT malware, future research must examine our multi-feature method’s robustness against

adversarial deep learning techniques and evasion detection methods.

Author Contributions

Conceptualization: Jian Zhang, Shengquan Liu.

Data curation: Shengquan Liu, Zhihua Liu.

Formal analysis: Jian Zhang.

Funding acquisition: Shengquan Liu.

Methodology: Jian Zhang.

Project administration: Shengquan Liu.

PLOS ONE Attribution classification method of APT malware based on multi-feature fusion

PLOS ONE | https://doi.org/10.1371/journal.pone.0304066 June 27, 2024 26 / 28

https://doi.org/10.1371/journal.pone.0304066

Supervision: Shengquan Liu.

Validation: Jian Zhang.

Writing – original draft: Jian Zhang.

Writing – review & editing: Jian Zhang.

References
1. Hutchins EM, Cloppert MJ, Amin RM. Intelligence-Driven Computer Network Defense Informed by

Analysis of Adversary Campaigns and Intrusion Kill Chains; 2010. Available from: https://api.

semanticscholar.org/CorpusID:6421896.

2. Alshamrani A, Myneni S, Chowdhary A, Huang D. A Survey on Advanced Persistent Threats: Tech-

niques, Solutions, Challenges, and Research Opportunities. IEEE Communications Surveys & Tuto-

rials. 2019; 21(2):1851–1877. https://doi.org/10.1109/COMST.2019.2891891

3. Ghafir I, Přenosil V. Advanced Persistent Threat Attack Detection: An Overview; 2014. Available from:

https://api.semanticscholar.org/CorpusID:111334688.

4. Chen TM. Stuxnet, the real start of cyber warfare? [Editor’s Note]. IEEE Network. 2010; 24(6):2–3.

https://doi.org/10.1109/MNET.2010.5395775

5. Huang YT, Sun YS, Chen MC. TagSeq: Malicious behavior discovery using dynamic analysis. PLOS

ONE. 2022; 17:1–23. https://doi.org/10.1371/journal.pone.0263644 PMID: 35576222

6. Han W, Xue J, Wang Y, Liu Z, Kong Z. MalInsight: A systematic profiling based malware detection

framework. Journal of Network and Computer Applications. 2019; 125:236–250. https://doi.org/10.

1016/j.jnca.2018.10.022

7. Laurenza G, Lazzeretti R, Mazzotti L. Malware Triage for Early Identification of Advanced Persistent

Threat Activities. Digital Threats. 2020; 1(3). https://doi.org/10.1145/3386581

8. Han W, Xue J, Wang Y, Zhang F, Gao X. APTMalInsight: Identify and cognize APT malware based on

system call information and ontology knowledge framework. Inf Sci. 2021; 546:633–664. https://doi.org/

10.1016/j.ins.2020.08.095

9. Li S, Zhang Q, Wu X, Han W, Tian Z, Yu S. Attribution Classification Method of APT Malware in IoT

Using Machine Learning Techniques. Sec and Commun Netw. 2021; 2021.

10. Shen G, Chen Z, Wang H, Chen H, Wang S. Feature fusion-based malicious code detection with dual

attention mechanism and BiLSTM. Computers & Security. 2022; 119:102761. https://doi.org/10.1016/j.

cose.2022.102761

11. Kida M, Olukoya O. Nation-State Threat Actor Attribution Using Fuzzy Hashing. IEEE Access. 2023;

11:1148–1165. https://doi.org/10.1109/ACCESS.2022.3233403

12. Song Q, Zhang Y, Ouyang L, Chen Y. BinMLM: Binary Authorship Verification with Flow-aware Mixture-

of-Shared Language Model. In: 2022 IEEE International Conference on Software Analysis, Evolution

and Reengineering (SANER); 2022. p. 1023–1033.

13. Rosenberg I, Sicard G, David E. End-to-End Deep Neural Networks and Transfer Learning for Auto-

matic Analysis of Nation-State Malware. Entropy. 2018; 20. https://doi.org/10.3390/e20050390 PMID:

33265480

14. Xue D, Li J, Wu W, Tian Q, Wang J. Homology analysis of malware based on ensemble learning and

multifeatures. PLOS ONE. 2019; 14:1–23. https://doi.org/10.1371/journal.pone.0211373

15. Li Y, Tarlow D, Brockschmidt M, Zemel RS. Gated Graph Sequence Neural Networks. CoRR. 2015;

abs/1511.05493.

16. Velickovic P, Cucurull G, Casanova A, Romero A, Lio’ P, Bengio Y. Graph Attention Networks. ArXiv.

2017;abs/1710.10903.

17. Zhu P, Wang X, Jia D, Guo Y, Li S, Chu C. Investigating the co-evolution of node reputation and edge-

strategy in prisoner’s dilemma game. Applied Mathematics and Computation. 2020; 386:125474.

https://doi.org/10.1016/j.amc.2020.125474

18. Zhao G, Xu K, Xu L, Wu B. Detecting APT Malware Infections Based on Malicious DNS and Traffic

Analysis. IEEE Access. 2015; 3:1132–1142. https://doi.org/10.1109/ACCESS.2015.2458581

19. Shen S, Ma H, Fan E, Hu K, Yu S, Liu J, et al. A Non-Cooperative Non-Zero-Sum Game-Based

Dependability Assessment of Heterogeneous WSNs with Malware Diffusion. J Netw Comput Appl.

2017; 91(C):26–35. https://doi.org/10.1016/j.jnca.2017.05.003

PLOS ONE Attribution classification method of APT malware based on multi-feature fusion

PLOS ONE | https://doi.org/10.1371/journal.pone.0304066 June 27, 2024 27 / 28

https://api.semanticscholar.org/CorpusID:6421896
https://api.semanticscholar.org/CorpusID:6421896
https://doi.org/10.1109/COMST.2019.2891891
https://api.semanticscholar.org/CorpusID:111334688
https://doi.org/10.1109/MNET.2010.5395775
https://doi.org/10.1371/journal.pone.0263644
http://www.ncbi.nlm.nih.gov/pubmed/35576222
https://doi.org/10.1016/j.jnca.2018.10.022
https://doi.org/10.1016/j.jnca.2018.10.022
https://doi.org/10.1145/3386581
https://doi.org/10.1016/j.ins.2020.08.095
https://doi.org/10.1016/j.ins.2020.08.095
https://doi.org/10.1016/j.cose.2022.102761
https://doi.org/10.1016/j.cose.2022.102761
https://doi.org/10.1109/ACCESS.2022.3233403
https://doi.org/10.3390/e20050390
http://www.ncbi.nlm.nih.gov/pubmed/33265480
https://doi.org/10.1371/journal.pone.0211373
https://doi.org/10.1016/j.amc.2020.125474
https://doi.org/10.1109/ACCESS.2015.2458581
https://doi.org/10.1016/j.jnca.2017.05.003
https://doi.org/10.1371/journal.pone.0304066

20. Yu S, Gu G, Barnawi A, Guo S, Stojmenovic I. Malware Propagation in Large-Scale Networks. IEEE

Transactions on Knowledge and Data Engineering. 2015; 27(1):170–179. https://doi.org/10.1109/

TKDE.2014.2320725

21. Peng S, Yu S, Yang A. Smartphone Malware and Its Propagation Modeling: A Survey. IEEE Communi-

cations Surveys & Tutorials. 2014; 16(2):925–941. https://doi.org/10.1109/SURV.2013.070813.00214

22. Li J, Sun L, Yan Q, Li Z, Srisa-an W, Ye H. Significant Permission Identification for Machine-Learning-

Based Android Malware Detection. IEEE Transactions on Industrial Informatics. 2018; 14(7):3216–

3225. https://doi.org/10.1109/TII.2017.2789219

23. Rudd EM, Rozsa A, Günther M, Boult TE. A Survey of Stealth Malware Attacks, Mitigation Measures,

and Steps Toward Autonomous Open World Solutions. IEEE Communications Surveys & Tutorials.

2017; 19(2):1145–1172. https://doi.org/10.1109/COMST.2016.2636078

24. Park Y, Reeves DS, Stamp M. Deriving common malware behavior through graph clustering. Comput-

ers & Security. 2013; 39:419–430. https://doi.org/10.1016/j.cose.2013.09.006

25. Kolbitsch C, Comparetti PM, Kruegel C, Kirda E, Zhou X, Wang X. Effective and Efficient Malware

Detection at the End Host. In: Proceedings of the 18th Conference on USENIX Security Symposium.

SSYM’09. USA: USENIX Association; 2009. p. 351–366.

26. Naeem H, Cheng X, Ullah F, Jabbar S, Dong S. A deep convolutional neural network stacked ensemble

for malware threat classification in internet of things. Journal of Circuits, Systems and Computers.

2022; 31(17):2250302. https://doi.org/10.1142/S0218126622503029

27. Shu L, Dong S, Su H, Huang J. Android Malware Detection Methods Based on Convolutional Neural

Network: A Survey. IEEE Transactions on Emerging Topics in Computational Intelligence. 2023; 7

(5):1330–1350. https://doi.org/10.1109/TETCI.2023.3281833

28. Yang X, Yang D, Li Y. A Hybrid Attention Network for Malware Detection Based on Multi-Feature

Aligned and Fusion. Electronics. 2023; 12(3). https://doi.org/10.3390/electronics12030713

29. Bilar D. Opcodes as Predictor for Malware. Int J Electron Secur Digit Forensic. 2007; 1(2):156–168.

https://doi.org/10.1504/IJESDF.2007.016865

30. Wei C, Li Q, Guo D, Meng X, Del Rey AM. Toward Identifying APT Malware through API System Calls.

Sec and Commun Netw. 2021; 2021.

31. Dong S, Shu L, Nie S. Android Malware Detection Method Based on CNN and DNN Bybrid Mechanism.

IEEE Transactions on Industrial Informatics. 2024; p. 1–10. https://doi.org/10.1109/TII.2024.3383054

32. Naeem H, Dong S, Falana OJ, Ullah F. Development of a deep stacked ensemble with process based

volatile memory forensics for platform independent malware detection and classification. Expert Sys-

tems with Applications. 2023; 223:119952. https://doi.org/10.1016/j.eswa.2023.119952

33. Chen W, Helu X, Jin C, Zhang M, Lu H, Sun Y, et al. Advanced persistent threat organization identifica-

tion based on software gene of malware. Transactions on Emerging Telecommunications Technolo-

gies. 2020; 31. https://doi.org/10.1002/ett.3884

34. Bolton AD, Anderson-Cook CM. APT malware static trace analysis through bigrams and graph edit dis-

tance. Statistical Analysis and Data Mining: The ASA Data Science Journal. 2017; 10:182–193. https://

doi.org/10.1002/sam.11346

35. Xuan CD, Huong DT. A new approach for APT malware detection based on deep graph network for

endpoint systems. Applied Intelligence. 2022; 52:14005–14024. https://doi.org/10.1007/s10489-021-

03138-z

36. Cerda P, Varoquaux G, Kégl B. Similarity Encoding for Learning with Dirty Categorical Variables. Mach

Learn. 2018; 107(8–10):1477–1494. https://doi.org/10.1007/s10994-018-5724-2

37. Zhang J, Wen Y. Malware Detection Based on Opcode Dynamic Analysis. EAI Endorsed Transactions

on Security and Safety. 2020;7(26).

38. Kipf T, Welling M. Semi-Supervised Classification with Graph Convolutional Networks. ArXiv. 2016;

abs/1609.02907.

39. Gibert D, Mateu C, Planes J. HYDRA: A multimodal deep learning framework for malware classification.

Comput Secur. 2020; 95:101873. https://doi.org/10.1016/j.cose.2020.101873

40. Raghu M, Zhang C, Kleinberg J, Bengio S. In: Transfusion: Understanding Transfer Learning for Medi-

cal Imaging. Red Hook, NY, USA: Curran Associates Inc.; 2019.

41. van der Maaten L, Hinton G. Visualizing Data using t-SNE. Journal of Machine Learning Research.

2008; 9(86):2579–2605.

PLOS ONE Attribution classification method of APT malware based on multi-feature fusion

PLOS ONE | https://doi.org/10.1371/journal.pone.0304066 June 27, 2024 28 / 28

https://doi.org/10.1109/TKDE.2014.2320725
https://doi.org/10.1109/TKDE.2014.2320725
https://doi.org/10.1109/SURV.2013.070813.00214
https://doi.org/10.1109/TII.2017.2789219
https://doi.org/10.1109/COMST.2016.2636078
https://doi.org/10.1016/j.cose.2013.09.006
https://doi.org/10.1142/S0218126622503029
https://doi.org/10.1109/TETCI.2023.3281833
https://doi.org/10.3390/electronics12030713
https://doi.org/10.1504/IJESDF.2007.016865
https://doi.org/10.1109/TII.2024.3383054
https://doi.org/10.1016/j.eswa.2023.119952
https://doi.org/10.1002/ett.3884
https://doi.org/10.1002/sam.11346
https://doi.org/10.1002/sam.11346
https://doi.org/10.1007/s10489-021-03138-z
https://doi.org/10.1007/s10489-021-03138-z
https://doi.org/10.1007/s10994-018-5724-2
https://doi.org/10.1016/j.cose.2020.101873
https://doi.org/10.1371/journal.pone.0304066

