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Abstract

We overview of our whole room indirect calorimeter (WRIC), demonstrate validity and reli-

ability of our WRIC, and explore a novel application of Bayesian hierarchical modeling to

assess responses to small carbohydrate loads. To assess WRIC validity seven gas infusion

studies were performed using a gas blender and profiles designed to mimic resting and post-

prandial metabolic events. Sixteen participants underwent fasting and postprandial mea-

surements, during which they consumed a 75-kcal drink containing sucrose, dextrose, or

fructose in a crossover design. Linear mixed effects models were used to compare resting

and postprandial metabolic rate (MR) and carbohydrate oxidation. Postprandial carbohy-

drate oxidation trajectories for each participant and condition were modeled using Bayesian

Hierarchical Modeling. Mean total error in infusions were 1.27 ± 0.67% and 0.42 ± 0.70% for

VO2 and VCO2 respectively, indicating a high level of validity. Mean resting MR was similar

across conditions (�x = 1.05 ± 0.03 kcal/min, p = 0.82, ICC: 0.91). While MR increased simi-

larly among all conditions (~13%, p = 0.29), postprandial carbohydrate oxidation parameters

were significantly lower for dextrose compared with sucrose or fructose. We provide evi-

dence validating our WRIC and a novel application of statistical methods useful for research

using WRIC.

Introduction

Indirect calorimetry is a valuable tool to assess metabolic response to various physiological sti-

muli or interventions. Due to technological advancements in instrument sensitivity and data

processing techniques, interest in measuring small, dynamic changes in energy expenditure
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and macronutrient oxidation following short exercise bouts or small dietary intake loads is

increasing.

Historically, whole-room indirect calorimeters (WRIC) have required long periods (i.e.,

several hours) to quantify O2 consumption and CO2 production due to large room volumes

and lower sensitivity of measurement equipment [1]; however, advancements in WRIC hard-

ware over recent decades have improved response time and resolution. While metabolic carts

have traditionally been used to assess metabolic changes over short or dynamic measurement

periods, some inherent limitations constrain their use, including 1. participant discomfort

from facemask or canopy placement, 2. gas analyzer drift during longer measurements [2],

and 3. between-instrument reliability and reproducibility [3]. Small-volume WRICs have the

potential to overcome these limitations while also providing advantages over large-volume

WRICs in terms of reduced room volume and rate of room air turnover.

The thermic effect of food (TEF) is estimated to comprise approximately 10% of total daily

energy expenditure [4]; however, it can vary widely based on the macronutrient composition

of a meal [5]. Specifically among carbohydrates, the greater increases in TEF and carbohydrate

oxidation after ingesting large amounts (i.e., 300 kcal) of fructose and sucrose, which contains

fructose, compared with dextrose and dextrose polymers have been well characterized [5–9].

However, whether TEF or carbohydrate oxidation responses differ among smaller carbohy-

drate loads has not been thoroughly assessed. Given that sugar sweetened beverages make up

the majority of added sugars in the average American diet and contain 140–150 kcals/serving

on average [10], testing the metabolic response to carbohydrate loads<300 kcals is an impor-

tant research gap.

Common statistical methods to assess TEF include calculations of area under the curve

(AUC) followed by comparisons of the AUCs across groups [11, 12]. However, these methods

are limited in that they condense serial measurements to a single summary parameter before

statistical comparisons are performed, which introduces greater variance and decreases power.

In addition, physiologically meaningful information can be lost. For example, two different

curves can have the same total area under the curve (AUC) but different trajectories over time;

only comparing AUCs would fail to capture true differences in metabolic responses. One alter-

native method is Bayesian Hierarchical Modeling, which accounts for differing temporal tra-

jectories across observations by utilizing multiple parameters to estimate individual smoothed

curves for each measure of interest across time and can also minimize the variance for sum-

mary parameters.

Therefore, our overall objectives were to: 1. provide a methodological overview of our

small-volume WRIC system and evidence of instrument validity and reliability; 2. demonstrate

reliability in measuring physiological variables in human studies; and 3. explore the temporal

resolution of metabolic responses elicited by small carbohydrate loads (i.e., 75 kcals) using a

novel application of Bayesian Hierarchical Modeling.

Materials and methods

Whole room indirect calorimeter description

The small-volume WRIC (MEI Research, Ltd) at the Fralin Biomedical Research Institute at

Virginia Tech Carilion, built in 2019, is a 1.2 x 2.1 x 2.3 m WRIC designed for both resting and

exercise measurements (Fig 1). WRIC volume for the resting configuration was 4730 L, deter-

mined by washout tests [13]. Inflow air to the WRIC is provided by a medical air system sepa-

rate from the building supply, which minimizes the influence of diurnal fluctuation in gas

concentration of atmospheric air. The chamber has the capability of being operated in either

“push” or “push-pull” modes. When operating in “push-pull” mode, an air blower provides a
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vacuum on the outflow MFC, which regulates pressure inside the chamber. This allows for

control of both inflow and outflow rates so that the room can be operated with a lower ventila-

tion rate and at a minimal pressure difference. The present study was operated in “push”

mode, in which the medical air system “pushes” inflow air, creating a positive pressure inside

the WRIC. Proportional-integral-derivative (PID) control of air inflow rate adjusts to control

CO2 concentration inside the WRIC to a constant and optimal range of measurement for the

analyzer. Inflow and outflow O2 are continuously measured with a dual channel paramagnetic

sensor (Siemens Oxymat6), which ensures linearity, and inflow and outflow CO2 are continu-

ously measured with an infrared sensor (Siemens Ultramat6). The O2 analyzer has a constantly

flowing reference from a gas tank (~21% O2, balance N2). The CO2 analyzer has a sealed refer-

ence cell filled with N2. Perma Pure dryers (Perma Pure, LLC, PD-50T-48MSS) remove water

vapor from sample gases prior to entering outflow analyzers. andhumidity sensors (Vaisala,

HMP60C12A0A3B0) verify adequately dried samples. In addition, temperature (Vaisala,

HMP60C12A0A3B0), and pressure (Alicat, P-2INH2OD-D-I/5P) inside the WRIC are moni-

tored by specific sensors.

Routine calibrations

After each O2 analyzer reference gas tank change, a hardware calibration is performed on the

O2 analyzer, in which the absolute measurement range of the analyzer is established.

Following the hardware analyzer calibration, a blender calibration is performed to ensure

linearity of the O2 analyzer. During the blender calibration process, a gas blender is used to

Fig 1. The small volume “flex” metabolic chamber at the Fralin Biomedical Research Institute at Virginia Tech Carilion in

Roanoke, Virginia, set up for a resting measurement.

https://doi.org/10.1371/journal.pone.0304030.g001
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flow O2, CO2, and N2 through the full range of the analyzers. Linearity of the O2 analyzer read-

ings is then verified (r2>0.999), and differences between known and measured gas concentra-

tions are then calculated to be applied as corrections to VO2 and VCO2 data collected during

experiments. While the infrared CO2 analyzer is not inherently linear, the coefficient of deter-

mination of this analyzer is also assessed. R2 values >0.999 indicate linearity of CO2 readings

in the range measured here.

Bi-annual maintenance

All high flow and blender mass flow controllers (MFCs; Alicat Scientific) are calibrated bi-

annually by MEI Research, Ltd. using positive displacement primary piston provers specific to

each MFC (ML-800 and ML-1020, Mesa Labs). In the calibration process, each MFC is first

tested at 10 points across the full flow range, beginning at 10%; a second test across the full

range is then run at 10% intervals beginning at 5%. Each MFC must measure within 0.5% of

the prover to pass calibration. All blender MFCs are calibrated using their respective gasses

(i.e., N2, O2, and CO2).

Validation studies

Infusion validation studies. The overall system is validated regularly using blender infu-

sions of dry N2 and CO2 in two protocol profiles. One profile was designed to provide overall

system validation, and one was designed to test detection of minimal changes in gas concentra-

tions (i.e., test limits of detection within a physiologically relevant range) and mimic antici-

pated resting and postprandial measurements for the present human study design. For the

latter, VO2 and VCO2 measurements collected during a metabolic cart study using a similar

drink stimulus and measurement duration were used to develop the infusion profile.

Metabolic chamber data post-processing. Measured inflow and outflow O2 and CO2

concentrations for all infusion and human studies were adjusted by linear interpolation using

corrections established during blender calibrations (see S1 File). Calculated physiological vari-

ables of interest (e.g., metabolic rate (MR), respiratory exchange ratio (RER), etc.) and vari-

ables to ensure measurement validity (e.g., chamber pressure, temperature, etc.) were recorded

using CalRQ (MEI Research, Ltd), a customized software developed in LabVIEW. VO2 and

VCO2 were calculated using standard equations incorporating WRIC volume, fractional con-

centrations of O2 and CO2 of inflow air and WRIC air, and inflow and outflow rates. After col-

lection, an 8-minute centered derivative term was applied to data during post-processing to

determine VO2 and VCO2.

Human studies

Human study ethics approval. The human study protocol was approved by the Virginia

Tech Institutional Review Board (#21–052). All participants provided verbal and written

informed consent prior to participation in the study.

Participants and experimental design. Sixteen males and females completed the study

from December 3, 2021-October 3, 2022. Participants were not adhering to specific dietary

patterns (e.g., intermittent fasting, ketogenic/low-carb diets) prior to enrolling. Participants

reported weight stability (i.e., weight change�5 lbs) for the previous 3 months and reported

not taking medications known to influence study measures, including antiglycemic agents,

thyroid medications, and sleep medications. They also reported no previous diagnosis of meta-

bolic disease or use of tobacco or nicotine products.

After a consent visit, which included anthropometric measurements of height, weight, and

waist and hip circumference, participants completed 3 separate WRIC sessions in a
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randomized crossover design. On the day of each metabolic chamber session, participants

reported to the laboratory between 6 and 9 am after fasting (i.e., no food, no caffeine, and no

drink except plain water) for�8 h. Participants were also instructed to abstain from physical

activity for 12 h prior to each session and to consume a specified meal meeting 35% of their

estimated energy requirements between 6-10pm the evening before each session. After a

45-min resting measurement inside the chamber, participants were instructed to consume a

355 ml beverage containing 75 kcal of either sucrose, dextrose, or fructose. Beverages were

made by mixing the carbohydrate with a solution of deionized water, flavoring (Bell Labs), and

food coloring (McCormick & Co). Participants were blinded to drink composition and were

instructed to consume the beverage within 5 minutes and immediately resume resting for the

duration of the measurement. Post-beverage indirect calorimetry measurements were col-

lected continuously for approximately 80 minutes (range: 55–111 minutes). Some measure-

ments lasted <80 minutes (n = 10) due to compliance and technical issues. Participants were

allowed to watch TV, read, or listen to music or podcasts while inside the WRIC.

Control of dietary intake. During a consent visit, estimated energy needs were calculated

for each participant using the Mifflin-St. Jeor equation multiplied by an activity factor based

on self-reported exercise and physical activity patterns [14]. Participants were then instructed

to consume a specified meal (50% of energy from carbohydrate, 30% from fat, and 20% from

protein) meeting 35% of their estimated energy requirements between 6-10pm the evening

before each session. Foods included in the meal were individualized to participant preferences

but contained the same macronutrient composition.

When participants arrived at the laboratory for each experimental session, a 24-hour dietary

recall for the previous day was collected using a multiple pass method [15, 16]; this recall

included the specified meal planned during the consent visit. Dietary recalls were analyzed

using Nutrition Data Systems for Research (version 2020).

Statistical analysis

Energy expenditure was calculated using the modified Weir equation [17], and substrate oxi-

dation was calculated using fat and carbohydrate oxidation equations [18] based on published

respiratory quotient (RQ) tables [19]. Data for the 4 minutes immediately before and after par-

ticipants drank the test beverage were excluded to account for participant movement during

beverage consumption that would have been captured by an 8-minute centered derivative

applied during post-processing. Thus, baseline measures were calculated as the average of min-

utes -20 to -4 preceding beverage consumption. Mean fasting time, dietary intake, and RMR

were compared across the three conditions using linear mixed effects models (LMM). Addi-

tionally, intra-class correlation coefficients (ICCs) were estimated from the LMMs. We inter-

preted an ICC value >0.75 as indicating very good reliability. Due to the lack of detectable

differences across conditions in fasting time, dietary intake variables, or RMR, we proceeded

with our other analyses without accounting for these variables.

Two statistical analysis methods, the commonly used LMM method and a Bayesian Hierar-

chical Model approach, were used. The LMM method included testing for differences in time

until peak carbohydrate oxidation, peak carbohydrate oxidation, and area under the curve

(AUC) for change in carbohydrate oxidation across the three conditions. AUC was calculated

using the trapezoidal rule; for measurements lasting <80 min (n = 10), the last measurement

value was carried forward through 80 minutes.

Our proposed method used a Bayesian Hierarchical Model approach to model the carbohy-

drate oxidation trajectories for each subject and condition. With estimates from this model,

tests to compare AUC, peak carbohydrate oxidation, and time at peak carbohydrate oxidation
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were conducted. Establishing this model has two main benefits in that it (1) uses all data points

in the model, allowing more statistical power to detect differences across groups compared

with the traditionally used LMM method; and (2) smooths each participant’s data, allowing for

a well-defined maximum value and return to baseline. The model assumes that the average dif-

ference in carbohydrate oxidation from resting across time takes the functional form of a natu-

ral cubic spline,

fijðt; bÞ ¼ XðtÞTbij

Where X(t) is the basis matrix for the natural cubic spline with knots at time points 20 and

48. These knots were chosen as two derivatives after the minimum time point and two deriva-

tives before the maximum observed time point. To allow for measurement error, we assumed

that data follows a normal distribution with mean of the cubic spline function, f(t; βij), and var-

iance of σe:

Yijjt; b � Nðf ðt; bijÞ; seÞ

Where Yij is the outcome of interest–percent change from resting carbohydrate oxidation.

In this model, βij corresponds to the coefficient estimate for subject i’s jth condition,

bij ¼ b0 þ bSSj þ bFFj þ ti

ti � Nð0; stÞ; i:i:d

Where β0 is the vector of coefficients for the dextrose condition, βS is the change of the coef-

ficients for the sucrose condition relative to the dextrose condition, and βF is the change of the

coefficients for the fructose condition relative to the dextrose condition. Sj is an indicator func-

tion for condition j being the sucrose and Fj is an indicator for condition j being the fructose, j
= 1, 2, 3. Finally, τi is the individual intercept, which accounts for the within-subject design of

the study. All priors were chosen to be non-informative to let the data dictate the estimates for

all unknown coefficients. The statistics of interest were estimated using the estimated values

from fitting the Bayesian model using:

Maximum carbohydrate oxidation Value = max6<t<65 f ðt; bÞ

Time of Max = argmax f(t; β)

Time that 10% of resting is reached = min30<t<65ftjf ðt; bÞ < 0:1g

These statistics were estimated using the mean from the approximate posterior distribution.

To compare these statistics across conditions, 95% credible intervals of the posterior distribu-

tion for the differences are reported. The 95% Bayesian credible interval is analogous to the fre-

quentist 95% confidence interval, in that a 0 contained within the interval indicates no

statistically significant difference between conditions.

The benefit of this Bayesian approach is that it allows a flexible model to be fit using only 16

participants. Each participant has their own mean structure estimate for each condition, which

allows an estimate of the three statistics of interest on both individual and group levels. Addi-

tionally, the method results in estimates of each parameter’s distribution, allowing for easy sta-

tistical comparison between groups. The R package, Nimble, was used to fit this model [20].

Nimble is a Markov chain Monte Carlo sampler that uses Gibbs sampling [20] to get approxi-

mate posterior distributions of all parameters in the defined model. Three chains were used

with 100,000 samples were generated on each with thinning of 10 and burn-in of 52,000. The

model priors are:
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β0i*N(0, \sigma^2 = 100), β1i*N(0, \sigma^2 = 100), β2i*N(0, \sigma^2 = 100), i = 1, 2, 3.

βji i.i.d.

σe*iGamma(0.1, 0.1)

στ*iGamma(0.1, 0.1).

Data are reported as means and standard error, unless otherwise specified. Only participant

characteristics and habitual dietary intake data are reported as means and standard deviations.

Statistical significance was set at alpha = 0.05. Tukey’s Honest Significant Difference was used

to correct for multiple comparisons where appropriate, and

Results

Validation studies

Over all infusions spanning the length of human data collection in this study (n = 7), mean

total error in VO2 and VCO2 were 1.27 ± 0.67% and 0.42 ± 0.70%, respectively. To assess

reproducibility of gas recoveries across specific gas analyzer ranges that mimic the anticipated

human study measurements, infusions were also analyzed by section. A sample infusion trac-

ing expected and observed gas recoveries is shown in Fig 2. Results for each section of one pro-

file type (n = 3) are shown in Table 1. Error for VO2 and VCO2 ranged -0.97 ± 0.65% to

-1.22 ± 0.73% and 0.42 ± 0.33% to 1.04 ± 0.81%, respectively, across sections. Over all infusions

(n = 7), gas recovery rates were 98.8 ± 70% for VO2 and 100.5 ± 0.70% for VCO2.

Control of potential biological confounders

Participant characteristics are shown in Table 2. Fourteen females and 2 males aged 29 ± 6

years with a body mass index 24.3 ± 4.4 kg/m2 completed the study. Mean fasting time prior to

WRIC session was not different among groups (p = 0.19). On average, participants fasted

approximately 11.3 ± 0.2 hours before measurements. Self-reported dietary intake was not dif-

ferent across carbohydrate conditions for total energy, fat, carbohydrate, or protein intake

(S1 Table). Participants reported consuming ~33–36% of kcals from fat, 45–49% of kcals from

carbohydrate, and 17–20% of kcals from protein during the 24 hours prior to each WRIC ses-

sion, which reflects the macronutrient composition of the prescribed evening meal.

Metabolic rate

Mean RMR, as estimated by LMM, was similar across all conditions (p = 0.82; Fig 3A), and the

ICC across all three conditions was 0.91, indicating good test-retest reliability within partici-

pants. Mean RMR across conditions was 1.05 ± 0.03 kcal/min. Change in MR in response to

conditions is depicted as the elevation in MR above resting (Fig 4); MR increased similarly

after all carbohydrate loads, and calculated AUCs for change in MR did not differ among car-

bohydrate types (p = 0.29; Fig 4A). In addition, among all conditions MR increased by 13%

from baseline (p<0.001), as assessed by linear mixed effects model.

Substrate oxidation

Mean resting RER and carbohydrate oxidation were not different across conditions (p = 0.15

and p = 0.26, respectively; Fig 3B and 3C), but the ICC were 0.004 and 0.324 for RER and car-

bohydrate oxidation measures across conditions, respectively, suggesting weak to moderate

reliability for those measures across test days. Peak carbohydrate oxidation was lower after

dextrose (0.24 ± 0.02 g/min) compared with fructose (0.29 ± 0.01 g/min; p = 0.002). Time to

reach peak carbohydrate oxidation was longer after consumption of the dextrose (55 ± 3

PLOS ONE Validation of a new room calorimeter

PLOS ONE | https://doi.org/10.1371/journal.pone.0304030 June 20, 2024 7 / 17

https://doi.org/10.1371/journal.pone.0304030


minutes) compared with fructose (35 ± 3 minutes; p< 0.001) or sucrose (34 ± 3 minutes;

p< 0.001) beverages. There were statistically significant differences in calculated AUCs for

change in carbohydrate oxidation from baseline among conditions. Change in carbohydrate

oxidation AUC was significantly smaller for dextrose (0.05 ± 0.64 g/min/min) compared with

fructose (2.83 ± 0.57 g/min/min; p = 0.004) and sucrose (3.07 ± 0.64 g/min/min; p = 0.003).

Fig 2. A sample infusion depicting expected (solid) and observed (dashed) (A) VO2 and (B) VCO2 values. Resting, stepped

increase, and human study simulation event sections are denoted by differing background shading.

https://doi.org/10.1371/journal.pone.0304030.g002
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Bayesian model

The Bayesian model resulted in similar mean estimates of carbohydrate oxidation peak change,

time to reach peak, and AUC, but the variance in the estimates were lower than that from the

standard methodology (Table 3). Time to reach peak carbohydrate oxidation was longer after

consuming dextrose (57 min) compared with fructose (33 min, 95% Bayesian Credible Interval

(BCI) [22, 27]) or sucrose (32 min, 95% BCI [24, 28]). The peak percent change in carbohy-

drate oxidation from resting mean was lower after dextrose (26%) compared with fructose

(57%, 95% BCI [27, 35]) and sucrose (69%, 95% BCI [39, 47]) consumption. There were statis-

tically significant differences in calculated AUCs for percent change in carbohydrate oxidation

Table 2. Participant characteristics (n = 16).

Mean (SD) or n (%)

Age (years) 29 (6)

Sex

Female 14 (87.5%)

Male 2 (12.5%)

Race

White 11 (68.8%)

White and other 3 (18.8%)

Black or African American 2 (12.5%)

Ethnicity

Hispanic, Latino, or Spanish Origin 1 (6.3%)

Non-Hispanic, Latino, or Spanish Origin 15 (93.7%)

Body weight (kg) 69.2 (14.4)

Habitual Dietary Pattern

Vegan 1 (6.3%)

Vegetarian 2 (12.5%)

BMI (kg/m2) 24.3 (4.4)

Waist-to-hip ratio 0.77 (0.07)

Estimated RMR (Mifflin-St. Jeor) (kcal/d) 1449 (181)

Measured RMR (kcal/d) 1483 (216)

BMI, body mass index; RMR, resting metabolic rate

https://doi.org/10.1371/journal.pone.0304030.t002

Fig 3. Mean resting (A) metabolic rate, (B) carbohydrate oxidation, and (C) respiratory exchange ratio across dextrose (n = 13), fructose (n = 16),

and sucrose (n = 13) conditions assessed by linear mixed effects models.

https://doi.org/10.1371/journal.pone.0304030.g003
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from baseline among conditions. Change in carbohydrate oxidation AUC was significantly

lower for dextrose (4.4) compared with fructose (22.4, 95% BCI [16.1, 19.8]) and sucrose

(30.5%, 95% BCI [24.2, 28.0]).

Fig 4. Postprandial change from resting (A) metabolic rate, (C) carbohydrate oxidation, and (E) RER; and areas under the

curve for percent change from resting (B) metabolic rate, (D) carbohydrate oxidation, and (F) RER in response to consumption

of 75-kcal beverages containing dextrose, fructose, or sucrose. Gray background on line plots A, C, and E indicate data 4

minutes before and after drink consumption, which were excluded from analysis. Data are expressed as mean ± standard error

of the mean. *, p<0.05; RER: respiratory exchange ratio.

https://doi.org/10.1371/journal.pone.0304030.g004
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Discussion

A recent report outlines essential guidelines for reporting WRIC data [4], which include pro-

viding methods for standardizing data reported and evidence for validity of the WRIC system

collecting the data. Following these guidelines in reporting and research publications will ulti-

mately allow for comparisons across calorimeters and institutions regardless of equipment

type and validation methods. Using these guidelines, we sought to provide evidence of the

validity and reliability of a small-volume WRIC at the Fralin Biomedical Research Institute at

Virginia Tech Carilion and to demonstrate accuracy in assessing small, dynamic changes in

human respiratory VO2 and VCO2 in response to small calorie loads. Overall, results from our

technical validation studies indicate a high degree of precision and accuracy in our system for

detection of both resting and small, dynamic changes in gas concentrations. Results from our

human studies provide evidence that differences in metabolic responses to small calorie carbo-

hydrate loads can be detected using WRIC.

System validation and technical reliability

Our results indicate high accuracy in recovery rates of VO2 and VCO2 and high reproducibil-

ity across multiple dry gas blender infusion studies. Though few studies have reported system

validation data in publications, our overall recovery rates (98.9% for VO2 and 100.5% for

VCO2) are comparable to rates reported by others [21, 22]. To explore the validity of our sys-

tem across a wider range of metabolic responses elicited by our human research study designs,

we also assessed error rates for different “sections” of infusion studies. Error rates across each

of these sections were<2% and minimal detectable changes ranged 0.42–2.31 mL/min, sug-

gesting a high degree of measurement accuracy in VO2 and VCO2 response during both rest-

ing and short-duration, dynamic changes.

Fasting human study measures

We observed a high degree of reliability across study days in RMR measurements

(ICC = 0.91). Though mean RMR, resting RER, and resting carbohydrate oxidation were not

different across conditions. we observed a high amount of intraindividual variability in

Table 3. Comparison postprandial carbohydrate oxidation parameters in response to dextrose-, fructose-, and

sucrose-containing beverage consumption as assessed by standard methods and Bayesian Hierarchical Modeling

statistical methods.

Dextrose (n = 13) Fructose (n = 16) Sucrose (n = 13)

Standard

Methods

Bayesian

Model

Standard

Methods

Bayesian

Model

Standard

Methods

Bayesian

Model

Area Under the

Curve

0.60 (4.69) 4.43 (3.58) 19.85 (4.21) 22.4 (3.54) 24.58 (4.69) 30.52 (3.58)

Value of Peaka (g/

min)

0.24 (0.02) – 0.29 (0.01) – 0.27 (0.02) –

Peak Change from

Resting (%)

43 (10) 26 (5) 79 (9) 57 (5) 92 (10) 69 (5)

Time to Peak (min) 55 (3) 57 (1) 35 (3) 33 (1) 34 (3) 32 (1)

Time to return to

baselinea, b (min)

69 (63–75) – 56 (50–76) 68 (67–69) 64 (50–78) –

Values expressed as mean (SE) unless otherwise noted.
aCannot be determined with Bayesian model used in this analysis
bMedian (IQR) reported for linear mixed effects model methods

https://doi.org/10.1371/journal.pone.0304030.t003
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measures of RER and carbohydrate oxidation across days. This is not unexpected, as RER is a

ratio of VCO2 and VO2 and, thus, small divergences in gas concentration values will mathe-

matically result in larger discrepancies in RER values. Furthermore, fasting RER values have

been shown to primarily depend on the food quotient of dietary intake in previous days [23].

Though we attempted to provide some control over dietary intake by standardizing macronu-

trient composition of the previous evening’s meal, and mean dietary intakes for the 24 hours

preceding measurements were not different across conditions, our methods may not have

been rigorous enough to control fasting RER and carbohydrate oxidation values. Others also

have noted similar discrepancies in calculated RER and macronutrient oxidation values across

repeated measures [4, 24, 25].

Dynamic metabolic response following a small calorie load

The thermic effect of food, defined here as the elevation in metabolic rate above resting, was

not different among carbohydrate types. On average, MR increased 13% after consumption of

a 75-kcal carbohydrate beverage. Previous studies assessing temporal response of MR to vari-

ous carbohydrate loads have reported greater change in MR in response to fructose and fruc-

tose-containing sugars compared with dextrose [6–9]. Differences in our findings may be due

to the carbohydrate load used (300 kcals vs. 75 kcals in our study). Absorption of dextrose and

fructose across small intestinal apical membranes occurs through sugar-specific primary trans-

porters [26]; however, high concentrations of either substrate can recruit GLUT2 to the apical

surface, which has the capacity to transport both dextrose and fructose [27]. This threshold for

synergistic absorption could explain our lack of observation of elevated MR response to

sucrose consumption.

Similarly to others [6, 7, 9], we observed a lower carbohydrate oxidation response after dex-

trose consumption compared with sucrose and fructose. This attenuated response could be

explained by the presence of fructose in the fructose and sucrose beverages and the differing

metabolic fates of dextrose and fructose. While dextrose is primarily taken up for either storage

or utilization for energy production by peripheral tissues [26], fructose is preferentially metab-

olized by the liver [28]. In addition, fructokinase has a much greater affinity for fructose than

glucokinase does for glucose [29], meaning it produces intermediates for further metabolism

at a faster rate. Additionally, the first steps of fructolysis bypass the regulatory feedback mecha-

nisms of glycolysis [30], including the inhibition of gluconeogenesis. Therefore, fructose

metabolism can result in a futile cycle of glucose availability and oxidation in which glycolysis

and gluconeogenesis occur concurrently [31].

Bayesian Hierarchical Model

While both the traditional LMM and Bayesian Hierarchical Model analysis methods produced

similar parameter estimates for the AUC, change from resting, and time to reach peak for car-

bohydrate oxidation, the Bayesian model resulted in reduced variance of these parameter esti-

mates. Unlike the traditional LMM method, which first computes a single estimate for each

individual observation and then fits a model to compare differences across conditions, the

Bayesian model method first uses an assumed shape (cubic spline) to fit an average condition

curve while estimating an individual participant’s curve. Then, the average condition curves

are used to assess differences in parameters between groups, thus reducing the variability of

the parameter estimate. In other words, when using the Bayesian model, smaller sample sizes

can be used to elucidate physiological differences in metabolic responses. Given the well-docu-

mented inter-individual variability in assessments of postprandial MR and substrate oxidation

[11, 32], this is an important feature of the model. Another distinguishing feature of this
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model is the capacity for borrowing strength, or the ability to pool the data across all observa-

tions and conditions to gain more knowledge about the parameters of interest (i.e., AUC, peak

value, time at peak). Because individual observation curves are estimated simultaneously

within the model, the model is robust to missing data; therefore, measurements that are vary-

ing lengths of time can still be fit in the model.

The Bayesian model has some limitations, however. Specifically, the model assumes data

can be fit to a natural cubic spline; while this family of functions is reasonably flexible, it is pos-

sible that future studies’ data curves will not fit. To evaluate this, one must be diligent in first

visualizing data as well as checking for the convergence of the model. If the data do not fit the

natural cubic spline, the LMM method is more versatile in that it does not assume the shape of

the metabolic response curve. In addition, a direct computation of maximum values in meta-

bolic response curves is not possible; a second model fit with the outcome measure as the abso-

lute value of metabolic response would be required.

Limitations

The current study has limitations. First, though our human study methods were designed to

limit participant activity, we did not objectively measure movement inside the WRIC and can-

not rule out the potential influence of movement on our measurements. Furthermore, while

we removed data for the 4 minutes immediately following drink consumption, we cannot rule

out persistence effects of movement on data beyond 4 minutes after drink consumption.

Incorporating objective measures of activity will be an important component of future studies.

Second, given our small WRIC volume, it is possible that body size could influence the volume

derivative term used in our data post-processing calculations. While body volume likely does

not affect data post-processing for WRIC studies in large-volume chambers, it is unclear

whether this could be a meaningful source of measurement error in small-volume chambers.

However, the within-subject crossover design of the present human study mitigates the poten-

tial influence of both participant movement and body volume on our results. In addition, we

did not assess menstrual cycle phase in females or circulating testosterone levels in males;

therefore, we cannot rule out any effects of fluctuating sex hormone levels on metabolic or sub-

strate oxidation rates. Lastly, our sample was predominantly white, female, and had body mass

indexes <25; as such, our results may not be generalizable to different populations.

Conclusion and future applications

In summary, results from our technical validation studies highlight the reliability of our WRIC

system in capturing steady state and dynamic metabolic measurements. Furthermore, our

human study demonstrates the capacity to detect very small, dynamic changes elicited by

small carbohydrate loads. These carbohydrate loads are more similar to those consumed in a

serving of a sugar sweetened beverage than the 300 kcal loads used in previous research. Detec-

tion of these small post-ingestive changes is essential for understanding potential alterations of

the gut-brain axis in people with obesity [33, 34]. Finally, we proposed a new application for a

statistical model, which can both estimate an individual curve for metabolic response for each

participant within each condition and test for differences in key parameters of interest across

conditions. This methodology, which is robust to missing data, reduces variance and can

increase statistical power, potentially allowing for smaller sample sizes and therefore reduced

cost for future studies. The validation and novel application of methods presented here provide

important foundations for new research directions using WRICs to assess metabolic responses

to small calorie loads.
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