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Abstract

In recent years, the relation between Sound Event Detection (SED) and Source Separation

(SSep) has received a growing interest, in particular, with the aim to enhance the perfor-

mance of SED by leveraging the synergies between both tasks. In this paper, we present a

detailed description of JSS (Joint Source Separation and Sound Event Detection), our joint-

training scheme for SSep and SED, and we measure its performance in the DCASE Chal-

lenge for SED in domestic environments. Our experiments demonstrate that JSS can

improve SED performance, in terms of Polyphonic Sound Detection Score (PSDS), even

without additional training data. Additionally, we conduct a thorough analysis of JSS’s effec-

tiveness across different event classes and in scenarios with severe event overlap, where it

is expected to yield further improvements. Furthermore, we introduce an objective measure

to assess the diversity of event predictions across the estimated sources, shedding light on

how different training strategies impact the separation of sound events. Finally, we provide

graphical examples of the Source Separation and Sound Event Detection steps, aiming to

facilitate the interpretation of the JSS methods.

Introduction

An important part of the information we obtain from our surroundings is carried by sound,

helping us to understand where we are or what is happening around us. With this motivation,

several research fields in audio signal processing aim to exploit the contents of sound signals to

retrieve information about the environment. For instance, Sound Event Detection (SED) [1]

answers the questions of which are the specific events that occur in an audio recording, and

when do they begin and end. Other related tasks are Acoustic Scene Classification [2], which

labels an audio according to the environment it has been captured in (e.g. house, park, train

station), or Automated Audio Captioning [3], which aims to provide a text description of the

recording.

With the objective of supporting the research in SED and other environmental sound anal-

ysis tasks, yearly challenges are hosted by the DCASE community (Detection and
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Classification of Acoustic Scenes and Events [4]), suggesting research questions and offering

standard frameworks in which different approaches can be compared. Among the focuses of

the SED task in recent DCASE challenges, the main one is the exploitation of unlabeled or par-

tially-annotated data to train SED systems [5], whereas complementary lines of research have

been proposed, such as the use of Source Separation (SSep) to aid Sound Event Detection [6].

The interest in leveraging data with different degrees of annotation is related to the high

cost of data curation and annotation, in comparison to the wide availability of unlabeled data.

An illustrative example is AudioSet [7], a large-scale acoustic event dataset containing more

than 2 million 10-seconds audio clips, which has increased the viability of deep learning algo-

rithms in SED. The audio clips in AudioSet are extracted from YouTube videos, and are pro-

vided with weak annotations (i.e. clip-level labels) or strong annotations [8] (i.e. timestamps of

the onset and offset of each event), according to a comprehensive ontology that organizes and

describes more than 500 categories of acoustic events. A similar distribution of data annota-

tions is observed in DESED (Domestic Environment Sound Event Detection) [9, 10], the data-

set employed in the DCASE challenge, which is composed of weakly-labeled and strongly-

labeled audio clips, in addition to a majority of unlabeled examples.

With the aim of leveraging unlabeled examples and reducing the dependency on annotated

data, semi-supervised and unsupervised learning methods have been developed, currently

being evolving fields of research. Unsupervised learning is able to learn using only unlabeled

data, whereas semi-supervised learning (SSL) leverages both labeled and unlabeled examples,

reducing the amount of necessary annotations [11]. In the context of DCASE challenges, the

most common SSL algorithm for SED is Mean Teacher, which considers a moving average

version (teacher) of the original model (student), and then incorporates the consistency

between student and teacher predictions as part of the loss function used to train the student

model [12].

Another research interest in DCASE is the use of Source Separation (SSep) to enhance

Sound Event Detection. SSep aims to automatically decompose audio mixtures into their

underlying components, considering that each component has been produced by a different

acoustic source. For example, SSep can isolate the speech signal in a recording that contains

speech and background noise, or separate the different instruments in a music mixture. There-

fore, the application of SSep to SED serves the purpose of decomposing audio event mixtures

into several audio channels, each of them containing lower levels of noise or less overlap of tar-

get events, being more adequate inputs to the SED system.

Following this approach, the first method proposed by DCASE involved convolutional

masking networks trained for SSep as a pre-processing step for SED [6]. A late integration of

SSep and SED, combining the SED outputs for the mixture and separated sound sources, was

observed to be more beneficial than an early integration (concatenating the separated sources

and the mixture as a multi-channel input to the SED model), or a middle integration

(concatenating intermediate representations). However, the method provided limited

improvements, which was explained by a mismatch between the training data of the SSep

model (artificial sound mixtures) and the test data of SED (web audio). For the 2021 challenge,

DCASE proposed a baseline system that also used a late fusion of pre-trained SSep and SED,

but using a Source Separation model trained over web audio by means of Mixture Invariant

Training (MixIT) [13], an unsupervised method for training SSep neural networks.

More recent works have explored the combination of Source Separation and Sound Event

Detection or classification. Some of them, in a similar way to DCASE approaches, use Source

Separation to enhance the performance of Sound Event Detection systems. For instance, train-

ing a Source Separation network from scratch using a task-aware objective [14], or encourag-

ing a SED system to separate sources in its intermediate representations [15]. In contrast,
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other works aim for the opposite direction: employing the information provided by sound

classifiers to aid the separation of mixtures into semantically different sources [16–18].

Considering that Source Separation can improve Sound Event Detection, and that the

information provided by a SED system might be helpful for Source Separation, a training set-

ting which encourages a bidirectional flow of information between SSep and SED seems to be

an interesting approach. In previous work [19], we have proposed Joint Sound Event Detec-

tion + Source Separation (JSS), a joint model in which a Source Separation block is connected

to a Sound Event Detection block. After pre-training each block independently for its corre-

spondent task, the whole model is trained end-to-end using Sound Event Detection objectives,

either together (Joint Training) or in a separate stage for each block (Two-stage Training).

Moreover, the development of JSS implied an exploration of the model selection strategy

employed for the semi-supervised Mean Teacher models, which is especially relevant for itera-

tive training processes. We found that our methods were able to improve SED performance in

the context of DCASE Challenge Task 4, especially when the Source Separation block was pre-

trained using in-domain data.

Building upon previous research, this paper introduces the following main contributions:

(1) We offer a comprehensive definition of the JSS method and its different variants (Joint

Training and Two-stage Training), including as well the proposed model selection criterion

for Mean Teacher, which is proven to enhance the results. (2) We provide results and analysis

of JSS over two additional datasets: DESED Public evaluation, and Public overlap (an over-

lapped version of the aforementioned dataset, introduced in our previous work [20]). (3) We

analyze and discuss several aspects of the JSS method which were not covered by previous

works, including its performance for specific sound event categories, or the role of Source Sep-

aration in the system, which we measure by means of the similarity of SED predictions across

estimated sources. (4) Finally, we offer graphical representations of the intermediate steps of

the systems, which aid understanding of the interactions between Sound Event Detection and

Source Separation and enhance the interpretability of the resulting systems.

Sound Event Detection

Sound Event Detection aims to obtain, for an input audio signal x, the time boundaries (ton,

toff) for a closed set of K acoustic event classes (Fig 1). A common approach is to consider the

problem as K binary classification tasks in time, so that a detection score sequence d̂k 2 ð0; 1Þ
T

is estimated for each event category, with length T. This set of K score sequences forms a

matrix D̂ 2 ð0; 1ÞK�T .

A usual approach for neural network SED systems is to obtain D̂ by means of a K-dimen-

sional output layer with sigmoid activation. In such case, the score sequences D̂ are a function

of the input signal x, and the model parameters θsed (Eq (1)).

D̂ ¼ f ðsedÞðx; θsedÞ ð1Þ

Once D̂ is computed, the values of the onset and offset times can be determined by defining

a threshold τ 2 (0, 1). Then, for each event category k 2 [1, K], the onsets ton,k are the times

when the score goes above the threshold (d̂kðton;kÞ � t; d̂kðton;k � 1Þ < t), and the offsets toff,k

correspond to the time frames when the score becomes lower than the threshold

(d̂kðtoff;kÞ < t; d̂kðtoff;k � 1Þ � t). As a post-processing step, a median filter is applied after

thresholding, in order to avoid spurious onsets and offsets.
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Sound Event Detection in DCASE challenge

The scope of Sound Event Detection in the DCASE Challenge Task 4 is focused on domestic

environments, which are especially relevant for indoor applications such as home assistance or

security. In this direction, a set of 10 event categories drawn from the AudioSet ontology is

considered: Alarm/bell/ringing, Blender, Cat, Dishes, Dog, Electric shaver/toothbrush, Frying,
Running water, Speech, and Vacuum cleaner. An example of a mel-spectrogram representation

of each event category is provided in Fig 2.

Several research questions have been stated in the recent editions of DCASE Challenge

Task 4, most of them regarding the use of different types of training data, such as a large

amount of unlabeled audio clips from web videos or strongly-labeled synthetic recordings

[21], in addition to a small set of weakly-labeled data. For this purpose, semi-supervised learn-

ing approaches were the main focus, with Mean Teacher [12] becoming a standard approach

thanks to its simplicity and good results [22].

A SED Baseline system is provided each year by the challenge, aiming to establish a perfor-

mance benchmark, and including some advances of the state of the art. The current baseline is

a Convolutional-Recurrent Neural Network (CRNN) [23].

In 2020, the challenge proposed Source Separation for SED as an auxiliary task, called

Sound Event Separation and Detection (SSep+SED). This task involved the use of SSep systems

to separate overlapping sound events and extract foreground sound events from the back-

ground sound, and in it introduced an additional Baseline system, described in Fig 3. In order

to train the SSep+SED Baseline system, the training data is first separated using a pre-trained

Source Separation network. Then, the SED baseline system, already trained over the original

mixtures, is fine-tuned to the separated data. In order to obtain the final score sequences, the

outputs of the fine-tuned SED system over separated sources, D̂sep, are combined with the out-

puts of the pre-trained SED Baseline over the mixtures D̂mix, as described in Eq (2). The combi-

nation weight, q, is learnt during the fine-tuning process.

D̂ssepþsed ¼ qD̂mix þ ð1 � qÞD̂sep ð2Þ

In the DCASE SSep+SED Baseline, both the SSep network and the SED model that is

applied over the mixtures are frozen, meaning that their parameters are not updated during

the training process.

Semi-supervised Sound Event Detection with Mean Teacher

The scarcity of annotations in Sound Event Detection training data can be solved by means of

a semi-supervised learning algorithm. Particularly, Mean Teacher is the method proposed by

the DCASE Baseline system.

Fig 1. Block diagram of Sound Event Detection (SED). A Sound Event Detection system computes, for an input

audio mixture, the temporal boundaries of a set of K event categories.

https://doi.org/10.1371/journal.pone.0303994.g001
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Mean Teacher training considers two models, student and teacher, with identical structure.

The weights of the student model, θ(s), are trained with back-propagation using a loss function

Lsed, whereas the weights of the teacher model, θ(t), are computed at each training step n as an

exponential moving average (EMA) of θ(s) (Eq (3)).

θðtÞn ¼ aema θðtÞn� 1
þ ð1 � aemaÞ θ

ðsÞ
n ð3Þ

Fig 2. Sample mel-spectrogram representations of the 10 different target event categories considered in DCASE Challenge Task 4. The represented audio segments

are extracted from the DCASE Public evaluation set, considering segments in which a unique target event is annotated.

https://doi.org/10.1371/journal.pone.0303994.g002
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The weight αema 2 (0, 1) is a hyperparameter that determines the exponential decay, with

higher values resulting in slower updates of the teacher model. Its optimal value can be

obtained empirically.

In order to leverage the information provided by both labeled and unlabeled data, the loss

function Lsed is divided into two components:

• A supervised loss (Lsup, Eq (4)), which is implemented as a Binary Cross-Entropy between

the student score sequences (D̂ðsÞ) and the ground truth annotations, D.

Lsup ¼ BCEðD̂ðsÞ;DÞ ð4Þ

• A self-supervised consistency loss (Lself, Eq (5)), computed as the Mean Squared Error

between student and teacher predictions.

Lself ¼ MSEðD̂ðsÞ; D̂ðtÞÞ ð5Þ

Whereas Lsup can only be computed for labeled examples, Lself does not require ground

truth annotations. This allows the models to learn from all training examples.

The global loss function for Sound Event Detection, Lsed, is computed as a weighted sum of

both components (Eq (6)), and used to train the student model. The weight of the self-super-

vised loss (αself) regulates the contribution of the consistency measure.

Lsed ¼ Lsup þ aselfLself ð6Þ

Therefore, a feedback loop is created between student and teacher: the student model is

trained to minimize a loss function that considers consistency with teacher predictions, while

the teacher is computed as a smoothed (averaged) version of the student.

Fig 3. Block diagram of the DCASE 2021 Baseline system for Source Separation + Sound Event Detection (SSep-SED). The weight q is learnt

during the training process. The parameters of the frozen blocks are not updated during the training process.

https://doi.org/10.1371/journal.pone.0303994.g003

PLOS ONE Analysis and interpretation of joint source separation and sound event detection in domestic environments

PLOS ONE | https://doi.org/10.1371/journal.pone.0303994 July 5, 2024 6 / 30

https://doi.org/10.1371/journal.pone.0303994.g003
https://doi.org/10.1371/journal.pone.0303994


Metrics and evaluation of Sound Event Detection systems

F1-score-based metrics. F1-score (Eq (7)) is a widely adopted metric to measure the per-

formance of SED systems. It can be computed as the harmonic mean of Precision (P) and

Recall (R), defined in Eqs (8) and (9) respectively. Thus, taking into account the definitions of

Precision and Recall, F1-score ultimately depends on the number of True Positive (TP), False

Negative (FN), and False Positive (FP) decisions of the system.

F1 ¼ 2
PR

Pþ R
ð7Þ

P ¼
TP

TPþ FP
ð8Þ

R ¼
TP

TPþ FN
ð9Þ

In DCASE Task 4, the main F1 score is event-based (or collar-based), meaning that the deci-

sions of the system are measured for entire occurrences of an event (TP, FN) or a prediction

(FP), considering a certain tolerance between the system predictions and the ground truth

annotations.

Polyphonic Sound Detection Score. In recent editions of DCASE Task 4, Polyphonic

Sound Detection Score (PSDS) [24] is proposed as a performance metric for SED. The aim of

PSDS is to solve some limitations of F1-scoring, particularly the dependence on a single deci-

sion threshold, the lack of robustness to annotation subjectivity, and the agnosticism to cross-

triggered detections.

To handle these problems, PSDS is defined as the area under a curve determined by the per-

formance of the system at different thresholds, considering a True Positive Rate and a False

Positive Rate. In contrast with event-based and segment-based F1, TPs and FPs follow an inter-

section criterion, more robust to variability of the ground truth labels. Finally, cross-triggers

are defined in PSDS as FP decisions that coincide with a different target category, and are con-

sidered as a different kind of error.

An additional contribution of PSDS is the definition of several parameters that allow to

adapt the metric to different applications or scenarios. The Detection Tolerance Criterion

(DTC) and Ground Truth Intersection Criterion (GTC) define the amount of intersection

between predictions and annotations that is necessary to consider a correct detection, and the

Cross-Trigger Tolerance (cttc) establishes the threshold for cross-triggered decisions. The pen-

alty introduced by cross-triggers (αCT) and a cost for instability between classes (αST) can also

be configured.

DCASE Task 4 proposes two different configurations for PSDS. The first scenario (PSDS1)

encourages systems to make a finer temporal segmentation of the events, whereas the second

scenario (PSDS2) is more focused on classification accuracy. Both of them are computed using

50 threshold values, linearly distributed from 0 to 1. The parameter settings for each scenario

are described in Table 1.

Source separation

Acoustic Source Separation (or Source Separation) can be stated as a regression task, in which

an input sound mixture x is decomposed intoM estimates, Ŝ ¼ hŝmi; 1 � m � M, of its

underlying source components (Fig 4). Additionally, a consistency constraint is usually

applied, so that the sum of output sources is equivalent to the input mixture,
PM

m¼1
ŝm ¼ x.
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Considering a separation model f(sep), with parameters θsep, the estimate is obtained as shown

in Eq (10).

Ŝ ¼ f ðsepÞðx; θsepÞ ð10Þ

Given that the goal is to reproduce the reference sources, SSep models can be trained

employing a negative Signal-to-Noise Ratio (SNR) loss (Eq (11)), in which the target signals

are the reference sources s, and the noise is the error s � ŝ. A small quantity � is added to this

term, to prevent the division by zero in the case that ŝ ¼ s.

Lsepðs; ŝÞ ¼ � 10 log
10

jjsjj2

jjs � ŝjj2 þ �

 !

ð11Þ

Several tasks involve Acoustic Source Separation with different kinds of audio mixtures, or

different constraints on the acoustic sources of interest. Some examples are music source sepa-

ration [25], which aims to isolate the different instruments present in a music signal, speech

separation [26], in which a mixture of various speakers is divided into individual speech signals

for each speaker, or speech enhancement [27], consisting on improving the quality of a noisy

speech signal by removing the non-speech content, thus separating the input mixture into an

only-speech channel and a non-speech channel.

An additional application is Universal Source Separation, defined as the decomposition of

any acoustic soundscape into sounds of arbitrary types [28]. In this scenario, some particular-

ities have to be considered, for instance, the order of the output signals should not be relevant

(permutation problem), and the number of sources is inherently unknown. Moreover, in

order for a model to learn the separation of arbitrary classes, the training data should include a

great diversity of sounds.

Supervised Source Separation with Permutation Invariant Training

Permutation Invariant Training (PIT) was introduced as a solution to the permutation prob-

lem [29]. Considering a loss function LsepðS; ŜÞ, PIT compares all the possible permutations of

Table 1. Parameter configuration for the PSDS scenarios. DTC = Detection Tolerance Criterion. GTC = Ground Truth intersection Criterion. αST = Cost of instability

across classes. CTTC = Cross-Trigger Tolerance Criterion. αCT = Cost of Cross Triggers. emax = Maximum False Positive Rate.

Scenario DTC GTC αST CTTC αCT emax

PSDS1 0.7 0.7 1.0 0.0 - 100

PSDS2 0.1 0.1 1.0 0.3 0.5 100

https://doi.org/10.1371/journal.pone.0303994.t001

Fig 4. Block diagram of Source Separation (SSep). A Source Separation system decomposes the input audio mixture

into a predefined number (M) of estimated sources.

https://doi.org/10.1371/journal.pone.0303994.g004
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the estimated sources Ŝ (using the permutation matrix P) with the targets S, and takes the min-

imum loss value as the result, thus making the training process independent of the order of the

outputs. The PIT loss is thus defined in Eq (12).

LPITðS; ŜÞ ¼ min
P

XM

m¼1

Lsepðsm; ½PŜ�mÞ ð12Þ

In order for a SSep model with a fixed number of outputs (M) to deal with a variable num-

ber of target sources during training, a new loss function is proposed in [30], dividing Lsep into

two SNR-based terms: an active loss (La) and an inactive loss (L0). When applying PIT, the

active loss is derived from the negative SNR loss (Eq (11)), and computed with respect to the

Ma active target sources (Ma�M), as shown in Eq (13), whereas the inactive SNR loss is

applied with respect toM −Ma null signals, aiming to minimize the separated source power of

inactive channels (Eq (14)).

Laðs; ŝÞ ¼ 10 log
10
ðjjs � ŝjj2 þ tjjsjj2Þ; ð13Þ

L0ðx; ŝÞ ¼ 10 log
10
ðjjŝjj2 þ tjjxjj2Þ: ð14Þ

The parameter τ in Eqs (13) and (14) is introduced as a soft threshold to determine the

maximum SNR value, aiming to prevent large gradients from dominating the total loss.

Thus, the PIT loss with a variable number of target sources is defined in Eq (15).

LPITðS; ŜÞ ¼ min
P

XMa

m¼1

Laðsm; ½PŜ�mÞ þ
XM

m0¼Maþ1

L0ðx; ½PŜ�m0
Þ ð15Þ

Regarding the availability of training data for Universal Source Separation, the main limita-

tion is the access to the reference sources of the mixtures, which generally are not possible to

obtain. However, it is possible to create artificial training mixtures by overlapping several iso-

lated sources, which can then be used as targets, as in the case of the FUSS dataset (Free Uni-

versal Source Separation) [30].

Unsupervised Source Separation with Mixture Invariant Training

A different approach is to train Source Separation in an unsupervised fashion. In this way, ref-

erence sources are not necessary to train the models, allowing the use of non-artificial datasets.

This is the motivation of Mixture Invariant Training (MixIT), an unsupervised learning algo-

rithm for Source Separation based on the use of “mixtures of mixtures”. MixIT proposes to use

the sum of two audio mixtures, x1 + x2, as input to the model, so that theM outputs of the

model, Ŝ, are expected to contain the underlying sources of x1 and x2 (Eq (16)).

Ŝ ¼ f ðsepÞðx1 þ x2; θsepÞ ð16Þ

Given that reference sources for the mixtures are not available, MixIT computes all possible

assignations of each output to either x1 or x2, by means of a binary assignation matrix A, with

size (2,M), in which each column sums up to one. The MixIT loss is then computed in Eq (17)
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as the minimal loss considering every possible assignation between outputs and inputs.

LMixITðx1; x2; ŜÞ ¼ min
A

X2

i¼1

Lsepðxi; ½AŜ�iÞ ð17Þ

Whereas this method overcomes the need of target sources to train a separation model,

which is the main limitation of PIT, it raises some problems, the main one being a tendency

for over-separation, in which a single source is decomposed into several output signals, gener-

ally leading to more active output sources than necessary. This occurs because the MixIT loss

is blind to the content of individual estimated sources ŝm, as long as a good reconstruction of

the input mixtures is possible. More recent additions to MixIT have dealt with this problem by

including penalties for over-separation, such as sparsity loss or covariance loss [18].

Source Separation with mask estimation neural networks

The decomposition of a sound mixture x into several components can be approached as a

mask estimation problem in the time-frequency domain, dividing the task into three stages:

the transformation of the audio signal x into a time-frequency representation with an encoder

function E, the computation of the mask for each source, Wm, and the reconstruction of the

estimated sources Ŝ in the time domain with a decoder function D. The encoder and decoder

functions can either be pre-defined transformations (e.g. Short-Time Fourier Transform) or

learnt from data.

The masks are weights that control the contribution of the mixture to each estimated

source, so that each source ŝm can be obtained by performing an element-wise multiplication

(�) between the encoded input (EðxÞ) and the corresponding mask Wm, and then decoding

the result with the decoder function D, as described in Eq (18).

ŝm ¼ DðEðxÞ �WmÞ ð18Þ

An example of mask estimation neural network for Source Separation is ConvTas-Net [31].

In particular, its architecture is formed by a fully-convolutional separation module, with sev-

eral repeats of convolutional blocks with increasing dilation factors. The masks are estimated

with a pointwise convolution, and the encoder and decoder functions are learnt during

training.

Metrics and evaluation of source separation systems

In order to evaluate the performance of Source Separation models, a standard approach is to

measure the mean SNR improvement (SNRi, Eq (19)) of the estimated sources (ŝ) to their cor-

responding reference signals (s), with respect to the SNR obtained when using the mixture (x)

as estimation. In order to prevent divisions by zero and ensure numerical stability, an infinites-

imally small positive quantity, �, is added to the denominators in Eq (19).

SNRiðŝ; s; xÞ ¼ 10 log
10

jjsjj2

jjs � ŝjj2 þ �
� 10 log

10

jjsjj2

jjs � xjj2 þ �
ð19Þ
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Proposed methods

Joint Source Separation + Sound Event Detection

Considering the potential mutual benefits of the tasks of Source Separation and Sound Event

Detection, we aim to complement both in a single system, called Joint SSep + SED (JSS). Such

a system receives an audio mixture as input and computes the temporal boundaries of sound

events, in the same manner as a traditional SED system, but with the difference that the predic-

tions are obtained from automatically separated sources of the mixture, which are computed

during the same inference process (Fig 5).

The proposed JSS systems consist, then, of a Source Separation block (f(sep)) that divides the

input mixture intoM sources (Eq (20)), and a Sound Event Detection block (f(sed)) that obtains

event score sequences (D̂m) for each of the estimated sources, considering K event classes (Eq

(21)).

f ðsepÞðx; θsepÞ ¼ Ŝ ¼ hŝmi
M
m¼1
; ð20Þ

f ðsedÞðŝm; θsedÞ ¼ D̂m ¼ hd̂m;ki
K
k¼1
: ð21Þ

Afterwards, the source-level scores are combined by means of a pooling function (Eq (22)),

such as an average, obtaining mixture-level score sequences, D̂ ¼ hd̂ki
K
k¼1

.

f ðpoolÞðhd̂m;ki
M
m¼1
Þ ¼ d̂k; ð22Þ

In order to train the JSS model, we propose an iterative process. First, the Source Separation

and the Sound Event Detection blocks are pre-trained separately. The SED block is pre-trained

in the same manner as the DCASE SED Baseline system, using Mean Teacher semi-supervised

training, whereas two different pre-training methods are considered for the SSep block: a

supervised pre-training with PIT (Eq (12)), and an unsupervised pre-training with MixIT (Eq

(17)).

Afterwards, taking the pre-trained blocks as a starting point, we compare two training

methods. On the one hand, Joint Training (JT) performs a single training process, updating

the weights of both blocks (θsep and θsed) simultaneously (Fig 6). Alternatively, Two-stage

Training (TST) performs two additional training processes (Fig 7), the first one updating only

θsed (Stage 1), and the second one updating only θsep (Stage 2).

The main motivation for training the SSep and SED blocks together is that the separation

artifacts introduced by the SSep block in audio signals create a domain mismatch with the pre-

trained SED block, requiring a fine-tuning to separated sources.

Fig 5. Block diagram of Joint Source Separation + Sound Event Detection (JSS).

https://doi.org/10.1371/journal.pone.0303994.g005
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The purpose of Two-stage Training, in contrast to Joint Training, is to control the conver-

gence of each block independently. The first stage aims to adapt the SED block to the separated

sources estimated by the SSep block, solving the domain mismatch without updating θsep.

Afterwards, Stage 2 is approached as a fine-tuning of the SSep separation block to the SED

task. Additionally, each stage can provide further insights on the impact of each block to the

final performance.

Fig 6. Block diagram of Joint training for Joint Source Separation + Sound Event Detection.

https://doi.org/10.1371/journal.pone.0303994.g006

Fig 7. Block diagram of Two-stage training for Joint Source Separation + Sound Event Detection.

https://doi.org/10.1371/journal.pone.0303994.g007
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In both JT and TST, the Mean Teacher method is applied, in order to deal with different

levels of annotation in training data. The loss function employed is the SED objective Lsed,

described in Eq (6).

Mean Teacher model selection

The aim of the training process is to find the optimal set of weights, θ*, that maximizes the per-

formance in external data. For this purpose, the model is tested over a validation data set after

each training epoch, computing an objective metric Pobj. When the training is finished, the set

of weights that maximizes Pobj is selected as the best model.

Moreover, the Mean Teacher training process updates two models in parallel: student and

teacher. Therefore, at each training epoch i, the training has learnt two different sets of weights,

θðsÞi , for the student, and θðtÞi , for the teacher. As described in Eq (3), the weights of the teacher

are obtained as an exponential moving average of the student weights in previous steps, result-

ing in a smoother version of the student.

The DCASE SED Baseline model selection finds the best epoch, b, according only to the

student models (Eq (23)). Then, at test time, the student and teacher models at epoch b, with

weights θðsÞb and θðtÞb respectively, are evaluated over the dev-test data in terms of PSDS and F1

scores. The decision whether to choose the student or the teacher model for external data (e.g.

the DCASE evaluation dataset) can be made at this point, but it is usually observed that the

teacher model gives better results.

b ¼ arg max
i
Pobjðθ

ðsÞ
i Þ: ð23Þ

The proposed training methods for JSS, especially Two-stage Training, require several

Mean Teacher training processes, each of them involving a model selection decision (Fig 7).

Therefore, model selection is particularly relevant in JSS.

In order to enhance the model selection criterion employed by the baseline, we propose a

teacher model selection, which searches the best epoch b(t) considering the teacher models at

each training epoch i (Eq (24)). In this manner, we select the best teacher model, with weights

θðtÞbðtÞ , instead of the best student model, with weights θðsÞb , according to Pobj.

bðtÞ ¼ arg max
i
Pobjðθ

ðtÞ
i Þ: ð24Þ

Considering that teacher models often perform better than students at test time, even when

selecting the best epoch with student models, the proposed criterion is expected to provide

enhanced results. Moreover, the adequacy of model weight averaging for generalization in

deep neural networks has already been discussed in other training techniques, such as Stochas-

tic Weight Averaging [32], supporting the hypothesis that teacher models, constructed by aver-

aging the weights of students (Eq (3)), provide enhanced robustness.

Experimental framework

Proposed experiments

Our experimental settings aim to compare the Sound Event Detection performance of the JSS

methods (Joint Training and Two-stage Training) with two baseline systems, both proposed

by the DCASE Challenge: a SED system and a SSep+SED system.

Moreover, the experiments are designed to offer a comparison of the different methods

described for JSS:
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• Joint Training vs. Two-stage Training. Whereas JT requires less training processes, TST

ensures an independent convergence for the SED and the SSep blocks, training each one of

them in different stages.

• Supervised vs. Unsupervised Source Separation pre-training. The supervised pre-training

for SSep requires a SSep dataset with oracle sources available, limiting the use of in-domain

data. On the other hand, unsupervised pre-training with MixIT allows the use of in-domain

data, even without reference sources available.

• Student model selection vs. Teacher model selection. In contrast with the default model

selection criterion for Mean Teacher in the DCASE Baseline, our proposed model selection

aims to provide enhanced robustness by taking into account the performance of the teacher

models.

In order to compare the aforementioned settings, the two PSDS scenarios proposed by the

DCASE Challenge are considered as performance metrics, as well as the event-based F1 score.

In addition to global performance, class-wise metrics are provided, so the goodness of each

system for specific event categories can be compared.

Moreover, aiming to compare the proposed JSS models, which are composed of a single

branch (Fig 5), with the SSep-SED Baseline of DCASE, which is a combination of two separate

branches (Fig 3), we evaluate different model combinations that are computed as late fusions,

averaging the mixture-level SED score sequences (D̂). The combination procedure for Nmod-

els is described in Eq (25).

D̂ðcombÞ ¼
1

N

XN

n¼1

D̂ðnÞ: ð25Þ

Datasets

DESED: Domestic Environment Sound Event Detection. DESED [9, 10] is the Sound

Event Detection dataset for DCASE Task 4, and it is composed of 10-second audio clips with

different origins and types of annotations. According to the source of the audio, the available

labels, and the purpose of the data, several subsets are defined:

• Weak training: 1578 recordings obtained from AudioSet, including the clip-level annota-

tions for target events.

• Unlabeled training: 14412 clips obtained from AudioSet, with no annotations available.

• Synthetic training: 12500 artificial audio mixtures created by overlapping recordings of

foreground events (obtained from FSD) and background sounds (from the SINS dataset

[33]). The Scaper toolkit [34] is used to generate the mixtures, also providing their strong

annotations.

• Validation: 1168 clips obtained from AudioSet, and manually annotated with strong labels.

• Public evaluation: 692 clips obtained from AudioSet, and manually annotated with strong

labels.

The first three subsets (Weak, Unlabeled, and Synthetic) are intended for model training,

whereas the Validation subset serves as development data during the challenge in order for

participants to choose their best systems. The Public evaluation subset is an additional test
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dataset, which aims to assess whether the decisions made over the Validation set generalize to

different data.

In addition to the described subsets of DESED, we consider a complementary test dataset:

the Public overlap set, proposed in one of our previous analyses of the Sound Event Detection

task [20], is designed to evaluate the performance of SED systems in conditions of severe over-

lap between different events, which have been shown to represent a challenging scenario for

accurate event detection. In order to obtain the audio mixtures of the Public overlap set, the

audio segments of the DESED Public evaluation set are randomly added together in pairs,

joining their ground truth annotations accordingly. The Public overlap set is formed by three

permutations of the Public evaluation segments, resulting in 2076 audio mixtures (three times

the size of the Public evaluation set).

It should be noted that the Public overlap set is designed to represent artificial co-occur-

rence of sound events, which could have a different impact on the performance of the models

compared to naturally overlapped sounds (i.e., several sound sources being recorded at the

same time). Although natural overlap can be found in other DESED datasets, an analysis of

performance under such kind of overlap would present certain limitations, due to the lack of

annotations for non-target events and the scarcity of examples of overlap between target events

[35].

FUSS: Free Universal Source Separation. FUSS [30] is a Universal Source Separation

dataset, built by means of audio overlapping. In order to obtain the artificial mixtures con-

tained in FUSS, a background recording and one to three foreground recordings with different

sound categories are summed together, in a similar way to DESED synthetic audios. The back-

ground and foreground recordings are obtained from FSD.

The dataset contains 20000 training mixtures, 1000 mixtures for validation (i.e. model

selection) and 1000 for test. Given that all of them are artificially composed, the individual

sources are available as training targets, allowing the use of supervised algorithms for Source

Separation training.

YFCC100M: Yahoo-Flickr Creative Commons. YFCC100M [36] is a large-scale multi-

media dataset formed by free-licensed videos and pictures obtained from web sources.

Although individual sources of the audio from the nearly 800000 videos are not provided, the

audio tracks can be used as Universal Source Separation training data by means of an unsuper-

vised approach such as MixIT [13].

Model settings

Sound Event Detection baseline settings. Regarding the SED block, our models share

their structure and settings with the SED Baseline of DCASE 2021 Task 4. Such model is a

CRNN with a convolutional stage of 7 layers and a recurrent stage of 2 Bidirectional Gated

Recurrent Units (Bi-GRU) [23], implemented with pytorch [37].

Mean Teacher training is employed, with a learning rate of 10−3 and an EMA factor of αema

= 0.999. Mixup data augmentation [38] and dropout regularization [39] are applied, with 0.5

probability each. Median filtering is applied to the output prediction scores with a filter length

of 450ms.

The SED baseline is fed with mel-spectrogram features of the audio segments (sampled at

16kHz), with 128 mel filters, Hamming windows of L = 2048 samples, spaced by R = 256 sam-

ples, and Fast Fourier Transforms (FFT) of N = 2048 samples. This feature configuration is

kept for the rest of the models.

In terms of data distribution, the training set is formed by the DESED Unlabeled, Weak

and Synthetic data sets, from which 10% of the weak set and 20% of the synthetic set are
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reserved as validation data to perform model selection. The DESED Validation (dev-test) and

Public Evaluation sets are used as test data.

In the SED Baseline, model selection is performed using the student model (Eq (23)). The

objective metric PðBsÞobj (Eq (26)) is the macro-averaged F1 score obtained by the student over the

validation subset, formed by weak and synthetic training segments. An intersection-based F1

score is computed over synthetic data, whereas weak F1 is computed for the weakly-labeled

data.

PðBsÞobj ¼ F
ðintÞ
1

�
θðsÞ;XðvalÞsynth;Y

ðvalÞ
synth

�
þ FðweakÞ1

�
θðsÞ;XðvalÞweak;Y

ðvalÞ
weak

�
ð26Þ

SSep+SED baseline settings. The SSep+SED Baseline involves pre-trained models for

SSep and SED. Whereas the SED stage of the system is identical to the SED Baseline, the SSep

model is an Improved Time-Domain Convolutional Network (TDCN++) [13], similar to Con-

vTas-Net, withM = 8 outputs. The model, implemented in TensorFlow, is trained in an unsu-

pervised fashion using MixIT, employing 1600 hours of audio from YFCC100M as training

data.

The score pooling function used in this baseline is a sum, meaning that the mixture-level

scores for class k, d̂k, are the sum of the predictions over the estimated sources, as described in

Eq (27).

f ðpoolÞðhd̂m;ki
M
m¼1
Þ ¼

XM

m¼1

d̂m;k ¼ d̂k ð27Þ

In this system, Source Separation is performed as an offline process. Therefore, the pre-

trained SSep model is not updated or fine-tuned to the SED task or the DCASE data. The fine-

tuning process relies on the same configuration as the SED Baseline, including mel-spectro-

gram features, Mean Teacher training and model selection.

Joint Source Separation + Sound Event Detection settings. In contrast with the SSep

+SED Baseline, our proposed methods use a ConvTas-Net model for Source Separation. This

model is implemented in pytorch within the audio separation toolkit Asteroid [40], allowing

for better integration with the SED Baseline. The structure of the ConvTas-Net is configured

withM = 4 outputs, R = 1 repeat and X = 4 convolutional blocks.

The pre-training of the ConvTas-Net SSep block is performed either using PIT (supervised)

or MixIT (unsupervised). In the case of supervised training, the FUSS dataset is used as train-

ing and validation data, whereas the unsupervised training with MixIT uses data from DESED.

In particular, the DESED Synthetic and Unlabeled training sets are used for training, and the

Weak training set is used for validation.

The pre-training of the SED stage in JSS is the same as in the Baseline systems. The mel-

spectrogram and Mean Teacher training settings are preserved for the posterior stages of JSS,

whereas the learning rate is decreased after each model selection: to 10−4 in Joint Training and

Stage 1 of Two-stage Training, and to 10−5 in Stage 2.

In order to combine source-level scores into mixture-level scores, JSS models use a max-

pooling function, defined in Eq (28).

f ðpoolÞðhd̂m;ki
M
m¼1
Þ ¼ max

m
hd̂m;ki

M
m¼1
¼ d̂k ð28Þ

Model selection is applied either with the default method (student model selection, Eq (23))

or with the proposed teacher model selection (Eq (24)). In the latter case, the default objective
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function is computed using the teacher models (θ(t)), as is shown in Eq (29). Then, at test time,

the best teacher model is used for inference.

PðtÞobj ¼ F
ðintÞ
1

�
θðtÞ;XðvalÞsynth;Y

ðvalÞ
synth

�
þ FðweakÞ1

�
θðtÞ;XðvalÞweak;Y

ðvalÞ
weak

�
ð29Þ

Results

Results of individual models

The performance obtained by each of the proposed methods is measured in terms of PSDS

and event-based F1 score. Following the evaluation rules of the DCASE Challenge, the scenar-

ios PSDS1 and PSDS2 are considered, and the macro-averaged event-based F1 score is com-

puted with a 200ms collar for onsets and a collar length of max(200ms, 0.2l) for offsets, where l
is the length of the event.

Regarding JSS, results are provided for the Joint Training (JT) and Two-stage Training

(TST) methods, dividing TST into Stage 1 (S1) and Stage 2 (S2). The results of the initial state

of the JSS model (a concatenation of the pre-trained blocks for SSep and SED) are included as

Stage 0 (S0). The performances of the SED and the SSep+SED Baselines (SED Bs and SSep-

SED Bs) are provided as benchmarks.

Table 2 shows the global performance of the SED Baseline and the proposed models over

the DESED Validation and DESED Public evaluation sets, in terms of the three considered

metrics. Since the DCASE SSep-SED baseline is in fact a combination of a SSep+SED system

and a SED system (Fig 3), its results will be included next to the model combinations.

Most conclusions are similar for both of the datasets. Generally, the proposed teacher

model selection provides better results than the default model selection, which is based on the

student models. Although the change in the model selection strategy was motivated by the

existence of several model selection decisions in the proposed methods, this improvement is

observed also in the baseline system. Therefore, it is shown that the teacher model selection

method is also beneficial for regular Sound Event Detection models trained with Mean

Teacher. Regarding the two proposed pre-training methods for the Source Separation block,

better performance is usually obtained when employing Mixture Invariant Training over the

Table 2. Sound Event Detection results obtained with the DCASE 2021 SED Baseline system (SED Bs) and the Joint Source Separation + Sound Event Detection pro-

posed methods: Pre-trained model (S0), Two-stage Training (S1, S2), and Joint Training (JT). Results are provided over the DESED Validation (dev-test) and Public

evaluation sets, in terms of PSDS1, PSDS2 and event-based F1 score. Two pre-training methods for Source Separation (FUSS and DESED) and two model selection criteria

(Student and Teacher) are compared. The best results for each metric/dataset are highlighted in bold.

Validation (dev-test) Public evaluation

Student model sel. Teacher model sel. Student model sel. Teacher model sel.

PSDS1 PSDS2 F1(%) PSDS1 PSDS2 F1(%) PSDS1 PSDS2 F1(%) PSDS1 PSDS2 F1(%)

SED Bs 0.338 0.522 40.12 0.357 0.552 41.65 0.372 0.582 43.89 0.398 0.613 44.96

FUSS-S0 0.241 0.336 31.42 0.281 0.380 33.15 0.280 0.367 36.60 0.305 0.410 39.90

FUSS-S1 0.329 0.517 41.03 0.349 0.534 41.47 0.364 0.562 41.15 0.393 0.587 44.49

FUSS-S2 0.344 0.549 42.36 0.356 0.552 42.75 0.376 0.587 44.14 0.399 0.615 44.14

FUSS-JT 0.336 0.535 41.50 0.358 0.547 41.46 0.361 0.576 44.54 0.402 0.592 44.85

DESED-S0 0.249 0.352 33.89 0.273 0.373 35.69 0.302 0.396 38.03 0.327 0.383 39.37

DESED-S1 0.346 0.539 39.25 0.355 0.550 42.41 0.374 0.569 42.60 0.390 0.613 45.89

DESED-S2 0.328 0.529 40.85 0.362 0.572 43.40 0.392 0.594 43.60 0.391 0.638 43.41

DESED-JT 0.337 0.504 40.77 0.365 0.555 43.14 0.394 0.573 46.05 0.409 0.602 45.10

https://doi.org/10.1371/journal.pone.0303994.t002
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DESED dataset, underlining the ability of unsupervised source separation to leverage in-

domain data when the individual target sources are not available.

When comparing the performance of Two-Stage Training and Joint Training (considering

teacher model selection), the results show that Joint Training is slightly better at PSDS1,

whereas Two-Stage Training (at Stage 2) provides higher PSDS2, achieving in both cases

slightly better performance than the SED baseline. The results of the different stages of TST

give some insights about their impact in the final performance: First, the results of the initial

state of the joint model, Stage 0, are considerably worse than the Baseline, indicating that the

pre-trained SSep block introduces a domain mismatch with respect to the original mixtures.

The first stage (S1), which fine-tunes the SED block, lowers this gap in performance, yielding

results closer to the Baseline. Stage 2 is able to improve the results of S1 by fine-tuning the

SSep block for the Sound Event Detection task.

Results of combined models

Aiming to allow a comparison with the SSep-SED Baseline of DCASE 2021, which is itself a

combination of a SSep+SED system and a SED system, several model combinations are

defined between the SED Baseline and the JSS models (with DESED SSep pre-training and

teacher model selection). Their results are gathered in Table 3, showing that all the combina-

tions outperform the SSep-SED baseline in terms of PSDS1 and PSDS2 over the Validation set.

However, only the combinations which include both DESED-S2 and DESED-JT models are

able to obtain a higher F1 score than the SSep-SED baseline system. When observing the results

over the Validation set, most of the fusions obtain lower PSDS1 than the SSep-SED baseline,

and none of them is able to obtain a higher F1 score. Nonetheless, an improvement in PSDS2

is obtained by the combinations that include DESED-S1 or DESED-S2.

Results under event overlap

Source Separation as an auxiliary task for Sound Event Detection should be especially helpful

in situations when several events coincide in the same lapse of time. For that reason, we assess

the performance of the JSS models over the Public overlap set [20], providing the results in

Table 4.

The teacher model selection criterion and the unsupervised Source Separation pre-training

with DESED are also beneficial for this scenario, however, the best results in PSDS 1 and 2 are

obtained by the S1 models, and the best F1 result is held by the S0 model. These behaviors

Table 3. Sound Event Detection results obtained with the DCASE 2021 SSep+SED Baseline system (SSep-SED Bs) and JSS model fusions over the DESED Validation

(dev-test) and Public evaluation sets, in terms of PSDS1, PSDS2, and event-based F1 score. All the models in each fusion use Teacher model selection. The best results

for each metric/dataset are highlighted in bold.

Validation (dev-test) Public evaluation

PSDS1 PSDS2 F1(%) PSDS1 PSDS2 F1(%)

SSep-SED Bs 0.363 0.532 44.34 0.424 0.616 48.32

SED Bs + DESED-S1 0.381 0.585 44.07 0.420 0.648 46.85

SED Bs + DESED-S2 0.379 0.590 43.74 0.415 0.655 46.67

SED Bs + DESED-JT 0.366 0.563 43.02 0.413 0.612 45.56

SED Bs + DESED(S2+JT) 0.379 0.587 45.05 0.421 0.652 46.79

SED Bs + DESED(S1+S2+JT) 0.384 0.590 44.81 0.425 0.660 46.06

DESED(S2+JT) 0.380 0.589 45.52 0.421 0.654 46.00

DESED(S1+S2+JT) 0.381 0.587 45.13 0.421 0.655 45.24

https://doi.org/10.1371/journal.pone.0303994.t003
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could be explained by considering that the generation process of the dataset (artificially over-

lapping sound mixtures) and the unsupervised pre-training of the Source Separation block

(separating mixtures of mixtures) can be seen as opposite operations. In other words, the pre-

trained SSep block is already prepared to deal with the same kind of data that is present in the

Public overlap set, therefore the fine-tuning performed in Stage 2 or Joint Training does not

provide any advantage in this scenario.

The results of the combined models over the Public overlap set are shown in Table 5. In this

case, the SSep-SED Baseline yields the best PSDS1 result, while every combination that

includes S1 or S2 obtains better PSDS2 than the baseline. The F1 result of the baseline is only

outperformed by the combinations that include the Stage 1 model. This results follow a similar

behavior to those of the individual models.

Further analysis and discussion

Although the results show that the proposed methods yield small but consistent improvements

in the DCASE Sound Event Detection task, further analysis can provide a better understanding

about the role and impact of Source Separation in SED.

Table 4. Sound Event Detection results obtained with the DCASE 2021 SED Baseline system (SED Bs) and the Joint Source Separation + Sound Event Detection pro-

posed methods: Initial model (S0), Two-stage Training (S1, S2), and Joint Training (JT). Results are provided over the DESED Public overlap set [20], in terms of

PSDS1, PSDS2 and event-based F1 score. Two pre-training methods for Source Separation (FUSS and DESED) and two model selection criteria (Student and Teacher) are

compared. The best results for each metric are highlighted in bold.

Public overlap

Student model sel. Teacher model sel.

PSDS1 PSDS2 F1(%) PSDS1 PSDS2 F1(%)

SED Bs 0.144 0.319 23.18 0.174 0.352 25.16

FUSS-S0 0.096 0.187 23.50 0.123 0.221 25.02

FUSS-S1 0.168 0.336 23.97 0.184 0.352 24.96

FUSS-S2 0.159 0.341 23.84 0.176 0.354 24.27

FUSS-JT 0.149 0.320 23.93 0.171 0.341 24.95

DESED-S0 0.155 0.269 25.80 0.179 0.277 27.70

DESED-S1 0.172 0.341 25.59 0.200 0.378 27.39

DESED-S2 0.166 0.345 25.28 0.188 0.371 26.21

DESED-JT 0.171 0.332 26.76 0.187 0.355 26.00

https://doi.org/10.1371/journal.pone.0303994.t004

Table 5. Sound Event Detection results obtained with the DCASE 2021 SSep+SED Baseline system (SSep-SED Bs)

and JSS model fusions over the DESED Public overlap set, in terms of PSDS1, PSDS2, and event-based F1 score.

All the models in each fusion use Teacher model selection. The best results for each metric are highlighted in bold.

Public overlap

PSDS1 PSDS2 F1(%)

SSep-SED Bs 0.208 0.377 27.11

SED Bs + DESED-S1 0.204 0.395 27.45

SED Bs + DESED-S2 0.195 0.387 27.04

SED Bs + DESED-JT 0.185 0.363 25.80

SED Bs + DESED(S2+JT) 0.197 0.385 26.94

SED Bs + DESED(S1+S2+JT) 0.205 0.397 27.59

DESED(S2+JT) 0.199 0.383 27.27

DESED(S1+S2+JT) 0.206 0.394 27.43

https://doi.org/10.1371/journal.pone.0303994.t005

PLOS ONE Analysis and interpretation of joint source separation and sound event detection in domestic environments

PLOS ONE | https://doi.org/10.1371/journal.pone.0303994 July 5, 2024 19 / 30

https://doi.org/10.1371/journal.pone.0303994.t004
https://doi.org/10.1371/journal.pone.0303994.t005
https://doi.org/10.1371/journal.pone.0303994


For this purpose, we study three additional aspects: First, the class-wise results of the JSS

models, which allow us to analyse the impact of Source Separation in different kinds of events.

Then, given that the main motivation for Source Separation as a pre-processing step for SED is

to isolate different audio events in separate sources, we propose a metric that aims to assess to

what extent this is achieved in the different proposed models. Finally, we provide graphical

representations for some test examples, including the sources estimated by the SSep block as

well as the source-level and mixture-level SED scores.

Class-wise results

The evaluation framework of DCASE Challenge Task 4 is mainly focused on the global perfor-

mance of the models over the whole set of 10 event categories. However, the different target

events are noticeably diverse in terms of acoustic characteristics, for instance, regarding their

duration or their spectral properties [35], therefore some models could be more fitted to cor-

rectly detecting a certain subset of event categories [41]. This motivates a class-wise analysis of

the results, aiming to better understand the behaviour of the JSS systems for different event

classes. For this purpose, we provide the class-wise results of the proposed models (employing

Teacher model selection) over the Public evaluation set in Figs 8 and 9.

The class-wise results suggest that the domain mismatch introduced by Source Separation,

which severely impacts the performance of Stage 0 models, does not affect all classes. In fact,

this initial state performs equally, or even slightly better than the SED baseline in some event

categories (e.g. Cat,Dog in terms of PSDS1, Vacuum cleaner in terms of PSDS2). This indicates

that the artifacts introduced by Source Separation do not alter the identification of these

events. Nevertheless, the detection of other classes is noticeably degraded, especially Dishes.
This is the event category for which the SED baseline yields its worst performance, meaning

that its correct detection is particularly difficult. Thus, in this class the SED block is less robust

to the domain mismatch introduced in Stage 0.

When comparing the two different approaches to SSep pre-training, some differences can

be observed. For instance, in Stage 0 models, some classes obtain clearly lower results with

FUSS supervised pre-training than with DESED unsupervised pre-training (e.g. Alarm bell

Fig 8. Class-wise PSDS1 results of individual models with teacher model selection over DESED Public evaluation data. The SED Baseline performance is indicated

with a blue horizontal line.

https://doi.org/10.1371/journal.pone.0303994.g008
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ringing, Electric shaver toothbrush). In contrast, other categories (Speech, Frying) show the

opposite case, evidencing that each SSep block harms the SED performance in different ways.

However, these differences are not observed in the subsequent stages of JSS (Stage 1, Stage 2,

or Joint Training), meaning that the fine-tuning of the SED block is able to overcome the mis-

matches introduced by either supervised or unsupervised SSep blocks. Actually, it can even

revert the situation, like in the case of Frying.

Diversity of predictions across sources

The motivation for the use of Source Separation as an auxiliary task for Sound Event Detection

is the idea that automatically separated sources can be more adequate inputs for Sound Event

Detection. This hypothesis can be assessed by measuring the SED performance of the systems,

as done in the Results section. However, an analysis of the interaction between SSep and SED

in the proposed models would be able to provide more specific insights.

For this purpose, we have studied the diversity of Sound Event Detection predictions across

theM different sources estimated for each sound mixture. We consider the source-level score

sequences, D̂m ¼ hd̂m;ki
K
k¼1
;m 2 ½1;M�, and quantify the similarities between every source pair

by means of cosine scoring. The similarity between the predictions of a pair of sources, (m, n)

2 [1,M],m 6¼ n, is computed in Eq (30) as the average of their cosine similarity at each time

step t.

scosðD̂m; D̂nÞ ¼
1

T

XT

t¼1

D̂mðtÞ � D̂nðtÞ
jjD̂mðtÞjj � jjD̂nðtÞjj

2 ½0; 1� ð30Þ

The total similarity score of an audio segment is computed as the average similarity of the

SED scores for every pair of estimated sources. Given that the SED scores are bound between 0

and 1, the similarity score is as well.

The distribution of similarity scores for test segments using different JSS models is shown

in Fig 10. In general, higher similarity scores are observed for Public eval data than for Public

overlap data, which is expected, considering that a larger number of events in a mixture allows

for a higher diversity of events in its estimated sources. An additional general observation is

Fig 9. Class-wise PSDS2 results of individual models with teacher model selection over DESED Public evaluation data. The SED Baseline performance is indicated

with a blue horizontal line.

https://doi.org/10.1371/journal.pone.0303994.g009
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that supervised pre-training of the SSep block with FUSS results in less similar predictions

than unsupervised pre-training with DESED.

Regarding the different models, the least similar predictions across sources are obtained by

the initial state, Stage 0, and the similarity of predictions increases with each step of Two-stage

training (stages 1 and 2). The most similar predictions, however, are obtained with Joint Train-

ing. This behavior is particularly noticeable in the systems with unsupervised pre-training of

SSep, which could indicate that the unsupervised SSep block is more prone to forgetting source

separation, to some extent, when fine-tuned for the SED task.

Overall, the JSS model with more similar predictions is DESED-JT, with most of the Public

eval examples obtaining similarity scores higher than 0.9. In practice, this model is detecting

almost the same events in every estimated source, meaning that Source Separation is not per-

forming a relevant role.

A comparison of mean similarity scores and SED performances of the different proposed

models is provided in Fig 11. Although the similarity scores do not provide a complete expla-

nation of the differences in performance, it can be observed that, with the exception of Stage 0

systems in some cases, more diverse predictions across estimated sources generally lead to bet-

ter results in Public overlap data, whereas this does not happen in Public eval data, suggesting

that effective Source Separation is more beneficial when tackling severely overlapped scenar-

ios. This explains the lower performance of Joint Training or Stage 2 in overlapped data, when

compared to Stage 1 (or even Stage 0, in terms of F1 score). However, this conclusion is limited

due to the fact that the examples in Public overlap are artificially generated, which is an advan-

tage for the SSep models employed (particularly for those pre-trained with DESED).

In conclusion, the proposed similarity score has allowed us to measure and observe the

interactions between Source Separation and Sound Event Detection, highlighting the main dif-

ficulty of training SSep and SED systems jointly: when training JSS systems with a SED objec-

tive, the SSep block tends to forget its original task (decomposing the mixture into its different

components), and provides instead similar signals for all its output channels. Although this

issue does not necessarily harm SED performance (Fig 11), it does not align with the original

motivation of JSS, which is to improve the detection performance by separating the input mix-

ture into simpler components.

Fig 10. Distribution of the cosine similarities across source-level predictions of different models for DESED Public evaluation (left) and Public overlap (right).

https://doi.org/10.1371/journal.pone.0303994.g010
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Intermediate representations of Joint Source Separation and Sound Event

Detection

So far, we have analysed the SED performance of the JSS models, both globally and class-wise,

and we have observed the effect of Source Separation in the SED predictions by measuring the

diversity of the SED scores across the estimated sources. In this section, we aim to complement

the analysis of JSS, providing a global overview of the method by representing the inputs and

Fig 11. PSDS1, PSDS2 and F1 results of individual models with Teacher model selection over DESED Public evaluation (left) and Public overlap (right), plotted

against their cosine-distance-based similarity scores. The SED Baseline is represented as a reference, considering that its similarity score is 1.

https://doi.org/10.1371/journal.pone.0303994.g011
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outputs of each block: (1) The input mixture waveform and its mel-spectrogram. (2) The mel-

spectrogram of each estimated source output by the SSep block. (3) The SED score sequences

obtained for each estimated source. (4) The mixture-level SED score sequences, computed as a

max-pooling across the source-level scores.

We illustrate the different stages of JSS with an example extracted from DESED Public eval-

uation. For this audio segment, we provide the representations of the models that employ

unsupervised SSep pre-training (DESED) at the initial state (Stage 0), with Two stage Training

(Stages 1 and 2), and with Joint Training.

The example contains two target events mostly overlapped in time, “Speech” and “Vacuum
cleaner”. The model at Stage 0 (Fig 12) correctly detects both events, but introduces false

Fig 12. Visualization of the audio segment “AW9ZKFZKhDE_49_59”, from DESED Public evaluation, as processed by the JSS model DESED-S0 (Teacher model

selection). The top left plot is the input mixture waveform, and below the mixture mel-spectrogram is shown. The four bottom mel-spectrograms in the left column are

the sources estimated by the SSep block. Next to each source mel-spectrogram, its corresponding SED score sequences are represented. Over the source-level scores, the

mixture-level score sequences are shown. Finally, the upper right plot represents the ground truth annotations of the segment. The figure is best viewed in color.

https://doi.org/10.1371/journal.pone.0303994.g012
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positive activations of other classes: “Blender”, “Alarm bell ringing” and, more noticeably,

“Dog”, which illustrates the effect of the domain mismatch.

After the fine-tuning of the SED block in Stage 1 (Fig 13), these false positives are solved. In

this stage, both events are detected in the four estimated sources, but the confidences in each

one of them are different: the first two sources obtain high confidence for “Vacuum cleaner”,
but a moderate confidence for “Speech”, even skipping one of its appearances. In contrast, a

higher confidence for “Speech” is observed in the two last sources (which present cleaner

speech mel-spectrograms), whereas the confidence for the detection of “Vacuum cleaner” is

much lower. This suggests that the correct separation of events is helpful in order to enhance

the confidence of the detections.

Fig 13. Visualization of the audio segment “AW9ZKFZKhDE_49_59”, from DESED Public evaluation, as processed by the JSS model DESED-S1 (Teacher model

selection). The top left plot is the input mixture waveform, and below the mixture mel-spectrogram is shown. The four bottom mel-spectrograms in the left column are

the sources estimated by the SSep block. Next to each source mel-spectrogram, its corresponding SED score sequences are represented. Over the source-level scores, the

mixture-level score sequences are shown. Finally, the upper right plot represents the ground truth annotations of the segment. The figure is best viewed in color.

https://doi.org/10.1371/journal.pone.0303994.g013
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In Stage 2 (Fig 14), after the fine-tuning of the SSep block, the final scores are very similar

to those of Stage 1. However, the source-level scores have become less diverse than in Stage 1,

with higher confidence for “Vacuum cleaner” in the last two sources. This suggests that the

SSep fine-tuning decreases the ability of the SSep block to isolate different events into different

sources.

Finally, in the case of Joint Training (Fig 15), the four estimated sources are very similar to

the mixture, indicating that the joint fine-tuning of SSep and SED is also detrimental for the

separation properties of the SSep block. In consequence, the source-level detection scores are

mostly redundant. Nevertheless, the predictions for the example are generally correct, except

for a false positive detection of Dog, which was present at Stage 0.

Fig 14. Visualization of the audio segment “AW9ZKFZKhDE_49_59”, from DESED Public evaluation, as processed by the JSS model DESED-S2 (Teacher model

selection). The top left plot is the input mixture waveform, and below the mixture mel-spectrogram is shown. The four bottom mel-spectrograms in the left column are

the sources estimated by the SSep block. Next to each source mel-spectrogram, its corresponding SED score sequences are represented. Over the source-level scores, the

mixture-level score sequences are shown. Finally, the upper right plot represents the ground truth annotations of the segment. The figure is best viewed in color.

https://doi.org/10.1371/journal.pone.0303994.g014

PLOS ONE Analysis and interpretation of joint source separation and sound event detection in domestic environments

PLOS ONE | https://doi.org/10.1371/journal.pone.0303994 July 5, 2024 26 / 30

https://doi.org/10.1371/journal.pone.0303994.g014
https://doi.org/10.1371/journal.pone.0303994


Conclusions and future work

In this work, we define and analyze a method for Sound Event Detection that includes Source

Separation as an integral component of the neural network structure. With respect to other

related works in the field, the proposed Joint Source Separation and Sound Event Detection

(JSS) method allows an explicit interaction between SSep and SED, thanks to a joint model

that is trained in an end-to-end fashion, built from two pre-trained neural networks, for SSep

and SED respectively.

The experimental framework is configured according to the DCASE Challenge Task 4,

“Sound Event Detection and Separation in Domestic Environments”, providing results over

the DESED Validation and Public evaluation sets. Moreover, given that the benefits of the

Fig 15. Visualization of the audio segment “AW9ZKFZKhDE_49_59”, from DESED Public evaluation, as processed by the JSS model DESED-JT (Teacher model

selection). The top left plot is the input mixture waveform, and below the mixture mel-spectrogram is shown. The four bottom mel-spectrograms in the left column are

the sources estimated by the SSep block. Next to each source mel-spectrogram, its corresponding SED score sequences are represented. Over the source-level scores, the

mixture-level score sequences are shown. Finally, the upper right plot represents the ground truth annotations of the segment. The figure is best viewed in color.

https://doi.org/10.1371/journal.pone.0303994.g015
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SSep stage should be more evident when dealing with highly overlapped data, we offer results

over an additional dataset containing sound mixtures severely affected by event overlap. In all

of the studied data sets, the proposed models outperform the benchmark set by the DCASE

SED Mean Teacher baseline in terms of two different PSDS scenarios.

Considering that SSep pre-training is required for JSS, the availability of in-domain SSep

training data could become a limiting factor for the use of JSS. However, our experiments

show that unsupervised SSep with Mixture Invariant Training is an adequate choice for the

SSep pre-training step, even reaching better performance than supervised SSep pre-training

over out-of-domain data. Additionally, our proposed model selection strategy for Mean

Teacher, based on the teacher models, provides consistent improvements in SED performance

at test time: such strategy is suitable not only for JSS models, but also for other mean-teacher-

based SED models and, possibly, for Mean Teacher training in different applications.

Finally, aiming to provide further analysis and discussion of the role of Source Separation

in the proposed models, we propose a study on the diversity of event predictions across differ-

ent separated sources. The results have helped to highlight the main limitation of the proposed

joint training methods: when training the Source Separation stage jointly with the Sound

Event Detection stage using a SED objective, the SSep stage tends to forget separating sources

and provide the same (or very similar) output for all the sources. In future work, we consider

that the joint training process should be enhanced to deal with this limitation, for instance,

combining the SED loss function with a Source Separation loss term in order to encourage

separation and detection in a multi-task learning fashion.
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