PLOS ONE

Check for
updates

G OPEN ACCESS

Citation: McCarthy OS, Winston Pomeroy M,
Smith JE (2024) Corals that survive repeated
thermal stress show signs of selection and
acclimatization. PLoS ONE 19(7): e0303779.
https://doi.org/10.1371/journal.pone.0303779

Editor: Anderson B. Mayfield, Living Oceans
Foundation, TAIWAN

Received: January 21, 2024
Accepted: May 1, 2024
Published: July 31,2024

Peer Review History: PLOS recognizes the
benefits of transparency in the peer review
process; therefore, we enable the publication of
all of the content of peer review and author
responses alongside final, published articles. The
editorial history of this article is available here:
https://doi.org/10.1371/journal.pone.0303779

Copyright: © 2024 McCarthy et al. This is an open
access article distributed under the terms of the
Creative Commons Attribution License, which
permits unrestricted use, distribution, and
reproduction in any medium, provided the original
author and source are credited.

Data Availability Statement: All coral growth and
bleaching data, as well as R code for analysis, are
available from the Dryad database (https:/
datadryad.org/stash/dataset/doi:10.5061/dryad.
9cnp5hasf).

RESEARCH ARTICLE

Corals that survive repeated thermal stress
show signs of selection and acclimatization

Orion S. McCarthy ' *, Morgan Winston Pomeroy??2, Jennifer E. Smith’

1 Scripps Institution of Oceanography, Center for Marine Biodiversity and Conservation, University of
California San Diego, La Jolla, California, United States of America, 2 School of Geographical Sciences and
Urban Planning, Arizona State University, Tempe, Arizona, United States of America, 3 Center for Global
Discovery and Conservation Science, Arizona State University, Hilo, Hawai‘i, United States of America

* omccarth@ucsd.edu

Abstract

Climate change is transforming coral reefs by increasing the frequency and intensity of
marine heatwaves, often leading to coral bleaching and mortality. Coral communities have
demonstrated modest increases in thermal tolerance following repeated exposure to moder-
ate heat stress, but it is unclear whether these shifts represent acclimatization of individual
colonies or mortality of thermally susceptible individuals. For corals that survive repeated
bleaching events, it is important to understand how past bleaching responses impact future
growth potential. Here, we track the bleaching responses of 1,832 corals in leeward Maui
through multiple marine heatwaves and document patterns of coral growth and survivorship
over a seven-year period. While we find limited evidence of acclimatization at population
scales, we document reduced bleaching over time in specific individuals that is indicative of
acclimatization, primarily in the stress-tolerant taxa Porites lobata. For corals that survived
both bleaching events, we find no relationship between bleaching response and coral
growth in three of four taxa studied. This decoupling suggests that coral survivorship is a
better indicator of future growth than is a coral’s bleaching history. Based on these results,
we recommend restoration practitioners in Hawai'‘i focus on colonies of Porites and Monti-
pora with a proven track-record of growth and survivorship, rather than devote resources
toward identifying and cultivating bleaching-resistant phenotypes in the lab. Survivorship fol-
lowed a latitudinal thermal stress gradient, but because this gradient was small, it is likely
that local environmental factors also drove differences in coral performance between sites.
Efforts to reduce human impacts at low performing sites would likely improve coral survivor-
ship in the future.

1. Introduction

Coral reefs are among the most vulnerable ecosystems on Earth to the impacts of anthropo-

genic climate change [1-3]. Climate change has increased the severity and frequency of marine
heatwaves [4-6], which disrupt the growth and survival of scleractinian corals, the key founda-
tion organisms on shallow water coral reefs throughout the tropics [7]. Marine heatwaves have
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already begun to reshape coral communities globally by reducing coral cover [8-12] and
inducing shifts in benthic community composition toward more stress-tolerant coral taxa
[13,14], sponges and soft corals [15], and fleshy seaweeds [16-18]. Without concerted action
to address climate change, projections for the future of coral reefs are dire [2,19,20]. Still, cer-
tain coral populations have demonstrated capacity to persist in marginal environments or
through intense environmental disturbances [21]. These corals are a source of hope for coral
researchers and conservation practitioners alike, a sign that a future with functional coral reefs
is still a possibility.

Disturbance events transform communities by inducing physiological stress that reduces
the growth, survivorship, competitive ability, or fecundity of certain organisms [22-25]. For
corals, stress can manifest as bleaching due to the breakdown of symbiosis between corals and
their dinoflagellate symbionts in the family symbiodiniaceae [12]. Without their symbionts,
corals lack their primary source of nutrition [26,27]. While mortality is not an inevitable out-
come of coral bleaching [28-30], prolonged bleaching often results in partial or complete mor-
tality of coral colonies. A variety of environmental stressors can cause coral bleaching, but
bleaching is most commonly studied in relation to marine heatwaves [11,31]. In this context,
bleaching onset is determined primarily by the intensity and duration of heat stress that corals
experience [32,33]. Recent studies that document an increase in the magnitude of heat stress
required to induce coral bleaching and mortality suggest that corals may possess the ability to
acclimatize to heat stress over time [11,34,35].

Acclimatization refers to the process of phenotypic or epigenetic change that occurs within
the lifespan of a single individual to cope with environmental stress [36]. In corals, acclimatiza-
tion to heat stress can occur through a variety of mechanisms. For instance, Million et al.
(2022) tracked Acropora cervicornis outplants through a bleaching event in Florida and found
that genotypes with higher morphological plasticity had lower mortality and higher growth
rates. Furthermore, these relationships strengthened over the course of the experiment, sug-
gesting that acclimatization was actively occurring in response to heat stress [37]. In Kiribati,
Claar et al. (2020) observed colonies of Platygyra ryukyuensis and Favites pentagona switch
their symbiont communities from Cladocopium to Durisdinium during a bleaching event. This
symbiont shuffling allowed colonies to regain pigmentation and recover from bleaching while
heat stress remained elevated [38]. Heat-responsive genes have been found in coral tissues as
well, and there is evidence that corals can modulate expression of these genes in response to
heat stress [39,40]. In addition, the microbial communities associated with a coral “holobiont”
can perform beneficial functions, such as nitrogen fixation and reactive oxygen scavenging,
that have been shown to improve coral survivorship during heat stress [41].

Signs of coral acclimatization are widespread, having been documented in Australia
[42,43], Hawai‘i [44,45], Kenya [46], the Maldives [47], Malaysia [48], Palau [35], the Persian
Gulf [49], and the Red Sea [50]. However, the cumulative stress of repeated bleaching is non
negligible, and can reduce coral physiological performance over time [51,52] rather than
induce acclimatization. Furthermore, when thermal stress is severe, bleaching-induced mortal-
ity can create a population bottleneck that reduces opportunities for acclimatization to occur
[53,54]. Even following sequential heatwaves of moderate intensity, signs of acclimatization
may not be evident at ecologically relevant scales.

At a global scale, there is evidence that coral bleaching thresholds have increased by 1°C
since 1980 [55], with less severe bleaching observed on reefs that have been exposed to thermal
stress previously [11,34]. While this increase in thermal tolerance could be due to widespread
coral acclimatization, it could also be driven by other factors. Environmental conditions dur-
ing a marine heatwave, such as high primary productivity, cloud cover, and turbidity, can act
synergistically to reduce coral bleaching and mortality [12,56-58]. Furthermore, the
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appearance of acclimatization on coral reefs could actually be the result of shifts in coral com-
munity composition toward thermally tolerant species due to bleaching-related mortality of
vulnerable taxa [3,13,14,30] rather than improvements in the thermal tolerance of individual
corals. As climate change intensifies, it is important that we understand whether changes in
reef-scale thermal tolerance are driven by coral acclimatization or taxonomic turnover, or
both.

Tracking the fate of individual corals through multiple marine heatwaves is one mechanism
to better understand the drivers and prevalence of coral acclimatization to heat stress [25,59-
61]. Many observational studies of coral bleaching use population-scale metrics to quantify
bleaching trends (i.e., percent of colonies bleached [31]) rather than track the fate of individual
coral colonies (but see [25,38,62,63]). Fate tracking can be hindered by the challenge of relocat-
ing and precisely delineating the boundaries of coral colonies in situ. This is particularly diffi-
cult for species where partial mortality causes colonies to split (fission) and regrow (fusion)
over time [64,65]. This challenge can be ameliorated by large-area imaging technology (a.k.a.
photogrammetry or Structure from Motion), which allows researchers to reconstruct 3D mod-
els of the reef benthos. These models can be used to precisely locate and track coral colonies
through time [66,67]. Large-area imagery has been used quantify growth and mortality in
demographically complex corals that display high rates of fusion and fission [61,68]. However,
large-area imaging is a relatively recent technology in the coral reef field, which limits the tem-
poral scope of most studies. Furthermore, any timeseries would need to document sequential
marine heatwaves of similar magnitude in order to be useful for studying coral acclimatization,
which can be a tall order.

Few studies have been conducted that 1) document the impact of sequential bleaching
events on coral populations, 2) track individual coral colonies through time using large-area
imaging, and 3) quantify patterns of coral bleaching, growth, and mortality in species with
complex demographic trajectories involving fission and fusion dynamics (but see [69]). Here
we track the fate of individual corals in leeward Maui to quantify the impact of successive
bleaching events on coral growth and survivorship. Specifically, we sought to answer three
questions. First, do individual corals, as well as coral populations, show evidence of acclimati-
zation? Second, do corals with lower rates of bleaching outperform other corals over time?
Finally, do different coral populations show similar responses to sequential heat stress in terms
of bleaching, growth, and survivorship? This research holds particular relevance for coral res-
toration, given ongoing efforts to identify, cultivate, and outplant thermally tolerant coral gen-
ets as a form of climate-smart restoration [70]. If shifts in thermal tolerance in acclimatized
corals are long lasting, or if certain locations or populations emerge as bastions of resilience,
these corals could serve as parent colonies for restoration efforts [37,71].

2. Methods
2.1 Study sites

We surveyed populations of four coral taxa (Montipora capitata, Montipora patula, Pocillopora
spp., and Porites lobata) at six sites in leeward Maui: Kahekili, Wahikuli, Olowalu, Ukume-
hame, Keawakapu, and Molokini. Our timeseries at these sites consists of five surveys (August
2014, November 2015, July 2017, October 2019, and June 2021), two of which coincide with
documented bleaching events (2015 and 2019; Fig 1). These sites all represent hardbottom
tropical coral reef habitat and range from 30.7% to 82.1% coral cover, 4.5 m to 10 m in depth,
and 41 m to 487 m from shore (S1 Table in S1 File). The focal coral taxa studied here all repre-
sent common and important reef building species on Hawaiian coral reefs [72-74].
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Fig 1. Bleaching response of coral populations in each survey year. Thermal stress is shown in each survey year for all sites in terms of (A) SST anomaly with
respect to the 1985-2012 climatological mean, and (B) degree heating weeks (DHW). The black dotted line in (A) indicates a SST anomaly of 0. The yellow and
red dotted lines in (B) denote the DHW threshold where bleaching and mortality, respectively, are expected to occur. Camera icons in (A-B) indicate the
timing of large-area imagery surveys. (C) The bleaching response of each coral population is shown in each year. All genets are included, not just those that
survived to the end of the timeseries.

https://doi.org/10.1371/journal.pone.0303779.g001

The Hawaiian Islands have historically had a low incidence of bleaching compared to other
coral reef ecoregions [75], but the archipelago was impacted by marine heatwaves in 2014,
2015, and 2019 that caused widespread coral bleaching [8,75-77]. While the spatial footprint
and intensity of the 2015 and 2019 bleaching events varied throughout the Hawaiian archipel-
ago, heat stress was similar in 2015 and 2019 for leeward Maui (mean increase of 0.42 degree
heating weeks (DHW) from 2015 to 2019 across our sites, S1 and S2 Figs in S1 File, S1 Table in
S1 File). This makes Maui an ideal natural experiment to identify signs of coral acclimatiza-
tion, since we would expect similar levels of bleaching in 2015 and 2019 in response to similar
levels of heat stress.

2.2 Data collection

We used large-area imaging (photogrammetry) to capture a 3D snapshot of coral reef condi-
tion at our six sites in leeward Maui in 2014, 2015, 2017, 2019, and 2021. Large-area imaging is
the process of generating a composite visual reconstruction (i.e., 3D model, orthoprojection,
DEM, etc.) via the overlap of many component images [66]. Large-area imaging has been used
with increased frequency to archive coral reef structure and condition, and provides a basis for
in silico field work to answer a variety of ecological questions [66,78-80]. Details of our large-
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area imaging workflow are available elsewhere [67] and will be described in minimal detail
here.

At each fixed site, divers entered the water with two D7000 SLR Nikon cameras (focal
lengths of 18mm and 55mm) in Ikelite underwater housings. Divers marked the boundaries of
each 10 x 10 m long-term monitoring plot with six calibration tiles, and placed four 0.5 m long
scale bars within the plot. One diver swam approximately 1.5 m over the reef in a gridded pat-
tern with the cameras, which were programmed to take a picture every second. This produced
approximately 5,000 pictures per site. The diver imaged a core area of 10 x 10 m, and swam
several meters beyond the calibration tiles to ensure that a buffer region (> 1 m wide) around
the core area was also imaged.

Once imagery was collected, we used the software Agisoft Metashape (St. Petersburg, Russia)
to build a dense point cloud, which we refer to here as a 3D model. After building the 3D mod-
els in Metashape, we loaded them into the custom software Viscore [81] for postprocessing.
These postprocessing steps included 1) scaling the 3D model using the 0.5 m scale bars, 2) enter-
ing depth measurements collected at each calibration tile so that the 3D model could be oriented
with respect to the sea surface, 3) manually aligning 3D models of the same site collected in dif-
ferent years, and 4) exporting a high-resolution top-down view of the model known as an ortho-
projection. Each orthoprojection was 12 x 12 m and had a resolution of 1 mm per pixel. We
used these orthoprojections rather than the 3D models for all subsequent data collection steps.

2.3 Coral tracing

Researchers used TagLab and ArcGIS Pro to trace patches of live coral tissue following the
approach of Rodrguez et al. 2021 [68]. We found no effect of software on traced planar area
(S3 Fig in S1 File), and a single annotator (OM) QCed all tracings in TagLab to control for any
potential effect of annotator or software. We used the high-resolution imagery that underlies
the 3D model (raw images) as a reference to assist with tracing and species ID. For this study,
we chose to identify Pocillopora to the genus level because morphology is not a good indicator
of species ID for Pocillopora in Hawai‘i [82], whereas the three other taxa could be confidently
identified to species. For P. lobata, we focused on massive and submassive growth forms to
avoid confusion with the related branching coral Porites compressa.

After corals were traced, we used TagLab to “match” patches of live tissue that represented
the same individual through time. This created a network of temporally linked coral patches
(Fig 2). This enabled us to more accurately identify individual genets of corals such as Porites
and Montipora, which readily exhibit fusion and fission over time due to partial morality
[25,61,68,83]. Hereafter we use “patch” to denote a single contiguous region of live coral tissue
in one timepoint, and “genet” to denote a network of patches interconnected through time
(Fig 2). While we cannot definitively say that linked corals represent a single genetic individual
(since we did no genetic testing), the precise tracking capabilities afforded by overlapping
orthoprojections and associated raw images enable us to identify individual genets with a rea-
sonable degree of confidence. Additionally, we visually inspected orthoprojections to identify
potential instances of pseudoreplication arising from colony fission prior to our timeseries,
and found minimal evidence to support this concern. We performed all subsequent analyses at
the genet level, and considered a genet to have survived the full timeseries if at least one patch
of that genet existed in both 2014 (our first sampling year) and 2021 (our final sampling year).
For each genet, we calculated the total planar area (cm?) in each timestep by summing the pla-
nar area of individual associated patches.

To achieve an appropriate sample size of M. capitata, M. patula, and P. lobata, we traced
corals within 10 randomly placed non-overlapping 0.5 m” quadrats within the orthoprojection
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Fig 2. Illustration of the coral tracing workflow using orthoprojections. An example orthoprojection shows the location of randomly placed 0.5 m* quadrats
(turquoise). For each quadrat, an annotator traced patches of live coral tissue > 5 cm in diameter. Patches were linked temporally to form a network of patches
that were interconnected by fission (splitting via partial mortality) and fusion (growing together into a single patch). Annotators traced patches of live

tissue < 5 cm in diameter and patches that fell outside of the quadrat if these patches were connected via fusion or fission to a genet within a quadrat. An
example quadrat with traced patches is illustrated here, with fission and fusion represented by arrows. Patches are color coded by species and numbered
sequentially in each year. Each linked network of patches is considered to be its own genet and assigned a unique ID number that is consistent across the
timeseries. This is illustrated via color coding in the bottom panel. In this example, only genets 1 and 3 survived the full timeseries, while genet 2 experienced
complete mortality between years 1 and 2. Genet 4 recruited to the reef between years 1 and 2, and as such wouldn’t be included in this study, since our analysis
focused on the cohort of coral genets that were alive at the start of the timeseries (genets 1, 2, and 3 in this example).

https://doi.org/10.1371/journal.pone.0303779.g002

(Fig 2). We identified and traced all coral patches with a diameter > 5 cm whose centroid fell
within the boundaries of a quadrat [68]. To account for fission and fusion dynamics, we also
traced patches outside of a quadrat or < 5 cm in diameter if they were temporally linked to a
genet inside a quadrat. At sites where < 40 genets were traced in our first timestep, we placed
additional quadrats (up to 25 total) and continued tracing taxa until we reached 40 genets or
until 25 quadrats had been placed. For Pocillopora, which was less abundant than other taxa,
we identified and traced all patches within each 12 x 12 m orthoprojection. To ensure a bal-
anced design for statistical analyses, we randomly selected 100 P. lobata genets for n = 2 sites
where > 100 genets had been traced. The total number of coral genets traced per site, year,
and taxa is shown in S2 Table in S1 File.

2.4 Bleaching

We assessed the extent and severity of bleaching for every patch of coral tissue > 1 cm? in each
year of our timeseries. First, we visually estimated bleaching extent as the percent of a patch’s
area (0-100%) with some degree of paling unrelated to coral growth or disease. Focusing on
this bleached tissue only, we then scored bleaching severity (from 0 to 3) based on the overall
degree of paling observed (0 for practically no pigmentation loss; 1 for slight paling, 2 for sig-
nificant loss of pigmentation, and 3 for almost or completely stark white; [68]). When
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estimating both bleaching extent and severity, we used Viscore’s Virtual Point Intercept inter-
face [28] to reference the original imagery. This allowed us to view multiple angles of each
coral patch to assess bleaching, enabling us to account for changes in tissue color due to light-
ing or image quality.

Once we assessed bleaching extent and severity for all patches in all years, we calculated
genet-level bleaching extent and severity in each timepoint by summing bleaching extent and
severity across patches, weighted by patch area. Then, we incorporated bleaching extent and
severity into a single bleaching metric for each genet in each timepoint (Fig 3). According to this
metric, genets fell into one of five categories: no bleaching or very minor paling, minor bleaching,
moderate bleaching, severe bleaching, or extreme bleaching. If a genet changed by more than
one step between 2015 and 2019, the genet was considered to have an increased or decreased
bleaching response over time. We considered genets that changed one bleaching step or less
between 2015 and 2019 to have a stable bleaching response over time. Among these stable genets,
those that exhibited moderate bleaching or higher were considered to have “high bleaching sus-
ceptibility”, and all other genets were considered to be “thermally tolerant”. These bleaching
responses (thermally tolerant, decreased bleaching response, increased bleaching response, and
high bleaching susceptibility) were used as fixed factors to compare genets over time.

2.5 Statistical analysis

To test for signs of acclimatization among surviving genets in each population (corals of the
same taxa within a given site), we employed a bootstrapping approach using only genets that
were present in both bleaching events. We calculated the difference between each genet’s
bleaching score in 2015 and 2019, which produced an integer response variable ranging from
-4 to 4, where 0 indicated no change in bleaching, -4 indicated extreme bleaching in 2015 and
no bleaching in 2019, and 4 indicated no bleaching in 2015 and extreme bleaching in 2019.
Then, we generated a null distribution of the median change in bleaching scores for each coral
population via 100,000 resamples. P values were calculated as the proportion of all resamples
where the population’s median change in bleaching score was > 0, and we used o = 0.05 as our
threshold of significance. We did not test for acclimatization in two populations of Pocillopora
spp. which had a low sample size of surviving genets (< 10 genets).

To test if coral populations at each site exhibited different bleaching responses, we created a
contingency table of surviving genets based on their bleaching responses over time. We per-
formed Fisher’s exact test to test the null hypothesis that there was no relationship between site
and bleaching response. We performed this test between all permutations of sites for each
taxon and calculated adjusted p values using the Bonferroni correction for multiple compari-
sons. We assigned post hoc letters at a significance level of o. = 0.05 to indicate significant dif-
ferences in bleaching response between coral populations at different sites. We also pooled
data by site and performed the same test to identify significant differences in bleaching
response among coral taxa. Separately, we pooled observations across sites and ran a logistic
regression of bleaching probability vs. genet size in 2015 and 2019 to quantify the relationship
between bleaching and genet size. For this analysis, we coded bleaching as a binary variable (0
for genets with no signs of bleaching or minor bleaching, 1 for genets with moderate, severe,
or extreme bleaching) in order to perform the logistic regression.

To test if acclimatized and thermally tolerant genets exhibited higher growth over the time-
series than other corals, we performed an ANCOVA for each coral taxon, focusing on surviv-
ing genets only. We used bleaching response (thermally tolerant, decreasing bleaching
susceptibility, increasing bleaching susceptibility, and high bleaching susceptibility) as a fixed
effect, only retaining those with a sample size > 10 for analysis. Our continuous predictor
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variable was genet planar area at the start of the timeseries, and our response variable was
genet planar area at the end of the timeseries. Genet planar area was natural log transformed
for normality, and model assumptions were visually assessed using residual plots and quantita-
tively using Shapiro tests for normality and Cochran tests for homogeneity of variance. We
performed a separate ANCOVA using site as a fixed effect to test for significant differences in
coral growth between sites for each taxon. All models used a significance level of o = 0.05.

Finally, to test for differences in coral survivorship between sites, we performed a logistic
regression using all traced genets (not just survivors) for each taxon. We used site as a fixed
effect, log transformed planar area of genets in 2014 as our predictor variable, and coded genet
survivorship as a binary response variable (0 = genet did not survive until 2021, 1 = genet sur-
vived from 2014 to 2021). There were significant interactions between multiple sites, so to
facilitate interpretation we conducted pairwise comparisons between sites that didn’t interact.
We calculated adjusted p values using the Bonferroni correction for multiple comparisons at a
significance level of o = 0.05. To test for differences in coral survivorship between taxa, we also
pooled genets by site and ran a logistic regression of survivorship vs. initial genet size. We
completed statistical analyses using the ‘dplyr’, ‘emmeans’, ‘multcomp’, ‘coin’, and ‘rstatix’
packages in R v. 4.0.5 [84-89].

3. Results

In total, we tracked the fate of 1,832 coral genets across six sites from 2014 to 2021. Pocillopora
exhibited exceptionally low survivorship: 15.7% of Pocillopora genets survived from 2014 to
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2021, compared to 54.4% of M. capitata genets, 51.3% of M. patula genets, and 63.2% of P.
lobata genets. Bleaching prevalence was high for Pocillopora and M. capitata during both
bleaching events: 70.0% of Pocillopora and 62.0% of M. capitata genets that survived to 2015
experienced moderate, severe, or extreme bleaching in the first bleaching event, while 50.4% of
Pocillopora and 60.3% of M. capitata genets that survived until 2019 experienced moderate,
severe, or extreme bleaching in the second bleaching event (Fig 1C). This contrasts with M.
patula, which experienced low bleaching during both bleaching events (10.6% in 2015, 16.8%
in 2019), and P. lobata, which experienced high bleaching in 2015 (51.0%) but low bleaching

in 2019 (16.0%; Fig 1). We also observed an inconsistent relationship between genet size and
the probability of bleaching across taxa and bleaching events (Fig 4). In 2015, the probability of
bleaching increased with genet size for Pocillopora (p < 0.001) but decreased with genet size
for P. lobata (p < 0.001), and exhibited no significant relationship with size for either species
of Montipora (M. capitata p = 0.348; M. patula p = 0.364). In 2019, bleaching probability
increased with genet size for M. capitata (p = 0.047) but decreased with genet size for the other
taxa (M. patula p = 0.027; Pocillopora p = 0.021; P. lobata p = 0.002).

3.1 Evidence of acclimatization

Patterns of acclimatization over the course of this study differed between coral taxa. We found
no evidence of acclimatization at the population level for either species of Montipora (Fig 5A
and 5B), with more variability in bleaching over time in M. capitata compared to M. patula.
Conversely, we did find evidence for acclimatization in specific Pocillopora and P. lobata popu-
lations (Fig 5C and 5D): Pocillopora from Kahekili and Olowalu exhibited less severe bleaching
in 2019 compared to 2015 (p < 0.001 and p = 0.042, respectively). Pocillopora that survived
until 2019 from Ukumehame demonstrated increasing bleaching susceptibility over time,
although the sample size for that population was small. For P. lobata, we found significant evi-
dence of population-scale acclimatization at Keawakapu (p = 0.023) and Molokini (p = 0.010).
Across all sites, P. lobata genets were most likely to exhibit signs of acclimatization, ranging
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from a low of 18.0% of all P. lobata genets at Wahikuli to 39.1% at Olowalu. It was more com-
mon, however, for P. lobata genets to exhibit the same bleaching severity in both years (often
no bleaching), particularly at Kahekili, Wahikuli, and Ukumehame.

3.2 Population bleaching response

We tracked genets based on their response to thermal stress in 2015 and 2019, and found that
the bleaching response of genets strongly differed between species (p < 0.001). In general, M.
capitata had the largest proportion of genets that were highly susceptible to bleaching, M.
patula had the largest proportion of thermally tolerant genets, and P. lobata had the largest
proportion of genets that exhibited signs of acclimatization (Fig 6). However, we observed
site-level variation in these trends, with some populations exhibiting higher proportions of
thermally tolerant and acclimatized genets than others. Most strikingly, the bleaching response
of M. capitata genets at Kahekili was significantly different from all other sites except for Kea-
wakapu, driven by a higher proportion of thermally tolerant individuals (Fig 6). We also
observed a larger proportion of P. lobata genets that were highly susceptible to bleaching at
Woahikuli compared to Olowalu, which had more genets exhibiting signs of acclimatization.
We also found significantly more M. patula genets with increasing bleaching susceptibility at
Wahikuli and Ukumehame compared to Olowalu (Fig 6). We did not observe any significant
differences in bleaching response between Pocillopora populations, although our analysis was
limited to genets from Kahekili, Olowalu, and Keawakapu due to the small sample size of sur-

viving genets at our other three sites (Fig 6).

3.3 Growth

For genets of M. capitata and Pocillopora that survived the full timeseries, we found no evidence
that genet growth or shrinkage was a function of a genet’s bleaching response over time (p = 0.052
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and p = 0.073 respectively; Fig 7A). We chose not to conduct an ANCOVA for M. patula since
genets exhibited minimal variation in bleaching response (78% of genets didn’t bleach in either
event), although we observed no obvious relationship between bleaching response and growth or
shrinkage for this species either (Fig 7A). Interpreting the results for P. lobata was more complex
due to the presence of a significant interaction between initial genet size in 2014 and final genet
size in 2021 (pgite = 0.004, Pinteraction = 0.003). Small P. lobata genets (< 100 cm? in 2014) that sur-
vived the full timeseries didn’t exhibit a relationship between bleaching history and genet growth
or shrinkage. However, larger genets (> 100 cm” in 2014) that experienced repeated bleaching
were more likely to experience partial mortality and genet shrinkage compared to thermally toler-
ant individuals, which exhibited a nearly 1:1 relationship between planar area in 2014 and 2021.
Thus, bleaching history appears to have more of an impact on the growth trajectory of surviving
genets in P. lobata compared to the other taxa studied here.

While bleaching history didn’t impact coral growth for three of the four taxa studied here,
we observed site-level differences in growth for all focal taxa (Fig 7B). In particular, M. patula
and Pocillopora from Keawakapu and P. lobata from Molokini exhibited high rates of partial
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mortality and shrinkage over the course of the timeseries. For M. capitata, smaller genets from
Molokini (< 100 cm? in 2014) appear to have grown more than genets from other sites, but

this difference disappears for larger genets. Instead, for larger M. capitata genets (> 100 cm” in
2014), Keawakapu appears to have significantly higher rates of partial mortality and shrinkage.

3.4 Survivorship

We found a significant relationship between survivorship from 2014 to 2021 and initial genet
planar area for all taxa (p < 0.001). M. capitata, M. patula, and P. lobata exhibited a strong pos-
itive relationship between 2014 planar area and probability of genet survival through 2021,
with no significant differences in survivorship between those three taxa. Conversely, Pocillo-
pora genets exhibited a strong negative relationship between 2014 planar area and survivor-
ship. The probability of survivorship was considerably lower for Pocillopora than for the other
taxa. For example, a Pocillopora genet with a planar area of 100 cm” in 2014 would be expected
to survive until 2021 just 13.8% of the time, compared to a 67.6% probability of survivorship
for M. capitata, 68.8% for M. patula, and 76.7% for P. lobata (all for genets with a planar area
of 100 cm” in 2014). The vast majority of Pocillopora mortality occurred between 2015 and
2017, likely due to the 2015 bleaching event, while mortality for the other three taxa was more
evenly distributed across the timeseries (S4 Fig in S1 File).

As with coral growth, we observed site-level differences in genet survivorship from 2014 to
2021. We identified sites with the highest and lowest survivorship through pairwise compari-
sons of sites that did not exhibit significant interactions (Fig 7C; S3 Table in S1 File). Ukume-
hame stood out for high survivorship of M. capitata, M. patula, and P. lobata, Kahekili
exhibited high survivorship of both Pocillopora and P. lobata, and Wahikuli exhibited high sur-
vivorship of P. lobata. Conversely, Keawakapu had low survivorship of M. capitata, M. patula,
and P. lobata, and Molokini had low survivorship of M. capitata, Pocillopora, and P. lobata.
Olowalu had low survivorship of M. capitata compared to other sites, while Ukumehame and
Wahikuli both had low survivorship of Pocillopora.

4. Discussion

We tracked the fate of hundreds of corals through sequential marine heatwaves of moderate
intensity. By comparing the bleaching response of individuals through time, we sought to doc-
ument evidence of acclimatization at organismal and population scales. Taken in concert with
growth and survivorship data, we were able to test whether past bleaching responses influ-
enced coral growth for corals that survived the full timeseries. Finally, variation in coral
bleaching, growth, and survivorship among six sites in leeward Maui reflected the unique envi-
ronmental history of each reef. Interactions between environmental and anthropogenic factors
likely contributed to site-level variation in coral performance over time.

4.1 Acclimatization

We did not find evidence of widespread acclimatization on reefs in leeward Mauli, although a
few populations did exhibit significant reductions in bleaching severity and extent over time,
most notably Pocillopora at Kahekili. While signs of acclimatization at the population level
were limited, individual genets (primarily P. lobata) did show decreased bleaching severity
and extent over time. Massive Porites employs a stress tolerant life history strategy
[25,61,90,91] and has a demonstrated ability to acclimatize to repeated heat stress [43,57,92].
Massive Porites taxa are generally among the most thermally tolerant corals on Indo-Pacific
reefs [14,31], although thermal tolerance relative to other taxa has been shown to decline
under severe thermal stress [54]. The heat tolerance of Porites contrasts with that of faster
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growing coral taxa such as Acropora and Pocillopora, which have been consistently found to be
among the least resistant to thermal stress [14,45,54,76,93]. These taxa tend to experience more
mortality but have demonstrated the capacity to rapidly recolonize reef communities after heat
stress abates [13,25,29]. However, severe mortality events can hamper recovery by eliminating
sources of recruitment [53]. This could be a factor at play in Maui, where Pocillopora abundance
has remained consistently low following widespread bleaching and mortality in 2015.

Compared to Porites, evidence for acclimatization in Montipora and Pocillopora is more
mixed. Coles et al. (2018) found that M. capitata and Pocillopora damicornis from Kane‘ohe
Bay took longer to bleach and showed higher survivorship when experimentally reared at 31°C
in 2017 compared to in 1970 [36]. Association with thermally-tolerant symbionts has also
been found to increase bleaching resistance in M. capitata [94-96] and Pocillopora [97],
although studies have found mixed evidence for symbiont shuffling as a mechanism to achieve
long term acclimatization in M. capitata [95,98]. Rather, it appears that high phenotypic varia-
tion in pigmentation exists for M. capitata, with both pale and highly pigmented variants
observed on reefs even in the absence of heat stress (Fig 1C; [60]). While studies have observed
a relationship between pigmentation and performance under heat stress in Montipora in
Hawai'i [74,94], we find little evidence that more pigmented variants are being selected for and
becoming more dominant over time. Indeed, we found considerable phenotypic variation in
M. capitata bleaching, including shifts in the pigmentation of individual genets over time
(both darkening and paling) during both bleaching and non-bleaching years (Figs 1C and 5A).
Yet we observed no reductions in M. capitata bleaching at a population scale over our time-
series. These results likely reflect M. capitata’s ability to use heterotrophy to supplement nutri-
tional deficits in the absence of symbionts [26,92], which could reduce the need for M. capitata
to undergo acclimatization through some other mechanism. While Pocillopora survivors
showed patterns of reduced bleaching consistent with acclimatization at certain sites, we are
unable to say what mechanism is responsible for those shifts. It is possible that cryptic species
diversity could explain site-level differences in bleaching, given that we were only able to iden-
tify Pocillopora genets to the genus level.

Compared to extreme heatwaves that cause widespread mortality, moderate thermal stress
would be expected to produce more variable bleaching responses among individual corals and
promote natural selection for thermal tolerance [28,33,54,99]. Both the 2015 and 2019 heat
stress events were moderate in severity and duration in Hawai‘i compared to elsewhere in the
Pacific [9,10,28], just barely surpassing the 8 DHW threshold where coral mortality is be
expected. The considerable mortality we observed from 2014 to 2021 indicates that certain
individuals were being selected against, whereas survivors showed a lack of cumulative stress
from bleaching, as evidenced by the absence of any relationship between growth rate and
bleaching history. Selection for thermal tolerance has been observed on reefs elsewhere
[3,13,14,34], resulting in notable shifts in coral community composition toward stress-tolerant
species. Admittedly, it is also possible that the timing of our 2019 survey influenced our ability
to detect acclimatization. We collected imagery just before peak heat stress was reached in
October, so it is possible that bleaching could have continued to worsen for several weeks after
our imagery was collected. That being said, our results are consistent with other analyses that
have found less severe bleaching in 2019 compared to 2015 in Hawai‘i [77,100], so it is unlikely
that the timing of our surveys alone can explain the results we observe here.

4.2 Growth

While the bleaching responses we observed are consistent with known taxonomic patterns of
thermal tolerance in Hawaiian corals [45,72,74,77,92], we found a striking disconnect between
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bleaching and growth over the course of our timeseries. With the exception of large Porites,
genets that repeatedly bleached and survived did not demonstrate slower growth or more par-
tial mortality than thermally tolerant or acclimatized genets over the course of our timeseries.
The lack of relationship between bleaching and coral growth that we observe could be the
result of complex physiological trade-offs between maintenance and growth. For instance,
Pocillopora colonies in Guam that were experimentally acclimated to 31°C prioritized lipid
accumulation and tissue growth over skeletal extension [101]. More generally, studies have
found that energetic costs associated with hosting the heat-tolerant symbiont Durusdinium
can result in trade-offs for the coral host including reduced growth and fecundity [98,102].
However, other studies of heat stressed corals fail to document trade-offs between thermal tol-
erance and growth at ecological scales [103,104]. Given this mixed evidence, even among stud-
ies of the same species, it seems likely that trade-offs between heat tolerance and growth are
site specific and dependent on local environmental conditions and exposure history [104].

Another explanation for the decoupling we observe between bleaching responses and coral
growth could be the complexity of fusion and fission dynamics in our focal taxa. Partial mor-
tality can cause a coral genet to split into multiple independent fragments, or ramets, which
can either regrow and fuse back into a single genet, or continue living as functionally separate
individuals. These individual ramets each experience their own trajectory of growth, shrink-
age, and mortality based on interspecific interactions and hyper-localized environmental con-
ditions [64,65,105,106]. These processes make it more complicated to identify and track the
fate of “individuals” and can result in complex growth trajectories across an entire genet. Par-
tial mortality, fusion, and fission are especially apparent in encrusting and massive corals like
M. capitata, M. patula, and P. lobata [60,83], and can help these individuals avoid whole-col-
ony mortality following environmental stress [107] even if most tissue is lost. For example,
partial mortality may be concentrated on the top of coral colonies following exposure to higher
irradiance during a bleaching event [74]. However, these corals can persist via regrowth of tis-
sue that survived bleaching in shaded or cryptic regions of the colony [60]. Due to these com-
plexities, most studies tracking coral growth and survivorship focus on taxa with identifiable,
discrete colonies that display little fission or fusion, such as Pocillopora [108,109]. Our results
demonstrate that such approaches may be inadequate for describing demographic and recov-
ery dynamics in locations like Hawai‘i, where fusion and fission predominate.

4.3 Survivorship

While bleaching and long-term growth appear largely decoupled on Maui’s reefs, genet size
was a significant predictor of both bleaching and survivorship for multiple taxa. Small genets
of P. lobata and M. patula were more likely to bleach and less likely to survive the full duration
of our timeseries, which is consistent with literature on size-based survivorship in corals. Small
coral colonies have a greater surface area to volume ratio and less energy reserves, which make
them more vulnerable to whole-colony mortality, whereas injury in larger corals is more likely
to lead to partial mortality [64,108,110]. The influence of coral size on bleaching is less
straightforward. Some studies have found small colonies to be more susceptible to bleaching
[111], while others have found large colonies to be more susceptible [54,112], and still others
document no relationship between bleaching and colony size [75,113]. Interestingly, while we
observed divergent bleaching responses for M. capitata and M. patula, both in severity and as
a function of size, these species displayed nearly identical patterns of survivorship. This sup-
ports other studies in Hawai‘i that have found a disconnect between bleaching and survivor-
ship in M. capitata [45,60] and likely reflects taxonomic and life history similarities between
Montipora species.
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In Pocillopora, size-dependent patterns of bleaching and survivorship reversed over time,
with more bleaching and mortality in larger genets in 2015, followed by more bleaching and
mortality in smaller genets in 2019 (S5 Fig in S1 File). While we would expect to see the highest
mortality in smaller size classes in Pocillopora [61,108], higher mortality in large Pocillopora
colonies in response to bleaching has been observed before [93,109]. In Moorea, the coexis-
tence of multiple cryptic species of Pocillopora led to the appearance of a positive relationship
between colony size and mortality after a bleaching event [114]. However, through genetic
testing, Burgess et al. (2021) revealed that the largest Pocillopora colonies all belonged to a sin-
gle haplotype with high bleaching susceptibility. Thus, the shift in size-dependent mortality we
observe from 2015 to 2019 could represent the loss of cryptic species in Pocillopora in Maui,
although genetic testing would be needed to confirm this. If a loss of cryptic diversity is
responsible for the survivorship trends we observe here, it would suggest that bleaching events
are driving a shift in coral community composition in Maui toward taxa with higher thermal
tolerance.

4.4 Variation between sites

The severity of thermal stress was remarkably consistent across study sites in leeward Maui
and between bleaching events, although local scale variability undoubtably exists that is not
captured in satellite data at the 5km grid scale [115]. Based on the satellite DHW data available,
we would expect similar levels of bleaching and mortality across our sites and through time,
with slightly lower levels of mortality expected in northern sites compared to southern sites
(S1 Table in S1 File), assuming a static threshold of 8 DHW for mortality [8,99,116]. Impor-
tantly, despite their shared thermal history, these sites each experience a unique combination
of local environmental and anthropogenic impacts that could also explain divergent patterns
of coral bleaching, growth, and recovery across populations [72,83,117,118]. Indeed, chronic
stressors such as urban runoff, sedimentation, coral disease, overfishing of herbivores, and
algal overgrowth have been shown to be more important contributors to coral tissue loss in
Maui than acute pulse events [107,119].

In our study, coral populations at Kahekili and Olowalu showed the greatest resilience to
thermal stress, while populations at Keawakapu and Molokini showed the least resilience (S4
Table in S1 File). Corals at Kahekili in particular showed higher rates of thermal tolerance (M.
capitata) and acclimatization (Pocillopora) than conspecifics elsewhere, even compared to
nearby populations at Wahikuli that experienced near identical heat stress. Kahekili has a com-
plex history of management and anthropogenic impacts. Situated just offshore of the Lahaina
Wastewater Reclamation Facility, Kahekili’s reefs have been subject to elevated concentrations
of nitrogen from wastewater effluent that seeps out of nearby injection wells [117,120]. Ele-
vated nutrients at Kahekili have contributed to occasional mass algal blooms that overgrow
corals [118-120], which prompted the state Division of Aquatic Resources to establish the
Kahekili Herbivore Fisheries Management Area in 2009 [121]. Efficacy of these protections
has fluctuated over time, but there is evidence that protecting herbivorous fish has reduced
macroalgae and increased coverage of crustose coralline algae [121], a less effective competitor
[122] that promotes coral recruitment [123].

A combination of fisheries management and elevated nutrients could explain the improved
bleaching response we observed at Kahekili. Moderate nutrient enrichment has been shown to
delay the onset of bleaching [124] and reduce bleaching-associated mortality by improving the
photosynthetic efficiency of symbionts [30] or enhancing water column chlorophyll-a, which
in turn can reduce irradiance and support coral heterotrophy [125]. However, it is important
to note that the interactive effects of nutrient enrichment and macroalgae have been found to
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be especially harmful for corals during and immediately after bleaching events [126,127], since
nutrients enhance the growth and competitive ability of macroalgae [122]. This suggests that
control of macroalgae through fisheries management is fundamental to the bleaching resis-
tance that we document here.

It is possible that repeated algal blooms over multiple decades could have already selected
for stress-tolerant corals at Kahekili, enhancing community resistance to disturbance [77,128].
This pattern has been observed on human-impacted reefs elsewhere in Hawai‘i [129]. The
reverse of this phenomenon could explain the poor performance of corals at Molokini, a highly
protected site located offshore of Maui within the Molokini Shoal Marine Life Conservation
District. It is possible that the protection and remoteness of Molokini allowed more sensitive
coral genets to persist until 2015, which would explain the lower survivorship compared to
more heavily impacted sites such as Kahekili. However, we also document low survivorship at
Keawakapu, a site with a similar suite of anthropogenic impacts to Kahekili [117,130], albeit
without fisheries management. The small number of sites considered here, combined with
each site’s multifaceted and unique history, complicate any assumptions of causality. While
the exact sources of variation in coral performance are uncertain, it’s clear that that local
anthropogenic impacts are interacting with bleaching history and species composition to
shape the trajectory of each site’s benthic community over time.

4.5 Implications for coral restoration

For coral restoration to be effective, outplanted corals must be able to persist through future
climate-related disturbance events [80,131,132]. To this end, restoration practitioners have
sought to propagate thermally tolerant phenotypes or genotypes [70,71] in hopes that these
outplants prove more resilient over time. Here, we show that thermally tolerant genets do not
always outperform their bleached conspecifics, whether due to trade-offs associated with ther-
mal tolerance, complex fusion and fission growth pathways, or the confounding effects of local
environmental factors. For example, we found that sites with a higher proportion of tolerant
individuals were not necessarily sites with the highest survivorship (S4 Table in S1 File).

This disconnect holds important implications for coral restoration efforts, both in Hawai‘i
and elsewhere. Our findings demonstrate how sequential bleaching events shape coral commu-
nities, weeding out susceptible individuals and leaving behind a population with the demon-
strated ability to survive thermal stress. These survivors now constitute the bulk of Maui’s reef
communities and could act as a source population for coral restoration efforts. We do not find
support for targeting specific phenotypes of Montipora or Porites based on perceived thermal
resistance, since we observed growth and survivorship across a spectrum of phenotypes. The
best available indicator of survivorship under future thermal stress is survivorship through past
thermal stress events, which can be assumed for large colonies present on Maui’s reefs today.

The one exception to this conclusion is Pocillopora. Given the low thermal tolerance and
low survivorship we observed here, any restoration projects focused on Pocillopora should
seek to identify and raise thermally tolerant strains or individuals, as they would have the best
potential to survive future heat stress. However, based on survivorship rates observed here, it is
likely that even thermally tolerant outplants of Pocillopora would have lower survivorship than
outplants of more stress-tolerant taxa, such as Porites. Ultimately, the decision of which taxa to
select for coral restoration depends on the ecological and social goals of the project [131,132].
For instance, Pocillopora restoration could be used as a mechanism to boost recruitment or
diversity on reefs where Pocillopora abundance has remained depressed following repeat
bleaching. If the goal of restoration is simply to increase coral cover and persistence through
future heat stress, Porites and Montipora are more advisable options.
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5. Conclusions

Opver seven years and two bleaching events of similar magnitude, coral populations in Maui
demonstrated hallmarks of selection and resilience. While we did not find widespread support
for reef-scale acclimatization, we did find evidence of possible acclimatization for individual
genets, primarily in the massive coral P. lobata. We also document selection against thermally
susceptible individuals, with implications for the overall diversity and future thermal tolerance
of Maui’s reefs. One important implication of selection is that bleaching and growth were
largely decoupled for corals that survived repeated exposure to heat stress in Maui. The resil-
ience of these survivors will no doubt be tested by future heatwaves. In the meantime, it will be
important to the track colony-level patterns of bleaching, growth, and survivorship for multi-
ple taxa (including those with fusion and fission dynamics) at broad ecological scales to under-
stand geographic trends in coral acclimatization and selection. These efforts should harness
advances in large-area imaging and coral genetics to identify the underlying mechanisms
responsible for acclimatization and the impact of selection on coral populations. This knowl-
edge in turn can be used to improve projections of reef persistence under climate change, and
inform decisions related to coral restoration.

Supporting information
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