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Abstract

We propose a heuristic method of using network centralities for constructing small-weight

Steiner trees in this paper. The Steiner tree problem in graphs is one of the practical NP-hard

combinatorial optimization problems. Given a graph and a set of vertices called terminals in

the graph, the objective of the Steiner tree problem in graphs is to find a minimum weight

Steiner tree that is a tree containing all the terminals. Conventional construction methods

make a Steiner tree based on the shortest paths between terminals. If these shortest paths

are overlapped as much as possible, we can obtain a small-weight Steiner tree. Therefore,

we proposed to use network centralities to distinguish which edges should be included to

make a small-weight Steiner tree. Experimental results revealed that using the vertex or the

edge betweenness centralities contributes to making small-weight Steiner trees.

Introduction

The Steiner tree problem in graphs is one of the practical and important combinatorial optimiza-

tion problems. For example, it can be used to solve various real-world problems such as the

design of communication and power transmission networks [1, 2] and sewer layouts [3].

Although the Steiner tree problem in graphs has many variations [4–6], their purpose is the

same: to find the Steiner tree with the minimum weight. Given an undirected weighted graph G
= (V, E, w) and a set T of vertices called terminals in the graph G, a Steiner tree is defined as a sub-

tree containing all the terminals, where V is a set of vertices, E is a set of edges, and w is a weight

function of edges. The weight of the Steiner tree is the sum of the weights of the edges of the tree.

Let S be the Steiner tree, where S = (VS, ES, w), VS is a subset of V, ES is a subset of E, and VS satis-

fies T� VS� V. The objective function F of the Steiner tree problem in graphs is defined by

FðSÞ ¼
X

e2ES

wðeÞ: ð1Þ

where w(e) is the weight of the edge e.
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The Steiner tree problem in graphs has many variations: for example, the terminal Steiner

tree problem, the hop-constrained Steiner tree problem, and the prize-collecting Steiner tree

problem. The terminal Steiner tree problem [4] is the problem of finding the minimum-weight

Steiner tree for which all terminals are leaves. The hop-constrained Steiner tree problem [5] is

to find a rooted minimum-weight Steiner tree in that the number of hops from a root to any

leaves is smaller than the maximum hops. In the prize-collecting Steiner tree problems [6], not

only edges but also vertices have their weight. The objective of the prize-collecting Steiner tree

problem is to find a Steiner tree that minimizes the sum of the edge weights included in a tree

and the vertex weights that are not included in a tree.

Numerous heuristics have been proposed to solve the Steiner tree problem in graphs. To

make Steiner trees from an input graph, three heuristics are frequently used [7–11]: the dis-

tance network heuristic (DNH) [12], the shortest path heuristic (SPH) [13], and the average

distance heuristic (ADH) [14]. These heuristics construct Steiner trees based on the shortest

paths [15]. However, these heuristics occasionally produce Steiner trees with large weights

because they do not consider overlaps of edges in the shortest paths. The weight of the Steiner

tree for a graph becomes small if the shortest paths between terminals in the tree have as many

common edges as possible. Fig 1 shows this example. Both Fig 1(a) and 1(b) show Steiner trees

of the same inputs. However, the weight of the Steiner tree shown in Fig 1(b) is smaller than

that of the Steiner tree in Fig 1(a). The difference in this example comes from an overlap of the

shortest paths between (t1, t2) and (t1, t4). In Fig 1(a), the shortest paths between (t1, t2) and (t1,

t4) do not share the orange-colored edge shown in Fig 1(b), while in Fig 1(b), the shortest

paths between (t1, t2) and (t1, t4) share the orange-colored edge shown. This overlap decreases

the weight of the obtained Steiner tree.

To solve this issue, we have already proposed a method that uses the edge betweenness cen-

trality [17]. This method provides information about overlapping edges in the shortest paths

between all vertices. Then, a DNH using the edge betweenness centrality successfully decreases

the weight of the obtained Steiner trees more than the conventional DNH. However, many

other network centralities, defined not only for edges but also for vertices, could be effective

for this issue: which network centrality demonstrates the best performance?

Fig 1. Effects of overlapping the shortest paths. In this example, lin04 in SteinLib [16] was used. Circles indicate vertices and lines indicate edges. Red

vertices are terminals, and black vertices and edges are those of the Steiner trees. The weights of each edge correspond to its length. An objective

function value of (a) is 1, 267 and that of (b) is 1, 239. In (b), the shortest paths between (t1, t2) and (t1, t4) share an edge shown in orange. However, in

(a), the shortest paths between these pairs of terminals do not overlap. Thus, the objective function value of (b) becomes smaller than that of (a).

https://doi.org/10.1371/journal.pone.0303764.g001
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From this perspective, in this paper, we aim to clarify which network centrality provides the

best performance for solving the Steiner tree problem in graphs by comparing the perfor-

mance of the three heuristics using five network centralities. In addition, we extend a heuristic

to use not only edge network centralities but also vertex network centralities.

Methods

Heuristics

In this study, we used the three heuristics to solve the Steiner tree problem in graphs: DNH

[12], SPH [13], and ADH [14]. We briefly review these three heuristics in the following.

The DNH [12] uses the shortest paths and a minimum spanning tree to construct a Steiner

tree. First, a complete weighted graph comprising all the terminals in T, denoted as H, is con-

structed, where the edge weight between terminals ti and tj (ti, tj 2 T, i 6¼ j) is defined by the

shortest distance between these terminals in the input graph G. Next, a minimum spanning

tree of H, MST(H), is constructed. Then, each edge of MST(H) is replaced by the correspond-

ing shortest path in G. If multiple shortest paths that have the same weight are obtained, we

select one of them randomly. Finally, a Steiner tree is obtained by making a minimum span-

ning tree of the subgraph induced from the obtained vertex set. This procedure eliminates any

loops from the obtained graph. The cost of calculating the DNH depends on the calculation

cost of the shortest paths. In addition, the calculation cost of a single source shortest path is

OðjVj2Þ when using the Dijkstra algorithm [15], where |�| indicates the number of elements in

a set. When using the Dijkstra algorithm [15], the calculation cost of the DNH becomes

OðjTjjVj2Þ, because the DNH repeatedly calculates the single source shortest path |T| times.

The SPH [13] uses only the shortest paths to construct a Steiner tree. First, we set SSPH =

(VSPH, ESPH), where VSPH = {r} and ESPH = {∅}; r is referred to as a root, which is selected ran-

domly from T. Second, including the shortest path between vertices v 2 VSPH and t 2 T\VSPH

to SSPH (update VSPH and ESPH), is repeated until T� VSPH. The calculation cost of the SPH is

OðjTjjVj2Þ. In addition, Sun et al., proposed the LANCET algorithm [18] to reduce the calcu-

lation cost of the SPH. The calculation cost of the SPH can be reduced to OðjTjðjEj þ
jVjlogjVjÞÞ by using the LANCET algorithm.

The ADH [14] also uses the shortest paths to construct a Steiner tree. The ADH starts from

a forest comprising |T| trees. Each initial tree includes only a single terminal. Then, the ADH

repeats the combination of trees until they become a single Steiner tree. In each step, two trees

are combined via a vertex v that minimizes the following evaluation function D(v).

DðvÞ ¼ min
1�j�k

Xj

i¼0

dðv; tv:iÞ
j

; ð2Þ

where k is the number of trees and is decreased by one when two trees are combined, tv.i is the

ith nearest tree from v, and d(v, tv.i) is the shortest distance between the vertex v and the near-

est vertex in tv.i from v. In the case of calculating Eq (2), tv.i is sorted in ascending order of dis-

tance from v. Then, the order of tv.i is updated after the two trees are combined. Thus, the

ADH needs to calculate the shortest distance between all pairs of vertices in the graph. There-

fore, the calculation cost of the ADH is OðjVj3Þ.

Network centralities

Network centralities measure the importance of the vertices or edges in a graph or network. In

this study, we used five network centralities to solve the Steiner tree problem in graphs: the
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degree centrality [19], the eigenvector centrality [20], the closeness centrality [21], the vertex

betweenness centrality [22], and the edge betweenness centrality [22]. We briefly introduce

these five network centralities below.

The degree centrality [19] measures how many vertices are adjacent to a given vertex in the

network. The degree centrality of the ith vertex vi, dv(vi), is defined

dvðviÞ ¼
XjVj

j¼1

Aij ði ¼ 1; :::; jVjÞ; ð3Þ

where Aij is the ijth element of the adjacency matrix of the network. If an edge between the ith
and the jth vertices exists, Aij = 1; otherwise, Aij = 0. The calculation costs of the degree central-

ity of all vertices are OðjVj2Þ when using either the adjacency matrix or the adjacency list.

The eigenvector centrality [20] measures the influence of a vertex in a network. If a vertex v
connects to vertices with large centralities, the vertex v is also assumed to have a large central-

ity. The eigenvector centrality can be calculated by the power method described as follows:

znþ1 ¼ Azn = k Azn k ðn ¼ 0; 1; 2; � � �Þ ð4Þ

where zn = (zn1, � � �, zn|V|)
> is the vector whose ith element is the centrality of the ith vertex, A

is the adjacency matrix, and kAznk denotes a norm of the vector Azn. Note that, each element

of z0 is randomly drawn from a uniform distribution. In the case that A is a diagonalizable

matrix, zn converges to the eigenvector corresponding to the largest eigenvalue of A. Thus, for

sufficiently large n, zn is called the eigenvector centrality.

The time complexity of the matrix-vector multiplication is OðjVj2Þ. However, the number

of matrix-vector multiplications required to estimate the eigenvector centrality cannot be

known in advance. The number of iterations depends on how accurately the vector is judged

to have converged and the value |λ2/λ1|, where λ1 is the largest eigenvalue, and λ2 is the sec-

ond-largest eigenvalue. Thus, it is not easy to write down the time complexity to obtain the

eigenvector centrality. It is one of the future issues of our study.

The closeness centrality [21] measures how a vertex is close to all the other vertices in the

network. Then, the closeness centrality of the ith vertex vi, cv(vi), is defined as follows.

cvðviÞ ¼
1

XjVj

j¼1;j6¼i

dðvi; vjÞ

;
ð5Þ

where d(vi, vj) is the shortest distance between the ith vertex vi and the jth vertex vj. The calcu-

lation cost of the closeness centrality of all vertices is OðjVj3Þ because the calculation cost of

the single source shortest path is OðjVj2Þ, which is repeated |V| times.

The betweenness centrality [22] detects the central vertices or edges in the network using

the shortest path information. If a vertex or an edge frequently appears on the shortest paths of

a network, the vertex or the edge has a large betweenness centrality. The betweenness central-

ity of the ith vertex vi, bv(vi), is defined as follows.

bvðviÞ ¼
XjVj

s¼1;s6¼i

Xs� 1

g¼1

Pviðs;gÞ

Pðs;gÞ
; ð6Þ

where s and g are the starting and goal vertices of the shortest path, P(s,g) is the total number of

shortest paths between s and g, and Pviðs;gÞ
is the total number of shortest paths between s and g

through the ith vertex vi.
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Similarly, the betweenness centrality of the ith edge ei, be(ei), is defined as follows.

beðeiÞ ¼
XjVj

s¼1;s6¼i

Xs� 1

g¼1

Peiðs;gÞ

Pðs;gÞ
; ð7Þ

where Peiðs;gÞ
is the total number of shortest paths between s and g through the ith edge ei. The

calculation cost of both betweenness centralities of all vertices or edges is OðjVj3Þ [23]. We can

significantly reduce the practical calculation cost of the betweenness centrality by using the

hub labeling algorithm [24].

The proposed method

In order to construct a Steiner tree including edges shared by multiple shortest paths between

terminals, we proposed a method for solving the Steiner tree problem in graphs that uses new

edge weights based on the weights of input edges and network centralities. Then, the new edge

weight function w0(ei) of the ith edge ei is defined as follows.

w0ðeiÞ ¼ awðeiÞ þ ð1 � aÞ
1

CeðeiÞ
; ð8Þ

where w(ei) is the input edge weight of ei, Ce(ei) is one of the network centralities of ei, and α is

a scaling parameter. A suitable value of α strongly depends on the range of the input edge

weights. To balance the effect of two terms on the right-hand side of Eq (8), w(ei) and 1/Ce(ei)
were normalized by their maximum values, respectively.

Vertices and edges with large network centralities play important roles in the network.

However, the objective of the Steiner tree problem in graphs is to find a Steiner tree with a

small weight. To realize the minimization of the total edge weights and the maximization of

information of the network centralities in a Steiner tree simultaneously, we use a reciprocal of

network centralities. If the network centrality is 0, we set it to unity. This is because it corre-

sponds to the maximum value of the reciprocal of the network centrality.

Many network centralities are defined for the vertices. When we use the network centrality

of the vertices, we transform the network centrality of the vertices to that of the edges by

CeðeijÞ ¼
CvðviÞ þ CvðvjÞ

2
; ð9Þ

where eij is the edge between the ith vertex vi and the jth vertex vj, and Cv(vi) is the network

centrality of vi.
We apply the heuristics, the DNH [12], the SPH [13], and the ADH [14], with the network

centralities by the following procedure. First, the network centrality of the vertices is converted

to that of the edges. Next, w0 is calculated using Eq (8). Next, the DNH [12], the SPH [13], or

the ADH [14] is then applied to an input graph with w0. Then, extra leaves, i.e. non-terminal

vertices with a single degree, are removed from the obtained Steiner tree. Finally, w0 is replaced

with w and the weight of the obtained Steiner tree is recalculated. The source code of our pro-

posed method is available on GitHub (https://github.com/misafujita/stp_centrality).

Results

Experimental conditions

We evaluated the performance of the heuristics using the network centralities through numeri-

cal experiments. We used three heuristics: the DNH, the SPH, and the ADH, and the five
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network centralities: the degree, the eigenvector, the closeness, the vertex betweenness, and the

edge betweenness centralities.

For numerical experiments, we used the benchmark problem sets B, C, D, E, I080, I160,

I320, and I640 in Steinlib [16]. Table 1 shows the number of instances, the number of vertices

(|V|), the number of undirected edges (|E|), the number of terminals (|T|), and the densities of

edges against all combinations of vertices (2|E|/{|V|(|V| − 1)}) for these benchmark problem

sets. The densities of the benchmark problem sets B, C, D, and E are low and the edge weights

are assigned according to uniformly distributed random numbers between 1 and 10. On the

other hand, the range of the density of the edges of the benchmark problem sets I080, I160,

I320, and I640 is wide and the edge weights are assigned using random numbers according to

a normal distribution. The average of the normal distribution of the edge weights between

non-terminals is 100, between the terminal and non-terminal is 200, and between the termi-

nals is 300.

If the scaling parameter α of Eq (8) is set to zero, w0(ei) = 1/Ce(ei). If α is set to unity, w0(ei) =

w(ei). Thus, w0(ei) differs from the conventional method (i.e. without using network centrali-

ties) in case 0� α< 1. Then, the value of α was selected from {0.0, 0.1, � � �, 0.9} for each

instance based on the results of pre-experiments. The details of pre-experiments are shown in

the S1 File.

The performances of the conventional and the proposed methods were compared based on

the average gaps and average CPU time. The gap is defined as (F(S) − F(S*))/F(S*) × 100 [%],

where F(S) is the objective function value of the obtained Steiner tree S, and F(S*) is the objec-

tive function value of the optimum Steiner tree S*. Each method was implemented in C lan-

guage, using the GCC compiler (ver. 4.2.1). All numerical experiments were conducted on an

iMacPro (2017) with a 3.2GHz Intel Xeon W processor and 64GB of 2, 666MHz DDR4 ran-

dom access memory. We constructed 50 Steiner trees for each instance and averaged the gaps

and CPU time.

Gaps and calculation time

The results of the numerical experiments are shown in Tables 2–7 and Figs 2–4. In Tables 2, 4

and 6, the cases with the smallest gaps are shown in bold. The results of numerical experiments

for each benchmark instance are shown in the S1 File.

Tables 2 and 3, and Fig 2 show the results of using the DNH [12]. As shown in Table 2, the

DNH with network centralities obtained Steiner trees with a smaller gap than those obtained

by the DNH without network centralities. In particular, the DNH with the vertex betweenness

centrality exhibited the best performance, reducing the gaps by approximately 14.22

Table 1. Statistical features of the benchmark problem sets [16].

Name # of instances |V| |E| |T| 2jEj
jVjðjVj � 1Þ

B 18 50–100 63–200 9–50 0.025–0.082

C 20 500 625–12,500 5–250 0.005–0.100

D 20 1,000 1,250–25,000 5–500 0.003–0.050

E 20 2,500 3,125–62,500 5–1,250 0.001–0.020

I080 100 80 120–3,160 6–20 0.038–1.000

I160 100 160 240–12,720 7–40 0.019–1.000

I320 100 320 480–51,040 8–80 0.009–1.000

I640 100 640 960–204,480 9–160 0.005–1.000

https://doi.org/10.1371/journal.pone.0303764.t001
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− 10.05 = 4.17%. As shown in Table 3, the DNH with the degree centrality did not increase the

CPU time. However, using the eigenvector, the closeness, the vertex betweenness, and the

edge betweenness centralities increased the CPU time by at most 3.67/2.30’ 1.60 times com-

pared to the conventional DNH. This is because the calculation time of network centralities is

Table 2. Average gaps [%] of using the DNH.

without network centrality with network centrality

degree eigenvector closeness betweenness

vertex edge

B 2.73 2.18 2.42 2.37 1.74 1.39

C 5.91 5.38 5.84 4.99 4.75 4.03

D 5.76 5.72 5.86 7.14 4.31 4.38

E 8.93 8.08 8.99 8.60 7.24 6.72

I080 17.90 15.45 15.02 15.64 12.60 13.52

I160 22.14 19.96 20.01 20.13 14.60 16.48

I320 24.06 22.05 22.40 22.47 16.58 18.91

I640 26.35 24.37 24.47 25.12 18.61 20.38

Average 14.22 12.90 13.13 13.31 10.05 10.73

https://doi.org/10.1371/journal.pone.0303764.t002

Table 3. Average CPU time [s] of using the DNH.

without network centrality with network centrality

degree eigenvector closeness betweenness

vertex edge

B 0.00 0.00 0.00 0.00 0.00 0.00

C 0.16 0.16 0.18 0.30 0.34 0.36

D 1.11 1.11 1.21 1.74 1.96 2.00

E 16.85 16.86 16.85 20.64 23.49 25.20

I080 0.00 0.00 0.00 0.01 0.01 0.01

I160 0.01 0.01 0.01 0.03 0.03 0.03

I320 0.03 0.04 0.04 0.19 0.19 0.20

I640 0.24 0.24 0.28 1.57 1.49 1.54

Average 2.30 2.30 2.32 3.06 3.44 3.67

https://doi.org/10.1371/journal.pone.0303764.t003

Table 4. Average gaps [%] using the SPH.

without network centrality with network centrality

degree eigenvector closeness betweenness

vertex edge

B 1.81 1.46 1.47 1.77 1.09 0.78

C 3.37 3.28 3.26 3.07 2.17 2.47

D 3.85 3.84 3.69 4.51 2.89 2.39

E 5.30 5.05 5.24 5.41 4.06 3.47

I080 14.68 13.40 12.88 13.63 9.78 10.12

I160 17.73 16.93 16.49 17.04 11.10 11.25

I320 19.37 18.72 18.37 18.80 11.99 12.28

I640 20.59 19.85 19.84 20.57 12.66 12.93

Average 10.84 10.32 10.15 10.60 6.97 6.96

https://doi.org/10.1371/journal.pone.0303764.t004
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added to that of the DNH in our method. Thus, it is important to find a balance between the

increase in the calculation time and the decrease in the average gap. The relationship between

the increase in the calculation time and the decrease of the average gap is shown in Fig 2. In

Fig 2, the horizontal axis expresses the increase in the calculation time compared to the

Table 5. Average CPU time [s] of using the SPH.

without network centrality with network centrality

degree eigenvector closeness betweenness

vertex edge

B 0.00 0.00 0.00 0.00 0.00 0.00

C 0.11 0.11 0.13 0.26 0.29 0.31

D 0.78 0.78 0.86 1.38 1.54 1.62

E 12.21 12.21 12.45 16.58 18.73 19.50

I080 0.00 0.00 0.00 0.00 0.00 0.01

I160 0.00 0.01 0.01 0.03 0.03 0.03

I320 0.03 0.03 0.03 0.18 0.18 0.19

I640 0.17 0.17 0.21 1.51 1.44 1.47

Average 1.66 1.66 1.71 2.49 2.78 2.89

https://doi.org/10.1371/journal.pone.0303764.t005

Table 6. Average gaps [%] of using the ADH.

without network centrality with network centrality

degree eigenvector closeness betweenness

vertex edge

B 1.50 1.31 0.83 1.25 0.70 0.61

C 3.90 3.40 3.76 3.60 2.70 4.48

D 3.99 3.37 3.27 3.54 2.72 3.24

E 5.29 3.99 4.43 4.71 3.15 3.73

I080 3.26 1.76 1.50 1.65 1.44 1.25

I160 3.31 1.86 2.18 2.06 1.88 1.79

I320 3.05 2.30 1.93 2.14 1.84 1.91

I640 3.91 2.81 2.73 2.79 2.48 2.54

Average 3.53 2.60 2.58 2.72 2.11 2.44

https://doi.org/10.1371/journal.pone.0303764.t006

Table 7. Average CPU time [s] of using the ADH.

without network centrality with network centrality

degree eigenvector closeness betweenness

vertex edge

B 0.01 0.01 0.01 0.01 0.01 0.01

C 1.28 1.26 1.29 1.40 1.50 1.54

D 10.38 10.29 10.72 10.73 11.44 11.92

E 189.50 188.66 186.46 187.41 197.97 203.73

I080 0.00 0.01 0.01 0.01 0.01 0.01

I160 0.02 0.03 0.03 0.05 0.05 0.05

I320 0.20 0.20 0.21 0.36 0.36 0.36

I640 1.68 1.67 1.72 3.05 3.01 3.08

Average 25.38 25.27 25.06 25.38 26.79 27.59

https://doi.org/10.1371/journal.pone.0303764.t007
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Fig 2. Relationship between the increase in the CPU time (average CPU time of the proposed method divided by

that of the conventional method) and the decrease in the average gaps (average gap of the conventional method

minus that of the proposed method) when using the DNH.

https://doi.org/10.1371/journal.pone.0303764.g002

Fig 3. Relationship between the increase in the CPU time (average CPU time of the proposed method divided by

that of the conventional method) and the decrease in the average gaps (average gap of the conventional method

minus that of the proposed method) when using the SPH.

https://doi.org/10.1371/journal.pone.0303764.g003
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conventional DNH and the vertical axis expresses the decrease of the average gaps compared

to the conventional DNH. Different colors express methods using different network centrali-

ties. Each point corresponds to each instance. Consequently, 478 (instances) ×5 (network cen-

tralities) = 2, 390 points are plotted in Fig 2. As shown in Fig 2, if network centralities are used,

the average gaps decrease for many instances. The increase of the calculation time of the pro-

posed method was less than ten times the CPU time of the conventional method in many

cases. In particular, if vertex betweenness centrality is used, the average gaps decreased by

approximately 40% with the twice CPU time of the conventional method for some instances.

These results indicate that using network centralities, especially vertex betweenness centrality,

led to good performance when using the DNH.

Tables 4 and 5, and Fig 3 show the results of using the SPH [13]. As shown in Table 4, similar

to the results of the DNH, the SPH with network centralities obtained Steiner trees with a

smaller gap than the SPH without network centralities. In particular, the SPH with the edge

betweenness centrality shows the best performance and improves the average gaps by approxi-

mately 10.84 − 6.96 = 3.88%. From this result, the SPH with network centralities obtains Steiner

trees with smaller gaps than those obtained by the DNH. The average gap of the SPH with the

edge betweenness centrality (6.96%) was smaller than that of the DNH with the vertex between-

ness centrality (10.05% in Table 2). From Table 5, the SPH with the degree centrality shows the

same calculation time compared to the SPH without degree centrality. By contrast, using the

eigenvector, the closeness, the vertex betweenness, and the edge betweenness centralities

increased the CPU time by at most 2.89/1.66’ 1.74 times that of the conventional SPH. The

computational cost of the SPH was the same as that of the DNH. Thus, the trends of their calcu-

lation time were the same. As seen in Fig 3, using network centralities decreased the average

gaps for many instances within ten times the conventional method’s CPU time. These results

indicate that using network centralities, especially edge betweenness centrality, led to good

Fig 4. Relationship between the increase in the CPU time (average CPU time of the proposed method divided by

that of the conventional method) and the decrease in the average gaps (average gap of the conventional method

minus that of the proposed method) when using the ADH.

https://doi.org/10.1371/journal.pone.0303764.g004
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performance when using the SPH. In addition, the combination of network centralities and the

SPH exhibited better performance than the combination of network centralities and the DNH.

Tables 6 and 7, and Fig 4 show the results of using the ADH [14]. As shown in Table 6, the

ADH without any network centralities obtained smaller-gap Steiner trees (3.53%) than the

DNH with the vertex betweenness centrality (10.05% from Table 2) and the SPH with the edge

betweenness centrality (6.96% from Table 4). It should be noted that the calculation cost of the

ADH was larger than that of the DNH and the SPH. The calculation cost of the ADH is

OðjVj3Þ, and that of the DNH and the SPH is OðjTjjVj2Þ. The ADH with network centralities

obtained Steiner trees with a smaller gap than those without any network centralities. In particu-

lar, the ADH with the vertex betweenness centrality showed the best performance, improving

the gaps by approximately 3.53 − 2.11 = 1.42%. As shown in Table 7, the CPU time of the ADH

with the degree and eigenvector centralities was shorter than that without network centrality.

One of the reasons why the CPU time of the ADH with some network centralities was relatively

short is that the order of the calculation costs of these network centralities was smaller than or

equal to the calculation cost of the ADH. As shown in Fig 4, using network centralities decreased

the average gaps for many instances within twice the conventional method’s CPU time.

The results of the numerical experiments indicate the following consequences:

1. Using the network centrality can reduce the gaps of the obtained Steiner trees with major

heuristics: the DNH, the SPH, and the ADH.

2. Using the vertex or the edge betweenness centralities shows the best performance among

the degree, the eigenvector, the closeness, the vertex or the edge betweenness centralities.

3. The increase of the average CPU time of heuristics with network centralities from the one

without any network centralities is approximately ten times for the DNH or the SPH and

approximately twice for the ADH.

Parameter tuning

The proposed method has a scaling parameter α which must be set to an appropriate value.

However, this procedure requires a long calculation time. Thus, to tune the value of α more

easily, we investigated the relationship between α and the improvement in the gaps for the

benchmark problem sets B, C, D, E, I080, I160, I320, and I640. Parameters were tuned per

instance, and we averaged their average gaps.

Figs 5–7 show the relationship between α and the average decrease in the gaps. Positive val-

ues indicate that the proposed method shows better performance than the conventional

method. Different colors indicate the use of different network centralities.

From Fig 5, the maximum value of the average decrease in the gaps by the DNH is in the

positive region and the minimum value of them is in the negative region, regardless of the types

of network centralities and the values of α. This means that using network centralities assists in

constructing a small-weight Steiner tree for some instances. In the case of using the vertex or

the edge betweenness centralities, the upper quartiles are on the positive region. The DNH per-

forms the best performance when using the vertex betweenness centrality with small α.

From Fig 6, the SPH and the DNH show similar trends for the type of network centrality

and the value of α. The SPH shows the best performance when using the edge betweenness

centrality with small α.

As shown in Fig 7, large α reduces the negative region of the average decrease by using any

type of network centralities. The ADH shows the best performance when using the vertex

betweenness centrality with large α.
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Conclusions

Selecting a heuristic is one of the most important steps to solve NP-hard combinatorial opti-

mization problems such as the Steiner tree problem in graphs. Many heuristics to solve the

Steiner tree problem in graphs use the shortest path between vertices and have shown good

Fig 5. Relationship between α and the improvement in gaps when using the DNH.

https://doi.org/10.1371/journal.pone.0303764.g005

Fig 6. Relationship between α and the improvement in gaps when using the SPH.

https://doi.org/10.1371/journal.pone.0303764.g006
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performance. However, if multiple shortest paths exist between vertices, using shortest paths

sometimes results in a Steiner tree with a large weight. In this case, if the selected shortest

paths share common edges as much as possible, the weight of the Steiner tree or the sum of the

weights of the edges included in the Steiner tree becomes small. From this perspective, using

an edge betweenness centrality can distinguish which shortest paths contribute to making a

Steiner tree with minimal weight. This method successfully reduces the weight of the obtained

Steiner tree when compared to the method that does not use the edge betweenness centrality.

However, the following points were unclear: (1) Does the use of network centralities lead to

good performance with any type of heuristic? (2) What is the most efficient network centrality

to obtain a Steiner tree with a small weight? (3) To what extent does the calculation time

increase when using the network centralities?

To answer these points, we first modified a heuristic using edge network centralities to a

version using vertex network centralities; this is because many network centralities are defined

for vertices. Based on this approach, we conducted some numerical experiments. We solved

478 benchmark instances in SteinLib using 15 combinations of heuristics and network central-

ities, which included three heuristics: the DNH, the SPH, and the ADH, and five network cen-

tralities: the degree, the eigenvector, the closeness, the vertex betweenness, and the edge

betweenness centralities. We evaluated the average gap from the optimum solutions and the

calculation time of each method.

The results of numerical experiments revealed the following:

1. Using network centralities successfully reduces the weight of the obtained Steiner trees for

any major heuristics.

2. Using the vertex or the edge betweenness centralities shows the best performance among

major network centralities.

Fig 7. Relationship between α and the improvement in gaps when using the ADH.

https://doi.org/10.1371/journal.pone.0303764.g007
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3. Using network centralities can reduce the gap from the optimum solution by approxi-

mately 15% within ten times the calculation time in the cases of using the DNH or the

SPH and within twice the calculation time in the case of using the ADH for many

instances.

These results indicate that network centrality, especially the vertex or the edge betweenness

centralities can be a good indicator for constructing Steiner trees with small weights.

The practical calculation cost of the vertex or the edge betweenness centralities can be

reduced by applying the hub labeling algorithm [24]. Thus, using the hub labeling algorithm to

obtain the vertex or the edge betweenness centralities is one of the future issues of our pro-

posed method.

The original method of the DNH and the SPH can guarantee their theoretical approxima-

tion ratios because these methods use the original edge weight. However, our proposed

method uses a new edge weight that merges the original edge weight and its network centrality.

Thus, one of the important future issues is to guarantee the theoretical approximation ratio of

our proposed method.
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