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Abstract

We propose a heuristic method of using network centralities for constructing small-weight
Steiner trees in this paper. The Steiner tree problem in graphs is one of the practical NP-hard
combinatorial optimization problems. Given a graph and a set of vertices called terminals in
the graph, the objective of the Steiner tree problem in graphs is to find a minimum weight
Steiner tree that is a tree containing all the terminals. Conventional construction methods
make a Steiner tree based on the shortest paths between terminals. If these shortest paths
are overlapped as much as possible, we can obtain a small-weight Steiner tree. Therefore,
we proposed to use network centralities to distinguish which edges should be included to
make a small-weight Steiner tree. Experimental results revealed that using the vertex or the
edge betweenness centralities contributes to making small-weight Steiner trees.

Introduction

The Steiner tree problem in graphs is one of the practical and important combinatorial optimiza-
tion problems. For example, it can be used to solve various real-world problems such as the
design of communication and power transmission networks [1, 2] and sewer layouts [3].
Although the Steiner tree problem in graphs has many variations [4-6], their purpose is the
same: to find the Steiner tree with the minimum weight. Given an undirected weighted graph G
=(V, E, w) and a set T of vertices called terminals in the graph G, a Steiner tree is defined as a sub-
tree containing all the terminals, where V is a set of vertices, E is a set of edges, and w is a weight
function of edges. The weight of the Steiner tree is the sum of the weights of the edges of the tree.
Let S be the Steiner tree, where S = (V, Eg, w), Vis a subset of V, Eg is a subset of E, and Vg satis-
fies T C V5 C V. The objective function F of the Steiner tree problem in graphs is defined by
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The Steiner tree problem in graphs has many variations: for example, the terminal Steiner
tree problem, the hop-constrained Steiner tree problem, and the prize-collecting Steiner tree
problem. The terminal Steiner tree problem [4] is the problem of finding the minimum-weight
Steiner tree for which all terminals are leaves. The hop-constrained Steiner tree problem [5] is
to find a rooted minimum-weight Steiner tree in that the number of hops from a root to any
leaves is smaller than the maximum hops. In the prize-collecting Steiner tree problems [6], not
only edges but also vertices have their weight. The objective of the prize-collecting Steiner tree
problem is to find a Steiner tree that minimizes the sum of the edge weights included in a tree
and the vertex weights that are not included in a tree.

Numerous heuristics have been proposed to solve the Steiner tree problem in graphs. To
make Steiner trees from an input graph, three heuristics are frequently used [7-11]: the dis-
tance network heuristic (DNH) [12], the shortest path heuristic (SPH) [13], and the average
distance heuristic (ADH) [14]. These heuristics construct Steiner trees based on the shortest
paths [15]. However, these heuristics occasionally produce Steiner trees with large weights
because they do not consider overlaps of edges in the shortest paths. The weight of the Steiner
tree for a graph becomes small if the shortest paths between terminals in the tree have as many
common edges as possible. Fig 1 shows this example. Both Fig 1(a) and 1(b) show Steiner trees
of the same inputs. However, the weight of the Steiner tree shown in Fig 1(b) is smaller than
that of the Steiner tree in Fig 1(a). The difference in this example comes from an overlap of the
shortest paths between (4, t,) and (ty, t,). In Fig 1(a), the shortest paths between (t;, £,) and (t;,
t4) do not share the orange-colored edge shown in Fig 1(b), while in Fig 1(b), the shortest
paths between (#, t,) and (¢4, t,) share the orange-colored edge shown. This overlap decreases
the weight of the obtained Steiner tree.

To solve this issue, we have already proposed a method that uses the edge betweenness cen-
trality [17]. This method provides information about overlapping edges in the shortest paths
between all vertices. Then, a DNH using the edge betweenness centrality successfully decreases
the weight of the obtained Steiner trees more than the conventional DNH. However, many
other network centralities, defined not only for edges but also for vertices, could be effective
for this issue: which network centrality demonstrates the best performance?
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Fig 1. Effects of overlapping the shortest paths. In this example, 1in04 in SteinLib [16] was used. Circles indicate vertices and lines indicate edges. Red
vertices are terminals, and black vertices and edges are those of the Steiner trees. The weights of each edge correspond to its length. An objective
function value of (a) is 1, 267 and that of (b) is 1, 239. In (b), the shortest paths between (1, £,) and (t;, £4) share an edge shown in orange. However, in
(a), the shortest paths between these pairs of terminals do not overlap. Thus, the objective function value of (b) becomes smaller than that of (a).

https://doi.org/10.1371/journal.pone.0303764.9001
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From this perspective, in this paper, we aim to clarify which network centrality provides the
best performance for solving the Steiner tree problem in graphs by comparing the perfor-
mance of the three heuristics using five network centralities. In addition, we extend a heuristic
to use not only edge network centralities but also vertex network centralities.

Methods
Heuristics

In this study, we used the three heuristics to solve the Steiner tree problem in graphs: DNH
[12], SPH [13], and ADH [14]. We briefly review these three heuristics in the following.

The DNH [12] uses the shortest paths and a minimum spanning tree to construct a Steiner
tree. First, a complete weighted graph comprising all the terminals in T, denoted as H, is con-
structed, where the edge weight between terminals t;and ¢; (t;, t; € T, i # j) is defined by the
shortest distance between these terminals in the input graph G. Next, a minimum spanning
tree of H, MST(H), is constructed. Then, each edge of MST(H) is replaced by the correspond-
ing shortest path in G. If multiple shortest paths that have the same weight are obtained, we
select one of them randomly. Finally, a Steiner tree is obtained by making a minimum span-
ning tree of the subgraph induced from the obtained vertex set. This procedure eliminates any
loops from the obtained graph. The cost of calculating the DNH depends on the calculation
cost of the shortest paths. In addition, the calculation cost of a single source shortest path is
O(|V|*) when using the Dijkstra algorithm [15], where |-| indicates the number of elements in
a set. When using the Dijkstra algorithm [15], the calculation cost of the DNH becomes
O(|T||V*), because the DNH repeatedly calculates the single source shortest path || times.

The SPH [13] uses only the shortest paths to construct a Steiner tree. First, we set Sspy =
(Vspr» Esprr), where Vgpy = {r} and Egpy = {@}; r is referred to as a root, which is selected ran-
domly from T. Second, including the shortest path between vertices v € Vgpyy and t € T\Vspyg
to Sspy (update Vspyy and Espy), is repeated until T C Vgpy. The calculation cost of the SPH is
O(|T||V[). In addition, Sun et al., proposed the LANCET algorithm [18] to reduce the calcu-
lation cost of the SPH. The calculation cost of the SPH can be reduced to O(|T|(|E| +
|V|log|V|)) by using the LANCET algorithm.

The ADH [14] also uses the shortest paths to construct a Steiner tree. The ADH starts from
a forest comprising | T| trees. Each initial tree includes only a single terminal. Then, the ADH
repeats the combination of trees until they become a single Steiner tree. In each step, two trees
are combined via a vertex v that minimizes the following evaluation function D(v).

J
D(v) = min M , (2)

lsjsk = J

where k is the number of trees and is decreased by one when two trees are combined, t,; is the
ith nearest tree from v, and d(v, t, ;) is the shortest distance between the vertex v and the near-
est vertex in t,; from v. In the case of calculating Eq (2), t,,; is sorted in ascending order of dis-
tance from v. Then, the order of ¢, ; is updated after the two trees are combined. Thus, the

ADH needs to calculate the shortest distance between all pairs of vertices in the graph. There-

fore, the calculation cost of the ADH is O(|V[*).

Network centralities

Network centralities measure the importance of the vertices or edges in a graph or network. In
this study, we used five network centralities to solve the Steiner tree problem in graphs: the
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degree centrality [19], the eigenvector centrality [20], the closeness centrality [21], the vertex
betweenness centrality [22], and the edge betweenness centrality [22]. We briefly introduce
these five network centralities below.

The degree centrality [19] measures how many vertices are adjacent to a given vertex in the
network. The degree centrality of the ith vertex v;, d,(v;), is defined

v

d(v) = ZA,.]. (i=1, .., |V]), (3)

where Aj; is the ijth element of the adjacency matrix of the network. If an edge between the ith
and the jth vertices exists, A;; = 1; otherwise, A;; = 0. The calculation costs of the degree central-
ity of all vertices are O(|V|*) when using either the adjacency matrix or the adjacency list.

The eigenvector centrality [20] measures the influence of a vertex in a network. If a vertex v
connects to vertices with large centralities, the vertex v is also assumed to have a large central-
ity. The eigenvector centrality can be calculated by the power method described as follows:

Zn+1 :Azn / HAzn H (n:()? 17 2; ) (4)

where z, = (2,1, - *» zn|v|)T is the vector whose ith element is the centrality of the ith vertex, A
is the adjacency matrix, and ||Az,|| denotes a norm of the vector Az,. Note that, each element
of zy is randomly drawn from a uniform distribution. In the case that A is a diagonalizable
matrix, z,, converges to the eigenvector corresponding to the largest eigenvalue of A. Thus, for
sufficiently large n, z,, is called the eigenvector centrality.

The time complexity of the matrix-vector multiplication is O(|V|*). However, the number
of matrix-vector multiplications required to estimate the eigenvector centrality cannot be
known in advance. The number of iterations depends on how accurately the vector is judged
to have converged and the value |A,/A,|, where 4, is the largest eigenvalue, and 1, is the sec-
ond-largest eigenvalue. Thus, it is not easy to write down the time complexity to obtain the
eigenvector centrality. It is one of the future issues of our study.

The closeness centrality [21] measures how a vertex is close to all the other vertices in the
network. Then, the closeness centrality of the ith vertex v;, ¢,(v;), is defined as follows.

Cv(Vi) = ‘V‘;a

Z d(v;, Vj) ©)

=L

where d(v;, v;) is the shortest distance between the ith vertex v; and the jth vertex v;. The calcu-
lation cost of the closeness centrality of all vertices is O(|V|”) because the calculation cost of
the single source shortest path is O(|V|*), which is repeated | V] times.

The betweenness centrality [22] detects the central vertices or edges in the network using
the shortest path information. If a vertex or an edge frequently appears on the shortest paths of
a network, the vertex or the edge has a large betweenness centrality. The betweenness central-
ity of the ith vertex v;, b,(v;), is defined as follows.

vVl s—1 P
b,(v,) = Z ZM7 (6)

s=1,5#i g=1 P(Sag)

where s and g are the starting and goal vertices of the shortest path, P, is the total number of
shortest paths between s and g, and P, , , is the total number of shortest paths between s and g

through the ith vertex v;.
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Similarly, the betweenness centrality of the ith edge e;, b.(e;), is defined as follows.

V| -1
bie) = 3 Late) )

s=1s7i g=1 P(5>g)

where P, ., is the total number of shortest paths between s and g through the ith edge e;. The

calculation cost of both betweenness centralities of all vertices or edges is O(|V|”) [23]. We can
significantly reduce the practical calculation cost of the betweenness centrality by using the
hub labeling algorithm [24].

The proposed method

In order to construct a Steiner tree including edges shared by multiple shortest paths between
terminals, we proposed a method for solving the Steiner tree problem in graphs that uses new
edge weights based on the weights of input edges and network centralities. Then, the new edge
weight function w/(e;) of the ith edge e; is defined as follows.

W(e) = awle) +(1-2) .
where w(e;) is the input edge weight of e;, C,(e;) is one of the network centralities of e;, and & is
a scaling parameter. A suitable value of & strongly depends on the range of the input edge
weights. To balance the effect of two terms on the right-hand side of Eq (8), w(e;) and 1/C,(e;)
were normalized by their maximum values, respectively.

Vertices and edges with large network centralities play important roles in the network.
However, the objective of the Steiner tree problem in graphs is to find a Steiner tree with a
small weight. To realize the minimization of the total edge weights and the maximization of
information of the network centralities in a Steiner tree simultaneously, we use a reciprocal of
network centralities. If the network centrality is 0, we set it to unity. This is because it corre-
sponds to the maximum value of the reciprocal of the network centrality.

Many network centralities are defined for the vertices. When we use the network centrality
of the vertices, we transform the network centrality of the vertices to that of the edges by

C ey = S EL) ©)

(8)

where e;; is the edge between the ith vertex v; and the jth vertex v;, and C,(v;) is the network
centrality of v;.

We apply the heuristics, the DNH [12], the SPH [13], and the ADH [14], with the network
centralities by the following procedure. First, the network centrality of the vertices is converted
to that of the edges. Next, ' is calculated using Eq (8). Next, the DNH [12], the SPH [13], or
the ADH [14] is then applied to an input graph with w’. Then, extra leaves, i.e. non-terminal
vertices with a single degree, are removed from the obtained Steiner tree. Finally, w’ is replaced
with w and the weight of the obtained Steiner tree is recalculated. The source code of our pro-
posed method is available on GitHub (https://github.com/misafujita/stp_centrality).

Results
Experimental conditions

We evaluated the performance of the heuristics using the network centralities through numeri-
cal experiments. We used three heuristics: the DNH, the SPH, and the ADH, and the five
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Table 1. Statistical features of the benchmark problem sets [16].

Name # of instances V] |E| |T| 2|E|
[VI(vI - 1)

B 18 50-100 63-200 9-50 0.025-0.082
C 20 500 625-12,500 5-250 0.005-0.100
D 20 1,000 1,250-25,000 5-500 0.003-0.050
E 20 2,500 3,125-62,500 5-1,250 0.001-0.020
1080 100 80 120-3,160 6-20 0.038-1.000
1160 100 160 240-12,720 7-40 0.019-1.000
1320 100 320 480-51,040 8-80 0.009-1.000
1640 100 640 960-204,480 9-160 0.005-1.000

https://doi.org/10.1371/journal.pone.0303764.t001

network centralities: the degree, the eigenvector, the closeness, the vertex betweenness, and the
edge betweenness centralities.

For numerical experiments, we used the benchmark problem sets B, C, D, E, 1080, 1160,
1320, and 1640 in Steinlib [16]. Table 1 shows the number of instances, the number of vertices
(|V]), the number of undirected edges (|E|), the number of terminals (| T|), and the densities of
edges against all combinations of vertices (2|E|/{|V|(|V| - 1)}) for these benchmark problem
sets. The densities of the benchmark problem sets B, C, D, and E are low and the edge weights
are assigned according to uniformly distributed random numbers between 1 and 10. On the
other hand, the range of the density of the edges of the benchmark problem sets 1080, 1160,
1320, and 1640 is wide and the edge weights are assigned using random numbers according to
anormal distribution. The average of the normal distribution of the edge weights between
non-terminals is 100, between the terminal and non-terminal is 200, and between the termi-
nals is 300.

If the scaling parameter « of Eq (8) is set to zero, W (e;) = 1/C,(e;). If & is set to unity, w/(e;) =
w(e;). Thus, w'(e;) differs from the conventional method (i.e. without using network centrali-
ties) in case 0 < ¢ < 1. Then, the value of & was selected from {0.0, 0.1, - - -, 0.9} for each
instance based on the results of pre-experiments. The details of pre-experiments are shown in
the S1 File.

The performances of the conventional and the proposed methods were compared based on
the average gaps and average CPU time. The gap is defined as (F(S) — F(S*))/F(S*) x 100 [%],
where F(S) is the objective function value of the obtained Steiner tree S, and F(S*) is the objec-
tive function value of the optimum Steiner tree $*. Each method was implemented in C lan-
guage, using the GCC compiler (ver. 4.2.1). All numerical experiments were conducted on an
iMacPro (2017) with a 3.2GHz Intel Xeon W processor and 64GB of 2, 666MHz DDR4 ran-
dom access memory. We constructed 50 Steiner trees for each instance and averaged the gaps
and CPU time.

Gaps and calculation time

The results of the numerical experiments are shown in Tables 2-7 and Figs 2-4. In Tables 2, 4
and 6, the cases with the smallest gaps are shown in bold. The results of numerical experiments
for each benchmark instance are shown in the S1 File.

Tables 2 and 3, and Fig 2 show the results of using the DNH [12]. As shown in Table 2, the
DNH with network centralities obtained Steiner trees with a smaller gap than those obtained
by the DNH without network centralities. In particular, the DNH with the vertex betweenness
centrality exhibited the best performance, reducing the gaps by approximately 14.22
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Table 2. Average gaps [%] of using the DNH.

without network centrality with network centrality
degree eigenvector closeness betweenness
vertex edge
B 2.73 2.18 2.42 2.37 1.74 1.39
C 591 5.38 5.84 4.99 4.75 4.03
D 5.76 5.72 5.86 7.14 4.31 4.38
E 8.93 8.08 8.99 8.60 7.24 6.72
1080 17.90 15.45 15.02 15.64 12.60 13.52
1160 22.14 19.96 20.01 20.13 14.60 16.48
1320 24.06 22.05 22.40 22.47 16.58 18.91
1640 26.35 24.37 24.47 25.12 18.61 20.38
Average 14.22 12.90 13.13 13.31 10.05 10.73
https://doi.org/10.1371/journal.pone.0303764.t002
Table 3. Average CPU time [s] of using the DNH.
without network centrality with network centrality
degree eigenvector closeness betweenness
vertex edge
B 0.00 0.00 0.00 0.00 0.00 0.00
C 0.16 0.16 0.18 0.30 0.34 0.36
D 1.11 1.11 1.21 1.74 1.96 2.00
E 16.85 16.86 16.85 20.64 23.49 25.20
1080 0.00 0.00 0.00 0.01 0.01 0.01
1160 0.01 0.01 0.01 0.03 0.03 0.03
1320 0.03 0.04 0.04 0.19 0.19 0.20
1640 0.24 0.24 0.28 1.57 1.49 1.54
Average 2.30 2.30 2.32 3.06 3.44 3.67
https:/doi.org/10.1371/journal.pone.0303764.t003
Table 4. Average gaps [%] using the SPH.
without network centrality with network centrality
degree eigenvector closeness betweenness
vertex edge
B 1.81 1.46 1.47 1.77 1.09 0.78
C 3.37 3.28 3.26 3.07 2.17 2.47
D 3.85 3.84 3.69 4.51 2.89 2.39
E 5.30 5.05 5.24 5.41 4.06 3.47
1080 14.68 13.40 12.88 13.63 9.78 10.12
1160 17.73 16.93 16.49 17.04 11.10 11.25
1320 19.37 18.72 18.37 18.80 11.99 12.28
1640 20.59 19.85 19.84 20.57 12.66 12.93
Average 10.84 10.32 10.15 10.60 6.97 6.96

https://doi.org/10.1371/journal.pone.0303764.t004

—10.05 = 4.17%. As shown in Table 3, the DNH with the degree centrality did not increase the
CPU time. However, using the eigenvector, the closeness, the vertex betweenness, and the
edge betweenness centralities increased the CPU time by at most 3.67/2.30 ~~ 1.60 times com-
pared to the conventional DNH. This is because the calculation time of network centralities is
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Table 5. Average CPU time [s] of using the SPH.

without network centrality with network centrality
degree eigenvector closeness betweenness
vertex edge
B 0.00 0.00 0.00 0.00 0.00 0.00
C 0.11 0.11 0.13 0.26 0.29 0.31
D 0.78 0.78 0.86 1.38 1.54 1.62
E 12.21 12.21 12.45 16.58 18.73 19.50
1080 0.00 0.00 0.00 0.00 0.00 0.01
1160 0.00 0.01 0.01 0.03 0.03 0.03
1320 0.03 0.03 0.03 0.18 0.18 0.19
1640 0.17 0.17 0.21 1.51 1.44 1.47
Average 1.66 1.66 1.71 2.49 2.78 2.89
https://doi.org/10.1371/journal.pone.0303764.t005
Table 6. Average gaps [%] of using the ADH.
without network centrality with network centrality
degree eigenvector closeness betweenness
vertex edge
B 1.50 1.31 0.83 1.25 0.70 0.61
C 3.90 3.40 3.76 3.60 2.70 4.48
D 3.99 3.37 3.27 3.54 2.72 3.24
E 5.29 3.99 4.43 4.71 3.15 3.73
1080 3.26 1.76 1.50 1.65 1.44 1.25
1160 3.31 1.86 2.18 2.06 1.88 1.79
1320 3.05 2.30 1.93 2.14 1.84 1.91
1640 3.91 2.81 2.73 2.79 2.48 2.54
Average 3.53 2.60 2.58 2.72 2.11 2.44
https:/doi.org/10.1371/journal.pone.0303764.t006
Table 7. Average CPU time [s] of using the ADH.
without network centrality with network centrality
degree eigenvector closeness betweenness
vertex edge
B 0.01 0.01 0.01 0.01 0.01 0.01
C 1.28 1.26 1.29 1.40 1.50 1.54
D 10.38 10.29 10.72 10.73 11.44 11.92
E 189.50 188.66 186.46 187.41 197.97 203.73
1080 0.00 0.01 0.01 0.01 0.01 0.01
1160 0.02 0.03 0.03 0.05 0.05 0.05
1320 0.20 0.20 0.21 0.36 0.36 0.36
1640 1.68 1.67 1.72 3.05 3.01 3.08
Average 25.38 25.27 25.06 25.38 26.79 27.59

https://doi.org/10.1371/journal.pone.0303764.t1007

added to that of the DNH in our method. Thus, it is important to find a balance between the
increase in the calculation time and the decrease in the average gap. The relationship between
the increase in the calculation time and the decrease of the average gap is shown in Fig 2. In
Fig 2, the horizontal axis expresses the increase in the calculation time compared to the

PLOS ONE | https://doi.org/10.1371/journal.pone.0303764  June 6, 2024

8/16


https://doi.org/10.1371/journal.pone.0303764.t005
https://doi.org/10.1371/journal.pone.0303764.t006
https://doi.org/10.1371/journal.pone.0303764.t007
https://doi.org/10.1371/journal.pone.0303764

PLOS ONE

A heuristic method for solving the Steiner tree problem in graphs using network centralities

40 T T T T T T
— degree °
R eigenvector °
2 30 closeness * 1
s 3 vertex betweenness
© 90 edge betweenness = |
&0
£ f.‘
o ) o
= 10 9 |
%]
=
= B i
5 |
5 Sl
= -10 ¢ .
%]
=

_20 1 1 1 1 1 1

0 10 20 30 40 50 60 70
Increase of the CPU time

Fig 2. Relationship between the increase in the CPU time (average CPU time of the proposed method divided by
that of the conventional method) and the decrease in the average gaps (average gap of the conventional method
minus that of the proposed method) when using the DNH.
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Fig 3. Relationship between the increase in the CPU time (average CPU time of the proposed method divided by
that of the conventional method) and the decrease in the average gaps (average gap of the conventional method
minus that of the proposed method) when using the SPH.

https://doi.org/10.1371/journal.pone.0303764.9003
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conventional DNH and the vertical axis expresses the decrease of the average gaps compared
to the conventional DNH. Different colors express methods using different network centrali-
ties. Each point corresponds to each instance. Consequently, 478 (instances) x5 (network cen-
tralities) = 2, 390 points are plotted in Fig 2. As shown in Fig 2, if network centralities are used,
the average gaps decrease for many instances. The increase of the calculation time of the pro-
posed method was less than ten times the CPU time of the conventional method in many
cases. In particular, if vertex betweenness centrality is used, the average gaps decreased by
approximately 40% with the twice CPU time of the conventional method for some instances.
These results indicate that using network centralities, especially vertex betweenness centrality,
led to good performance when using the DNH.

Tables 4 and 5, and Fig 3 show the results of using the SPH [13]. As shown in Table 4, similar
to the results of the DNH, the SPH with network centralities obtained Steiner trees with a
smaller gap than the SPH without network centralities. In particular, the SPH with the edge
betweenness centrality shows the best performance and improves the average gaps by approxi-
mately 10.84 — 6.96 = 3.88%. From this result, the SPH with network centralities obtains Steiner
trees with smaller gaps than those obtained by the DNH. The average gap of the SPH with the
edge betweenness centrality (6.96%) was smaller than that of the DNH with the vertex between-
ness centrality (10.05% in Table 2). From Table 5, the SPH with the degree centrality shows the
same calculation time compared to the SPH without degree centrality. By contrast, using the
eigenvector, the closeness, the vertex betweenness, and the edge betweenness centralities
increased the CPU time by at most 2.89/1.66 ~ 1.74 times that of the conventional SPH. The
computational cost of the SPH was the same as that of the DNH. Thus, the trends of their calcu-
lation time were the same. As seen in Fig 3, using network centralities decreased the average
gaps for many instances within ten times the conventional method’s CPU time. These results
indicate that using network centralities, especially edge betweenness centrality, led to good
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performance when using the SPH. In addition, the combination of network centralities and the
SPH exhibited better performance than the combination of network centralities and the DNH.

Tables 6 and 7, and Fig 4 show the results of using the ADH [14]. As shown in Table 6, the
ADH without any network centralities obtained smaller-gap Steiner trees (3.53%) than the
DNH with the vertex betweenness centrality (10.05% from Table 2) and the SPH with the edge
betweenness centrality (6.96% from Table 4). It should be noted that the calculation cost of the
ADH was larger than that of the DNH and the SPH. The calculation cost of the ADH is
O(|V[*), and that of the DNH and the SPH is O(|T||V|*). The ADH with network centralities
obtained Steiner trees with a smaller gap than those without any network centralities. In particu-
lar, the ADH with the vertex betweenness centrality showed the best performance, improving
the gaps by approximately 3.53 — 2.11 = 1.42%. As shown in Table 7, the CPU time of the ADH
with the degree and eigenvector centralities was shorter than that without network centrality.
One of the reasons why the CPU time of the ADH with some network centralities was relatively
short is that the order of the calculation costs of these network centralities was smaller than or
equal to the calculation cost of the ADH. As shown in Fig 4, using network centralities decreased
the average gaps for many instances within twice the conventional method’s CPU time.

The results of the numerical experiments indicate the following consequences:

1. Using the network centrality can reduce the gaps of the obtained Steiner trees with major
heuristics: the DNH, the SPH, and the ADH.

2. Using the vertex or the edge betweenness centralities shows the best performance among
the degree, the eigenvector, the closeness, the vertex or the edge betweenness centralities.

3. The increase of the average CPU time of heuristics with network centralities from the one
without any network centralities is approximately ten times for the DNH or the SPH and
approximately twice for the ADH.

Parameter tuning

The proposed method has a scaling parameter o which must be set to an appropriate value.
However, this procedure requires a long calculation time. Thus, to tune the value of & more
easily, we investigated the relationship between o and the improvement in the gaps for the
benchmark problem sets B, C, D, E, 1080, 1160, 1320, and 1640. Parameters were tuned per
instance, and we averaged their average gaps.

Figs 5-7 show the relationship between o and the average decrease in the gaps. Positive val-
ues indicate that the proposed method shows better performance than the conventional
method. Different colors indicate the use of different network centralities.

From Fig 5, the maximum value of the average decrease in the gaps by the DNH is in the
positive region and the minimum value of them is in the negative region, regardless of the types
of network centralities and the values of . This means that using network centralities assists in
constructing a small-weight Steiner tree for some instances. In the case of using the vertex or
the edge betweenness centralities, the upper quartiles are on the positive region. The DNH per-
forms the best performance when using the vertex betweenness centrality with small .

From Fig 6, the SPH and the DNH show similar trends for the type of network centrality
and the value of a. The SPH shows the best performance when using the edge betweenness
centrality with small .

As shown in Fig 7, large o reduces the negative region of the average decrease by using any
type of network centralities. The ADH shows the best performance when using the vertex
betweenness centrality with large .
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Conclusions

Selecting a heuristic is one of the most important steps to solve NP-hard combinatorial opti-
mization problems such as the Steiner tree problem in graphs. Many heuristics to solve the
Steiner tree problem in graphs use the shortest path between vertices and have shown good
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performance. However, if multiple shortest paths exist between vertices, using shortest paths
sometimes results in a Steiner tree with a large weight. In this case, if the selected shortest
paths share common edges as much as possible, the weight of the Steiner tree or the sum of the
weights of the edges included in the Steiner tree becomes small. From this perspective, using
an edge betweenness centrality can distinguish which shortest paths contribute to making a
Steiner tree with minimal weight. This method successfully reduces the weight of the obtained
Steiner tree when compared to the method that does not use the edge betweenness centrality.
However, the following points were unclear: (1) Does the use of network centralities lead to
good performance with any type of heuristic? (2) What is the most efficient network centrality
to obtain a Steiner tree with a small weight? (3) To what extent does the calculation time
increase when using the network centralities?

To answer these points, we first modified a heuristic using edge network centralities to a
version using vertex network centralities; this is because many network centralities are defined
for vertices. Based on this approach, we conducted some numerical experiments. We solved
478 benchmark instances in SteinLib using 15 combinations of heuristics and network central-
ities, which included three heuristics: the DNH, the SPH, and the ADH, and five network cen-
tralities: the degree, the eigenvector, the closeness, the vertex betweenness, and the edge
betweenness centralities. We evaluated the average gap from the optimum solutions and the
calculation time of each method.

The results of numerical experiments revealed the following:

1. Using network centralities successfully reduces the weight of the obtained Steiner trees for
any major heuristics.

2. Using the vertex or the edge betweenness centralities shows the best performance among
major network centralities.
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3. Using network centralities can reduce the gap from the optimum solution by approxi-
mately 15% within ten times the calculation time in the cases of using the DNH or the
SPH and within twice the calculation time in the case of using the ADH for many
instances.

These results indicate that network centrality, especially the vertex or the edge betweenness
centralities can be a good indicator for constructing Steiner trees with small weights.

The practical calculation cost of the vertex or the edge betweenness centralities can be
reduced by applying the hub labeling algorithm [24]. Thus, using the hub labeling algorithm to
obtain the vertex or the edge betweenness centralities is one of the future issues of our pro-
posed method.

The original method of the DNH and the SPH can guarantee their theoretical approxima-
tion ratios because these methods use the original edge weight. However, our proposed
method uses a new edge weight that merges the original edge weight and its network centrality.
Thus, one of the important future issues is to guarantee the theoretical approximation ratio of
our proposed method.
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