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Abstract

The complex financial networks, with their nonlinear nature, often exhibit considerable

noises, inhibiting the analysis of the market dynamics and portfolio optimization. Existing

studies mainly focus on the application of the global motion filtering on the linear matrix to

reduce the noise interference. To minimize the noise in complex financial networks and

enhance timing strategies, we introduce an advanced methodology employing global motion

filtering on nonlinear dynamic networks derived from mutual information. Subsequently, we

construct investment portfolios, focusing on peripheral stocks in both the Chinese and

American markets. We utilize the growth and decline patterns of the eigenvalue associated

with the global motion to identify trends in collective market movement, revealing the distinc-

tive portfolio performance during periods of reinforced and weakened collective movements

and further enhancing the strategy performance. Notably, this is the first instance of applying

global motion filtering to mutual information networks to construct an investment portfolio

focused on peripheral stocks. The comparative analysis demonstrates that portfolios com-

prising peripheral stocks within global-motion-filtered mutual information networks exhibit

higher Sharpe and Sortino ratios compared to those derived from global-motion-filtered

Pearson correlation networks, as well as from full mutual information and Pearson correla-

tion matrices. Moreover, the performance of our strategies proves robust across bearish

markets, bullish markets, and turbulent market conditions. Beyond enhancing the portfolio

optimization, our results provide significant potential implications for diverse research fields

such as biological, atmospheric, and neural sciences.

Introduction

The complex financial networks, integrating finance, economics, network science, and systems

theory, are essential for quantifying the interactions and complexities within financial systems

[1–5]. Analyzing interactions and correlations between financial entities enhances our
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understanding of the market dynamics, identifies systemic risks, and provides crucial insights

into financial stability [6–10].

Recent studies have shown that topological structures in financial networks evolve over

time [11–16]. Dynamic networks, which are more complex and noisy, are of more significant

importance compared with static ones [17, 18]. The dynamic networks obtained from the

matrix of Pearson correlation (PC) coefficients are pivotal in understanding the complex inter-

actions within brain networks, particularly during cognitive tasks [19–22]. It is observed that

the networks obtained from the matrix of nonlinear mutual information exhibit superior

robustness compared to networks obtained from the matrix of PC coefficients [23–25]. Litera-

ture on dynamic nonlinear networks primarily focuses on the basic properties of nonlinear

networks [26, 27], with relatively fewer applications in portfolio optimization compared to

static networks, mainly due to their susceptibility to noises.

Portfolio optimization in finance is the optimal allocation of financial assets in different

stocks [28, 29], mutual funds, bonds, digital currencies [16, 30, 31], etc. to maximize the

returns with risk tolerance [32]. Recently, financial scholars have been delving into the intri-

cate relationships and distinct differences between various financial markets [16, 33, 34]. A

sophisticated portfolio optimization strategy includes various elements, but stock selection,

asset allocation, and market timing are fundamental components [35, 36]. The fundamental

theory of portfolio optimization, originating from the Markowitz framework [37, 38], bases

investment allocation on the mean-variance analysis [31]. This theory necessitates selecting a

specific set of stocks [39, 40], as it focuses on allocating proportions within a selected stock

group. A diverse range of alternative methodologies, such as neural networks [41, 42], genetic

algorithms [43], and hierarchical clustering [10, 44, 45], have been introduced to the portfolio

optimization. Recent studies indicate that green cryptocurrencies offer diversification benefits

[30, 31], with a growing body of research incorporating cryptocurrencies into investment port-

folios [46, 47].

Among these methods, using the hierarchical clustering in the network topology has

emerged as an efficient approach for selecting stocks to generate optimal portfolios [10, 28, 45,

48]. Researchers utilize diverse linear correlation methodologies across various financial mar-

kets to evaluate the investment potential of assets possessing unique topological features

[10, 28, 49–52], and implement minimum variance correlation strategies to optimize portfolio

weights [31, 46]. Nevertheless, the exploration of portfolio optimization through nonlinear

network topologies remains limited.

The nodes of the minimum risk portfolio are always located on the outer leaves of the MST

tree generated by using the hierarchical clustering [48, 53]. Traditional hierarchical clustering

portfolios predominantly concentrate on stocks at the extremities or at the core of the market

spectrum [10, 45, 52]. Our methodology, however, adopts a holistic approach by incorporating

an analysis of the full sample of stocks. A common approach for constructing dynamic finan-

cial networks involves generating network graphs over moving windows for the portfolio

selection in each period [10, 45]. However, if the moving windows duration approximates the

number of nodes, statistical uncertainty increases, and the dynamic network becomes predom-

inantly noise-influenced [12, 54, 55].

The global motion, extracted with random matrix theory (RMT), drives price movements

in complex financial systems, underscores the inter-connectedness of global financial markets

[56–58], and minimizes noises [52]. The RMT highly effective in large dimensional systems

like stock markets, is filtering noises from financial time series [59–62]. Notably, several large

eigenvalues in both the mutual information (MI) and PC matrices significantly deviate from

the upper boundary of the eigenvalue distribution as predicted by the Wishart matrix [63].

The RMT is also effective for nonlinear matrices like MI, characterized by independent
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random elements drawn from a probability distribution [59, 63]. Previous findings indicate

that only the large eigenvalues, which significantly deviate from random ones, contain sub-

stantial information about the network structure [64, 65] and contribute to the variability of

the dynamic system [66, 67]. Studies pertaining to the nonlinear RMT are notably limited,

with its application within financial markets being almost entirely absent. Thus, we can extract

the global motion matrix determined by the largest eigenvalue [52]. However, the structure

and function of networks generated by the global motion of nonlinear matrices have not been

sufficiently investigated.

The MI metric, rooted in the Shannon entropy theory, excels in evaluating nonlinear rela-

tionships, outperforming the PC, which is limited to linear associations [23]. The MI-based

methodologies have been instrumental in constructing biological networks [68–71] and have

recently gained prominence in complex systems and stock network studies [23, 72]. Research

focusing on the dynamic structural characteristics of core and periphery nodes in stock net-

works has shown that peripherality serves as a reliable indicator for identifying optimal assets

[45, 52]. It has been observed that peripheral stocks, when selected based on the MI, particu-

larly with high frequency data, significantly outperform those chosen via PC [73]. What is

more, the complex networks generated by the MI is still subject to noise interference, which

can weaken the performance of investment portfolio constructed based on it.

In this study, our primary focus is on the global motion filtered MI, which could reduce

noise and enhance timing strategies in dynamic stock networks. Initially, we construct

dynamic stock networks with four matrices: MI, PC, and their corresponding global motion

filtered matrices, based on daily returns of CSI 300 and S&P 500 component stocks. Then, we

recognize peripheral stocks in these networks and build corresponding investment portfolios.

Besides, we utilize eigenvalue growth and decline patterns associated with global motion to

identify trends in collective market movement, exposing distinctive portfolio performance

during periods of enhanced and weakened collective movements. In addition, we analyze

Sharpe ratios across portfolios varying in stock numbers and holding duration, and unveil

contrasting investment tendencies in the Chinese and American markets.

Materials and methods

Data description

Our study involves data on the constituent stocks of two major indices: the CSI 300 from the

Chinese stock market and the S&P 500 from the American stock market. The dataset, span-

ning a decade (2009 to 2019), is freely accessible from the financial historical archives on

https://cn.investing.com/. The collection and analysis methods adhered to the terms and con-

ditions specified by the data source. In this analysis, the CSI 300 dataset encompass 2431 days,

while the S&P 500 cover 2517 days. To ensure data continuity and integrity, stocks suspended

for over 120 consecutive days are excluded. Consequently, the final dataset include 188 stocks

from the CSI 300 and 420 from the S&P 500. The chosen dataset concludes in 2019, represent-

ing the most recent and comprehensive data unaffected by significant trade disruptions,

including the COVID-19 pandemic.

Construction of the mutual information and Pearson correlation networks

Initially, we compute correlation for component stocks of CSI 300 and S&P 500 market with

moving windows. The closing price of the xth stock on day t is represented by Px(t), with the

logarithmic return calculated as Rx(t) = ln(Px(t)) − ln(Px(t − 1)). For each day t, the normalized
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return is computed within a moving time window set to ΔT = 125 days,

rxðtÞ ¼ ½RxðtÞ � hRxðt � t0Þi�=dðtÞ: ð1Þ

In the expression where h. . .i denotes the time-averaged value over t0 in the past ΔT days, with

t0 ranging from t − ΔT + 1 to t, and δ(t) is the standard deviation of the returns.

In the information theory, Shannon Entropy quantifies the uncertainty or unpredictability

of a random variable or vector [73]. The normalized return rx(t) is uniformly divided into Nx

sub-intervals, each with a width Δx = (xmax − xmin)/Nx. The probability of stock x falling into

the ith sub-interval is estimated by computing its occurrence frequency f(xi) within that inter-

val. The density function is subsequently approximated by:

pðxiÞ �
f ðxiÞ

DT
: ð2Þ

The entropy of a discrete random variable rx(t) is defined as:

HðxÞ ¼ �
XNx

i¼1

pðxiÞlogð pðxiÞÞ: ð3Þ

For discrete random variables rx(t) and ry(t), their joint entropy is defined as:

Hðx; yÞ ¼ �
XNx

i¼1

XNy

j¼1

pðxi; yiÞlogð pðxi; yiÞÞ; ð4Þ

where p(xi, yi) represents the joint density function of variables X and Y. Herein, we employ

Nx = 10 and 15 for calculating the mutual information, presenting results specifically for

Nx = Ny = 10 since the results are highly similar.

The MI, which originates from the entropy information theory, measures a generalized,

nonlinear relationship between two variables rx(t) and ry(t). It is defined as:

Iðx; yÞ ¼
XNx

i¼1

XNy

j¼1

pðxi; yiÞlog
pðxi; yiÞ

pðxiÞpð yiÞ
: ð5Þ

When rx(t) and ry(t) are independent, their joint density function satisfies p(xi, yi) = p(xi) � p(yi),
generating a mutual information I of zero. From Eq 5, we derive that mutual information I(x, y)

is expressed as H(x) + H(y) −H(x, y). Mutual information can be normalized to the interval

[0, 1] [23], and is defined as:

NMIðx; yÞ ¼
2Iðx; yÞ

HðxÞ þHð yÞ
: ð6Þ

The PC between the normalized return series of stocks x and y expressed as:

CxyðtÞ ¼
hrxðtÞ � ryðtÞi � hrxðtÞi � hryðtÞi

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

ðhrxðtÞ
2
i � hrxðtÞi

2
Þ � ðhryðtÞ

2
i � hryðtÞi

2
Þ

q : ð7Þ
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Within a network, the metric chosen defines the distance between nodes. The normalized

distance based on MI between two stocks x and y is defined as:

dðx; yÞ ¼ 1 �
Iðx; yÞ
Hðx; yÞ

: ð8Þ

Similarly, based on PC, the distance between stocks x and y is calculated using the following

equation:

dðx; yÞ ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2ð1 � Cx;yÞ

q
: ð9Þ

Extraction of the global motion in the MI and PC networks

Existing studies mainly focus on the application of the global motion filtering on the linear

matrix to reduce the noise interference. Based on the above calculations, we get full correlation

matrices (networks) named Cij and Nij. Next, through global motion filtering, we apply global

motion filtering to Cij and Nij, i.e., Cm
ij and Nm

ij . In the statistical physics, the statistical proper-

ties of eigenvalues are derived from the RMT matrix, formed from uncorrelated time series of

finite length [57]. Here, the total number of stocks is denoted as N, and the aggregate data

duration is represented as T. In the limit N!1 and T!1, maintaining Q� T/N� 1, the

eigenvalue probability distribution Prm(λ) is described by the following expression:

PrmðlÞ ¼
Q
2p

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðlþ � lÞðl � l� Þ

p

l
: ð10Þ

The eigenvalues are constrained within the defined upper and lower bounds, given by

l� ¼ ½1� ð1=
ffiffiffiffi
Q
p
Þ�

2
.

Expanding on the results of previous research [57], the correlation matrix Mxy is decom-

posed as:

Mxy ¼
XN

a¼1

lau
a

xu
a

y: ð11Þ

The correlation matrix M encompasses both the PC matrix C and the MI matrix N. Here, λα

represents the α-th eigenvalue of Mxy, while uax denotes the x-th component of the α-th eigen-

vector. Additionally, N signifies the total number of stocks under consideration.

In this manuscript, we focus on the global motion associated with the largest eigenvalue.

The definition of the global correlation matrix is as follows:

Mm
xy ¼ lmum

x u
m
y ; ð12Þ

where λm denotes the largest eigenvalue of the matrix M, and um
x is identified as the x-th com-

ponent of the largest eigenvector. The matrix Mm is the result of noise reduction using the

global motion approach, demonstrating, notable stability. Within this theoretical model, Nm

corresponds to the global motion matrix constructed based on MI, and Cm represents the

global motion matrix derived from PC.

Calculation of the node peripherality in the MI and PC networks

We utilize the PMFG technique to construct sparse networks, employing both correlation net-

works Nij and Cij, along with their corresponding global motion networks Nm
ij and Cm

ij for each
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day t. The PMFG approach, based on iterative creation of a constrained, planar graph, retains

the most significant correlations among connected nodes, as elaborated in [74]. Following

methodologies in [45, 52], we employ a composite peripherality measure to assess the periph-

erality of individual nodes within these networks. This peripherality Cp in the networks is

computed as follows:

Cp ¼ ðDCw þ DCu þ BCw þ BCu � 4Þ=4ðN � 1Þ

þðEw þ Eu þ Cw þ Cu þ ECw þ ECu � 6Þ=6ðN � 1Þ;
ð13Þ

where, DC, BC, E, C and EC represent degree centrality, betweenness centrality, eccentricity,

closeness, and eigenvector centrality, respectively. The superscripts w and u correspond to the

weighted and unweighted sparse networks filtered with PMFG. Central nodes in the network

typically have lower Cp values, while peripheral nodes tend to have higher Cp values. The per-

ipherality Cp value for each stock is computed. Subsequently, the hierarchical clustering

method is applied to divide all the stocks into 10 groups based on their Cp values, where group

‘1’ signifies central stocks and group ‘10’ represents peripheral stocks. In our analysis, the port-

folio selection is based on the network structure in the previous time window and subsequently

employed as a strategy for the following investment horizon.

Construction of portfolios based on MI and PC networks

The Markowitz portfolio optimization theory is a fundamental concept in the field of modern

finance, guiding optimal portfolio construction, weight allocation, and asset diversification

[75]. It provides a structured method to determine the optimal asset weights within a portfolio,

either by maximizing the portfolio’s return for given risk level or by minimizing the risk for a

specific return. The Markowitz approach is formulated as follows:

min lωTOω � ð1 � lÞωTm;

s:t:

rTω ¼ m
PN

x¼1
wx ¼ 1:

wx � 0

8
>>><

>>>:

ð14Þ

We analyze portfolios comprising the k most peripheral stocks, identified by the highest Cp
values, and contrast them with portfolios of central stocks, characterized by the lowest Cp
values.

In our model, O represents the covariance matrix of the assets within the portfolio. The

methodology adopted in this study precludes the practice of short selling, mandating that the

weights ω assigned to the assets must be strictly positive. The target return μ is predetermined;

however, in order to mitigate the risk of overfitting, the specification of μ is deliberately omit-

ted, with the emphasis being exclusively placed on the minimization of portfolio risk. For a

parameter value of λ = 1, the portfolio strategy exhibits a propensity towards diversification,

emphasizing the minimization of risk as opposed to the maximization of returns. In this con-

text, the portfolio assessments are conducted utilizing both uniform and Markowitz optimiza-

tion approaches for asset weighting.
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For the each portfolio under consideration on day t, the return accrued over the holding

period of τ days is meticulously tracked and defined as follows:

rðk; t; tÞ ¼
Xk

x¼1

ox � rxðt; tÞ; ð15Þ

where rsxðt; tÞ ¼ ðPxðt þ tÞ � PxðtÞÞ=PxðtÞ, with Px(t) is the price of the x-th stock among the

selected most peripheral (or central) stocks on day t, and Px(t + τ) is the corresponding price on

day t + τ. The term τ designates the holding period, which is within the range of τ 2 [1, 125].

We assign uniform weights asox ¼
1

k, and Markowitz weights are deduced from Eq (14). The

annualized cumulative return, denoted as rax , is defined by the formula (1 + rx(t, τ))250/τ − 1,

where 250 represents the typical number of trading days within a year. Subsequently, we define

the annualized return of the portfolio:

raðk; t; tÞ ¼
Xk

x¼1

ox � r
a
xðt; tÞ: ð16Þ

The Sharpe ratio is chosen as a metric to evaluate the performance of the portfolio, defined

as:

Spðk; tÞ ¼ rðk; tÞ=spðk; tÞ; ð17Þ

where �rðk; tÞ ¼ hrðk; t; tÞit signifies the mean return computed over all instances of time t
within the full span of the time series, as well as the standard deviation σp(k, τ). When the

return of a portfolio, denoted as r(t, τ), is represented by ra(t, τ), the symbol Sp signifies the

annualized Sharpe Ratio.

The Sortino ratio which is a variation of the Sharpe ratio, only takes in to account down-

side/negative volatility. It is assumed that the upside volatility is a bonus for investment, and

should not be considered risky. Therefore, the total standard deviation in the Sharpe ratio is

replaced by the downside deviation in the Sortino ratio [32, 76]:

Stðk; tÞ ¼ rðk; tÞ=sdðk; tÞ; ð18Þ

where σd(k, τ) is the target downside deviation.

Identification of collective movement trend with the global motion

The global motion is governed by the largest eigenvalue, and drives the collective price move-

ments in the complex financial systems [56, 57]. Using a moving time window, we compute

the correlation matrix and its largest eigenvalue, generating a time series of the largest eigen-

values as λm(t).
The Granger causality test is applied to assess the causal relationship between this eigen-

value series and market indices in both Chinese and American markets. While the largest

eigenvalue series of Nij do not exhibit causality, the largest eigenvalue series of Cij pass the cau-

sality test. Therefore, we utilize the largest eigenvalue series of Cij as an indicator for market

timing, defining market conditions accordingly:

W : l
m
ðtÞ < l

m
ðt � 125Þ;

E : l
m
ðtÞ > l

m
ðt � 125Þ:

(

ð19Þ

On the day t, a value of λm(t) exceeding λm(t − 125), is interpreted as an indication of

enhanced collective movements, marked by an ‘E’ superscript. In contrast, if λm(t) is less than
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λm(t − 125), signifying weakening collective movements, is denoted with a ‘W’ superscript.

This notation is consistently applied in all figures throughout the article that include the ‘E’

and ‘W’ superscripts.

The mean return during the ‘E’ period is characterized as follows:

rEðtÞ ¼ hrðk; t; tÞit;k;

s:t:lm
ðtÞ > l

m
ðt � 125Þ;

ð20Þ

where h. . .i refers to averaging over the number of stocks: k, and time: t, where t should satisfy

the enhancement conditions specified in the formula below. Conversely, the average rate of

return during the ‘E’ period can be calculated as rLðtÞ.

The concept of conditional probability, denoted as PE
wðtÞ ¼

Pðrþ ;EÞ
PðEÞ , is widely recognized.

Here, P(r+, E) signifies the occurrence where the rate of return exceeds zero during the ‘E’

period, and P(E) pertains to the condition during the ‘E’ period. The corresponding expression

for the win rate is expressed as:

PE
wðtÞ ¼

nE
rþðk;t;tÞ

nE
rþðk;t;tÞ þ nE

r� ðk;t;tÞ
; ð21Þ

where nE
rþðk;t;tÞ denotes the number of days with a positive return rate during the ‘E’ period. The

Eq 16 is well-established that the return rate r is contingent upon three variables: k, t, and τ.

The number of stocks, denoted as k = N/10 is categorized into either peripheral or central

tiers.

Summary of methods

Our methodology is structured into four main parts to ensure logical coherence:

1. Construction of Stock Correlation Matrix Using Moving Windows: Initially, we compute

correlation for component stocks of CSI 300 and S&P 500 market in different time periods

(moving windows from t − 125 to t), utilizing either PC or MI correlation matrix. Then, we

get full correlate matrices (networks) named Cij(t) and Nij(t). Through global motion filter-

ing, we get the global motion filtered matrices Nm
ij ðtÞ and Cm

ij ðtÞ. Since the global motion is

determined by the largest eigenvalue, which diverges the farthest from the random ones

and captures a substantial share of the variability of dynamic system [52, 66, 67]. At this

stage, the matrices are N × N correlation matrices (networks).

2. Sparse Matrix Generation via PMFG: Utilizing the Planar Maximally Filtered Graph

(PMFG) technique, we retain significant connections to obtain sparse matrices (networks).

This process involves filtering to preserve only the most crucial edges within the networks.

3. The node Peripherality: Sparse matrix calculated using Eq 13, the peripherality of each

stock (node) within the network are available at each day. There are eight matrices (net-

works) across two markets: Cij, Nij, Cm
ij , and Nm

ij . The peripheral node exhibits less closely

connected to other nodes in the network, which are less exposed to risk [45, 52]. From

these matrices, we can derive metrics from various matrices to identify optimal assets.

4. Clustering and Hierarchical portfolios: Based on the peripherality values of all nodes on

the same day, we categorize all stocks into ten tiers. Subsequently, we calculate the Sharpe

and Sortino ratios for different holding periods (τ) and various market states to evaluate the

investment portfolio performance of the networks.
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Results

Comparison of MI and PC networks

The RMT is employed using Eq 12 to discern the global motion in Nij and Cij matrices for both

CSI 300 and S&P 500 markets, resulting in Nm
ij and Cm

ij , respectively. Subsequent references to

Nij pertain to the MI, as defined in Eq 6.

Fig 1 presents the probability distributions of matrix elements for four matrices: Nij, Nm
ij , Cij

and Cm
ij . It is evident that Nij, similar to Cij, demonstrated normal distribution characteristics,

aligning with typical Wishart matrices. The global motion matrices retain their original distri-

butional characteristics. Both Nij and Cij preserve their symmetry axes, which is indicative of

their respective market modes. Moreover, the figure highlights that in the CSI 300 market, the

average values are around 0.08 for Nij and 0.4 for Cij, whereas in the S&P 500, they are approxi-

mately 0.05 for Nij and 0.32 for Cij, suggesting higher mean values in CSI 300 compared to

S&P 500.

In our analytical assessment of the CSI 300 (with L = 2430, N = 188), it is observed that the

eigenvalues λ+ and λ− are 1.63 and 0.52, respectively. In contrast, for the S&P 500 (with

L = 2516, N = 420) markets, these eigenvalues are determined to be λ+ = 1.98 and λ− = 0.35.

Several significant eigenvalues in the matrix notably deviate from the theoretical upper limit of

the eigenvalue distribution characteristic of the Wishart matrix, typically representing the cor-

relation matrix of uncorrelated time series [59, 63]. Eigenvalues confined within the interval

[λ−, λ+] are classified as the random component. We quantify the degree of non-randomness

in the matrix by calculating the ratio of eigenvalues exceeding this range to the total eigenvalue

count, applied to both Nij and Cij matrices. The ratio is defined as follows:

ratio ¼ nl=n; ð22Þ

Fig 1. Probability distributions of the matrix elements Nij, Nm
ij , Cij and Cm

ij , for the CSI 300 and S&P 500 markets.

https://doi.org/10.1371/journal.pone.0303707.g001
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where nλ denotes the count of eigenvalues λ that are either less than λ− or exceed λ+. As pre-

sented in Table 1, the ratio for the S&P 500 index is substantially higher compared to that of

the CSI 300 index. Moreover, the ratio for Nij is significantly greater than Cij. These observa-

tions imply that MI serves as a more robust measure of non-randomness than the PC coeffi-

cient when analyzing stock price data, which conclusion is consistent with the findings

reported in Ref. [23].

Performance of the MI and PC network-based portfolios

Using the computed network peripherality Cp value for each stock based on Eq 13, we stratify

Cp values in descending order and calculate the portfolio returns for each tier.

Fig 2 shows the variation of the Sharpe ratios for Nm
ij and Cm

ij in the S&P 500 market over

holding time τ, indicating that the Sharpe ratios for peripheral stocks are significantly higher

than those of central stocks. The stratification and marginal Sharpe ratios of Nm
ij are notably

higher than those of Cm
ij .

In the Table 2, we display the average Sharpe ratio for each tier. the stocks within the first

tier are identified as the most central in terms of their influence or connectivity, whereas those

categorized in the tenth tier are recognized as the most peripheral, indicating their relatively

lower significance or connectivity within the network.

The Sharpe ratios in the S&P 500 market substantially exceed those in the CSI 300 market,

likely due to its higher maturity level and a larger number of stocks per tier. In the CSI 300

market, the Sharpe ratios for the tenth tier concerning Nm
ij and Cm

ij do not significantly surpass

Table 1. The eigenvalues beyond the range [λ−, λ+].

CSI 300 S&P 500

Nij Cij Nij Cij

nλ 182 53 411 242

ratio 0.968 0.282 0.979 0.576

nλ is the number λ smaller than λ− or larger than λ+, N for CSI 300 is 188, and N for S&P 500 is 420.

https://doi.org/10.1371/journal.pone.0303707.t001

Fig 2. The comparison of Sharpe ratios in the S&P 500 global motion matrices for each tier. Sub-figure (a) shows the equal-weighted Sharpe ratio

calculated through the Nm
ij network, whereas sub-figure (b) is similar to (a) but displays the Sharpe ratio calculated through the Cm

ij network.

https://doi.org/10.1371/journal.pone.0303707.g002
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those of the ninth tier. However, in the S&P 500 market, while the Sharpe ratios for Nij and Cij

in the tenth tier are lower than those in the ninth, the global motion matrices show the tenth

tier Sharpe ratios notably outperforming the ninth tier.

Additionally, we calculate averages for the top five and bottom five tiers. It is evident that in

both the CSI 300 and S&P 500 markets, the Sharpe ratios of peripheral stocks are larger than

those of central stocks. Moreover, peripheral stocks in global motion networks exceed their

full correlation counterparts, and peripheral stocks within Nij outperform those within Cij. The

mean Sharpe ratio of the top half peripheral stocks in the Nm
ij network is 5% and 1% higher

than Nijnetwork in CSI 300 and S&P 500 market respectively. Especially, in S&P 500 market,

the mean Sharpe ratio of peripheral stocks in the tenth tier in the Nm
ij network is 21% higher

than Nij network. The opposite trend is observed for central stocks.

In Fig 3, we apply the Markowitz method to compare the Sharpe ratios of peripheral portfo-

lios within four networks for the CSI 300, across holding periods τ = 1, 25, 50, 75, 100, 125. At

τ = 1, differences in the Sharpe ratios of the peripheral portfolios across the four networks are

minimal. This trend is more apparent for holding times from 25 to 125 days.

The results indicate that the Sharpe ratio is highest for Nm
ij , followed by Cm

ij , then Nij, and Cij

respectively. Notably, the peripheral portfolio in global motion filtered networks outperforms

both Nij and Cij, with Nij exhibiting superior performance compared to Cij. The performance

in the S&P 500 market mirrors the CSI 300 market findings, so further elaboration is omitted.

In the following sections of this analysis, it is presupposed, unless explicitly stated otherwise,

that the portfolio weights adhere to a uniform distribution.

Portfolio performance under varying collective movement trends

We employ the growth and decline patterns of eigenvalues corresponding to global motion to

characterize trends in the collective movement of financial markets. The performance of port-

folios during different market condition is assessed. We then calculate the Sharpe ratios of

peripheral versus central nodes in the network during these distinct conditions, as depicted in

Fig 4. For both CSI 300 and S&P 500 markets, peripheral nodes consistently exhibit the highest

Sharpe ratios during ‘W’ market conditions, while central nodes had the lowest Sharpe ratios

Table 2. Sharpe ratios for each tier in the CSI 300 and S&P 500 markets.

CSI 300 S&P 500

Tier Nij Nm
ij Cij Cm

ij Nij Nm
ij Cij Cm

ij

1 0.122 0.098 0.137 0.125 0.424 0.384 0.418 0.399

2 0.157 0.130 0.164 0.147 0.434 0.418 0.431 0.431

3 0.182 0.152 0.183 0.156 0.448 0.447 0.456 0.455

4 0.184 0.181 0.182 0.153 0.474 0.472 0.474 0.464

5 0.193 0.211 0.203 0.174 0.506 0.502 0.489 0.480

6 0.195 0.231 0.188 0.218 0.543 0.497 0.512 0.469

7 0.204 0.236 0.203 0.224 0.525 0.508 0.547 0.493

8 0.207 0.215 0.214 0.229 0.535 0.527 0.549 0.548

9 0.224 0.200 0.198 0.239 0.520 0.523 0.535 0.548

10 0.219 0.222 0.208 0.193 0.492 0.596 0.482 0.555

c-half 0.1676 0.1544 0.1738 0.1510 0.4572 0.4446 0.4536 0.4458

per-half 0.2098 0.2208 0.2022 0.2206 0.5230 0.5302 0.5250 0.5226

1–10: each tier of Cp-value. ‘1’ represents the most central stocks. c-half: Sharpe ratio for half of the central stocks. p-half: Sharpe ratio for half of the peripheral stocks.

https://doi.org/10.1371/journal.pone.0303707.t002
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during ‘E’ market conditions. Importantly, regardless of whether the collective movements are

strengthening or weakening, portfolios comprising peripheral nodes outperform those with

central nodes in both Nm
ij and Cm

ij networks.

To understand the variables influencing the Sharpe ratio under different market conditions,

we analyze the average return and win rate under conditions of ‘E’ and ‘W’. Fig 5 visualizes

these conditions, with the pink area representing the region of ‘E’, and the white area repre-

senting ‘W’ period. In the CSI 300 market, ‘E’ comprises 1138 days, while ‘W’ spans 1167 days.

For the S&P 500 market, ‘E’ cover 995 days, while ‘W’ extend over 1396 days. The orange line

represents the corresponding index price. We modify Pagan and Sossounov’s (2003) method

of dividing the market states into bullish, bearish, and range-bound markets [77, 78]. The peak

is the highest price within an eight-month window before and after, and the trough is the low-

est price in the same timeframe. To verify market trends, ensure there’s a confirmed uptrend

or downtrend exceeding 20 percent change in value over a period longer than four months,

starting from the identified peak or trough. The green lines on the price chart signify bearish

market states, the red lines delineate bullish market periods, and the blue lines indicate the

range-bound market states. The blue lines in Sub-figure (a) appear at the beginning and the

end of the CSI 300 index price chart. The S&P 500 index does not feature any green lines, indi-

cating the absence of bearish periods.

Fig 6 reveals that in the CSI 300 market (a and c), the peripheral portfolios have the largest

average return and win rate during the ‘W’ period. This finding elucidates why the Sharpe

ratio for the PW line in Fig 4 is significantly larger than the others. In the S&P 500 market,

although peripheral portfolios exhibit the largest average return during the ‘E’ period, their

largest win rate is observed during the ‘W’ period. Consequently, the Sharpe ratio for PW line

Fig 3. The Sharpe ratio difference of peripheral portfolios within Nij, Nm
ij , Cij and Cm

ij networks for the CSI 300 market in different holding

times τ in the case of weights obtained by Markowitz optimization.

https://doi.org/10.1371/journal.pone.0303707.g003
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is the largest in the S&P 500, but the difference between it and other Sharpe ratio curves is less

marked compared to the CSI 300 market.

To examine the disparity in returns between peripheral portfolios and central portfolios

across various time periods, we define Pc as the difference between the ratios (Sharpe ratios

Fig 4. The comparison of Sharpe ratios of global motion filtered networks Nm
ij and Cm

ij in the CSI 300 and S&P 500 markets. Sub-figures

(a) and (b) respectively represent the global motion networks of the CSI 300 market. Here, ‘C’ denotes the central node portfolio in the

network, while ‘P’ represents peripheral nodes portfolio. The superscripts ‘E’ and ‘W’ indicate timing portfolios during collective movement

strengthening and weakening, respectively, while those without superscripts refer to the entire time series. Sub-figures (c) and (d) are similar

to (a) and (b), but they represent the S&P 500 market.

https://doi.org/10.1371/journal.pone.0303707.g004

Fig 5. The largest eigenvalue corresponds to the price series of the index for sub-figure (a) CSI 300 and (b) S&P 500 market. The pink area represents

the region of collective movement enhancement, while the remaining white area indicates the region of collective movement weakening. The green

lines on the price chart mark the periods of bearish trends, the red lines highlight the bullish phases, blue lines are the periods of turbulence.

https://doi.org/10.1371/journal.pone.0303707.g005
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and Sortino ratios) of peripheral and central portfolios.

Pc ¼< Ratiop>k;t� < Ratioc>k;t: ð23Þ

We calculate the differential of Sharpe ratios and Sortino ratios between peripheral and central

portfolios in Table 3. ‘A’ denotes the entire series data, ‘E’ corresponds to periods of enhanced

collective movement, and ‘W’ signifies periods of weakened collective movement. Addition-

ally, ‘U’ and ‘D’ indicate the timing of portfolios during bullish and bearish market states,

respectively, while ‘T’ refers to periods of market turbulence. Firstly, by examining the col-

umns, we observe that the values in columns Nm
ij and Cm

ij are greater than the non-global

motion columns Nij and Cij for both the CSI 300 and S&P 500 markets. Furthermore, the val-

ues in columns Nm
ij consistently exceed those in columns Cm

ij . Secondly, when examining the

‘Sp’ and ‘St’ rows within the CSI 300 market framework, we note significant discrepancies

between peripheral and central portfolios during both the ‘W’ and ‘D’ periods. In contrast, the

S&P 500 demonstrates a divergent behavior, with smaller differentials in the ‘E’ and ‘T’ periods

compared to the more pronounced disparities observed in the ‘W’ and ‘U’ periods.

For the CSI 300, the most notable differential, 0.366, is observed under the Nm
ij column and

PcW row. In the S&P 500, the maximum differential of 0.273 appears under the Nm
ij column

and PcE row. In the bearish period ‘D’ within the CSI 300 market, the highest value recorded is

0.326. However, for the S&P 500 market during its bullish phase ‘U’, the largest value observed

is 0.393. These variations are largely influenced by the trading habits of Chinese and American

Fig 6. The average returns and win rates versus the holding period τ in the Nm
ij network. Sub-figures (a) and (b) respectively show the

average return for the CSI 300 and S&P 500, while sub-figures (c) and (d) represent the win rates. In these figures, blue pentagrams represent

peripheral portfolios during the ‘W’ period, green circles represent central portfolios during the ‘W’ period, purple squares indicate peripheral

portfolios during the ‘E’ period, and yellow snowflake shapes represent central portfolios during the ‘E’ period.

https://doi.org/10.1371/journal.pone.0303707.g006
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investors. In China, during periods of strengthening collective movement, the distinction

between investing in peripheral or central stocks is minimal due to its strong synchronicity.

However, during market differentiation, peripheral stocks in the Chinese market are more

advantageous than central stocks. In the American market, during times of enhanced collective

movement, peripheral stocks, unrestricted by price limits, tend to yield better returns than

central stocks. Yet, when collective movement weakens, the returns on peripheral portfolios

are comparable to those of central portfolios. Overall, the contrast between ‘E’ and ‘W’ periods

is more pronounced in the Chinese market, while the difference in the American market is rel-

atively subtle.

Sharpe ratios heatmaps with different values of k and τ
The Sharpe ratio, as defined in Eq 18, is influenced by the number of stocks: k, and the holding

period: τ. In this study, Sharpe ratios are computed for a heatmap of portfolio strategies,

encompassing a range of 1 to 50 stocks and holding periods extending from 1 to 100 days.

Each integral point along this continuum is representative of a distinct portfolio strategy. As

illustrated in the supporting information, both the Markowitz optimization technique and

equal-weighted portfolio strategies are utilized to generate Sharpe ratio heatmaps. Our analysis

indicates that, in both the CSI 300 and S&P 500 markets, the Sharpe ratios derived from the

equal-weighted and Markowitz methods exhibit minimal differences.

To determine the optimal number of stocks (k) and holding periods (τ) in portfolio strate-

gies, we create annualized Sharpe ratio heatmaps for both the CSI 300 and S&P 500 markets.

Fig 7 highlights the segments with the highest annualized Sharpe ratios. Specifically, sub-

figures (a) and (b) delve into the dynamics within the CSI 300 market. In sub-figure (a),

regions displaying the highest Sharpe ratios are mainly associated with portfolios comprising

40 to 50 stocks, and the holding period spans from 20 to 40 days. Conversely, sub-figure (b)

emphasizes the highest Sharpe ratios in portfolios ranging from 20 to 50 stocks, with holding

intervals spanning 10 to 30 days.

In contrast, the S&P 500 market demonstrates significantly higher annualized Sharpe ratios,

especially apparent in the top-right quadrant of the figure. Although our computational

Table 3. Ratio of Pc.

CSI 300 S&P 500

Nij Nm
ij Cij Cm

ij Nij Nm
ij Cij Cm

ij

Sp PcA 0.097 0.124 0.071 0.068 0.069 0.212 0.064 0.156

PcE -0.009 -0.000 -0.025 -0.030 0.062 0.273 0.054 0.169

PcW 0.281 0.366 0.241 0.242 -0.005 0.163 0.006 0.033

PcU 0.109 0.086 0.078 0.044 0.235 0.393 0.282 0.376

PcD/T 0.272 0.326 0.244 0.245 -0.023 0.102 -0.038 0.025

St PcA 0.083 0.145 0.045 0.059 0.110 0.323 0.121 0.225

PcE -0.193 0.022 -0.128 -0.034 0.066 0.211 0.055 0.138

PcW 0.276 0.277 0.303 0.232 -0.001 0.139 0.050 0.052

PcU -0.075 -0.029 -0.069 -0.110 0.079 0.251 0.045 0.235

PcD/T 0.228 0.292 0.214 0.220 -0.042 0.029 -0.045 -0.039

‘Sp’ is Sharpe ratio and ‘St’ is Sortino ratio. Pc: The ratios of peripheral tier portfolios minus the Sharpe ratio of central tier portfolios. The superscripts represent various

time periods: ‘A’ denotes the entire series data, ‘E’ corresponds to periods of enhanced collective movement, and ‘W’ signifies periods of weakened collective movement.

Additionally, ‘U’ and ‘D’ indicate the timing of portfolios during bullish and bearish market states, respectively, while ‘T’ refers to periods of turbulence market

condition.

https://doi.org/10.1371/journal.pone.0303707.t003
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limitations restrict our exploration into a broader range of stock counts and longer holding

periods, the data available indicate that for the American market, the most effective investment

strategy involves portfolios comprising more than 40 stocks and a holding period extending

beyond 80 days, suggesting a long-term investment outlook. The CSI 300 market, however,

seems to favor a shorter holding window of approximately 10 to 30 days, indicating a medium

to short-term investment strategy. This finding is consistent with our expectations, as the Chi-

nese stock market is relatively nascent, characterized by a significant proportion of retail inves-

tors who tend to pursue trend-following strategies. In contrast, the US stock market, with its

more established history and a higher concentration of institutional investors, demonstrates a

pronounced preference for risk diversification.

Discussion and conclusion

Our paper introduces the global motion approach to filter nonlinear dynamic networks

derived from the mutual information and first applies it to the timing analysis of dynamic

investment portfolios. We utilize the daily price returns from constituents of the Chinese and

American stock market indices, CSI 300 and S&P 500, to construct dynamic stock networks

based on nonlinear matrices: MI and their corresponding global motion filtered matrices. We

construct the linear PC matrices for comparison. The investment portfolios are constructed

based on these networks. Our findings indicate that applying global motion to both MI and

PC matrices effectively reduced noises in dynamic networks, thereby enhancing portfolio per-

formance. Specifically, the portfolios at the periphery of global motion networks outperform

both full networks based on MI and PC matrices. Notably, the Sharpe ratio of peripheral

Fig 7. The annualized Sharpe ratio heatmaps of the CSI 300 and S&P 500 markets. Sub-figures (a) and (c) represent Cm
ij , while sub-figures

(b) and (d) represent Nm
ij .

https://doi.org/10.1371/journal.pone.0303707.g007
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portfolio is the highest for global motion filtered MI networks. These findings imply that global

motion can effectively filter noise in nonlinear networks, utilizing the network’s topological

structure to identify optimal assets.

Numerous studies have constructed various timing indicators by analyzing the price and

volatility of indices. However, pioneering the use of the strength of correlations among con-

stituent stocks for timing is a novel approach. We employ the growth and decline patterns of

eigenvalues of the global motion to characterize trends in the collective movement of finan-

cial markets. Our analysis reveals distinct portfolio performance during periods of enhanced

and weakened collective movements. The optimal assets are frequently located at the periph-

eries of the global-motion-filtered MI network, especially during periods of weakened collec-

tive movement. We also divide the price series into three periods: bullish market, bearish

market and turbulence conditions. Subsequently, we calculate the Sharpe and Sortino ratios

for those respective periods. Our findings indicate that the difference between peripheral and

central stocks is most pronounced in the bearish market for the Chinese market. Conversely,

in the American market, this distinction is most significant during the bullish market peri-

ods. The performance of our strategies is robust across various market conditions. Moreover,

the comparative analysis of Sharpe ratios among portfolios with different stock numbers and

holding duration suggest a tendency toward short-term investments in the Chinese market

and a preference for long-term investments in the American market. These observations

underscore the significant advantages of integrating global motion in portfolio optimization

strategies.

In conclusion, the Sharpe ratio of peripheral portfolios is the highest for global motion fil-

tered MI networks, and the performance of the strategies is robust across various market con-

ditions, indicating that applying global motion can effectively filter noise in nonlinear

networks and enhance portfolio performance. Given the limitations of the linear correlation

under extreme fluctuations, the nonlinear correlation demonstrates a broader applicability.

The extensive application of nonlinear mutual information networks in various fields, such as

biology, atmospheric sciences, and neural networks, the global motion-filtered mutual infor-

mation likewise exhibits significant potential for application.
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70. Vakorin VA, Mišić B, Krakovska O, McIntosh AR. Empirical and theoretical aspects of generation and

transfer of information in a neuromagnetic source network. Frontiers in systems neuroscience. 2011;

5:96. https://doi.org/10.3389/fnsys.2011.00096 PMID: 22131968

71. Meier TB, Wildenberg JC, Liu J, Chen J, Calhoun VD, Biswal BB, et al. Parallel ICA identifies sub-com-

ponents of resting state networks that covary with behavioral indices. Frontiers in human neuroscience.

2012; 6:281. https://doi.org/10.3389/fnhum.2012.00281 PMID: 23087635

72. Corso G, Ferreira GM, Lewinsohn TM. Mutual information as a general measure of structure in interac-

tion networks. Entropy. 2020; 22(5):528. https://doi.org/10.3390/e22050528 PMID: 33286300

73. Sharma C, Habib A. Mutual information based stock networks and portfolio selection for intraday traders

using high frequency data: An Indian market case study. PloS one. 2019; 14(8):e0221910. https://doi.

org/10.1371/journal.pone.0221910 PMID: 31465507

74. Pozzi F, Di Matteo T, Aste T. Centrality and peripherality in filtered graphs from dynamical financial cor-

relations. Advances in Complex Systems. 2008; 11(06):927–950. https://doi.org/10.1142/

S0219525908002021

75. Markowitz H. PORTFOLIO SELECTION*. The Journal of Finance. 1952; 7(1):77–91. https://doi.org/

10.1111/j.1540-6261.1952.tb01525.x

76. Sortino FA. The Sortino Framework for Constructing Portfolios: Focusing on Desired Target ReturnTM

to Optimize Upside Potential Relative to Downside Risk. Elsevier; 2009.

77. Pagan AR, Sossounov KA. A simple framework for analysing bull and bear markets. Journal of applied

econometrics. 2003; 18(1):23–46. https://doi.org/10.1002/jae.664

78. Lee JS, Kuo CT, Yen PH. Market states and initial returns: Evidence from Taiwanese IPOs. Emerging

Markets Finance and Trade. 2011; 47(2):6–20. https://doi.org/10.2753/REE1540-496X470201

PLOS ONE A comparative study of stocks portfolio through mutual information and pearson correlation

PLOS ONE | https://doi.org/10.1371/journal.pone.0303707 July 11, 2024 21 / 21

https://doi.org/10.1016/S0378-4371(00)00376-9
https://doi.org/10.1007/s11071-016-3254-7
https://doi.org/10.1142/S0219477517500183
https://doi.org/10.1103/PhysRevE.76.046116
https://doi.org/10.1016/j.physa.2008.02.045
https://doi.org/10.1155/2019/5627156
https://doi.org/10.1155/2019/5627156
http://www.ncbi.nlm.nih.gov/pubmed/30804988
https://doi.org/10.3389/fnsys.2011.00096
http://www.ncbi.nlm.nih.gov/pubmed/22131968
https://doi.org/10.3389/fnhum.2012.00281
http://www.ncbi.nlm.nih.gov/pubmed/23087635
https://doi.org/10.3390/e22050528
http://www.ncbi.nlm.nih.gov/pubmed/33286300
https://doi.org/10.1371/journal.pone.0221910
https://doi.org/10.1371/journal.pone.0221910
http://www.ncbi.nlm.nih.gov/pubmed/31465507
https://doi.org/10.1142/S0219525908002021
https://doi.org/10.1142/S0219525908002021
https://doi.org/10.1111/j.1540-6261.1952.tb01525.x
https://doi.org/10.1111/j.1540-6261.1952.tb01525.x
https://doi.org/10.1002/jae.664
https://doi.org/10.2753/REE1540-496X470201
https://doi.org/10.1371/journal.pone.0303707

