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Abstract

Most of the existing low-light image enhancement methods suffer from the problems of

detail loss, color distortion and excessive noise. To address the above-mentioned issues,

this paper proposes a neural network-based low-light image enhancement network. The

network is divided into three parts: decomposition network, reflection component denoising

network, and illumination component enhancement network. In the decomposition network,

the input image is decomposed into a reflection image and an illumination image. In the

reflection component denoising network, the Unet3+ network improved by fusion CA atten-

tion is adopted to denoise the reflection image. In the illumination component enhancement

network, the adaptive mapping curve is adopted to enhance the illumination image itera-

tively. Finally, the processed illumination and reflection images are fused based on Retinex

theory to obtain the final enhanced image. The experimental results show that the proposed

network achieves excellent visual effects in subjective evaluation. Additionally, it shows a

significant improvement in objective evaluation metrics, including PSNR, SSIM, NIQE, and

so on, when compared to the results in several public datasets.

Introduction

Images play an irreplaceable role in our daily life as a way to obtain information [1]. However,

the complicated shooting environment, different lighting conditions and other factors lead to

unsatisfactory image acquisition, uneven illumination, low contrast and the presence of a large

amount of noise, etc. They interfere with the image recognition in the subsequent processing.

The low-light image enhancement technology can be used to make images clearer and reduce

identification costs. The research on image enhancement methods in low-light environments

is of great significance.

Existing enhancement methods can be classified into two main categories: traditional

image enhancement methods and image enhancement methods based on deep learning. Tra-

ditional image enhancement methods are mainly used in industry. The main representative

methods include grey scale transformation, histogram equalization, and the Retinex method

[2–7]. Among them, enhancement methods based on Retinex theory are widely used, such as
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[5–7]. However, traditional methods are less sensitive to noise. They often result in color dis-

tortion and unsatisfied denoising.

Image enhancement methods based on deep learning have developed rapidly in recent

years. LLNet was the first application of deep learning theories to low-light image enhance-

ment [8]. Afterwards, Retinex-Net used deep learning neural networks to the Retinex theory

for image enhancement [9]. However, they assumed “Ground Truth” image existing and

therefore ignored the influence of noise on different regions, resulting bad detail restoration.

[10–12] etc. avoided the need for “Ground Truth” reflectance and illumination images, but it

overlooked detail optimization, such as structure and texture. To reduce reliance on paired

datasets, some unsupervised methods were proposed. Zero-DCE became the first low-light

enhancement network that operated independent of paired datasets [13]. EnlightenGAN fur-

ther minimized reliance on paired data [14]. However, due to the lack of guidance from paired

datasets, unsupervised methods were unable to effectively learn real-world scene features and

had limited generalization capabilities. Other research methods [15–21] attempted to address

the issues of unrealistic recovery effects and complex network scales by introducing new learn-

ing modules and attention mechanisms. Nevertheless, these methods had limitations in their

experimental outcomes and lack robust generalization. For example, in different scenarios, the

restoration effects of [13–16, 18, 21] were unstable, and the models lacked constraints and

guidance for specific scenes. When strong light conditions occur, over-enhancement phenom-

ena can be observed in [17, 19, 20]. To address these limitations, we propose a new model

based on Retinex. Compared to other advanced methods, the method proposed in this paper

shows good restoration effects in complicated conditions such as extreme low-light and over-

exposure. It also shows excellent performance in image denoising and enhancement without

the need of a large amount of training data.

This paper is arranged as follows. The Proposed Network section introduces the structure

of proposed enhanced network. Experimental data sets and details of training sets are pre-

sented in the Experimental Process section. The Results and Analysis section analyses the

experimental results of different methods. The Conclusions section draws the conclusion.

Proposed network

In this paper, a low-light image enhancement network combining Retinex theory [4] and a

convolutional neural network is designed. The principle of Retinex is shown in Fig 1.

According to the Retinex theory, the illumination image represents the lighting conditions

and the reflection image represents the texture information of the object. The enhancement of

the original image is achieved by multiplying the illumination image and the reflection image.

This relationship is expressed by Eq (1).

Sðx; yÞ ¼ Rðx; yÞ � Lðx; yÞ ð1Þ

S(x,y) represents the image information received by the observer S. L(x,y) represents the

illumination component of light. R(x,y) represents the reflection component of the object R.

Based on the Retinex theory, an image can be decomposed into a reflection component and

an illumination component. For each component, a network is built. And an additional net-

work is also needed to decompose the image. Therefore, the proposed network can be divided

into three parts: the decomposition network, the reflection component denoising network,

and the illumination component enhancement network. The overall network structure is

shown in Fig 2. The specific network design and the corresponding loss function for each sub-

network are demonstrated in the following part.
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Decomposition network

The structure of the KinD [10] is adopted in the decomposition network. However, the KinD

has problems of over-enhancement and visual defects. Therefore, in the first and third convo-

lutional layers, the original activation function ReLU is replaced by the GELU, which exhibits

stable optimization capabilities and excellent generalization. Compared to ReLU function,

GELU function can better capture complex relationships in image data, aiding in enhancing

the structural and textural information of the image. The smoothness of the GELU function

reduces issue like gradient explosion or disappearance, resulting in superior performance in

preserving image detail information and handling exposure.

Furthermore, to improve the accuracy of the network, a new structural similarity loss func-

tion SSIM [22] is added. SSIM is a metric used to measure image quality. It is mainly used to

assess the structural similarity between two images. The SSIM loss function includes three

aspects of image features: brightness, contrast and structure. By minimizing the SSIM loss

function, the decomposed image can be made closer to the original image and can maintain a

better perceptual quality. The details of the decomposition network are shown in Fig 3.

5 loss functions are used in the decomposition network. They are reconstruction loss func-

tion, reflection component consistent loss function, illumination component smoothing loss

function, illumination intercorrelation loss function, and structural similarity loss function.

The details of these loss functions are illustrated below.

Fig 1. Retinex schematic diagram.

https://doi.org/10.1371/journal.pone.0303696.g001

Fig 2. Overall network structure.

https://doi.org/10.1371/journal.pone.0303696.g002
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The reconstruction loss LID
rec is

LID
rec ¼ kSl � Rl � Ilk1

þ kSh � Rh � Ihk1
ð2Þ

Sl and Sh denote the low-light image and the normal-light image, respectively. Rl and Rh

denote the reflection component from the decomposition of the low-light image and the nor-

mal-light image, respectively. Il and Ih denote the illumination component from the decompo-

sition of the low-light image and the normal-light image, respectively.

The reflection component consistent loss LID
rs is

LID
rs ¼ kRl � Rhk1

ð3Þ

The illumination component smoothing loss LID
is is

LID
is ¼ k

rIl
maxðjrSlj; �Þ

k1 þ k
rIh

maxðjrShj; �Þ
k1 ð4Þ

r is the first-order derivative operator. � is a constant, here it is set to 0.01.

The illumination intercorrelation loss LID
mc is

LID
mc ¼ kG � expð� c � GÞk1 ð5Þ

c is the parameter that controls the shape of the function, here it is set to 10. G represents

the sum of the gradients.

The structural similarity loss LID
SSIM is

LID
SSIM ¼ 1 �

1

N
kSSIMðSout; ShÞk

2
ð6Þ

SSIMðSout; ShÞ ¼
ð2mSout

mSh
þ c1Þð2sSoutSh

þ c2Þ

ðm2
Sout
þ m2

Sh
þ c1Þðs

2
Sout
þ s2

Sh
þ c2Þ

ð7Þ

Sout and Sh denote the output image and the normal-light image, respectively. mSout
and mSh

denote the mean values of the output image and the normal-light image, respectively. sSout
and

sSh
denote the standard deviation of the output image and the normal-light image, respec-

tively. c1 and c2 are constants.

Fig 3. Structure of the decomposition network.

https://doi.org/10.1371/journal.pone.0303696.g003
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The total loss function of the image decomposition network is

LID ¼ lrecL
ID
rec þ lrsL

ID
rs þ lisL

ID
is þ lmcL

ID
mc þ lSSIML

ID
SSIM ð8Þ

λrec, λrs, λis, λmc, and λSSIM are the weighting coefficients for reconstruction loss, reflection

component agreement loss, illumination component smoothing loss, illumination intercorre-

lation loss, and structural similarity loss, respectively. λrec, λrs, λis, λmc, and λSSIM are set to 1,

0.009, 0.2, 0.15 and 0.07, respectively.

We compare the effects before and after adding the SSIM loss function to KinD. The experi-

mental results are shown in Fig 4. Although KinD has a muddy shadow in some areas after

adding SSIM loss function, the overall effect is better. The outcome aligns more closely with

the visual perception of the human eye.

Fig 5 shows the effects of replacing the ReLU function with the GELU function in the

decomposition network. Fig 5(B) depicts that the reflection image is blurry and has serious

color distortion phenomenon when using ReLU. Contrarily, in Fig 5(C), using GELU results

in more realistic colors and less noise. Fig 5(D) shows overexposure in the illumination image

when using ReLU, whereas Fig 5(E) depicts the image clearer when using GELU.

Reflective component denoising network

When the low-light image passes through the decomposition network, the reflection image

retains the detail information. However, the noise in the low-light region is amplified at the

same time. Therefore, it is necessary to denoise the decomposed reflection image. The struc-

ture of the Unet3+ [23] is adopted in the reflective component denoising network. However,

the Unet3+ does not consider the extracting object size, which results in a mismatch between

the receptive field and the scale. It leads to certain limitations in denoising. Therefore, CA

attention [24] is added to the encoder part in Unet3+. CA attention combines channel atten-

tion and spatial attention to enhance the capture of direction and position information. It can

help the network to adaptively learn the noise model of different regions in the image and

make weighted estimates of the noise so that the network can more accurately recover parts of

the signal and retain more detailed information. CA Attention can help the network to achieve

Fig 4. Results of adding SSIM loss function to KinD.

https://doi.org/10.1371/journal.pone.0303696.g004

Fig 5. Comparison of ReLU function and GELU function in decomposition network.

https://doi.org/10.1371/journal.pone.0303696.g005
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local attention, allowing the network to focus more on the regions in the image that need to be

processed. Meanwhile, it can be easily inserted into the network module to improve accuracy.

The details of the reflective component denoising network are shown in Fig 6.

2 loss functions are used in the reflective component denoising network. They are multi-

scale structural similarity loss function and detail loss function. The details of these loss func-

tions are illustrated below.

The multi-scale structural similarity loss Lms−ssim is

Lms� ssim ¼ 1 �
YM

m¼1

2mpmg þ C1

m2
p þ m

2
g þ C1

 !bm

2spg þ C2

s2
p þ s

2
g þ C2

 !gm
ð9Þ

M denotes the total number of scales, here it is set to 2. μp and μg denote the mean of the

denoised and normal-light reflectance images, respectively. σp and σg denote the standard devi-

ation of the denoised and normal-light reflectance images, respectively. C1 and C2 are con-

stants. σpg denotes the covariance of the denoised and normal-light reflectance images. Both

the βm and γm components are set to 0.2856.

The detail loss Lpar is

Lpar ¼ kRh � RLk1 ð10Þ

Rh denotes the reflectance image of the normal-light image. RL denotes the denoised reflec-

tance image. || ||1 denotes the L1 parametric regularization constraint on both.

The total loss function of the reflectance component denoising network is

Lseg ¼ lms� ssimLms� ssim þ lparLpar ð11Þ

λms−ssim and λpar are the weighting coefficients of the multi-scale structural similarity loss

and detail loss, respectively. λms−ssim is set to 1 and λpar is set to 0.009.

We compare the effects before and after adding the CA attention to Unet3+. The experi-

mental results are shown in Fig 7. The Unet3+ recovered image is brighter, but it suffers from

increased blurriness and noise. Although the addition of CA attention reduces image

Fig 6. Structure of the reflective component denoising network.

https://doi.org/10.1371/journal.pone.0303696.g006
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brightness, it significantly improves denoising effect. The colors in image are fuller and more

realistic.

Illumination component enhancement network

The illumination image represents different light distributions in the image. Zero-DCE has the

advantages of lightweight and excellent image brightness enhancement. Though Zero-DCE’s

denoising effect is ordinary, the reflection component denoising network proposed in this

paper has a good denoising effect. Therefore, Zero-DCE is adopted in the illumination compo-

nent enhancement network. Zero-DCE is used to improve the curve fit through multiple itera-

tions. The difference in the experimental results. Therefore, n is set to find the best iteration

times through multiple experiments in this work. The details of the illumination component

enhancement network are shown in Fig 8.

4 loss functions are used in the illumination component enhancement network. They are

exposure control loss function, color constant loss function, illumination smoothing loss func-

tion, and spatial consistency loss function. The details of these loss functions are illustrated

below.

The exposure control loss Lexp is

Lexp ¼
1

M

XM

k¼1
jYk � Ej ð12Þ

E is a constant. It is set to 0.6. M is the toal number of pixels. Yk is the mean value of a pixel

region.

Fig 7. Results of adding CA attention to Unet3+.

https://doi.org/10.1371/journal.pone.0303696.g007

Fig 8. Structure of the illumination component enhancement network.

https://doi.org/10.1371/journal.pone.0303696.g008
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The color constant loss Lcol is

Lcol ¼
X

8ðp;qÞ2ε
ðJp � JqÞ2; ε ¼ fðR;GÞ; ðR;BÞ; ðG;BÞg ð13Þ

Jp and Jq are the luminance averages of color channel p and color channel q, respectively.

(p,q) traverses all two-by-two combinations of three color channels.

The illumination smoothing loss LtvA
is

LtvA
¼

1

N

XN

n¼1

X

c2x

ðjrxA
c
nj þ jryA

c
njÞ

2
; x ¼ fR;G;Bg ð14Þ

N denotes the iteration times.rx andry denote the gradient operators in the horizontal

and vertical directions, respectively.

The spatial consistency loss Lspa is

Lspa ¼
1

M

XM

i¼1

X

j2OðiÞ

ðjðYi � YjÞj � jðIi � IjÞjÞ
2

ð15Þ

Y denotes the pixel value after enhancement. I denotes the pixel value before enhancement.

O is the neighboring pixels of the pixel.

The total loss function of the illumination component enhancement network is

Ltotal ¼WexpLexp þWcolLcol þWtvA
LtvA
þWspaLspa ð16Þ

Wexp;Wcol;WtvA
, and Wspa are the weighting factors for exposure control loss, color con-

stancy loss, illumination smoothing loss, and spatial consistency loss, respectively.

Wexp;Wcol;WtvA
, and Wspa are set to 10, 5, 200 and 1, respectively.

The results of different iteration times in the illumination component enhancement net-

work are shown in Table 1 and Fig 9. Table 1 shows that the effect reaches the best when n is 6.

Fig 9 also verifies that when n is 6 the image is more in line with the human subjective visual

effect.

Experimental process

Experimental data sets

In the training process, 485 groups of LOL dataset are used as the training set. The remaining

15 groups of LOL dataset are used as the test set. In order to verify the model effect, the paired

datasets VE-LOL-L, SID and ELD are used as other test sets. The unpaired datasets DICM and

MEF are also used as the test set.

Table 1. Comparison results of different iteration times n.

Iteration times PSNR SSIM NIQE PI BRISQUE NIMA

n = 1 15.3598 0.6418 5.4707 4.9396 25.583 3.9284

n = 2 15.6933 0.6453 5.3707 4.8745 19.6636 3.935

n = 3 16.7013 0.6447 5.535 4.9694 29.8842 3.9314

n = 4 18.9715 0.65 5.3844 4.9001 20.7595 3.9296

n = 5 19.0601 0.6484 5.262 4.7865 17.5148 3.9537

n = 6 20.4757 0.6962 5.2264 4.7918 20.4704 3.9665

n = 7 19.4365 0.6528 5.4927 4.9228 29.5423 3.9387

n = 8 19.233 0.6484 5.2708 4.7793 17.1984 3.9621

https://doi.org/10.1371/journal.pone.0303696.t001
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Details of training process

The experiments are carried out under the framework Pytorch 1.10.1, based on Python 3.7

with Cuda 11.1 environment. The Adam optimizer is used in the training process. The low-

light image enhancement is accomplished by the proposed three sub-networks. The experi-

mental details and steps are illustrated below.

1. Input the normal-light image and the low-light image into the decomposition network for

decomposition. The learning rate of the decomposition network is set to 0.004. The batch

size is set to 32.

2. Input the decomposed reflection image into the reflection component denoising network

for denoising. The learning rate of the reflection component denoising network is set to

0.001. The batch size is set to 1.

3. Input the decomposed illumination image into the illumination component enhancement

network for enhancement. The learning rate of the illumination component enhancement

network is set to 0.001. The iteration times n is set to 6. The batch size is set to 8.

4. Multiply the denoised reflection image R(x,y) and the enhanced image L(x,y) to obtain the

final image.

Results and analysis

Both subjective and objective visual evaluations are employed to evaluate the effects of image

enhancement. To validate the necessity of each sub-network, we have conducted ablation

experiments. In the objective visual evaluation, various representative metrics are used to

assess the experiments. These metrics include peak signal-to-noise ratio (PSNR), structural

similarity (SSIM), and no- reference metrics, such as Natural Image Quality Evaluation

(NIQE), Image Perceptual Quality (PI), No- Reference Quality Evaluation (BRISQUE), and

Neural Image Assessment (NIMA).

Subjective visual evaluation

In the subjective visual evaluation, KinD, Retinex-Net, SCI, URetinex-Net, and Zero-DCE are

selected for comparison. The final results on the test set are shown in Figs 10–15.

Fig 9. Comparison results of different iteration times n.

https://doi.org/10.1371/journal.pone.0303696.g009
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From Figs 10–15, it can be seen that the proposed network and rest of five methods in the

comparison are all able to achieve low-light images enhancement. However, each method has

its own disadvantages. Figs 10(C) and 13(C) show that the Retinex-Net enhanced images are

too noisy. There is a serious distortion in the color recovery, and the overall effect is unsatis-

fied. The Retinex-Net is very likely to lead to serious global color distortion. Although some of

the noise can be removed, the global color shift is obvious.

Figs 10(B) and 12(B) show overexposure when recovering a brighter light source using

KinD. As shown in Fig 15(B), the upper part of the image is also over-enhanced. The KinD

can lead to image over-enhancement or distortion. It is not in line with the actual scene.

As shown in Fig 11(D), the SCI has a dim recovery effect on indoor archery image. Fig 13

(D) also uses SCI enhancement method. However, the result of SCI is darker in the indoor

bookshelf area when compared with results obtained from other methods. As shown in Fig 15

(D), the brightness of the black background area in the image is almost not enhanced at all, but

in Fig 14(D), it is over-enhanced. It has a significant difference from the image under normal-

light. SCI can lead to abnormal brightness enhancement in some cases. It makes the image

unreal.

In Fig 10(F), Zero-DCE recovers the indoor sports stadium image with distorted colors in

the upper-right region, and the scene is dark. Fig 13(F) shows that the bookshelf part (row 3,

column 2) appears a muddy shadow when Zero-DCE is used to recover the indoor image. The

reason lies in that the Zero-DCE can only performs enhancement for the whole image, not for

the specific areas in the image. In the strong reflection and extreme contrast conditions, the

Zero-DCE work poorly in image enhancement, which is also shown in Fig 12(F).

Using the URetinex-Net, Fig 12(E) shows that the clouds in the image are almost not recov-

ered. It is covered by over-enhanced white color. As shown in Fig 14(E), the details of the two

Fig 10. Comparison results of different methods on LOL test set.

https://doi.org/10.1371/journal.pone.0303696.g010
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chairs and the water bottle in the image are lost, the overall visual effect is blurry. In the UReti-

nex-Net, the Retinex decomposition and reconstruction for the low-light image is directly per-

formed. Therefore, the URetinex-Net cannot completely recover the extremely low-light

images. There are still some problems such as distortion in recovering image details. These

problems can affect image quality and visual effect.

From Figs 10–15, the network proposed in this paper performs better compared to the

other five methods. It proves the effectiveness and generalization of the proposed network.

They are more in line with the visual perception of the human eye.

Objective metric evaluation

In the objective visual evaluation, several rigorous objective metrics are used to assess the per-

formance comprehensively. These metrics include PSNR, SSIM, NIQE, PI, BRISQUE, and

NIMA. Among these metrics, higher values for PSNR, NIMA, and SSIM indicate better image

quality, while lower values for NIQE, PI, and BRISQUE indicate better visual image quality.

The results with bold font in the table represent the best outcomes.

To maximize the accuracy, 15 images are selected on LOL dataset, 10 images are selected on

the VE-LOL-L dataset, 10 images are selected on SID dataset, 10 images are selected on ELD

dataset, 10 images are selected on DICM dataset, and 10 images are selected on MEF dataset as

the test set. The average values of the six methods are calculated on different datasets. The

experimental results are shown from Tables 2–7.

The experimental results on the paired datasets LOL and VE-LOL-L are shown in Tables 2

and 3. As shown in Table 2, the proposed network achieves best values of 22.4568, 0.8243, and

4.7531 in PSNR, SSIM, and NIMA respectively. These values are 13.18%, 8.52%, and 3.5%

Fig 11. Comparison results of different methods on VE-LOL-L test set.

https://doi.org/10.1371/journal.pone.0303696.g011
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higher compared with the second highest value. According to Table 3, the proposed network

achieves best values of 21.3067, 0.8943, and 29.3789 in PSNR, SSIM, and BRISQUE respec-

tively. The values of PSNR, SSIM and BRISQUE are 6.75%, 0.85% and 8.9% better compared

with the second-best value.

The experimental results on the paired datasets SID and ELD are presented in Tables 4 and

5. Table 4 shows that in SSIM, PI, BQISQUE, and NIMA, our method improves 17.04%,

6.48%, 3.59%, and 8.47% compared to the second-best values. In Table 5 our method improves

10.48%, 11.88%, 2.97%, and 10.02% in PSNR, SSIM, NIQE, and BRISQUE compared to the

second-best values.

The experimental results on the unpaired datasets DICM and MEF are shown in Tables 6

and 7. From Table 6, it can be seen that the proposed network achieves best values of 2.1752

and 14.2458 in PI and BRISQUE, respectively. These values are 17.74% and 4.68% better than

the second-best value. As shown in Table 7, the proposed network achieves best value of

2.5957 in PI. Although the values of metrics except PI are not optimal, the result achieves a

more balanced performance.

Ablation study

To verify the necessity of the method framework proposed in this paper, we conducted abla-

tion experiments by separately removing the denoising network and the enhancement net-

work. The results of the experiments are shown in Fig 16 and Table 8.

From Fig 16(B), it can be observed that when the enhancement sub-network is present but

the denoising sub-network is absent, the overall image exhibits excessive noise and unclear

Fig 12. Comparison results of different methods on DICM test set.

https://doi.org/10.1371/journal.pone.0303696.g012
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Fig 13. Comparison results of different methods on MEF test set.

https://doi.org/10.1371/journal.pone.0303696.g013

Fig 14. Comparison results of different methods on SID test set.

https://doi.org/10.1371/journal.pone.0303696.g014
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Table 2. Comparison results of different methods on LOL dataset.

Method PSNR SSIM NIQE PI BRISQUE NIMA

KinD 16.7743 0.7535 5.154 4.4734 28.8362 4.5491

Retinex-Net 16.774 0.425 8.8727 4.9546 51.8148 4.0981

SCI 14.784 0.5254 4.8725 4.5621 25.6625 4.5118

URetinex-Net 19.8414 0.7596 4.9838 3.4375 15.9924 4.5933

Zero-DCE 17.1061 0.558 7.9492 4.451 32.4807 4.3166

ours 22.4568 0.8243 5.1015 4.8759 19.2804 4.7531

https://doi.org/10.1371/journal.pone.0303696.t002

Fig 15. Comparison results of different methods on ELD test set.

https://doi.org/10.1371/journal.pone.0303696.g015

Table 3. Comparison results of different methods on VE-LOL-L dataset.

Method PSNR SSIM NIQE PI BRISQUE NIMA

KinD 18.9565 0.8868 4.4806 3.3359 33.5243 4.413

Retinex-Net 17.3691 0.3567 9.847 5.4258 58.3901 4.0849

SCI 12.429 0.4095 4.3896 4.6529 32.2458 4.2986

URetinex-Net 19.9591 0.7188 5.9596 3.1736 34.7605 4.6784

Zero-DCE 17.4572 0.489 8.8368 4.8367 42.3082 4.2346

ours 21.3067 0.8943 5.1435 3.7925 29.3789 4.5057

https://doi.org/10.1371/journal.pone.0303696.t003
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details, although there is some improvement in brightness. From Fig 16(C), it can be seen that

when the denoising sub-network is present but the enhancement sub-network is absent, the

image noise is effectively reduced, but the overall brightness is hardly enhanced, resulting in a

dull color appearance. In Fig 16(D), the contrast of the image is effectively improved, with

clearer details and noticeable noise reduction. This clearly has shown that all the components

are important for achieving better performance.

Table 4. Comparison results of different methods on SID dataset.

Method PSNR SSIM NIQE PI BRISQUE NIMA

KinD 15.9137 0.4638 4.0813 3.0832 27.0418 3.6448

Retinex-Net 12.7897 0.1392 12.307 7.0149 56.6511 3.4739

SCI 14.4644 0.2332 10.2473 6.5421 50.4445 3.7729

URetinex-Net 17.4981 0.6548 9.56 5.5247 45.4748 3.875

Zero-DCE 14.4997 0.1974 11.1256 6.3478 52.7634 3.6217

ours 15.8412 0.7664 4.3545 2.8832 26.0695 4.2032

https://doi.org/10.1371/journal.pone.0303696.t004

Table 5. Comparison results of different methods on ELD dataset.

Method PSNR SSIM NIQE PI BRISQUE NIMA

KinD 18.4923 0.7111 3.2804 3.2439 29.1691 4.7475

Retinex-Net 15.8025 0.5781 2.7454 1.8824 24.8244 4.3044

SCI 18.6216 0.6936 3.0955 2.6803 25.0041 4.9917

URetinex-Net 20.569 0.762 2.76 2.1829 20.2267 4.7735

Zero-DCE 20.0898 0.7568 3.0959 2.6429 38.2101 4.8092

ours 22.7239 0.8525 2.6639 3.0939 18.2004 4.4666

https://doi.org/10.1371/journal.pone.0303696.t005

Table 6. Comparison results of different methods on DICM dataset.

Method NIQE PI BRISQUE NIMA

KinD 7.8135 5.0134 94.3479 4.8124

Retinex-Net 4.5126 2.8733 29.3987 4.6314

SCI 3.3576 2.8129 20.0405 4.8123

URetinex-Net 4.5002 3.2584 14.9468 4.9471

Zero-DCE 2.5188 2.6445 16.1858 4.75

ours 3.2154 2.1752 14.2458 4.6577

https://doi.org/10.1371/journal.pone.0303696.t006

Table 7. Comparison results of different methods on MEF dataset.

Method NIQE PI BRISQUE NIMA

KinD 4.3972 3.5216 33.0152 4.8262

Retinex-Net 4.8911 3.1347 22.0831 4.5752

SCI 3.9972 2.8426 14.7606 4.8046

URetinex-Net 4.0918 3.1095 22.461 4.8796

Zero-DCE 3.6696 2.6292 19.2923 4.9699

ours 4.0276 2.5957 17.3762 4.758

https://doi.org/10.1371/journal.pone.0303696.t007
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The objective comparisons of ablation results for each module are presented in Table 8. It

can be seen that both the absence of the denoising network or the enhancement network leads

to relatively poor performance across multiple metrics. In contrast, our proposed network

achieves the best results across all metrics, further demonstrating the effectiveness of the

method proposed in this paper.

Conclusions

In order to further improve the effect of low-light image enhancement, a Retinex-based image

enhancement network for a low-light environment is proposed. A new loss function, CA

attention mechanism and the adaptive dynamic iteration method is introduced in the pro-

posed network. Experiments show that most objective metrics have been improved. At the

same time, the proposed network has a better denoising effect and the visual effect is more in

line with human eye vision. It proves the effectiveness and generalization of the network pro-

posed in this paper.
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