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Abstract

Background

Parkinson’s Disease is the second most common neurological disease in over 60s. Cogni-

tive impairment is a major clinical symptom, with risk of severe dysfunction up to 20 years

post-diagnosis. Processes for detection and diagnosis of cognitive impairments are not suf-

ficient to predict decline at an early stage for significant impact. Ageing populations, neurolo-

gist shortages and subjective interpretations reduce the effectiveness of decisions and

diagnoses. Researchers are now utilising machine learning for detection and diagnosis of

cognitive impairment based on symptom presentation and clinical investigation. This work

aims to provide an overview of published studies applying machine learning to detecting

and diagnosing cognitive impairment, evaluate the feasibility of implemented methods, their

impacts, and provide suitable recommendations for methods, modalities and outcomes.

Methods

To provide an overview of the machine learning techniques, data sources and modalities

used for detection and diagnosis of cognitive impairment in Parkinson’s Disease, we con-

ducted a review of studies published on the PubMed, IEEE Xplore, Scopus and ScienceDir-

ect databases. 70 studies were included in this review, with the most relevant information

extracted from each. From each study, strategy, modalities, sources, methods and out-

comes were extracted.

Results

Literatures demonstrate that machine learning techniques have potential to provide consid-

erable insight into investigation of cognitive impairment in Parkinson’s Disease. Our review

demonstrates the versatility of machine learning in analysing a wide range of different

modalities for the detection and diagnosis of cognitive impairment in Parkinson’s Disease,

including imaging, EEG, speech and more, yielding notable diagnostic accuracy.
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Conclusions

Machine learning based interventions have the potential to glean meaningful insight from

data, and may offer non-invasive means of enhancing cognitive impairment assessment,

providing clear and formidable potential for implementation of machine learning into clinical

practice.

Introduction

Parkinson’s Disease (PD) is the most common neurodegenerative disorder [1], characterised

by motor and non-motor symptoms including dyskinesia, tremors and balance issues [2].

Over 145K people in the UK are estimated to be living with PD [3], making PD the second

most common neurological disease in individuals over the age of 60. PD has an estimated

global prevalence rate of 1%, doubling global PD populations between 1990 and 2016 making

PD the fastest-growing neurodegenerative condition in the world [4–6].

PD sufferers have a higher risk of developing severe cognitive complications resulting in

consistent and damaging cognitive impairments (CI) giving rise to a noticeable loss in cogni-

tive functioning and behavioural abilities, and can lead to the development of overall cognitive

decline characteristic of dementia, known as Parkinson’s Disease Dementia (PDD) [7].

Between 70–95% of PD patients are likely to experience some degree of CI as PD advances,

with PDD frequently developing 10–20 years post diagnosis [8, 9], with potential for severe

impacts on overall quality of life, familial relationships and societal functioning [10]. Treat-

ment and disease management create severe burdens at medical [11], economic [12, 13] and

personal levels, with identification of a direct, specific cause for CI development remaining a

working, disputed research area [14, 15]. Presentation of CI is complex and diverse, occurring

across a number of cognitive domains [16], including visuospatial [17], working memory [18]

and psycho-motor speed [19]. Patients also experience widespread variations in onset, severity

and progression [16], with diagnosis commonly carried out using clinician-led assessments of

cognitive and processing ability to identify at least one dementia syndrome within established

PD [8].

Several assessments are available to assess the entire spectrum of cognitive abilities, includ-

ing the Benton Judgement of Line Orientation (JoLO) [17], Letter-Number Sequencing Task

(LNST) [18], Symbol Digit Modalities Test (SDMT) [19] and Montreal Cognitive Assessment

(MoCA) [20]. However, some studies consider such assessments limited since they only iden-

tify cognitive decline once symptom presentation has begun [20]. Therefore, research is begin-

ning to focus on analysis of additional data modalities including gait analysis [21–23],

functional connectomics [24], electroencephalogram [25, 26], amyloid PET [27], FDG-PET

[28, 29], and quantitative susceptibility mapping [30–34]. However, diagnosis is still reliant on

clinical features and standardised clinical criteria including the UK Parkinson’s Disease Soci-

ety Brain Bank (UKPDSBB) [35]. Such criteria rely largely on expertise and knowledge of a

neurologist, however they can still be unreliable, with diagnostic accuracy assumed to be just

over 80% in specialised neurology centres [36].

Machine learning (ML) techniques are increasingly being used within the healthcare indus-

try for a wide range of tasks. Publications using ML for detection and diagnosis of CI have

increased to investigate the potential uses for these techniques in attempt to mitigate these lim-

itations and provide additional measures that may potentially identify CI in a quicker and ear-

lier manner. Such techniques enable systems to learn by example by studying large datasets
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and extracting meaningful representations [37] which are then used to make decisions based

on learned information without explicit programming [38]. Using ML to analyse CI in PD is

yet to be fully analysed and validated despite this growing usage and expansion in literature.

This work aims to provide an overview of published studies applying ML to detecting and

diagnosing CI, evaluate the feasibility of implemented methods, their impacts, and provide

suitable recommendations for methods, modalities and outcomes. We aim to provide an over-

view that functions as a starting point for further, more detailed analyses of CI in PD, influenc-

ing research into identification of early stage, non-invasive markers of disease progression.

This has the potential to allow for detection and diagnosis at the earliest stages, allowing much

needed intervention and preventative care that could slow overall disease progression [39, 40].

The paper is structured into a number of separate sections. Firstly, a background provides

context on PD, CI, and ML’s role in detection and diagnosis. Review protocol outlines the sys-

tematic literature review process. Observations and findings analyses literature characteristics

and explores ML’s application in CI detection, emphasising performance across data modali-

ties. Discussion considers the implications of findings within the context of PD and CI, foster-

ing critical analysis and integration of ML insights into clinical practice. Finally, this paper is

concluded in conclusions.

Background

Parkinson’s Disease

PD is a progressive neurodegenerative disorder primarily affecting the motor system [1], char-

acterised by the extensive loss of dopaminergic neurons in the substantia nigra pars compacta

[41] alongside pathological processes, including aggregation of α-synuclein protein [42], mito-

chondrial dysfunction [43], oxidative stress [44] and neuroinflammation [45]. This region of

the brain is integral in control of motor functions, and deterioration of this region results in

the hallmark symptoms of PD. As PD progresses and develops, up to 50% of these crucial neu-

rons are lost at the point of symptom presentation, significantly reducing dopamine levels.

This depletion of dopamine results in a primary manifestation of pronounced motor symp-

toms including resting tremors, bradykinesia, muscle rigidity and postural instability [6],

underscoring the fundamental nature of PD as a motor disorder.

Despite PD being a fundamentally motor disease, it also encompasses a wide variety of

non-motor symptoms that can cause impacts to a patient’s quality of life including anosmia

(loss of smell) [46], sialorrhea (excessive salivation), difficulties with speech and swallowing

[47] alongside changes in vision and hearing [48, 49]. Additionally, dopamine is also involved

in the regulation of cognitive processes [50, 51], resulting in PD affecting executive functions,

attention, visuospatial and language skills. These cognitive changes typically become more pro-

nounced as the disease advances and are crucial for a comprehensive understanding of the dis-

ease alongside traditional motor symptoms.

Cognitive impairment. Most notably, CI has begun to show prominence as a non-motor

symptom of PD [10]. Alongside dopamine depletion, contributions to cognitive dysfunction

are made by accumulation of Lewy bodies and Lewy neurites in the cerebral cortex, limbic sys-

tem and other brain areas [52, 53]. Similarly, cholinergic [54], serotonergic [55], and norad-

renergic [56] systems have been implicated for involvement in development of CI in PD.

CI is a complex condition causing profound impacts on daily life and well-being [10]. CI

encompasses a wide range of cognitive deficits extending beyond the expectation of memory

impairment, including executive dysfunction [57], attention [58], visuospatial impairment

[59], language difficulties [60], memory problems [57, 61], and mood disturbances such as

anxiety and depression. Occurrence of CI is heterogeneous, with variations in patterns and
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severity. Differentiating between levels of severity [62], including Normal Cognition (PD-NC),

Mild Cognitive Impairment (PD-MCI), and PD-Dementia (PDD) is crucial, with the latter

constituting a severe and pervasive deficit characterised by significant impairments to daily

functioning [7].

Diagnosis involves a comprehensive assessment battery, integrating elements including

clinical evaluations, neuroimaging, and neuropsychological testing. A key framework for this

is the Movement Disorder Society Criteria (MDS), which provides thorough evaluation of cog-

nitive domains including attention, memory, and executive functioning [62]. A number of

assessment and screening tools can be used, including the Mini-Mental State Examination

(MMSE), which assesses general cognitive ability [63], and the MoCA, offering a more detailed

evaluation of cognitive function [20]. The MoCA is generally considered to have a higher diag-

nostic power compared to the MMSE due to its broader cognitive domains used in assessment,

heightened sensitivity to MCI and early dementia, and better adjustment for education levels,

making it a superior tool in detecting subtle cognitive changes and must be used for cognitive

screening of PD in clinical practice. Neuroimaging techniques play a considerable role through

identification of structural and functional changes in the brain associated with continuing cog-

nitive decline [64]. Such tools allow clinicians and researchers to use standardised, compre-

hensive approaches to the diagnosis of CI in PD, potentially allowing for earlier detection and

management of this aspect of the overall PD condition.

Machine learning

ML has emerged as a valuable tool in a variety of healthcare applications, including the detec-

tion of PD [65, 66] and a number of related memory disorders [67, 68], proving itself worthy

of consideration for analysing CI. ML encompasses various approaches including supervised,

unsupervised, deep and ensemble learning. Therefore, the following section provides an over-

view of the required theory to understand the wide array of ML methods that have been imple-

mented in discovered studies, with the applications of these techniques discussed further on.

Supervised learning. Supervised learning involves algorithms trained to make decisions

based on a set of labelled examples. A dataset of input data and their expected output labels are

used to train the model [69] with internal parameters adjusting to minimise differences

between predictions and expected labels. The trained models then generalise knowledge to

make predictions on new data to solve either regression or classification tasks. Supervised

learning methods cover a large wealth of model types encompassing both classification and

regression tasks.

Classification methods are fundamental ML methods that are used to assign categorical

labels to data points based on their provided input features [70]. These methods are vital in

their ability to differentiate and categorise provided data into distinct classes, enabling models

to recognise patterns and perform decision making [71]. Classification models perform a vari-

ety of approaches, from simple binary classifiers to more complex multi-class systems, each of

which are designed to address a specific type of classification problem.

Regression methods are essential tools in ML that allow for the prediction of continuous

numerous variables based on a pre-determined set of input features [72]. These methods are

widely utilised due to their ability to effectively model relationships between variables, under-

stand patterns in data and make accurate predictions [73]. Regression models vary widely in

terms of technique, and therefore are typically tailored for use in a specific scenario. Tree

based ML methods cover a class of algorithms used widely for classification and regression

tasks [74] including Decision Trees (DT), Random Forests (RF) and Gradient Boosting Trees

(GBT). Favoured due to their simplicity, interpretability and proficiency in handling
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structured data [75]. At their core, these methods work by recursively splitting datasets into

subsets based on input features, creating a hierarchical tree like structure, with nodes repre-

senting a particular rule and branches denoting outcomes.

Support Vector Machines (SVMs) are a supervised ML algorithm typically used for classifi-

cation or regression. SVMs excel at binary classification tasks but also have the potential for

adaptation for multi-class classification and regression [71]. The principle concept of SVMs

relies on the finding of a ‘hyperplane’, or decision boundary, that is able to effectively separate

the different classes of data points. This decision boundary is positioned to maximise the dis-

tance between the decision boundary and the closest data points of each respective class or

‘support vectors’ to ensure effective categorisation [76].

Linear Regression (LiR) methods assume the presence of a linear relationship between

input features and an expected target variable, and therefore are more suited for standard lin-

ear relationships [72]. Logistic Regression (LoR) is used to model the probability of a binary

outcome, using an ‘S’-shaped logistic function that maps any real-valued number into the

range 0 to 1, making it particularly suitable for binary classification tasks [77]. Polynomial

Regression (PR) extends this ability by allowing for the analysis of features with a polynomial

relationship to the target variable [78].

Neighbour-based methods are a group of ML techniques that rely on the concept of similar

data points sharing common characteristics, allowing predictions or recommendations to be

made based on the proximity of data points to one another. The most commonly utilised

neighbour method is that of the K-Nearest Neighbour (K-NN) method. The K-NN algorithm

is focused on the concept of finding the K-nearest data points to a given target point. It then

makes predictions based on the majority class or the average value of these K-nearest neigh-

bours [79] respectively for classification and regression tasks.

Naïve Bayes (NB) is a ML algorithm primarily used for classification tasks with predefined

classes or categories. The algorithm operates on the basis of Bayes theorem, in which the prob-

ability of an item belonging to a specific class is calculated based on the observed features [70].

‘Naïve’ identifies an assumption made during the modelling process, in which all features used

for classification are assumed to be independent of each other in producing the class label [80].

Discriminant Analysis (DA) is a fundamental technique in ML aimed at simplifying com-

plex datasets by reducing the number of features or variables involved whilst retaining crucial

information [81]. This approach is vital for addressing challenges associated with high-dimen-

sional data. Notable supervised methods for discriminant analysis are Linear Discriminant

Analysis (LDA) and Quadratic Discriminant Analysis (QDA).

Genetic Programming (GP) is a ML approach inspired by the mechanisms of natural selec-

tion and evolution [82]. At its core, GP emulates the process of biological evolution to auto-

matically create and refine computer programs to tackle complex problems. GP processes

begin with a population of randomly generated computer programs, often represented as trees

or graphs [83].

Over multiple generations, GP continues to evolve programs, gradually improving their

ability to solve the problem and moving closer to optimal or near-optimal solutions [82].

Hybrid ML methods combine the strengths of multiple ML techniques to address complex

and diverse problem domains more effectively. These methods often integrate both traditional

statistical approaches and modern deep learning algorithms [84]. Hybrid models are particu-

larly valuable when dealing with multifaceted data types or when a single ML technique may

not capture all the nuances of a problem.

Unsupervised learning. Unsupervised learning is an alternative method of ML technique

in which algorithms find patterns, rules or structures in unlabelled data. No explicit labels are

provided alongside training data. Instead, algorithms are expected to uncover all relationships,
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groupings and representations within the data to group data into a set of categories or ‘clusters’

based on common features and patterns [85]. Common unsupervised techniques include clus-

tering, in which algorithms group items together based on similar data points, and dimension-

ality reduction, which aims to simplify complex data by representing it in a lower dimensional

space.

Dimensionality Reduction (DR) is fundamental in ML, and involves reducing the number

of input features while maintaining important information to improve the efficiency and effec-

tiveness of algorithms in handling high-dimensional data [86]. Notable unsupervised methods

for DR are Principal Component Analysis (PCA), and Non-Negative Matrix Factorisation

(NMF). PCA is a technique used for understanding the structure of high-dimensional data by

reducing data dimensions without the loss of significant information by focusing on capturing

the maximum variance present in data by identifying combinations of features called principal

components [87] which often reveal underlying patterns in the data. NMF is a technique that

decomposes a given data matrix into two or more matrices, where all the numbers in these

matrices are non-negative. These matrices capture underlying patterns and relationships

within the data, allowing us to represent the original data as a combination of these patterns,

which can be easier to interpret and analyse [88].

Clustering is an essential unsupervised ML technique that groups data points based on their

inherent similarities, revealing hidden structures within data [89]. Two prominent clustering

methods are K-Means Clustering (KMC) and Gaussian Mixture Models (GMM). KMC aims

to partition data into K clusters, where each data point is assigned to the cluster with the near-

est mean (centroid). K-Means is computationally efficient and suitable for scenarios with

roughly spherical and equally sized clusters [90, 91]. GMM, on the other hand, models data as

a mixture of multiple Gaussian distributions, offering greater flexibility in handling clusters

with varying shapes, sizes, and densities. It employs the Expectation-Maximisation (EM) algo-

rithm to iteratively optimise its parameters [92].

Deep learning. Deep Learning (DL) is a specialised subset of ML focused on the training

of Artificial Neural Networks (ANNs), which are models inspired by the structure of the brain

[93]. DL differs significantly from traditional ML methodologies by utilising ‘Deep’ Neural

Networks (DNNs), which are characterised by an interconnected, layered network architec-

ture. The term ‘deep’ stems from the advanced capability of the network to automatically

extract and learn features from raw data, bypassing the requirement for traditional, pre-

defined, non-trainable feature extractor blocks [94]. This direct extraction of hierarchically

organised, trainable features enables these models to perform complex pattern recognition

and decision-making processes in a more effective manner. Each layer within a DNN is com-

prised of a number of interconnected nodes or neurones, that are capable of sequentially pro-

cessing and transforming data, creating a hierarchical, structured representation of the input,

significantly enhancing the models ability to learn from vast amounts of data and make

informed predictions and decisions. Convolutional Neural Networks (CNNs) represent a spe-

cialised form of DNNs designed for processing grid-like data, such as images and videos [95].

CNNs have significantly advanced computer vision tasks by employing convolutional layers to

apply filters (kernels) to input data, capturing local patterns. Pooling layers reduce spatial

dimensions, and fully connected layers facilitate classification or regression [96]. CNNs domi-

nate fields like image classification, object detection, facial recognition, and image generation

[29]. However, it comes with challenges such as the need for datasets containing large numbers

of labelled samples, with common deep learning datasets such as the ImageNet dataset includ-

ing over 3.2 million samples [97], the risk of overfitting in deep networks, and interpretability

concerns in complex models.
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Ensemble learning. Ensemble learning is a ML technique focusing on combining multi-

ple individual models to produce a more coherent and formidable ‘ensemble’ model [98].

Such techniques are based on the underlying idea that by aggregating predictions or decisions

from a wide variety of models, the overall decision making performance can be considerably

improved compared to using a singular model and any minor issues in model architectures

can be mitigated [99]. Ensemble learning is applied in a wide range of ML tasks, including clas-

sification, regression and anomaly detection. These techniques are increasingly valuable when

faced with datasets that are complex or noisy, as the diversity of the models allows for the

improving of overall performance despite this noise. Similarly, with ML models consistently

impacted by the effects of issues such as overfitting when a model learns the training data too

well and struggles to perform on fresh data, ensemble methods can mitigate the impact overfit-

ting may have on a model by improving the overall resilience and generalisation of the model

[100].

Model choice. ML techniques are becoming widely used in healthcare, as detailed above,

and therefore have considerable potential for use in detecting CI in PD. However, consider-

ations still need to be made to implement such techniques. Choosing a suitable model depends

largely on the nature of the data, problem complexity, and available resources [37]. DL models

show great promise for use due to their ability in capturing intricate patterns in larger datasets

[101]. However, traditional models including K-NN, SVM and RF still have potential to be

effective in a number of situations, particularly when the presence of labelled data is limited

and data interpretation is crucial [102]. An overview of all ML models used in the discovered

papers are shown in Table 1.

Review protocol

No registered protocol exists for this review.

Purpose of review

The aim of this systematic review is to determine if ML approaches are effective for detection

and diagnosis of CI in PD, and identify key methodologies, algorithms, and performance

Table 1. Commonly used ML applications for CI detection and diagnosis in PD.

Algorithm Description

DT Hierarchically splits data, creating a tree-like structure with decision nodes and leaf nodes.

LiR Models relationships between dependent variable and independent variables by fitting a straight line to

the data

LoR Models relationships between dependent variable and independent variables using a logistic function

SVM Finds a hyperplane in a high-dimensional space to best separate data points into distinct classes.

NB A probabilistic classifier based on Bayes’ theorem. It assumes that features are conditionally

independent

KNN Assigns a data point to the majority class among its K nearest neighbours based on a distance metric

CNN Employ convolutional layers to capture local patterns and spatial relationships in data.

RF Combines multiple decision trees, with each tree voting independently towards the final decision

Hybrid Combine two or more different machine learning approaches to leverage the strengths of each method.

Clustering Applied to group similar data points, aiding in data segmentation and pattern discovery

DR Reduces the complexity of high-dimensional data, making it more manageable for analysis and

visualisation.

DA Maximises class separability by finding linear combinations of features.

GP An evolutionary algorithm that evolves computer programs to solve complex problems.

https://doi.org/10.1371/journal.pone.0303644.t001

PLOS ONE Machine learning for the detection and diagnosis of cognitive impairment in Parkinson’s Disease

PLOS ONE | https://doi.org/10.1371/journal.pone.0303644 May 16, 2024 7 / 37

https://doi.org/10.1371/journal.pone.0303644.t001
https://doi.org/10.1371/journal.pone.0303644


metrics. Whilst a number of reviews have previously been conducted to determine the feasibil-

ity of ML techniques for the detection of PD alone [103–105], systematic reviews into the area

of CI detection for PD are limited, with the most recent review found being published in 2022

[106], containing only half the number of papers in this review. Additionally, the areas of ML

and AI are a constantly evolving and changing area, with newer and more advanced tech-

niques becoming frequently available, and as a result it is important to keep abreast of all tech-

niques that are currently being used within this area. Therefore this review expands on

previous reviews to include the most recent papers in what is a growing and emerging research

area. Based on this and following the PICO (Patient/Population, Intervention, Comparison,

Outcomes) guidelines for review question formation [107], by conducting this review, we aim

to discuss and answer the following question:

In patients with Parkinson’s Disease, how effectively does machine learning-based detec-

tion and diagnosis differentiate cognitive impairment from normal cognition?

Search methodology

A number of systematic review methodologies exist, including AMSTAR [108], PICO [107]

and Cochrane [109], however, the PRISMA (Preferred Reporting Items for Systematic Reviews

and Meta-Analyses) methodology [110, 111] is a well established, widely recognised approach

for systematic reviews and meta-analyses, and is commonly used in both medical and compu-

tational based research since it provides a structured and transparent framework for literature

searches, study selection and reporting findings, therefore, this work was based on PRISMA

guidelines [110, 111]. Fig 1 provides the search, screening, eligibility and extraction steps car-

ried out in this review.

Literature sources

Whilst this review is focused on ML techniques for a particular research area, it must be con-

sidered how this research area is one of a largely medical nature rather than solely computa-

tional. Therefore, there is a need to consider sources from both medical and computational

viewpoints whilst simultaneously considering sources of a generic nature that may cover any

missed topic areas. In this work, we consider four databases spanning computational, medical

and generic scientific groups: PubMed (pubmed.ncbi.nlm.nih.gov), IEEE Xplore (ieeexplore.

ieee.org), Scopus (scopus.com), and ScienceDirect (sciencedirect.com).

Search strategy

To retrieve all relevant literature, two sets of search terms were chosen for use in searching the

aforementioned databases, including a primary set of terms: (1) Parkinson, (2) cognitive

impairment, (3) machine learning, (4) deep learning, (5) diagnosis, (6) detection, (7) classifica-

tion, and (8) identification. A set of secondary terms were also used interchangeably with pri-

mary keywords (1)-(3) to discover additional results. These search terms were combined with

Boolean operators to produce search strings tailored to each database listed in S1 File. These

search strings were then varied accordingly utilising the secondary search terms listed in S2

File. A comprehensive literature search was conducted on the PubMed, IEEE Xplore, Scopus

and ScienceDirect databases with no restrictions and publishing dates from the beginning of

the database to February 2024, with a search conducted on the 25th February 2024, resulting

in a total of 1,052 available results.
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Inclusion and exclusion criteria

Based on the review objectives above, inclusion and exclusion criteria were created to ensure

all literature align with these objectives and provide an effective overview of the scope of the

research area. Therefore, for inclusion in this review, studies need to satisfy at least one of the

following criteria:

Fig 1. PRISMA flow diagram of the literature search, screening and extraction procedures for inclusion.

https://doi.org/10.1371/journal.pone.0303644.g001
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(a) Classification of Cognitive Impairment (PD-CI), Mild Cognitive Impairment (PD-MCI),

and Parkinson’s Disease Dementia (PDD) from Normal Cognition (PD-NC)

(b) Classification of PD-CI, PD-MCI and PDD from other memory-based disorders (e.g. Alz-

heimer’s Disease (AD) or Dementia with Lewy Bodies (DLB))

(c) Prediction of conversion from PD-CI/PD-MCI to PDD

(d) Prediction of future cognitive assessment scores

(e) Identification of biomarkers for the development of CI in PD sufferers

Studies that met any of the following exclusion criteria were not chosen for inclusion in this

review:

(a) Studies investigating CI present before the onset of PD symptoms

(b) Studies not conducted on human participants or secondary data gathered from humans

(c) Studies focusing on the analysis of symptoms that do not include cognitive symptoms

(d) Studies providing a limited or insufficient description of data modalities, subjects or ML

methods utilised

(e) Studies conducted in a language other than English

Data extraction

Each paper gathered from sources mentioned in Literature Sources had identical information

extracted, with this information included in S3 File in the supplementary material:

(a) Publication Year

(b) Data Source

(c) Activity Type (diagnosis, differential diagnosis, prediction, biomarker identification)

(d) Data Modality

(e) Number of Subjects

(f) Machine Learning Method(s)

(g) Validation Strategies

(h) Associated Outcome(s)

A full description of all performances according to each data modality can be found in S4

File.

Study activities

To ensure all studies are categorised based on their different strategies and goals, each study

was analysed based on study objectives into their identified activity:

(a) Diagnosis or detection of CI in PD (Comparison of data from PD patients with CI to PD

patients with NC)

(b) Differential Diagnosis (Differentiating between PD with CI, and patients with other mem-

ory disorders)
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(c) Condition progression prediction

(d) Identification of biomarkers for CI in PD

Each activity category can be linked to a type of ML technique needed to conduct the activi-

ties. Activities (a) and (b) focus on classification techniques, (c) focuses on prediction tech-

niques, whilst (d) focuses on feature identification techniques.

Study evaluation

Each study was scrutinised to identify its ML techniques, examining how they adapt to the

challenge of detecting and diagnosing CI. Attention is given to how these techniques are

adjusted to varying data types to determine those methodologies providing the most effective

support across data types and activities. Whilst the impact on CI in PD is of increased impor-

tance, all studies use ML techniques, and therefore it is important to consider performances

achieved by the different methods and their associated outcomes. Therefore, we compare

achieved performance of ML techniques through analysis of their varying performance met-

rics. In studies using multiple ML models for analysis, the ‘associated outcome’ of the study is

identified as the highest performing ML method(s) used. In studies encompassing training

and validation phases, only validation performance was considered, and in the case that testing

and validation are available, only testing performance is used. In studies performing multiple

classification tasks, evaluation is centred around classification tasks focusing on distinguishing

PD-NC from PD-CI/PD-MCI or PDD. Certain studies prioritise using ML techniques to draw

specific conclusions, rather than concentrating on performance metrics. As a result, emphasis

is placed on conclusions or findings obtained rather than numerical performance measures.

Assessment of risk of bias

The risk of bias of all included studies was assessed based on the Prediction model Risk Of Bias

ASsessment Tool (PROBAST) [112]. This tool examines 4 separate aspects of the study (partic-

ipants, predictors, outcome, and analysis), with a number of signalling questions under each

aspect marked as ‘yes’, ‘no’ or ‘unclear’ contributing to an overall assignment of risk of bias

based on the study contents. Any assignment of ‘no’ indicates a high risk of bias and ‘yes’ con-

sidered a low risk. Overall risk of bias was considered low when all aspects are low and external

validation was present, and considered high if any aspect was considered high, or all were low

but no external validation was present.

Observations and findings

Literature review eligibility

Screening of all literature was performed in four stages. Based on the search criteria above,

1,052 publications were retrieved: 43 from PubMed, 252 from IEEE Xplore, 296 from Scopus

and 461 from ScienceDirect. All duplicate publications were removed, excluding 32 results

and all review papers were removed, excluding 299 results. 643 publications were removed

based on title, abstracts and conclusions meeting exclusion criteria, and one publication was

unable to be retrieved. 77 full-text publications were then screened for abstracts, methods, and

conclusions. Seven further publications were excluded based on the exclusion criteria speci-

fied, resulting in 70 full-text articles available for analysis.
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Data sources

In 50 of the 70 studies, patient data was collected from recruited participants in one or more

centres [21–31, 113–151]. 16 studies used data repositories, with 13 studies using data from

the Parkinson’s Progression Markers Initiative (PPMI) [152–165], and three studies using data

from the National BioBank of Korea (NBBK) [84, 166–168], whilst four studies made use of

data sourced from pre-existing research cohorts [169–172]. The average sample size was

184.72, with the smallest sample size of 17 [144] and the largest sample size of 2482 [131].

Study activities

A number of study activities were utilised including diagnosis, (PD vs Healthy Controls (HC),

PDD vs HC, PD-NC vs PD-MCI, PD-MCI vs PDD), differential diagnosis (PD-CI/PD-MCI/

PDD vs AD vs DLB), identification of biomarkers for PD detection, and the prediction of

future CI states. Most studies focused on diagnostic activities (n = 48) [21–26, 28, 30, 31, 84,

113, 114, 116–119, 121, 122, 124–126, 128, 130, 133–136, 138, 142, 144–146, 148–151, 153–

155, 157–161, 164, 166, 171, 172], followed by prediction (n = 12) [29, 129, 131, 132, 137, 140,

141, 152, 156, 162, 163, 170], biomarker identification (n = 6) [27, 120, 123, 143, 147, 169], and

differential diagnosis (n = 4) [115, 127, 139, 167].

Data modalities

The most commonly used data modalities were imaging (n = 33) [24, 27–31, 113, 114, 117,

119, 122, 129, 130, 133, 137, 139–143, 147–152, 155, 156, 159–161, 163, 164], clinical character-

istics (n = 17) [84, 118, 131, 132, 137, 140, 152, 153, 155, 156, 159, 160, 162–164, 169, 170],

EEG (n = 11) [25, 26, 120, 125–128, 135, 136, 146, 151], and neuropsychological profile

(n = 10) [115, 118, 132, 134, 142, 157, 158, 162, 167, 171], followed by a number of additional

modalities. A clear overview of the population of discovered studies using each modality is

found in Fig 2. A number of additional data modalities were only used in a singular study

(n = 7) [116, 153, 162, 164, 170–172], with these being: eye movement, family history, environ-

mental factors, Intelligence Quotient (IQ) & Emotional Intelligence Quotient (EIQ), biofluid

assays, electronic health records, and smartphone test scores. Therefore, these remaining stud-

ies are grouped into a singular category of ‘other’. A commonly identified theme in most

reviewed studies is that the use of a singular data modality as a predictive feature is rare, but

instead as part of a combination with other modalities. Therefore, discussions of data modality

usage and outcomes focuses on all studies using a particular data modality, even when in com-

bination with others.

Machine learning techniques

ML techniques used across all reviewed studies were categorised into 12 categories, some of

which overlap: (1) tree based methods (n = 32) [22, 23, 26, 27, 31, 114, 116, 119, 122, 125, 126,

128–130, 132, 134, 137, 139, 141, 145, 153, 155, 157–159, 162, 164, 166, 167, 170–172], (2) Sup-

port Vector Machines (n = 30) [21, 23–25, 27, 28, 30, 113, 115, 117, 118, 122–124, 133, 134,

138, 139, 141, 142, 148–151, 153, 156–159, 161, 172], (3) ensemble methods (n = 30) [22, 23,

26, 31, 114–116, 119, 122, 125, 126, 128–130, 132, 134, 139, 141, 145, 153, 155, 158, 159, 162,

164, 166, 167, 170–172], (4) regression based methods (n = 15) [30, 113, 115, 131, 134, 140,

152–154, 158, 162, 163, 167, 169, 172], (5) ANNs (n = 13) [29, 121, 122, 135, 136, 138, 139, 143,

147, 155, 157, 160, 162], (6) neighbour based methods (n = 12) [22, 23, 25, 27, 113, 115, 122,

127, 134, 155–157], (7) NB (n = 8) [23, 115, 133, 134, 139, 156, 157, 166], (8) DA (n = 4) [134,

146, 156, 166], (9) DR (n = 3) [21, 118, 120], (10) hybrid methods (n = 1) [84], (11) GP (n = 1)
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[138], and (12) clustering (n = 1) [144], with most studies using at least two categories of ML

model. A clear overview of the population of discovered studies using each ML technique is

found in Fig 3.

As was stated above, all studies discussed in this review can be categorised based on the dif-

ferent study activity that they implemented, including either classification, prediction, or fea-

ture identification. Therefore, regarding usage of these study activities, and the ML techniques

they use, the following sections discuss how each of these activities and ML learning types are

employed across the studies that have been discovered, with considerations and descriptions

given to the most notable studies. However, not all of these categories are populated, with

some techniques not present for a particular learning type, and therefore discussions are made

accordingly.

Performance metrics

A considerable number of metrics have been used for the assessment of ML performance, as

shown in Fig 4. The most commonly used metric was accuracy (n = 46), used both as a sole

performance metric (n = 6) [25, 121, 123, 154, 155, 166] and as part of a combination with

other metrics (n = 40). In studies using a combination of metrics, the most common combina-

tion was accuracy, sensitivity, and specificity (n = 17) [23, 113, 114, 116, 117, 124–126, 130,

133, 142, 149, 150, 158, 164, 167, 171], alongside accuracy, sensitivity, specificity, and Area

under the ROC Curve (AUC) (n = 13) [22, 27, 31, 115, 119, 127, 135–137, 148, 151, 153, 161].

Fig 2. Usage of data modalities across reviewed studies.

https://doi.org/10.1371/journal.pone.0303644.g002
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Risk of bias assessment

An overall assessment of the risk of bias for all studies using PROBAST can be seen in Fig 5.

For all included studies, 91.42% were deemed to be of a high risk of bias, and the remaining

9% having an overall low risk of bias. In the participant domain, 63 studies were judged to be

at a low risk and seven judged to be at a high risk due to limited description of study data

sources or inclusion and exclusion criteria. For the predictor domain, 69 studies were marked

as low risk of bias and one marked as high risk. In the outcome domain, 60 were marked as

low risk and 10 marked as high risk due to factors such as the inclusion of predictors in the

assignment of outcomes. For the analysis domain, 52 studies were marked as low risk of bias

and 18 marked as high risk largely due to an insufficient or largely imbalanced number of par-

ticipants. Overall, a large proportion of studies were rated as high risk of bias, but for the

majority of such studies, this assignment of high risk is due to the lack of external validation of

the study.

ML techniques applied in CI detection and diagnosis

All reviewed studies have employed supervised, unsupervised or deep learning techniques,

with ensemble learning techniques falling under these banners. Overall, most studies discussed

used supervised learning techniques in some form, with 58 studies utilising only non-DL

supervised learning, two studies using unsupervised techniques alone, eight using DL tech-

niques alone and two studies using a combination of supervised and unsupervised techniques.

Fig 3. Usage of ML techniques across reviewed studies.

https://doi.org/10.1371/journal.pone.0303644.g003
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Fig 4. Usage of performance metrics across reviewed studies.

https://doi.org/10.1371/journal.pone.0303644.g004

Fig 5. Overall risk of bias assessment of studies using PROBAST.

https://doi.org/10.1371/journal.pone.0303644.g005
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Since some studies used a combination of techniques from different categories for comparison,

these studies are therefore grouped according to the supervision category held by the majority

of methods or the most successful category. Therefore, those studies using combinations of

supervised and unsupervised techniques are discussed under unsupervised learning. A com-

plete description of all studies, the data modalities they used and their associated outcomes can

be found in S3 File.

Supervised learning. 44 of the 58 supervised learning studies focused on classification

activities, 40 of which focused on classification vs NC/HC [22–26, 28, 30, 31, 84, 113, 114, 116,

117, 119, 122, 124–126, 128, 130, 133, 134, 138, 142, 145, 146, 148–151, 153–155, 158, 159, 161,

164, 166, 171, 172], and four classifying against memory disorders [115, 127, 139, 167]. 11

studies focused on prediction [129, 131, 132, 137, 140, 141, 152, 156, 162, 163, 170], and the

remaining three on biomarker identification [27, 123, 169]. Regarding modalities, 23 studies

used a combination of modalities, with the remaining 35 using only one, with the most com-

monly used modalities being imaging (n = 29) [24, 27, 28, 30, 31, 113, 114, 117, 119, 122, 129,

130, 133, 137, 139–142, 148–152, 155, 156, 159, 161, 163, 164], clinical characteristics (n = 15)

[84, 131, 132, 137, 140, 152, 153, 155, 156, 159, 162–164, 169, 170], and EEG (n = 8) [25, 26,

125–128, 146, 151]. The average sample size was 199.72, with the highest study using 2482 par-

ticipants [131] and the lowest only 36 [146] As shown in Fig 3, tree based methods are the

most commonly used technique in all studies, and this is evident in the supervised classifica-

tion tasks conducted, with over 50% (n = 24) [22, 23, 26, 31, 114, 116, 119, 122, 125, 126, 128,

130, 134, 139, 145, 153, 155, 158, 159, 164, 166, 167, 171, 172] of studies using a tree model

either alone or in combination. Notably however, the consensus with the method of choice is

the use of an ensemble based tree method. RF is the most established classifier, used in 13 stud-

ies successfully. RF is shown to be a versatile model against a number of modalities, with RF

models applied to 60% of the different modalities discovered. Byeon [166] compared perfor-

mances of RF, NB, and DA models for the analysis of demographics, motor symptoms, non-

motor symptoms, and sleep behaviour from 342 PD patients (66 Early Onset Parkinson

Dementia (EOPD), 276 PD-NC). Overall, the RF model performed best, achieving an accuracy

of 89.5%. Work by the same author [171] further demonstrated these benefits using a model

trained on features from medical history, neuropsychological profile and environmental fac-

tors from 96 PD patients (45 PD-MCI, 51 PD-NC) compared to a singular DT on the same

data. The RF model outperformed the singular tree, achieving an accuracy of 65.6%. Various

modalities have emerged as commonly utilised sources for analysis of CI in PD. This trend is

reflected in research using RF models. Koch et al. [128] analysed EEG data from 40 PD patients

(20 PD-CI, 20 PD-NC) with an RF model, achieving an overall accuracy of 91% and an AUC

of 0.98. In a different approach, Russo et al. [23] focused on analysing gait patterns to distin-

guish 40 PD-MCI and 40 PD-NC patients. They compared various ML models, including DT,

RF, NB, SVM, and K-NN, with RF outperforming others with an accuracy of 81%. Lin et al.

[130] examined connectivity features from MRI, DTI, and fMRI using an RF model with data

from 179 subjects (59 PD-MCI, 72 PD-NC, 48 HC). Analysis yielded an accuracy of 85.2%,

highlighting the effectiveness of RF models in handling various modalities to identify CI in

PD.

RF models have also shown their abilities outside of the more commonly used modalities.

Byeon [116] analysed IQ and EIQ data from 368 subjects (48 PD-MCI, 320 HC) using 9 tree

based models combined of feature techniques (undersampling, oversampling, SMOTE) and

ensemble methods (boosting, bagging, RF). The RF combined with SMOTE was capable of

achieving the best performance, with an accuracy of 74%. Whilst this performance is not as

high as values in other studies, the results show that there exists potential for CI detection
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using features outside the scope of traditional modalities, and therefore should not be automat-

ically excluded from consideration when developing models and clinical procedures.

Several studies have demonstrated the usefulness of other ensemble methods, particularly

boosting in analyses of CI in PD. Chen et al. [119] examined DTI from 133 PD patients (52

PD-NC, 68 PD-MCI), comparing DT, XGBoost and RF models. The XGBoost model emerged

as the top performer, achieving an accuracy of 91.67% and an AUC of 0.94. Tsiouris et al.

[164] analysed an array of modalities, including medical history, clinical characteristics, imag-

ing and more using DT combined with AdaBoost. Their analysis achieved a competitive accu-

racy of 80.38%. These findings suggest that boosting methods can exhibit similar performance

levels to RF, emphasising the value of ensemble methods in general. However, the choice

between models may depend on specific considerations, as boosting may not outperform in all

scenarios.

A notable theme in discovered studies is the use of ML to analyse neuropsychological pro-

files alongside other modalities, particularly neurological assessments such as the MoCA. Jeon

et al. [158] analysed MoCA values from 397 PD patients using RF, SVM and LoR models,

achieving an accuracy of 0.88 with similar sensitivity and specificity values. These results show-

case the potential for analysis of neuropsychological details using ML to enhance understand-

ing of detection and diagnosis of CI normally done in person using clinician judgement.

Despite its prominence, DT and RF models are not the only models that have successfully

been utilised for classification against NC and HC, with the K-NN, SVM, and NB showing

considerable performance. Two studies in this review identified the K-NN as the most success-

ful model in their respective analyses. Arslan et al. [113] while examining Arterial Spin Label-

ling MR imaging from 68 participants (26 PD-NC, 27 PD-MCI, 15 HC), found that the K-NN

outperformed both the SVM and LoR models, achieving an accuracy of 92.60%. Similarly,

Betrouni et al. [25] analysed resting state EEG from 118 participants in varying cognitive states,

including cognitively intact, mental slowing, mild cognitive deficits and severe deficits. In their

study, K-NN surpassed SVM, achieving an overall accuracy of 87%. These findings underscore

the effectiveness of K-NN models in specific contexts when applied to diverse modalities.

Regarding NB, a sole study by Morales et al. [133] achieved successful classification of

PD-MCI and PDD by exploring variants of the NB including traditional, multivariate filter

and filter selective methods in comparison with SVM. Their analysis centred on MRI from 45

participants (16 PD-NC, 15 PD-MCI, 14 PDD). The filter selective method demonstrated the

best overall performance when applied to MRI data, achieving an accuracy of 70% ± 26.66%.

While NB models were less prevalent in the studies reviewed, this instance shows their poten-

tial in specific contexts for distinguishing between CI states in PD.

SVM has consistently demonstrated its ability in classification tasks, particularly with imag-

ing data, as evidenced by numerous studies achieving AUC values up to 0.95. Abos et al. [24]

employed SVM to differentiate between 133 subjects (60 PD-NC, 33 PD-MCI, 38 HC) using

functional connectomics extracted from resting state fMRI. The SVM model achieved an over-

all AUC of 0.81, showcasing its efficacy in discerning cognitive states. Similarly, Kang et al.

[30] achieved superior overall performance using an SVM to analyse magnetic susceptibility

values and radiomics features from 149 subjects (22 PD-NC, 26 PD-MCI, 56 PDD, 45 HC).

When compared with multivariate LoR trained on the same data, SVM demonstrated superior

performance, achieving an AUC of 0.95. These findings underscore the robustness of SVM

models in effectively handling diverse imaging modalities for the classification of CI in PD.

DA emerged as a less frequently employed technique, with only four instances of successful

implementation. In one study by Tulay et al. [146], LDA was applied to EEG data collected

during visual and auditory stimuli from 36 participants (Mild PDD, Moderate PDD, HC),

aiming to differentiate between varying levels of PDD and HC, achieving an impressive
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accuracy of 94%, with equally noteworthy values of 96% and 95% for precision and recall

respectively. In another study by Ortelli et al. [134], QDA was used to analyse neuropsycholog-

ical test scores from 500 participants, with the aim of differentiating between NC, MCI and

impaired cognition. QDA outperformed various other models, including tree, regression,

K-NN, SVM and ensemble, achieving the highest overall performance with an accuracy and

AUC of 68.2% and 0.81 respectively. While DA may be less prevalent, these successful

instances demonstrate its potential in specific contexts for discriminating among cognitive

states in PD.

A noticeable trend in reviewed studies moves towards the adoption of unconventional

methods for analysis. One such emergence is the use of GP and hybrid methods, which bring

novel perspectives and innovative strategies to the study of CI. These methods represent an

expansion of the analytical toolkit, offering researchers new ways to extract valuable insights

from complex datasets and further enhance our understanding of these cognitive disorders.

Picardi et al. [138] explored the use of Cartesian GP (CGP) alongside SVM and ANN to ana-

lyse gait and movement data from sensors on 85 subjects (22 PD-NC, 23 PD-MCI, 10 PDD, 30

HC). The analysis revealed that when comparing PD-NC to PD-MCI, SVM exhibited the best

performance with an AUC of 0.78. However, in the comparison between PD-NC and PDD,

CGP achieved the highest performance with an AUC of 0.83. Similarly, Byeon et al. [84] tack-

led the differentiation of PD-MCI from PD-NC using a hybrid approach. They analysed 48

diagnostic data variables encompassing motor and non-motor symptoms and sleep behaviour

from 185 PD patients (75 PD-NC, 110 PD-MCI). Employing both hybrid and single models,

with the hybrid models being combinations of Polydot, Vanilladot, RBFdot and C5.0, the

study found that the combination of RBFdot and C5.0 hybrid models achieved the highest per-

formance with an overall AUC of 0.88. These findings highlight the diverse range of ML tech-

niques applied to the classification of CI in PD, demonstrating the potential for various

methods to excel in specific contexts and tasks.

Of the four studies focused on differential classification, the most commonly successful ML

method was the K-NN, successful in half of the studies, with the remaining two using RF and

SVM. Two of these studies made use of a combination of data modalities as input features,

whilst the remaining two studies used a singular modality. Jennings et al. [127] analysed rest-

ing state EEG data from 80 participants (32 AD, 26 DLB, 22 PDD), using a K-NN method and

was able to differentiate between the different memory disorders with an accuracy of 61% ±
16%, and an AUC of 0.61. Byeon [167] also attempted to differentiate 110 PDD patients from

118 AD patients using a combination of sleep behaviour and neuropsychological profile using

RF, LoR and classification and regression tree (CART) models. Study results found that the RF

was most accurate in differentiating between the two patient groups with an overall accuracy,

sensitivity and specificity of 73.3%, 78% and 70% respectively. Bougea et al. [115] differentiated

between 78 probable PDD and 62 probable DLB patients using binomial regression (BR),

K-NN, SVM, NB and an ensemble classifier of all models using features extracted from demo-

graphics and neuropsychological profile. Overall, the K-NN model achieved the highest overall

performance, with an AUC of 0.958 and an accuracy of 91.2%. Rallabandi et al. [139]

attempted to differentiate between 27 PDD, 30 MCI, 27 AD and 33 HC using DT, RF, NB,

MLPs and SVMs using features from T1 Weighted MRI. Overall, the SVM model achieved the

best performance, being able to differentiate between the different disorders with an AUC of

0.892. Of the 11 studies that made use of supervised ML to perform predictive activities, eight

studies focused on the prediction of future cognitive assessment scores [129, 131, 132, 140,

152, 162, 163, 170], whilst the remaining three studies focused on the prediction of conversion

from PD-NC to MCI and PDD [137, 141, 156]. In terms of modalities, imaging was the most

commonly utilised modality, used in seven studies both alone and with other modalities [129,
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137, 140, 141, 152, 156, 163], whilst the remaining four studies used differing combinations of

other metrics including clinical characteristics, genetic and epigenetic data, blood biomarkers,

CSF, and neuropsychological profile among others [131, 132, 162, 170]. Overall, tree based

models were the most commonly successful ML method used in prediction activities, being

used in six studies [129, 132, 137, 141, 162, 170], followed by regression in five studies [131,

140, 152, 162, 163]. In studies using tree models, the most commonly successful model was the

ensemble RF model, which was used as a single predictive model in three of the six studies

[129, 132, 170], and two studies comparing the performance of the RF to other models [141,

162], with a singular study using the extra trees classifier [137].

Kubler et al. [129] analysed VBM features of the Nucleus Basalis of Meynert extracted from

MRI of 55 PD patients (19 PD-NC, 36 PD-MCI) and was able to predict the cognitive outcome

of PD patients with an average RMSE of 11.28 ± 9.51%. Lo et al. [170] analysed scores gathered

from smartphone tests alongside clinical characteristics to predict cognitive outcomes of 237

PD patients from the Oxford Discovery Cohort with an overall AUC between 0.75 and 0.97.

Shin et al. [141] analysed T1 Weighted MRI data collected from 141 PD patients, 46 who con-

verted to PDD and 95 who did not to discover important clinical and cortical thickness fea-

tures. This imaging data was used to train both RF and SVM (Linear, Polynomial, Radial, and

Sigmoid Kernels) models, with the RF model achieving an AUC performance of 0.84, indicat-

ing the benefit of cortical thickness in conversion from PD-MCI to PDD. McFall et al. [132]

used a combination of features including demographics, gait, blood biomarkers, genetic data,

clinical characteristics and neuropsychological profile to predict incipient dementia after three

years from non-demented PD. Data was gathered from 48 PD patients (34 PD-ND, 14

PD-ID), and identification was able to be made with an overall AUC of 0.85 and an accuracy

of 81%.

In studies where RF was not the most successful, Salmanpour et al. [162] compared a num-

ber of alternative tree models and other methods including Local Linear Model Trees, Radial

Basis Functions, Multilayer Perceptrons, and Thiel-Sen regression for predicting the MoCA

score at year four based on the previous four years of longitudinal data gathered from 492 PD

patients. Overall, the Local Linear Model Trees model was found to have the superior perfor-

mance in predicting the MoCA score at year four when combined with a NSGAII genetic sort-

ing algorithm, achieving an overall MAE score of 1.68 ± 0.12. Park et al. [137] used the RF

model to predict the conversion of PD-NC to PDD using a combined model of imaging and

clinical characteristics from 262 patients (75 PDD, 187 No-PDD) and was able to predict con-

version to PDD with an overall accuracy of 79.8% and an AUC of 0.89.

Three separate types of regression were used for predictive activities. Liu et al. [131] used

Cox regression to create an overall cognitive risk score for the prediction of future cognitive

state within 10 years of disease onset based on a dataset of features combining clinical charac-

teristics and genetic and epigenetic data. CI was predicted within 10 years with an AUC of

0.85, whilst PDD was predicted with an AUC of 0.88. Ramezani et al. [140] utilised a regression

adapted SVM combined with RReliefF feature selection to investigate the ability to predict

future cognitive states based on SNCA gene status. 101 PD patients were used, from whom

imaging, genetic, epigenetic, clinical characteristics and demographics were extracted and

used to train the feature extraction and regression. 11 features were found to be predictive of

global cognitive decline in PD, with a clear association given between the rs894280 SNCA gene

and global cognition, validated by a correlation coefficient of 0.54. Schrag et al. [163] used a

LoR model trained on clinical characteristics, genetic and epigenetic data, CSF and DAT imag-

ing gathered from 568 subjects, 390 with PD and 178 healthy controls. This model was then

used to predict the overall change in MoCA score from a baseline to two years post baseline.

Five variables were found to show the most significant association with CI and allowed for
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prediction of cognitive decline at the two year stage with an AUC of 0.80. The most commonly

used ML technique was the SVM model, used twice [27, 123], whilst tree, neighbour and

regression were all used once [27, 123, 169]. Deng et al. [169] used a combination of clinical

features, blood biomarkers and genetic and epigenetic data from 206 participants (108

PD-MCI, 98 PD-NC) in the Early Parkinson’s Disease Longitudinal Singapore Cohort. Shape-

lyVIC [173] and Backward Selection feature selection techniques were used to determine the

most likely variables associated with PD-MCI. A subset of 22 variables were identified as sig-

nificantly important to the development of PD-MCI and were then used as training parame-

ters for a multi-variable log-binomial regression to determine the relative risk of each variable

to the development of MCI in PD, in which a selection of the eight most common variables

were made, including education years, hypertension history, higher levels of triglyceride and

apolipoprotein, and higher MDS-UPDRS scores.

Both SVM studies were the only studies to utilise performance metrics as an overall out-

come with regard to scientific conclusions, whilst the remaining three studies focused on mak-

ing scientific conclusions and did not include any performance metrics. Of the two studies,

one used SVM as a singular identification model [123], whilst the remaining compared the

performance of a SVM, K-NN and tree based models (J48 DT, adaBoost, RF) [27].

Work by Garcia et al. [123] analysed speech features from 80 participants (16 PD-MCI, 24

PD-NC, 40 HC). Prosodic, articulatory, and phonemic identifiability speech features were

extracted from both groups during reading and retelling tasks. These features were then used

in training SVM models with a Gaussian kernel to determine the ability for differentiation

between each patient group using each feature type. Overall, it was discovered that in regard to

the differentiation of PD-MCI from PD-NC, the use of phonemic identifiability as the main

feature functions as the best approach for use as a speech biomarker for CI, with an overall

accuracy of 72.1% when utilised during the retelling task, and accuracy of 71.9% during the

reading tasks. Similar results were found when differentiating PD-MCI patients from HC,

with overall classification achieving accuracies of around 86.9% during the retelling task. Both

of these results clearly show the viability for the phonemic identifiability feature as a speech

based biomarker for the identification of PD-MCI patients from cognitively preserved patients

and healthy controls simultaneously.

In the comparison study conducted by Amboni et al. [27], the SVM model was shown to

achieve higher performance than the K-NN and tree based models. This study focused on the

dual analysis of Amyloid PET imaging and gait data gathered from 75 PD patients, 33 with

MCI and 42 without. Features from these two modalities were used to create three training

data variants: variant one employing clinical, spatial and temporal gait variables, variant 2A

containing the top five features from variant one and averaged amyloid PET retention from all

brain regions, and variant 2B employing the top five features and average PET retention from

only cortical areas.

These three variants were then used to train all model comparison types. The SVM model

trained on variant one achieved the highest overall performance with an accuracy and AUC of

80% and 0.792 respectively. The high performance of this model therefore indicates that gait

features can function as a more superior biomarker than Amyloid PET imaging for the devel-

opment of CI in PD.

Unsupervised learning. Four studies used unsupervised learning techniques to analyse CI

in PD, two used unsupervised alone [120, 144] and two used unsupervised in combination

with supervised techniques [21, 118]. Of these studies, three focused on classification

(PD-MCI vs PD-NC) [21, 118, 144] and one focused on biomarker identification [120].

Regarding modalities, EEG [120], gait [21], clinical characteristics, blood biomarkers, neuro-

psychological profile [118], and speech features [144] were used once. The average sample size

PLOS ONE Machine learning for the detection and diagnosis of cognitive impairment in Parkinson’s Disease

PLOS ONE | https://doi.org/10.1371/journal.pone.0303644 May 16, 2024 20 / 37

https://doi.org/10.1371/journal.pone.0303644


was 43.25, with the highest study using 81 participants [21] and the lowest only 17 [144]. Two

studies [21, 118] conducted a combination of supervised and unsupervised techniques using

an SVM combined with PCA (PCA-SVM) to classify PD-MCI from PD-NC. These studies

used gait and movement data, and a combination of clinical characteristics, blood biomarkers,

and neuropsychological profile to achieve (accuracy, AUC) scores of (91.67%, 0.9714) [21] and

(92.3%, 0.929) [118]. This clear performance benefit compared to SVM methods that achieve

accuracies and AUC values in the range of 70–80% indicates that analysis of CI can benefit

from reducing the high dimensionality of data to a smaller set of components. Talkar et al.

[144] leveraged the benefits of clustering to classify PD-MCI from PD-NC. Speech and motor

coordination features from nine PD-NC and eight PD-MCI patients during reading tasks were

used to train a GMM that was able to accurately classify with an AUC of 0.84. This high perfor-

mance indicates that classification of CI in PD may be suited in some cases to the use of clus-

tering alongside other ML techniques, however this will require further validation across other

modalities. Chu et al. [120] used DR based feature identification to analyse EEG data from 33

PD patients (13 PD-MCI, 20 PD-NC) to discover biomarkers for MCI development. This EEG

trained an NMF model based on sliding window techniques to track sub-networks in func-

tional brain networks. From this, the authors identified a biomarker indicating that five func-

tional sub-networks function as part of a network of early PD patients, with MCI inducing

slow, interrupted evolution of these.

Deep learning. 13 studies used a DL model in some form, either in comparison or alone.

This section focuses solely on the eight studies where it was the most successful model. Five of

these studies focused on classification [121, 135, 136, 157, 160], two focused on biomarker

identification [143, 147] and one focused on prediction [29]. Most studies used a single modal-

ity, with only two studies using a combination. The most commonly used modalities were

imaging (n = 4) [29, 143, 147, 160] and EEG (n = 2) [135, 136]. The average sample size was

146.125, with the highest study using 476 participants [157], and the lowest using only 27

[143]. A common theme in classification studies is the comparison of proposed models to

determine superior performance. However, in DL studies, this consensus does not remain,

with most studies only analysing the overall performance of the model (n = 4) [121, 135, 136,

160], with a single study analysing the model in comparison [157]. Ismail et al. [157] attempted

to identify PD-MCI and PDD in the neuropsychological profile of 467 patients from the PPMI

database using features including MoCA, Semantic Fluency, and patient age. Features from

this profile were used to train six classification models: DT, SVM, K-NN, NB, RF and a custom

four layer MLP. Out of all six models, the MLP achieved the best performance, with an accu-

racy and AUC of 97.5% and 0.995 respectively.

Image analysis and classification are tasks in which DL techniques are most utilised since

they adapt well to a number of different image types and content, even in the same dataset.

This common usage lines up to the large proportion of studies using imaging as a modality,

either alone or in comparison. A common principle in image based DL work is transfer learn-

ing, in which model parameters from a similar, successful problem are adapted to a new prob-

lem as a basis for training.

Ostertag et al. [160] used this technique to analyse MRI combined with clinical characteris-

tics from 134 PD patients (47 stable cognition, 87 declining cognition) with a dual analysis DL

model in which each modality is given its own independent analysis architecture before mak-

ing a joint decision. This network was pre-trained on learned data from a model used in

detecting AD in ADNI before being trained on PPMI data. Transfer learning had a consider-

able impact on performance, increasing the AUC to 0.81, compared with 0.72 on the PPMI

data alone.
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DL techniques are also effectively applied to other data modalities and formats, including

structural and tabulated data. This versatility is exemplified by studies such as Ismail et al.

[157] who leveraged neuropsychological assessment values, and Chung et al. [121] who exam-

ined levels of plasma-borne circulatory tau, β-amyloid, and α-synuclein carried by extracellular

vesicles, age and sex as predictive factors. Chung et al. [121] analysed levels of tau, β-amyloid,

and α-synuclein in the blood stream, age and sex in training a 3 layer MLP. Their model

achieved an accuracy of 91.3% and an AUC of 0.911 during validation. Moreover, these find-

ings shed light on the association between plasma EV tau and cognitive functions, with ele-

vated levels of EV tau and Aβ1–42 in CI patients. These discoveries highlight the potential of

DL in understanding cognitive dysfunction, emphasising its broader applications beyond

imaging. In line with the above theme regarding transfer learning, work by Choi et al. [29]

implemented this technique through the use of an identified cognitive signature of FDG-PET

imaging of the brain in patients with AD. This cognitive signature was identified with a custom

CNN built for classifying AD patients, and was then used as part of the transfer learning proce-

dure to train a separate CNN model for predicting PD patients with MCI who would convert

to PDD. When transferred to this model for identifying conversion from MCI to PDD, the

overall model was able to predict with an AUC performance of 0.81. This clearly shows the

potential benefits for the training of DL models on a framework of previous data and knowl-

edge extracted from tasks trained on different memory disorders. A strong benefit of using DL

models for image analysis is the ability to visualise and interpret the learning process using

activation mapping (AM) [174], which enable understanding which parts of an input image

are most influential in prediction and are used the most by a model during decision making.

Therefore, the usage of such techniques can be used to identify brain regions influential in CI

in PD. Suwalska et al [143] used AM in a custom CNN to assess T1 and T2 weighted MR

sequences to identify the most prevalent brain areas during training. MRI data was gathered

from 18 PD patients (10 PD-NC, 4 PD-MCI, 4 PDD) and used to train the CNN model to dif-

ferentiate each patient group. AMs were constructed per patient to identify the regions used

most in the classification process, and areas with the highest average across all patients consid-

ered the most notable. Overall, this work found the severity of CI can be assessed on regions

identified during model training, with the cerebellum being the most significant in differenti-

ating patient groups. On a similar theme, analysis of DL models can be used to determine the

categories within data that are the most influential for a decision, and can lend themselves well

to identify the most crucial criteria in data. Xu et al. [147] used such techniques with a CNN to

analyse Regions of Interest in Hippocampal Mapping Images (HMIs) of T1 MRI gathered

from 245 PD patients (195 PD, 25 PD-NC, 25 PD-MCI) alongside HC, MCI and AD patients.

Subfields in these HMIs were used to classify these patient groups. Performance results identi-

fied a number of areas that most accurately classified patient groups and function as important

biomarkers for MCI in PD including the left parasubiculum, left HATA, and left

presubiculum.

Discussions

The aim of this systematic review was to evaluate the effectiveness of ML techniques in the

detection and diagnosis of cognitive impairment in PD. Our comprehensive analysis of the

selected studies has highlighted the significant potential that these techniques have to enhance

diagnostic accuracy and provide alternative, non-invasive methods to traditional assessment

methods.

Our key findings have demonstrated that ML is capable of analysing various data modali-

ties—such as imaging, speech patterns, gait and EEG—to effectively identify the presence of CI
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in PD, showing a capability of ML to handle a wide array of data types. Notably, the application

of ensemble learning models, particular the RF model, has shown promising results across

multiple studies, indicating a robustness for handling diverse data.

Moreover, ML methods have been shown to have potential in identifying early markers for

CI development, often before they clinically manifest, which can be crucial in preparing timely

interventions to impact disease progression. Several studies have also recorded significant

diagnostic accuracies, suggesting that ML could significantly improve precision of diagnostic

processes.

Data collection

As is the case in the broader medical research landscape, studies examined in this review prior-

itise data from human participants. This preference stems from the inherent relevance and

authenticity of data obtained directly from those with the condition under investigation.

Engaging with participants directly allows researchers to gather comprehensive insights into

the target population, thereby enhancing overall quality and depth of findings. Whilst other

data sources have been used and are valuable in some contexts, emphasis on first-hand collec-

tion underscores the fundamental importance of real-world patient perspectives in advancing

understanding and treatment of medical conditions. However, it is worth noting that some

studies rely on data from a single geographical restricted centre, potentially limiting generalisa-

bility of findings. To address this and enhance results reliability, further validation efforts are

warranted. This could involve study replication in diverse geographical locations or leveraging

online databases such as the PPMI to validate and extend findings.

A positive trend worth highlighting is the increasing use of online data sources to access

large-scale data required for training ML models, particularly ANNs. This shift is likely driven

by recognition that online databases offer extensive and diverse data opportunities crucial for

training accurate and generalisable ML models. Importantly, databases such as these facilitate

continual growth, ensuring that ML techniques can evolve and improve as more data is avail-

able. This ongoing expansion of resources holds promise for developing more robust and

applicable ML models in clinical research.

Commonly utilised methods have involved use of bodily data such as imaging and EEG,

however it is essential to recognise the significance of considering CI from a variety of perspec-

tives and modalities to encompass all factors affecting the condition. This is significant and

apparent when considering the substantial proportion of studies using more than one modality

in analysis. Use of a multifaceted approach underscores the need to encompass a comprehen-

sive range of data sources to provide a holistic understanding of the subject matter. Further-

more, clinical characteristics have shown to play a pivotal role in the research landscape, as

evident from their inclusion in 17 discovered studies. This demonstrates the prevailing impor-

tance of clinical data as a feature in predictive models. These characteristics provide critical

insights into development and progression of CI, further emphasising this need for a well-

rounded approach in the pursuit of robust and accurate predictions.

Model selection

As shown in Fig 3, employment of ML methods predominantly revolves around tree, SVM

and regression techniques. This is likely attributed to the use of a diverse array of individual

and varying features. These features encompass a broad spectrum of data modalities, aligning

well with the capabilities of these techniques. The inherent adaptability of these techniques

make them particularly suited for the handling of the complex and varying nature of these fea-

tures, contributing to their prominence in analysing CI across diverse data types. Ensemble
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methods, particularly the tree based RF, stand out as a prevalent technique. These methods

have gained popularity due to their ability to combine various predictors of different types and

strategies, creating a unified decision-making process. This amalgamation of predictors serves

the crucial purpose of simplifying complex data, which is increasingly valuable when dealing

with intricate and multi-faceted data modalities, something that is prevalent in CI research.

The adoption of DL techniques, particularly CNNs tailored for specific analysis tasks has

also been notable. This surge is likely driven by the inherent advantages of DL techniques,

which excel at handling complex datasets such as medical imaging data. DL models possess the

unique capability to autonomously learn meaningful data representations without direct

instruction and are increasingly adaptable; these architectures can be designed and fine-tuned

precisely for a particular task, rather than relying on standardised models requiring data adap-

tion. As a result, these techniques have shown considerable performance in the identified stud-

ies, particularly those that are image based, with performance accuracies as high as 80–90%+.

However, it is important that traditional models are not disregarded in tasks like these, with

conventional ML approaches continuing to demonstrate impressive performances, achieving

accuracies ranging from 70% to 95% depending on data modality employed. As such, the

choice of model should always be guided by dataset characteristics. Less complex datasets have

yielded excellent results with traditional models, whilst more intricate data, such as neuroim-

aging data benefit from the sophistication and adaptability of DL models. Whilst the appeal of

more advanced models is undeniable, it is still important to select the most appropriate model

for the unique attributes of a dataset. The decision should be driven by data complexity and

nature, ensuring that the chosen model aligns optimally with research goals and analytical

requirements.

Performance analysis

A majority of studies opted to employ accuracy as a primary performance metric. Within

these studies, diagnostic levels were consistently elevated, surpassing natural chance substan-

tially. Notably, accuracy levels spanned a broad spectrum, from an impressive 99.72% to a

noteworthy 60.5%. A notable trend is that those studies employing CSF data chose to utilise

other performance metrics, including AUC, MAE, R2 and RMSE. This diversity in approaches

underscore the inherent flexibility of ML in catering to specific demands of CI analysis scenar-

ios, whilst identifying the prominence of accuracy as a pivotal benchmark across a range of

techniques and modalities.

Condition classification and prediction

This review has demonstrated the substantial benefit of employing ML techniques for classifi-

cation and prediction of CI in PD. These investigations have identified the efficacy of super-

vised, unsupervised and deep ML approaches to achieve crucial successes. Supervised

techniques involving training models on labelled data of known outcomes have showcased

their ability to accurately classify CI in PD patients. These methods evidently leverage the

wealth of data available to discern patterns and relationships that may be challenging in tradi-

tional analyses. Learning from historical and longitudinal data allowed supervised ML models

to make informed predictions about an individuals CI status, thereby aiding in early detection

and intervention.

Similarly, unsupervised ML techniques, which excel at identifying hidden patterns and

structures in data have proven their worth for this domain, contributing to a deeper under-

standing of CI in PD. These techniques have shown themselves to be useful in identifying sub-

tle groupings or associations between patient groups, identifying potential risk factors or
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disease sub-types that might have gone unnoticed in traditional analyses. Collectively, these

studies have underscored the utility of ML techniques in enhancing the ability to classify and

predict CI. ML has shown itself as a powerful tool for unravelling condition complexities,

offering potentially more accurate diagnoses and personalised treatment strategies in the

future.

The adoption of transfer learning stands out as a significant element in this realm, offering

numerous benefits, with the chief among them being the ability to establish a foundation of

knowledge expanding outside the domains of PD, MCI and PDD. PD-MCI and PDD share

symptoms, presentations and biological underpinnings with other memory disorders and CIs.

By applying transfer learning, researchers have shown the possibilities for using this wealth of

insights and representations garnered from these related domains. Therefore, instead of rely-

ing on ML systems to learn entirely new representations for tasks involving PD-MCI and

PDD, researchers can build upon this existing knowledge. Using models pre-trained on AD,

researchers have benefited from the insights and representations developed in that domain

[29, 160]. This approach acknowledges that PD-related cognitive impairments, such as

PD-MCI and PDD, often exhibit overlapping symptoms and underlying mechanisms with

Alzheimer’s Disease. Instead of starting from scratch, transfer learning allows for a smoother

transition in addressing the cognitive aspects of PD by building upon the established founda-

tions of Alzheimer’s research. Transfer learning not only facilitates transition but also enables

fine-tuning of existing models to better address specific symptoms and progression patterns of

PD and CI. This process benefits the model itself by enhancing its overall accuracy and adapt-

ability and enabling it to generalise more effectively to new, unseen data whilst maintaining

robust predictions against diverse patient profiles which as a result causes the model to become

more versatile and reliable for clinical applications.

This approach saves time and resources, but also enhances ML model robustness and effi-

ciency by enabling the development of more accurate predictive models and better informed

decision making processes. The knowledge base established with transfer learning can also

facilitate cross-disciplinary collaborations and the adaption of insights across domains, accel-

erating progress in understanding and management of CI. It also highlights the importance of

previously acquired knowledge as a valuable resource for further study and encouraging

research to consider outside the boundaries of individual conditions.

Biomarker identification

Feature selection methods underscore the need for a diverse array of data sources beyond data

collected through physical examinations. Whilst this data holds clear importance, it must be

recognised that they should not be an exclusive option for insights in medical analysis. There-

fore, it is unsurprising that many studies reviewed make use of a broad spectrum of data

modalities when attempting to discover biomarkers for CI. In PD research, a wealth of evi-

dence has accumulated showing the promise of a variety of features in predicting the onset

and progression of CI. These features encompass diverse data modalities, reflecting the com-

plex, multifaceted nature of the disease. These findings underscore the importance of consider-

ing a wide array of variables and sources for understanding CI.

Numerous studies have affirmed the potential for identifying biomarkers of CI develop-

ment in PD. Studies in this review have highlighted the versatility of multiple models for iden-

tifying these biomarkers, indicating the need for continued research. The utilisation of

methods such as the SVM and ANN have garnered validation, underscoring their promise in

pinpointing biomarkers across a range of modalities alongside other models. The results of

these studies each provide empirical support for the capability of SVM and ANN models to
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discern valuable biomarkers from various modalities. This further underscores the robustness

and adaptability of these computational approaches in handling the intricate task of biomarker

identification. Feature selection methods have been widely employed in the context of CI in

PD, revealing a substantial array of distinct features that hold potential for identifying the

development of CI in PD patients. This underscores the valuable role of ML techniques in

uncovering biomarkers for CI progression.

In the pursuit of understanding and predicting CI within the PD population, feature selec-

tion methods have emerged as essential tools. These methods have systematically combed

through a diverse set of data attributes, going beyond solely relying on bodily collected fea-

tures, such as those obtained from medical examinations like imaging and EEG. While these

clinical assessments are undeniably important, feature selection methods have illuminated the

fact that they should not be viewed in isolation. Instead, they should be complemented by a

broader spectrum of data sources. By leveraging ML and feature selection techniques,

researchers have identified a multitude of features that can be harnessed for the early detection

and monitoring of CI in individuals with PD. These features encompass a wide range of data

types, including genetic information, demographic factors, lifestyle choices, and environmen-

tal variables. The clear benefit of incorporating this diverse set of features is that it enhances

the accuracy and robustness of predictive models, allowing for more precise identification of

CI risk factors and progression markers.

Furthermore, the application of ML in biomarker discovery for CI in PD has demonstrated

its potential to revolutionise the field of medical research and clinical practice. ML models,

armed with the insights from feature selection, can aid healthcare providers in offering person-

alised treatment plans and interventions to PD patients at risk of developing CI. This holistic

approach not only improves patient care but also paves the way for more effective strategies in

managing and mitigating CI, ultimately enhancing the quality of life for individuals living with

PD.

Research challenges, limitations and recommendations

A notable concern in multiple studies is the use of small sample sizes (<50 subjects), with the

lowest subject count being 17 [144]. Whilst the advantages of applying ML to various out-

comes are evident, these smaller sample sizes can present challenges for models like ANNs that

typically demand datasets with tens of thousands or more samples to achieve optimal perfor-

mance. Gathering such extensive data is intricate, especially in clinical settings focused on

niche areas. Therefore, alternative approaches that ensure the usability of limited data are

crucial.

Similarly, since many studies originate from a clinical rather than computational perspec-

tive, a noticeable gap emerges concerning specifics regarding employed ML techniques. Key

details including architectures, parameters, programming language, training, testing and eval-

uation strategies are often absent. This absence of information renders the replication of such

research a challenge. To ensure findings are practical and reproducible, it would be advanta-

geous for researchers to incorporate these elements into their studies. This inclusion would

facilitate a higher degree of replication and implementation, fostering more robust advance-

ments in ML for CI analysis. Additionally, a recurring theme throughout the studies in this

review is the absence of a consensus regarding the categorisation of patients into different cog-

nitive stages. Some studies adopt categories like NC, MCI, and PDD, while others employ

terms including mild PDD, moderate PDD, impaired cognition, cognitively intact, mental

slowing, mild cognitive deficits and severe deficits. This lack of uniformity in terminology

used to define distinct cognitive states presents a challenge when attempting to draw clear
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parallels and commonalities between various methods and modalities for identifying CI in PD,

potentially complicating efforts to synthesise findings and establish standardised assessment

criteria.

A recurrent theme in the studies identified is the absence of comprehensive descriptions

regarding validation of approaches in a clinical context. These studies emphasise applying ML

to CI, but the omission of detailed information is apparent, raising concerns about the practi-

cal applicability and reliability of these approaches beyond research settings. Ensuring the clin-

ical robustness and effectiveness of these approaches becomes essential, and studies should

incorporate validation protocols that encompass intricacies of real clinical scenarios.

Our assessment using the PROBAST tool has also revealed a concerning prevalence of stud-

ies with potentially high risks of bias in the majority of included studies. Specifically, the lack

of any external validation stands out as a critical shortfall of the approaches, indicating a signif-

icant challenge that still exists with regard to the adoption of ML technologies and the need for

comprehensive external clinical validation. Such issues are further increased by issues with

descriptions of data sources, the mis-allocation of predictors and outcomes and increasingly

small or imbalanced study populations which has the potential to skew overall study outcomes.

Ensuring a balanced and comprehensive number of participants is crucial to mitigating any

domain biases and ensuring the conduction of external validation can further enhance the

credibility and applicability of such research.

Conclusions

In answering the research question posed, this review has provided a comprehensive overview

of studies applying the use of ML techniques to the detection and diagnosis of CI in PD. In this

work, we have discussed the included studies in detail, covering data sources and modalities,

sample sizes, ML methods and their associated outcomes, as well as identifying the most suc-

cessful data modalities for use in ML based clinical analyses, potential biomarkers that could

be used in clinical processes, and the current availability of large scale online databases for

analysis of CI in PD. We have shown consistently that ML has potential for inclusion in diag-

nostic processes for detecting and diagnosing CI in PD. An inherent limitation of this study

lies in its exclusive reliance on research published in English. This approach potentially over-

looks valuable contributions from non-English sources that could have significant impact. By

confining analyses to English-language publications, this work may inadvertently exclude

valuable insights, methodologies, and findings from alternative contexts. Another constraint

stems from the variation in information provided by studies, with pertinent details necessary

for comprehensive comparisons lacking. The absence of key elements, such as descriptions of

data splitting methodologies, training parameters and cross-validation strategies pose chal-

lenges in assessing the robustness and generalisability of the findings. As a result, the scope of

this work is primarily confined to delivering a broad and general overview of research out-

comes that centre around distinct modalities and ML methods. However, as shown, some

studies are still limited and may require more investigation, largely to limit potential biases

and issues arising from the use of small scale participant numbers, something that is not suffi-

cient for use in most ML models. Analysis employing the PROBAST tool identified a concern-

ing prevalence of high risk of bias, with 91.42% of studies classified as high risk due largely in

part to a lack of external validation efforts. This indicates potential for significant challenges in

the current research area, and emphasises the need for methodological improvements and

adherence to validation practices in ML studies utilising clincal data. Despite these challenges

causing an increase in overall risk of bias, the identification of a large proportion of studies

with low risk of bias across multiple domains demonstrates the feasibility of conducting such
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research and it is imperative to address these biases to ensure the applicability and integrity of

any further research efforts.
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45. Çınar E, Tel BC, Şahin G. Neuroinflammation in Parkinson’s Disease and Its Treatment Opportunities.

Balkan Medical Journal. 2022; 39(5):318–333. https://doi.org/10.4274/balkanmedj.galenos.2022.

2022-7-100 PMID: 36036436

46. Tarakad A, Jankovic J. Anosmia and Ageusia in Parkinson’s Disease. International Review of Neurobi-

ology. 2017; 133:541–556. https://doi.org/10.1016/bs.irn.2017.05.028 PMID: 28802932

47. Sapir S, Ramig L, Fox C. Speech and Swallowing Disorders in Parkinson Disease. Current Opinion in

Otolaryngology and Head and Neck Surgery. 2008; 16(3):205–210. https://doi.org/10.1097/MOO.

0b013e3282febd3a PMID: 18475072

48. Inzelberg R, Kipervasser S, Korczyn AD. Auditory Hallucinations in Parkinson’s Disease. Journal of

Neurology, Neurosurgery & Psychiatry. 1998; 64(4):533–535. https://doi.org/10.1136/jnnp.64.4.533

PMID: 9576549

49. Armstrong RA. Visual Symptoms in Parkinson’s Disease. Parkinson’s Disease. 2011; 2011. https://

doi.org/10.4061/2011/908306 PMID: 21687773

50. Westbrook A, Braver TS. Dopamine Does Double Duty in Motivating Cognitive Effort. Neuron. 2016;

89(4):710. https://doi.org/10.1016/j.neuron.2015.12.029

51. Nieoullon A. Dopamine and the Regulation of Cognition and Attention. Progress in Neurobiology.

2002; 67(1):53–83. https://doi.org/10.1016/S0301-0082(02)00011-4 PMID: 12126656

52. Forno LS. The Lewy Body in Parkinson’s Disease. Advances in Neurology. 1987; 45:35–43. PMID:

3030070

53. Wakabayashi K, Tanji K, Odagiri S, Miki Y, Mori F, Takahashi H. The Lewy Body in Parkinson’s Dis-

ease and Related Neurodegenerative Disorders. Molecular Neurobiology. 2012; 47(2):495–508.

https://doi.org/10.1007/s12035-012-8280-y PMID: 22622968

54. van der Zee S, Kanel P, Gerritsen MJJ, Boertien JM, Slomp AC, Müller MLTM, et al. Altered Choliner-

gic Innervation in De Novo Parkinson’s Disease with and Without Cognitive Impairment. Movement

Disorders. 2022; 37(4):713–723. https://doi.org/10.1002/mds.28913 PMID: 35037719

55. Ohno Y, Shimizu S, Tokudome K, Kunisawa N, Sasa M. New Insight into the Therapeutic Role of the

Serotonergic System in Parkinson’s Disease. Progress in Neurobiology. 2015; 134:104–121. https://

doi.org/10.1016/j.pneurobio.2015.09.005 PMID: 26455457

56. Cash R, Dennis T, L’Heureux R, Raisman R, Javoy-Agid F, Scatton B. Parkinson’s Disease and

Dementia: Norepinephrine and Dopamine in Locus Ceruleus. Neurology. 1987; 37(1):42–42. https://

doi.org/10.1212/WNL.37.1.42 PMID: 3796837
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126. Geraedts VJ, Koch M, Kuiper R, Kefalas M, Bäck THW, van Hilten JJ, et al. Preoperative Electroen-

cephalography-Based Machine Learning Predicts Cognitive Deterioration After Subthalamic Deep

Brain Stimulation. Movement Disorders. 2021; 36(10):2324–2334. https://doi.org/10.1002/mds.28661

PMID: 34080712

127. Jennings JL, Peraza LR, Baker M, Alter K, Taylor JP, Bauer R. Investigating the Power of Eyes Open

Resting State EEG for Assisting in Dementia Diagnosis. Alzheimer’s Research and Therapy. 2022; 14

(1):1–12. https://doi.org/10.1186/s13195-022-01046-z PMID: 35932060

PLOS ONE Machine learning for the detection and diagnosis of cognitive impairment in Parkinson’s Disease

PLOS ONE | https://doi.org/10.1371/journal.pone.0303644 May 16, 2024 34 / 37

https://doi.org/10.1136/bmj.g7647
http://www.ncbi.nlm.nih.gov/pubmed/25555855
https://doi.org/10.1186/2046-4053-4-1
http://www.ncbi.nlm.nih.gov/pubmed/25554246
https://doi.org/10.7326/M18-1376
http://www.ncbi.nlm.nih.gov/pubmed/30596875
https://doi.org/10.1007/s00702-020-02227-6
http://www.ncbi.nlm.nih.gov/pubmed/32632889
https://doi.org/10.1016/j.ejrad.2021.109985
http://www.ncbi.nlm.nih.gov/pubmed/34619619
https://doi.org/10.1177/0891988721993556
https://doi.org/10.1177/0891988721993556
http://www.ncbi.nlm.nih.gov/pubmed/33550890
https://doi.org/10.14569/IJACSA.2021.0120414
https://doi.org/10.1007/s10334-022-01030-6
http://www.ncbi.nlm.nih.gov/pubmed/35867235
https://doi.org/10.3390/brainsci12081048
http://www.ncbi.nlm.nih.gov/pubmed/36009111
https://doi.org/10.1186/s12967-023-04158-8
http://www.ncbi.nlm.nih.gov/pubmed/37158918
https://doi.org/10.1007/s11571-022-09868-1
http://www.ncbi.nlm.nih.gov/pubmed/37265660
https://doi.org/10.1096/fj.202100787R
http://www.ncbi.nlm.nih.gov/pubmed/34478572
https://doi.org/10.1002/mds.29678
http://www.ncbi.nlm.nih.gov/pubmed/38054573
https://doi.org/10.1002/mds.28751
http://www.ncbi.nlm.nih.gov/pubmed/34390508
https://doi.org/10.1038/s41531-022-00422-8
https://doi.org/10.1016/j.clinph.2021.01.021
http://www.ncbi.nlm.nih.gov/pubmed/33743299
https://doi.org/10.1002/mds.28661
http://www.ncbi.nlm.nih.gov/pubmed/34080712
https://doi.org/10.1186/s13195-022-01046-z
http://www.ncbi.nlm.nih.gov/pubmed/35932060
https://doi.org/10.1371/journal.pone.0303644


128. Koch M, Geraedts V, Wang H, Tannemaat M, Back T. Automated Machine Learning for EEG-Based

Classification of Parkinson’s Disease Patients. In: Proceedings—2019 IEEE International Conference

on Big Data, Big Data 2019. Institute of Electrical and Electronics Engineers Inc.; 2019. p. 4845–4852.
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