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Abstract

Sepsis-Associated Liver Injury (SALI) is an independent risk factor for death from sepsis.

The aim of this study was to develop an interpretable machine learning model for early pre-

diction of 28-day mortality in patients with SALI. Data from the Medical Information Mart for

Intensive Care (MIMIC-IV, v2.2, MIMIC-III, v1.4) were used in this study. The study cohort

from MIMIC-IV was randomized to the training set (0.7) and the internal validation set (0.3),

with MIMIC-III (2001 to 2008) as external validation. The features with more than 20% miss-

ing values were deleted and the remaining features were multiple interpolated. Lasso-CV

that lasso linear model with iterative fitting along a regularization path in which the best

model is selected by cross-validation was used to select important features for model devel-

opment. Eight machine learning models including Random Forest (RF), Logistic Regres-

sion, Decision Tree, Extreme Gradient Boost (XGBoost), K Nearest Neighbor, Support

Vector Machine, Generalized Linear Models in which the best model is selected by cross-

validation (CV_glmnet), and Linear Discriminant Analysis (LDA) were developed. Shapley

additive interpretation (SHAP) was used to improve the interpretability of the optimal model.

At last, a total of 1043 patients were included, of whom 710 were from MIMIC-IV and 333

from MIMIC-III. Twenty-four clinically relevant parameters were selected for model con-

struction. For the prediction of 28-day mortality of SALI in the internal validation set, the area

under the curve (AUC (95% CI)) of RF was 0.79 (95% CI: 0.73–0.86), and which performed

the best. Compared with the traditional disease severity scores including Oxford Acute

Severity of Illness Score (OASIS), Sequential Organ Failure Assessment (SOFA), Simpli-

fied Acute Physiology Score II (SAPS II), Logistic Organ Dysfunction Score (LODS), Sys-

temic Inflammatory Response Syndrome (SIRS), and Acute Physiology Score III (APS III),

RF also had the best performance. SHAP analysis found that Urine output, Charlson

Comorbidity Index (CCI), minimal Glasgow Coma Scale (GCS_min), blood urea nitrogen

(BUN) and admission_age were the five most important features affecting RF model. There-

fore, RF has good predictive ability for 28-day mortality prediction in SALI. Urine output,
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CCI, GCS_min, BUN and age at admission(admission_age) within 24 h after intensive care

unit(ICU) admission contribute significantly to model prediction.

Introduction

Sepsis is a syndrome of multiple organ dysfunction caused by an abnormal immune response

to infection [1], and being one of the common diseases in intensive care units (ICU), it has

been an important global health problem. The Global Burden of Disease Study, published in

2020, analyzed global, regional and national sepsis incidence and mortality rates from 1990 to

2017 and reported that there were approximately 48.9 million cases of sepsis in 2017, with

about 11 million sepsis-related deaths, accounting for 19.7% of all deaths worldwide [2]. High

risk of rehospitalization and high cost of treatment for sepsis [3,4]. In the United States, sepsis

was the most expensive condition treated, amounting to $38.2 billion or 8.8% of aggregate

costs for all hospital stays in 2017 [5].

The liver is a vital organ for the human body which regulates the balance of metabolism

and immunity [6,7]. The liver is essential for regulating immune defense during sepsis and the

mechanisms it is involved with are lipopolysaccharide detoxification, bacterial clearance,

acute-phase protein and cytokine release, inflammation metabolic regulation, etc. [8] The pro-

duction of large amounts of endotoxins and the release of inflammatory factors in sepsis lead

to abnormal immune responses that impair the function of multiple organs, including the liver

[9]. When there is an inappropriate immune response or excessive inflammation in the liver,

the ability to clear pathogens is impaired and liver metabolism is disrupted. Sepsis associated

liver injury (SALI) can be caused by a variety of factors, including pathogens or shock, an exag-

gerated inflammatory response, persistent microcirculation failure, or even oxidative stress

[10]. There are two main manifestations of SALI: ischemic hypoxic liver injury and sepsis-

related cholestasis. There are no unified diagnostic criteria for SALI, and the Surviving Sepsis

Campaign (SSC) Guidelines recommended to use total bilirubin(TBIL) >2 mg/dL and inter-

national standardized ratio (INR) >1.5 as the diagnostic criteria [11]. In the assessment of the

severity of disease, Sequential Organ Failure Assessment (SOFA) [12], Oxford Acute Severity

of Illness Score (OASIS) [13], Acute Physiology Score III (APS III) [14], Logistic Organ Dys-

function Score (LODS) [15], Simplified Acute Physiology Score II (SAPS II) [16], Systemic

Inflammatory Response Syndrome (SIRS), and Glasgow Coma Scale (GCS) were some tradi-

tional scorings of disease severity.

Studies have shown that the incidence of SALI in the U.S. adult sepsis population is 34%

and 46%, which is considered as an independent risk factor for death from sepsis, and that

patients who develop SALI have an increased risk of death of nearly 54% [9,17]. The high mor-

tality rate of SALI may be related to the lack of effective diagnostic tools and early warning sys-

tems. The aim of this study is to develop an explicable machine learning model that can

predict the 28-day mortality of SALI early, provide early warning for SALI, and remind clini-

cians to conduct effective clinical interventions in patients to reduce their 28-day mortality.

Methods

Data source

This is a retrospective cohort study based on data the extracted from two open databases at the

same center, including critical care databases v2.2 (Medical Information Mart for Intensive

Care (MIMIC-IV)) (2008 to 2019) and v1.4 (MIMIC-III) (2001 to 2008) collected from Beth
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Israel Deaconess Medical Center in Boston. We were granted access to the database (Chengli

Wen ID 11718300).

Research population

We included patients�18 years old with sepsis which was defined as infection with a SOFA

score�2 according to the sepsis 3.0 diagnostic criteria [1], with an ICU stay�24 h and at least

one occurrence of SALI (SALI is defined as TBIL>2 mg/dL and INR>1.5 in sepsis [11]). We

excluded patients aged<18 years, without liver injury, with ICU stay <24h, and all patients

with other types of liver disease. Patients with human immunodeficiency virus (HIV) infec-

tion, pregnant women, and patients without biochemical and coagulation tests within 24h of

admission to the ICU were also excluded.

Data collection

We used Structured Query Language (SQL, version 15.1) to extract data from the two data-

bases. To develop optimal early predictive interpretable machine learning model for 28-day

mortality in patients with SALI, we extracted seven types of data and 79 candidate clinical fea-

tures. We retrospectively collected the following data: (1) demographic characteristics, includ-

ing age, sex, body weight, body height, and body mass index (BMI); (2) medical history which

was obtained according to the International Classification of Diseases (ICD)-9 and ICD-10,

including hypertension, diabetes, congestive heart failure, myocardial infarction, peptic ulcer,

cerebrovascular disease, chronic obstructive pulmonary disease, kidney disease, and Charlson

Comorbidity Index (CCI) [18]; (3) vital signs, including heart rate, systolic blood pressure

(SBP), diastolic blood pressure (DBP), mean arterial pressure (MAP), respiratory rate(RR),

body temperature, and oxygen saturation (SPO2); (4) laboratory parameters, including white

blood cell count, neutrophils, lymphocytes, platelets, hematocrit, red blood cell distribution

width (RDW), hemoglobin, Hypersensitive c-reactive protein (hs-CRP), activated partial

thromboplastin time (APTT), prothrombin time (PT), partial thromboplastin time (PTT),

INR, fibrinogen, alanine aminotransferase (ALT), aspartate aminotransferase (AST), alkaline

phosphatase (ALP), amylase, TBIL, lactate dehydrogenase (LDH), albumin, triglyceride, high-

density lipoprotein, low-density lipoprotein, blood urea nitrogen (BUN), serum creatinine

(Cr), creatine phosphokinase, creatine kinase MB, high sensitivity troponin T, N-terminal pro

brain natriuretic peptide (NT-pro-BNP), lactate, pH, pO2, pCO2, PaO2/FiO2 ratio, base excess,

anion gap, bicarbonate, serum calcium, serum chloride, serum sodium, serum potassium, and

blood glucose; (5) traditional scores for assessing disease severity, including OASIS, SOFA,

SIRS, SAPS II, LODS, GCS, and APSIII; and (6) urine volume on the first day of ICU admis-

sion; and (7) others, including duration of ICU stay this time, infection site, dopamine (ug/kg.

min), adrenalin (ug/kg. min), and noradrenaline (ug/kg. min), dobutamine (ug/kg. min). The

28-day mortality rate was an outcome indicator. A detailed list of the included variables is

shown in S1 Table.

Ethics statements

The databases were approved by the Massachusetts Institute of Technology and Beth Israel

Deaconess Medical Center. This study is a retrospective study and does not affect clinical treat-

ment and care; Therefore, the ethical approval statement and informed consent of each patient

included in the study were waived [19]. This study is consistent with the Transparent Report-

ing of Multivariate Predictive Models for Individual Prognosis or Diagnosis (TRIPOD): TRI-

POD statement [20], and the TRIPOD checklist showed in S2 Table.
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Data preprocessing

All data processing was done in the R or python environment. First, the cohorts from the two

databases were divided into either the death group or the survival group (Patient outcome

defined as 1 for death and 0 for survival), and the differences in each of the clinical features

between the two group were compared. Second, we conducted a missing value analysis

(S3 Table) and removed features with missing values exceeding 20%. Third, we used multiple

interpolation to interpolate features with less than 20% missing values. The data overlap before

and after interpolation were good, and the distribution of the original and interpolated data is

shown in S1 Fig. Then, based on the Lasso-CV method with an optimal regularization parameter

of 0.113 for feature screening of the interpolated data after excluding SIRS, SOFA, OASIS, SAP-

SII, LODS, and APSIII, which are comprehensive scores that can comprehensive assessment the

severity of the disease, 24 features were ultimately selected to develop the model (S4 Table).

Model development and validation

The data extracted from MIMIC-IV were randomly divided into training and internal valida-

tion sets according to 7:3, and the data from MIMIC-III that did not overlap with MIMIC-IV

were used as the external validation set. We chose the following eight models in the training

set for model training: Random Forest (RF), Logistic Regression, Decision Tree, Extreme Gra-

dient Boost (XGBoost), K Nearest Neighbor Model (KNN), Support Vector Machine (SVM),

Network for Generalized Linear Models in which the best model is selected by cross-validation

(CV_glmnet), and Linear Discriminant Analysis (LDA). Internal and external validation sets

were used to test the performance of the model. We used area under the curve (AUC), accu-

racy, precision, recall, and specificity to evaluate the performance of the models, and the most

important of these indicators was AUC. The optimal model was compared with the traditional

clinical disease severity scores (SIRS, SOFA, OASIS, SAPSII, LODS, and APSIII) to better pre-

dict the 28-day mortality risk of patients with SALI, in order to alert the clinicians to make

early interventions. We hyper-parameterized the optimal model to obtain the optimal perfor-

mance of the model.

Model explainability

The Shapley additive explanations (SHAP) method was used to improve the interpretability of

the final model. SHAP is a machine learning interpretation method that can be used to interpret

the importance of features in model prediction results [21]. It is based on the concept of Shapley

value in cooperative game theory and uses an additive method to calculate the contribution of

each feature to the model prediction results. The SHAP algorithm can provide an explanatory

value for each feature, indicating the degree of influence of the feature on the model’s prediction

results, and the results of the calculation can be used to explain not only the feature importance

of individual predictions, but also the feature importance distribution of the entire dataset.

Statistical analysis

Values are expressed as medians (interquartile range) for continuous variables and totals (per-

centages) for categorical variables. The rank sum test was used for continuous variables and

the Chi-square test for categorical variables. After data preprocessing and feature selection, we

developed eight popular machine learning models to predict 28-day mortality in patients with

sepsis-related liver injury. The overall performance of each model was evaluated on their

AUC, accuracy, precision, recall, and specificity. The best performing model was interpreted

using Shapley values.
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All calculations and analyses were performed using R 4.2.1 and Python 3.7 software. All sta-

tistical tests were 2-sided, and P values<0.05 were considered to be statistically significant.

Results

Baseline characteristics

There was a total of 73,181 records in MIMIC-IV, and after screening the records based on the

inclusion and exclusion criteria, 710 records were finally obtained. Of these, 497 cases were

used as the training set and 213 cases were used as the internal validation set. MIMIC-III

(2001–2008) included 28,391 records, with 333 patients ultimately included as an external vali-

dation set. The flow chart of this study is shown in Fig 1. Table 1 shows the baseline

Fig 1. The flow chart of this study. A. Screening Process for MIMIC-IV. B. Screening Process for MIMIC-III.

https://doi.org/10.1371/journal.pone.0303469.g001
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Table 1. Baseline characteristics of the cohort from MIMIC-IV.

Characteristics All(N = 710) Survival(N = 424) Non-survival(N = 286) P value

Demographic

Age, year 68.4(57.5,78.8) 66.1(54.2,77.2) 70.6(62,80.9) <0.001

Sex 0.034

Male, n (%) 404(56.9) 255(60.1) 149(52.1)

Female, n (%) 306(43.1) 169(39.9) 137(47.9)

Body weight, kg 80.6(66.0,96.0) 82(67.2,98.6) 78.3(64.5,93) 0.018

Height, cm

BMI, kg/m2
168.9(160,178)

27.4(24.0,31.3)

170(160,178)

27.3(24.2,31.3)

168.0(161.0,175.0)

27.7(23.4,31.7)

0.030

0.403

Comorbidities

Charlson Comorbidity Index 6.0(4.0,8.0) 6.0(4.0,7.0) 7.0(5.0,9.0) <0.001

Hypertension,n(%) 462(65.1) 244(57.5) 218(76.2) 0.432

Diabetes,n(%) 225(31.7) 128(30.2) 97(33.9) <0.001

Congestive heart failure,n(%) 312(43.9) 181(42.7) 131(45.8) 0.412

Myocardial infarction,n(%) 137(19.3) 67(15.8) 70(24.5) 0.022

Peptic ulcer,n(%) 34(4.8) 20(4.7) 14(4.9) 0.913

Cerebrovascular disease,n(%) 80(11.3) 50(11.8) 30(10.5) 0.590

Chronic pulmonary disease,n(%) 169(23.8) 98(23.1) 71(24.8) 0.599

Renal disease,n(%) 214(30.1) 120(28.3) 94(32.9) 0.194

Vital signs on day 1

Heart rate, bpm 96(82,111) 94(81,109) 98(85,112) 0.082

Systolic blood pressure, mmHg 109(96,128) 110(96,129) 108(95,126) 0.401

Diastolic blood pressure, mmHg 64(53,76) 64(53,75) 63(53,78) 0.624

Mean arterial pressure, mmHg 75(64,89) 76(64,87) 74(64,91) 0.758

Respiratory rate, 20(16,25) 20(16,25) 21(18,26) 0.023

Body temperature, ˚C 36.7(36.3,37.2) 36.8(36.4,37.2) 36.7(36.2,37.1) 0.010

SpO2, % 98(95,100) 98(96,100) 98(95,100) 0.094

Laboratory findings on day 1

White blood cell, ×103/uL 11.3(7.1,16.9) 11.4(7.4,17.4) 11.1(6.7,15.9) 0.247

Neutrophil, % 82.0(71.2,88.5) 82.0(72.0,88.1) 82.0(69.6,89.0) 0.764

Lymphocyte, % 8.0(4.0,15.6) 8.0(4.0,15.2) 7.7(4.0,15.9) 0.942

Red blood cell distribution width 16.1(14.5,18.2) 15.7(14.2,17.7) 16.6(14.7,18.6) <0.001

Platelets, ×103/uL 154.5(92.0,224.2) 163.0(101.5,228.0) 139.0(74.0,211.0) 0.002

Hematocrit, % 30.5(26.3,36.2) 30.8(26.5,37) 30.2(26.0,35.3) 0.202

Hemoglobin,g/dL 9.9(8.4,11.9) 10.0(8.5,12.2) 9.6(8.3,11.5) 0.032

Hypersensitivec-reactive protein, mg/L 203.4(113.9,246.4) 231.0(203.4,260.0) 123.7(103.0,220.6)

D_dimer, ng/mL 5774(3198.0,7301.5) 4626.5(2798.3,5850.5) 8433(5660,8614) 0.400

Prothrombin Time, s 18.2(15.3,22.8) 18.0(15.4,21.9) 28.5(15.2,25.8) 0.294

International normalized ratio

Partial thromboplastin time, s

1.7(1.4,2.1)

36.6(30.7,47.3)

1.7(1.4,2.0)

35.7(30.5,46.2)

1.7(1.4,2.4)

37.2(31.5,49.8)

0.276

0.101

Fibrinogen, mg/dL 257(165,407) 251(166.5,401) 288(163,433) 0.647

Alanine aminotransferase, U/L 40.0(21.0,104.0) 43.0(21.0,114.0) 38.0(21.5,84.0) 0.423

Alkaline phosphatase, U/L 110.5(67.8,194.0) 99(62,178.8) 126.0(79.5,212.0) <0.001

Aspartate aminotransferase, U/L 75(37.8,168.5) 75(36,174) 76(41,163) 0.924

Amylase, U/L 46(33,125) 46(34,107) 49.5(28.8,171.8) 0.953

Total bilirubin, mg/dL 2.9(2.1,4.4) 3.0(2.2,4.3) 2.8(1.7,4.6) 0.144

Lactate dehydrogenase, U/L 362.0(252.0,603.0) 338.0(236.0,521.0) 440.5(283.3,792.2) <0.001

Albumin, g/L 2.8(2.4,3.4) 3.0(2.5,3.4) 2.7(2.2,3.2) <0.001

ABLI 0.07(-0.06,0.19) 0.09(-0.02,0.20) 0.07(-0.06,0.20) 0.469

(Continued)
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Table 1. (Continued)

Characteristics All(N = 710) Survival(N = 424) Non-survival(N = 286) P value

Triglyceride, mg/dL 119.0(83.0,198.5) 151.5(103.5,244.3) 92.5(78.5,112.3) 0.034

High-density lipoprotein, mg/dL 31.0(21.0,38.0) 34.0(22.8,37.8) 31.0(23.0,42.0) 0.830

Low-density lipoprotein, mg/dL 57.0(41.5,86.5) 59.0(42.0,83.0) 55.0(42.5,78.5) 0.755

Blood urea nitrogen, mg/dL 28.0(18.0,48.0) 25.0(16.0,40.0) 36.0(22.0,57.0) <0.001

Serum creatinine, mg/dL 1.4(0.9,2.1) 1.3(0.9,1.9) 1.5(1.0,2.4) 0.001

Creatine phosphokinase, U/L 137.0(60.0,494.0) 137.5(65.0,390.8) 128.0(59.0,521.0) 0.927

Creatine kinase MB, U/L 4.0(3.0,10.0) 4.0(2.0,8.0) 5.0(3.0,11.5) 0.302

High sensitivity troponin T, ug/L 0.07(0.03,0.27) 0.07(0.03,0.23) 0.08(0.03,0.29) 0.849

N-terminal pro brain natriuretic peptide, pg/mL 6898(2386,17547) 6870.5(1944.3,21520.3) 7934(2586,14921) 0.974

Lactate, mmol/L 2.3(1.5,4.0) 2.1(1.4,3.4) 2.3(1.5,4.0) <0.001

pH 7.36(7.28,7.44) 7.36(7.29,7.43) 7.36(7.26,7.44) 0.589

pO2, mmHg 126(81,247) 134(86,254) 112.5(74.3,206.5) 0.006

pCO2, mmHg 38(32.45) 39(33,45) 37(32,45) 0.187

PaO2/FiO2 ratio 225.5(135.2,323.) 240(146.3,345.9) 193.8(123.5,308.6) 0.061

Base excess, mmol/L -2(-6,0) -2(-6,1) -2(-8,0) 0.106

Anion gap, mmol/L 17(14,20) 16(13,19) 17(15,20) <0.001

Bicarbonate, mmol/L 21(18,24) 21(18,25) 21(17,24) 0.079

Serum calcium, mmol/L 8.1(7.6,8.7) 8.2(7.7,8.7) 8.1(7.6,8.7) 0.205

Serum chloride, mmol/L 102(97,107) 103(98,108) 101(96,106) 0.004

Serum sodium, mmol/L 138(134,141) 138.0(134.0,140.5) 137(133,141) 0.170

Serum potassium, mmol/L 4.3(3.7,4.8) 4.2(3.7,4.7) 4.3(3.7,4.9) 0.288

Blood glucose, mg/dL 130(103,167) 128(105,161) 133(100.0,176.0) 0.599

Others

Duration of ICU stay this time, day

Site of infection

5.2(2.7,10.9) 6.2(3.0,13.0) 4.5(2.4,7.7) <0.001

Intestinal, n(%) 50(7.0) 33(7.8) 17(5.9) 0.348

Urinary, n(%) 117(16.5) 72(17.0) 45(15.7) 0.661

Lung, n(%) 162(22.8) 90(21.2) 72(25.2) 0.219

catheter_related, n(%) 40(5.6) 25(5.9) 15(5.2) 0.712

skin_and_soft_tissue, n (%) 57(8.0) 33(7.8) 24(8.4) 0.770

abdominal_cavity, n (%) 94(13.2) 72(17.0) 22(7.7) <0.001

Dopamine (ug/kg. min) 10.01(5.00,15.03) 10.02(5.00,15.00) 10.01(5.00,15.04) 0.950

Adrenalin (ug/kg. min) 0.07(0.04,0.13) 0.06(0.04,0.10) 0.12(0.07,0.27) <0.001

Noradrenaline (ug/kg. min) 0.25(0.12,0.45) 0.20(0.10,0.40) 0.30(0.16,0.50) <0.001

Dobutamine (ug/kg. min) 5.00(3.00,7,51) 5.00(3.75,5.54) 5.01(2.50,7.52) 0.753

Urine output on day 1, mL 1221(613,2026) 1500(878,2270) 382(780,1650) <0.001

Severity of illness scores

GCS

SIRS

SOFA

OASIS

13(8,14)

3(3,4)

10(7,13)

39(32,46))

13(9,14)

3(3,4)

9(7,12)

37(31,44)

11(6,14)

3(3,4)

11(8,14)

42(36,50)

0.021

0.195

<0.001

<0.001

SAPSII 47(38,58) 43(35,52) 54(44,63) <0.001

LODS 8(6,11) 7(5,10) 10(7,12) <0.001

APSIII 72(56,94) 64(50,85) 82(67,105) <0.001

ABLI: Albumin-bilirubin.

https://doi.org/10.1371/journal.pone.0303469.t001
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characteristics of the entire cohort from MIMIC-IV, as well as the death and survival groups.

Baseline characteristics of the cohort from MIMIC-III are shown in S5 Table. The cohort from

MIMIC-IV included 404 male (56.9%) and 306 female (43.1%), with 424 survivors (59.7%)

and 286 deaths (40.3%), and the median (interquartile range [IQR]) age was 68.4 (57.5,78.8)

years. The age of patients in the death group (70.6[62,80.9]) was significantly higher than that

in the survival group (66.1[54.2,77.2]). Compared to the survival group, the death group had a

higher CCI (6.0[4.0,7.0] vs 7.0[5.0,9.0], P<0.001) and more patients with diabetes (97(33.9%)

vs 128(30.2%), P<0.001) and Myocardial infarction (67(15.8%) vs 70(24.5%), P = 0.022). In

addition, among the laboratory test indices, RDW (15.7[14.2,17.7] vs 16.6[14.7,18.6],

P<0.001), ALP (15.7[14.2,17.7] vs 99[62,178.8], P<0.001), LDH (338.0[236.0,521.0] vs 440.5

[283.3,792.2], P<0.001), BUN (25.0[16.0,40.0] vs 36.0[22.0,57.0], P<0.001), Cr (1.3[0.9,1.9] vs

25.0[16.0,40.0], P = 0.001), and Lactate (2.1[1.4,3.4] vs 2.3[1.5,4.0], P<0.001) were higher in

the death group, while pO2 (134[86,254] vs 112.5[74.3,206.5], P = 0.006), Albumin (3.0

[2.5,3.4] vs 2.7[2.2,3.2], P<0.001), Platelets (163.0[101.5,228.0] vs 139.0[74.0,211.0], P = 0.002),

and Hemoglobin (139.0[74.0,211.0] vs 10.0[8.5,12.2], P = 0.032) were lower. We also found

that the survival group had a longer ICU stay (6.2[3.0,13.0] vs 4.5[2.4,7.7], P<0.001) and 24h

urine output (1500[878,2270] vs 382[780,1650], P<0.001) than the death group. All of the

scores for disease severity, except for the SIRS score, were significantly higher for the death

group than the survival group.

Model development and validation

Twenty-four features were screened for model construction (S4 Table). The features coeffi-

cients were plotted in Fig 2. A positive value of the coefficient of identity indicates a positive

effect on 28-day mortality, while a negative value of the coefficient indicates a negative

effect.

Both internal and external validation sets were used to evaluate the model. In the internal

validation cohort, the RF model had good predictive power in predicting sepsis-related liver

injury 28-day mortality, with a maximum AUC. 0.79 (95% CI: 0.73–0.86), as compared to

CV_glmnet (AUC. 0.76 (95% CI: 0.70–0.83)), Support Vector Machine (AUC. 0.78 (95% CI:

0.72–0.85)), Logistic Regression (AUC. 0.78 (95% CI: 0.70–0.83%)), LDA (AUC. 0.77 (95% CI:

0.70–0.84)), K Nearest Neighbor Model (AUC. 0.69 (95% CI: 0.61–0.76)), XGBoost (AUC.

0.68 (95% CI: 0.61–0.76)), and Decision Tree (AUC. 0.67 (95% CI: 0.59–0.75)). Receiver Oper-

ating Characteristic (ROC) were plotted to evaluate the performance of the models, and the

ROC curves for the internal validation set and the external validation set are shown in Fig 3.

The AUC, accuracy, Precision, Recall, Specificity of the eight models constructed were com-

pared in Table 2.

We selected the top three models in terms of AUC value for Decision Curve Analysis

(DCA), and RF remained the best performing model among them (Fig 4). The RF model

showed better predictive performance when compared to the traditional disease severity

scores (SIRS (AUC.0.53 (95% CI: 0.45–0.60)), SOFA (AUC. 0.62 (95% CI: 0.55–0.70)),

OASIS (AUC. 0.62 (95% CI: 0.55–0.70)), SAPSII (AUC. 0.61 (95% CI: 0.53–0.69)), LODS

(AUC. 0.65 (95% CI: 0.58–0.73)), and APSIII (AUC. 0.61 (95% CI: 0.54–0.69)). The ROCs

are shown in Fig 5, and Table 3 compared performance evaluation of RF and traditional dis-

ease severity score in the internal validation set. RF was the optimal model for predicting

28-day mortality in patients with SALI. We also compared the predictive performance of the

models in the external validation set and the results are shown in S6 and S7 Tables. Hyper-

parameter tuning resulted in better predictive performance of the model, and Table 4 dis-

plays the result.
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Model explainability

To improve the clinical utility of the model, we used the SHAP method to determine which

features contribute to the model’s prediction of 28-day mortality in patients with sepsis, which

is shown in Fig 6. Fig 6A shows the distribution of the SHAP values of the top 20 clinical fea-

tures: each point in the figure represents a feature, and the position of the point indicates the

SHAP value of the feature, with the value representing the magnitude of the feature’s contribu-

tion to the model output. If the value is positive, the feature positively influences the output; if

the value is negative, the feature negatively influences the output. Red color indicates high val-

ues and blue color indicates low values. A darker color indicates a stronger influence of the fea-

ture on the target feature. Fig 6A shows a low SHAP value for urine output and GCS_min that

indicated a positive influence on 28-day mortality, while the CCI, BUN and admission_age

displayed an opposite trend. The bar chart was formed by ranking the features from high to

low according to their average SHAP absolute values, indicating the degree of the contribution

of each feature to the whole model. The larger the SHAP absolute value is, the more important

the feature is, and the greater impact it has on the model output results. From Fig 6B, it is easy

to see that the top five clinically important features were urin output, CCI, GCS_min, BUN

and admission_age.

Fig 2. Feature coefficients.

https://doi.org/10.1371/journal.pone.0303469.g002
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Fig 3. ROC curves of the predictive model. A. Internal validation set. B. External validation set.

https://doi.org/10.1371/journal.pone.0303469.g003

PLOS ONE An machine learning model for predicting 28-day mortality in patients with sepsis-associated liver injury

PLOS ONE | https://doi.org/10.1371/journal.pone.0303469 May 20, 2024 10 / 19

https://doi.org/10.1371/journal.pone.0303469.g003
https://doi.org/10.1371/journal.pone.0303469


Based on the summary plot of SHAP, we further derived the top 5 influential SHAP depen-

dency plots to explain the effect of clinical characteristics on the risk of 28-day death (Fig 7).

The vertical axis of the SHAP dependency plot is the SHAP value of the clinical characteristic,

while the horizontal axis is the range of variation of the clinical characteristic, where a SHAP

value higher than zero indicates that the patient has an increased risk of 28-day death.

Table 2. Compared performance evaluation of 8 machine learning classification models in predicting 28-day mortality rate in the internal validation set.

Classifiers AUC Accuracy (%) Precision (%) Recall Specificity (%)

random forest 0.79 74.65 75.52 0.85 59.30

classif.cv_glmnet

classif.svm

0.76

0.78

69.95

72.30

69.57

75.76

0.88

0.79

43.02

62.79

classif.log_reg 0.78 74.65 76.26 0.83 61.63

classif.lda 0.77 73.24 75.00 0.83 59.30

classif.kknn 0.69 61.03 66.92 0.69 50.00

Classif.xgboost 0.68 65.26 69.92 0.73 53.48

classif.rpart 0.67 66.67 69.72 0.78 50.00

https://doi.org/10.1371/journal.pone.0303469.t002

Fig 4. DCA curves of the top three best-performing models.

https://doi.org/10.1371/journal.pone.0303469.g004
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Discussion

We developed and validated a predictive model using a large dataset in order to build a valid,

stable, and interpretable model to predict 28-day mortality in patients with SALI. Among the

multiple models developed, RF was the most reliable and stable and had the best predictive

performance. We compared RF with the traditional disease severity scores (SIRS, SOFA,

OASIS, SAPSII, LODS, and APSIII) and found that the RF model was still performed the best.

An external validation of the model was performed, confirming the stability of RF. To date, no

researchers have developed a predictive model for 28-day mortality in patients with SALI, and

no studies have used multi-model screening for optimal model development. Some researchers

have used nomogram to predict in-hospital mortality and 90-day mortality in patients with

SALI, but they have only compared the developed model with some of the traditional disease

severity scores [22,23]. We also performed hyperparameter tuning of the model after develop-

ing the optimal model to optimize the predictive performance of the model [24,25]. In addi-

tion, we screened the five clinical features that contributed most to the model, which were

Urine output, CCI, GCS, BUN, and admission_age. Therefore, clinical features can serve as

early warning.

Shapley value was used to explain the opacity of the model [26]. Model opacity refers to the

opacity of the intermediate process between the input of data and the output of results [27,28].

From Fig 7A, Shapley value was 0 when the urine volume was about 1000 ml within 24 h after

admission, and the Shapley value decreased, which showed a negative effect on 28-d mortality

in SALI, when the urine volume increased. The GCS value for a Shapley value of 0 is approxi-

mately 10 from Fig 7C, and its effect on 28-d mortality in SALI is consistent with urine output.

However, the effect of CCI, BUN and admission_age on 28-day mortality in SALI were oppo-

site to the trend of the first two features. The Shapley values tended to approach 0 when the

CCI, BUN and admission_age were about 6, 22 and 65, respectively.

Fig 5. ROC curves of the random forest and traditional disease severity scores. A. Internal validation set. B.

External validation set.

https://doi.org/10.1371/journal.pone.0303469.g005

Table 3. Compared performance evaluation of random forest and traditional disease severity scores in predicting 28-day mortality rate in the internal validation

set.

Model/scores AUC Accuracy(%) Precision(%) Recall Specificity(%)

Random forest 0.79 74.65 75.52 0.85 59.30

Apsiii 0.61 55.40 61.11 0.69 34.89

Lods 0.65 62.44 63.91 0.85 29.07

Oasis 0.62 63.83 65.24 0.84 33.72

Sapsii 0.61 58.69 64.44 0.69 44.19

Sirs 0.53 59.62 59.62 1.00 0.00

Sofa 0.62 64.32 64.25 0.91 25.58

https://doi.org/10.1371/journal.pone.0303469.t003

Table 4. Compared performance of the random forest model before and after hyperparameter tuning.

Random Forest

(parameter set)

AUC Acc(%) Precision(%) Recall Specificity(%)

Before 0.79 74.65 75.52 0.85 59.30

After 0.80 74.65 75.52 0.85 59.30

https://doi.org/10.1371/journal.pone.0303469.t004
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It is well known that patients with severe sepsis have severely impaired microcirculation

and reduced end-organ tissue perfusion, exacerbating organ damage. Urine output is one of

the traditional indicators of tissue perfusion that can be used to assess microcirculation

[29]. A study by Heffernan et al. on the relationship between urine output and mortality in

critically ill patients showed that a urine output threshold of less than 0.5 mL/kg/hr moder-

ately predicted mortality in ICU inpatients [30]. This serves as a reminder to clinicians that

they need to focus not only on the total amount of urine output, but also on changes to

urine output over time to detect changes in the patient’s microcirculatory concerns in a

timely manner. Bun is one of the indicators used to assess kidney function. wen et al.

showed that bun greater than or equal to 21 mg/dl is one of the most important predictors

of mortality risk in patients with sepsis, which is almost consistent with our results [31].

The CCI, developed in 1987, is considered the gold standard for assessing comorbidities in

clinical studies [32], as a tool used to predict long-term mortality in patients [33]. Previous

studies have also shown an increase in patient mortality with increasing CCI [34,35], consis-

tent with our results. We usually use the GCS which is a scale used to assess a patient’s level

of consciousness [36]. Lai Q et al. incorporated GCS into a model construct to assess in-hos-

pital mortality in patients with sepsis. Our model and that of Lai Q et al. consistently show

that GCS is an important clinical indicator in predicting the risk of death in patients with

sepsis [37]. As for the admission_age, as people aging, their bodily functions gradually dete-

riorate, and the functioning of their organs diminishes. This may explain why admissio-

n_age was one of the top five important predictors of 28-day mortality in patients with

sepsis-related liver injury.

We found that the top 5 metrics that had the greatest impact on predicting performance

were not liver function-related metrics. The ALBI grade is a new score for assessing liver func-

tion, which was developed by Dr. Philip J. Johnson, Professor of Translational Oncology at the

University of Liverpool, UK [38]. However, due to too many missing values, more than 40%

(S4 Table), it was excluded when incorporating the clinical features used to construct the

model, and in Table 1, no statistically significant difference between the two groups of ABLI in

the SALI death group and survival group. Moreover, liver function related measurements,

except ALP death group was significantly higher than the stock group, other measurements of

the two groups of patients were not significantly different, in Table 1. SALI is a hepatic

impairment caused by sepsis, usually accompanied by other organ injuries, only liver function

impairment-related indexes are not sufficient to represent the overall severity of this group of

patients, and there is no significant difference between liver function-related indexes in the

death group and the survival group, they may be the reason for the absence of indicators of

liver injury among the five most important indicators affecting the predictive performance of

the model.

There are some limitations in our study. First, our modeling used a single-center dataset

and was a retrospective study; In addition, non-overlapping dataset with MIMIC-IV in

MIMIC-III was used as an external validation queue, and the chronology was not forward-

looking; Third, we focused only on the clinical indicators within 24 h after ICU admission

and did not assess the impact of changes in the clinical features on the outcomes during the

ICU stay. Therefore, further design of multicenter prospective studies is needed to validate

our findings.

Fig 6. SHAP summary chart. A. SHAP values showing the influence of different features on the output of RF Model.

B. Mean absolute SHAP values for each clinical feature.

https://doi.org/10.1371/journal.pone.0303469.g006
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Fig 7. SHAP dependency plot of the top 5 influential clinical features on model outcomes. A. Urine output; B. CCI; C. GCS_min; D. BUN; E.

Admission_age.

https://doi.org/10.1371/journal.pone.0303469.g007
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Conclusion

RF machine learning models have good predictive ability for 28-day mortality prediction in

SALI. Urine output, CCI, GCS-min, BUN and admission age within 24 h of ICU admission

contribute significantly to model prediction.
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