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Abstract

Nowadays, federated learning is one of the most prominent choices for making decisions. A

significant benefit of federated learning is that, unlike deep learning, it is not necessary to

share data samples with the model owner. The weight of the global model in traditional fed-

erated learning is created by averaging the weights of all clients or sites. In the proposed

work, a novel method has been discussed to generate an optimized base model without

hampering its performance, which is based on a genetic algorithm. Chromosome represen-

tation, crossover, and mutation—all the intermediate operations of the genetic algorithm

have been illustrated with useful examples. After applying the genetic algorithm, there is a

significant improvement in inference time and a huge reduction in storage space. Therefore,

the model can be easily deployed on resource-constrained devices. For the experimental

work, sports data has been used in balanced and unbalanced scenarios with various num-

bers of clients in a federated learning environment. In addition, we have used four famous

deep learning architectures, such as AlexNet, VGG19, ResNet50, and EfficientNetB3, as

the base model. We have achieved 92.34% accuracy with 9 clients in the balanced data set

by using EfficientNetB3 as the base model using a GA-based approach. Moreover, after

applying the genetic algorithm to optimize EfficientNetB3, there is an improvement in infer-

ence time and storage space by 20% and 2.35%, respectively.

1. Introduction & related work

Artificial intelligence (AI) has received a huge interest nowadays because of numerous applica-

tions in the fields of healthcare, education, security monitoring, and agriculture [1–5]. In AI,

computer systems learn from the given data and statistical patterns to predict an accurate

result based on the extracted knowledge using AI techniques [6, 7].
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Machine learning (ML) algorithms come in a variety of flavors, including supervised learn-

ing, unsupervised learning, and reinforcement learning. When employing supervised learning

(SL), each input data point receives the proper response or output since the system is trained

using labeled data [8]. Unsupervised learning teaches the system using unlabeled data, so the

results are initially ambiguous. When a system receives feedback in the form of rewards or

penalties depending on its conduct, it learns through reinforcement [9].

Deep learning (DL), on the other hand, can handle more challenging problems and replicate

the process of human learning. Another significant benefit of DL over ML is that less feature

engineering is needed because DL models automatically learn features from input images [10].

Additionally, DL is more accurate than ML models, but DL has a few drawbacks, such as the

complicated model’s need for a lot of space and powerful computation during the system’s

training. However, since the DL model needed a lot of data to be trained, collecting that data

became the major obstacle to applying DL models in practical applications [11]. It is established

that DL is an effective technique for handling complicated decision-making problems, but there

are still certain concerns, including those related to data privacy, infrastructure, communication

costs, etc. [12]. However, Federated Learning (FL) can solve these obstacles in deep learning.

Federated learning is a machine learning technique that allows several parties to work

together to train a single model while maintaining the privacy and decentralization of their

own data [13]. In FL, a model is shared and trained utilizing information from several sources

that have access to information of a similar nature. Each site shares model-related data with a

centralized server once the model has been trained across all sites, and the server then averages

the weights to create the aggregated model. This process must be done several times until the

optimal global model is not found [14, 15].

Sports are becoming a crucial component of both international trade and leisure. Athletic

ability is important in sports. The study’s authors gathered player performance feature vectors

and summaries of game statistics. They then used k-fold cross-validation to test the feature

vectors and the Genetic Algorithm (GA) to combine the best feature subsets.

Chan et al. [16] described where to find particular classifications of ice hockey players, such

as defenders, strikers, etc. The authors used the clustering method. They were able to establish

a connection between the various player types clustered together and the team’s success using

a regression model for these clusters. Team management can use the Excel-based tool the writ-

ers offered to assess new contracts and the addition of new players. Ahmed et al. [17] outlined

a method for assembling a world-class cricket team that uses the least amount of resources and

the maximum performance.

In [18], Based on the surroundings, the authors have given a strong foundation for classify-

ing sports images. The authors also asserted that their approach relies on the use of Inception

V3 for feature extraction and neural networks for sports classification. Six sports have been

used for analysis and categorization. HAR places a particular emphasis on sports. In [19], The

European handball data set, which can be divided into six different sports groups, is analyzed

using the provided motion descriptors and SVM classification in the authors’ technique to

detect team actions. The Poisson equation was employed in this manner to generate a smooth

distribution that encompassed the entire playground because the team members’ exact place-

ments on the ground were known. Additionally, position distribution was used to refer to

smooth distribution.

In [20], authors have studied the process of gathering body area sensors for sports identifi-

cation. Additionally, sensors are installed in the player’s body parts, like their legs and arms,

and the information they acquire is kept in one location.

A summary of the study conducted by the researchers in the same field is shown in the fol-

lowing Table 1.
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Table 1. Literature review summary.

Author Title Description Highlights

Ketan Joshi et al.

[18]

Robust sports image classification using

inceptionV3 and neural networks

It presents a framework for sports image

classification using Inception V3 and neural

network and achieves an average accuracy of

96.64% over six sports categories. A detailed

comparison is also given with other classifiers

such as Random Forest, K-Nearest Neighbors,

etc., for effectiveness validation.

In this work, sports images and videos are

analyzed to develop various applications such as

blog writing, sports education, etc.

Russo et al. [21] Classification of sports videos with combination

of deep learning models and transfer learning

It proposes a deep learning-based approach

that combines convolutional and recurrent

neural networks to classify sports videos into

15 individual classes, achieving high test

accuracy using transfer learning with the

VGG-16 model.

The proposed approach focuses on sports

action-based classification by combining spatial

and motion features extracted from CNN with

temporal analysis using RNN.

SSkandha et al.

[22]

A novel genetic algorithm-based approach for

compression and acceleration of deep learning

convolution neural network: an application in

computer tomography lung cancer data

This work highlights the compression of deep

neural network for ensuring its suitability

towards IOT devices. Since lung cancer is one

of a life-threatening diseases, it is essential to

be detected using low-configuration devices at

an early stage. This work uses a Genetic

Algorithm for model compression where the

unwanted layers in the neural network are

removed to improve the efficiency of the

model.

The proposed approach reduces 90.3% storage

space and also improves the inference time by

35%.

Petrini et al. [23] Deep neural networks compression: A

comparative survey and choice

recommendations

The paper presents a comprehensive

comparison of lossy and structure-preserving

approaches to compress pre-trained

convolutional neural networks (CNNs) and

provides guidance for choosing the most

suitable compression technique. The study

includes experiments on two state-of-the-art

CNNs and five benchmarks, analyzing the

performance of compression techniques on

both convolutional and fully-connected layers

for classification and regression problems.

The experimental setting used to compare the

compression techniques and described,

including the use of two pre-trained CNN

models and five datasets.

Simon

Wiedemann et al.

[24]

DeepCABAC: A Universal Compression

Algorithm for Deep Neural Networks

DeepCABAC is a compression algorithm for

deep neural networks (DNNs) that applies

Context-based Adaptive Binary Arithmetic

Coder (CABAC) to the DNN parameters,

achieving higher compression rates than

previous techniques for DNN compression. It

uses a novel quantization scheme that

minimizes a rate-distortion function while

considering the impact of quantization on

DNN performance, allowing the

representation of the entire network with just

9 MB.

The algorithm is based on the H.264/AVC video

coding standard and applies CABAC, which is a

state-of-the-art lossless compression technique

for video compression. Experimental results

show that DeepCABAC consistently achieves

higher compression rates compared to

previously proposed coding techniques for

DNN compression.

Podgorelec, V.

et al. [25]

Classification of similar sports images using a

convolutional neural network with hyper-

parameter optimization

The paper discusses the use of transfer

learning in image classification, specifically for

classifying sports images. The paper discusses

the use of transfer learning in image

classification, specifically for classifying sports

images. It presents a proposed image

classification method and describes the

conducted experiments and results. The

authors also discuss the interpretation of the

trained models using methods like LIME and

SHAP.

The paper explores the use of transfer learning

techniques, specifically fine-tuning, for image

classification. Transfer learning involves

training a model on a pre-trained model with

adapted weight values, reducing training time

and potentially improving predictive

performance.

(Continued)
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Table 1. (Continued)

Author Title Description Highlights

Gao, Y. et al. [26] Improved spatial pyramid matching for sports

image classification

The paper addresses the need to consider both

human pose and event scenes in sports image

classification, using a combination of spatial

pyramid matching (SPM) and Visual Words

Spatial Dependence Matrices to improve

classification accuracy. Experimental results

show that the proposed method improves

classification accuracy by approximately 19%

compared to SPM and outperforms other

improved SPM methods in sports image

classification.

The paper also mentions the use of the KSPM

method, which focuses on improving the spatial

position of objectives in sports images. It shows

effective improvement in classification accuracy,

particularly for sports scenes with athletes on a

large scale.

Huang, Pu. [27] Sports Image Classification and Application

Based on Visual Attention Analysis

The paper focuses on the classification and

application of sports images using visual

attention analysis, which simulates human eye

recognition patterns and improves accuracy in

classifying sports pictures. The study

establishes a sports image classification system

based on visual attention analysis and

compares its effectiveness with other methods,

showing significant advantages in terms of

accuracy.

The results of the experiments show that the

proposed method achieves an average accuracy

of 34.5%, which is significantly higher than the

visual impairment method (8.5%) and the core

technology method (11.2%).

Sarma, Moumita

Sen, et al. [28]

Traditional Bangladeshi sports video

classification using deep learning method

The paper focuses on the classification of

traditional Bangladeshi sports videos using

deep learning techniques, specifically

convolutional neural network (CNN) and

long short term memory (LSTM) algorithms.

A new dataset called Traditional Bangladeshi

Sports Video (TBSV) is constructed,

containing five classes of sports. The proposed

model, which combines CNN and LSTM,

outperforms previous works on challenging

datasets and achieves an average accuracy of

99% on the TBSV dataset.

The spatial features of sequential frames are

extracted using CNN and then fed to an LSTM

layer for analysis.

Campr, Pavel,

et al. [29]

Sports video classification in continuous TV

broadcasts

The paper focuses on classifying video footage

or continuous TV broadcasts based on their

content, using categories such as talk show,

sport, movie, cartoon, and more specific

topics like summer and winter Olympic

sports. The classification is done by analyzing

each frame of the video separately and then

filtering the results in the time domain for

more accurate and robust classification. The

paper also discusses the selection of robust

image features and classifiers, showing that

complex features based on convolutional

neural networks outperform simple feature

extractors.

The paper compares several feature extraction

methods and classifiers for image scene

classification and topic classification in

continuous videos. It applies these methods to

standalone images as well as continuous videos

without prior knowledge of topic changes.

Cross-validation is used for more robust results,

and the experiments are repeated with three

random splits of the data.

Farhad,

Mohammad

Yasir, et al. [30]

Sports-net18: Various sports classification using

transfer learning

The paper proposes a VGG16 transfer

learning model to classify eighteen categories

of various sports, achieving a promising result

of 93% accuracy. The authors have created

their own sports dataset containing 9000

images and used deep learning techniques to

accurately recognize and classify objects from

sports images.

The proposed system consists of five

convolutional blocks with different filter sizes

and activation functions, followed by max-

pooling and flattening layers. The authors have

created their own sports dataset containing 9000

images for training and evaluation purposes.

(Continued)
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In the proposed article, federated learning has been used for the classification of sports,

with the generation of a global model by averaging the weights. In addition, we have also devel-

oped a method based on a Genetic Algorithm (GA) to obtain an optimized base model to

improve the inference time and reduce of storage space of the trained model so that it can be

easily deployed on resource-constrained devices. Our major contributions to the proposed

study are as follows:

• Use of federated learning with a varying number of clients for the classification of unbal-

anced or balanced sports data with an unbalanced distribution over clients. Moreover, the

global weight-averaging method has been used for the development of a generalized model

to maintain data privacy.

• Developed a novel method to find the optimized base model for FL using a genetic algorithm.

• Design of a novel fitness function to check the strength of chromosomes. To develop the fit-

ness function, three parameters have been used. 1) average accuracy 2) average loss in the

federated learning model, and 3) number of hidden units in the optimized structure.

• A lot of tests have been done with well-known deep learning architectures like AlexNet,

ResNet50, VGG19, and EfficientNetB3 by changing the number of clients on both balanced

and unbalanced sports datasets.

• The experiment’s goal is to see how effective the global average strategy is at reducing storage

while minimizing the inference time after applying the genetic algorithm to minimize the

hidden units in the base architecture.

The structure of the article is as follows: A discussion about the data set used in the study is

discussed in Section 2. A discussion about used terminologies and problem formulation is pre-

sented in Section 3. Introduction to federated learning, federated learning model generation

using global averaging, and generation of an optimal base model for FL are discussed in Sec-

tion 4. The experimental setup and result discussion are presented in Section 5. The conclusion

is presented in section 6.

2 Dataset

A dataset is essential to perform a test for any machine or deep learning model. There are sev-

eral datasets of sports available over the internet, but for this article, we have selected the

Table 1. (Continued)

Author Title Description Highlights

Song, H. [31] Secure prediction and assessment of sports

injuries using deep learning based convolutional

neural network

The paper discusses the use of an optimized

convolutional neural network (OCNN) based

on deep learning to detect and assess sports

injuries. It focuses on the extraction, study,

and accuracy of complex algorithms for

analyzing sports medical data. The OCNN

model includes two convolutional layers, two

pool layers, a fully connected layer, and a

SoftMax structure for classification. The paper

also proposes a cloud-based loop model for

creating an advanced medical data network

for sports medicine. Experimental results

show that this approach provides technical

support and guidance for deploying a specific

cloud-based fusion system.

The OCNN algorithm is used for data

processing in the in-loop fusion simulation

model, where the collected data is passed

through the control layer and sent to the stored

data center for processing. The paper suggests

the use of a self-coding convolution neural

network (SC neural network) that incorporates

the configuration of the neural network of self-

coding convolution to process and analyze

multidimensional data.

https://doi.org/10.1371/journal.pone.0303462.t001
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dataset, which consists of 16 classes of different sports with different numbers of images in

each class [32–34]. This data set is unbalanced, and we have applied different augmentation

techniques, such as zoom-in, zoom-out, rotation, varying the light intensity, etc., to make the

dataset balanced. In this article, we have tested our model in both unbalanced and balanced

datasets. In the Table 2, it is shown the number of images per class before and after augmenta-

tion. We have divided the dataset into train, validation, and test sets for experimental work.

3 Terminologies and problem formulation

In the proposed work, we have used famous architectures as a base model in the federated

learning environment for the classification of sports and after experiments, the best architec-

ture has been selected for optimization purposes. A genetic algorithm has been used for the

optimization of the model. In this section, first, a discussion about terminologies is presented,

and based on the terminologies problem formulation has been taken place.

3.1 Terminologies

The following terminologies have been used in the proposed work.

• N represents the number of clients in the federated learning environment, and 1� N�10.

• ρi denotes the ith base model of federated learning.

• πi denotes the loss of the ith base model in federated learning. In our proposed work, we have

used the categorical cross-entropy loss function, which is represented mathematically in

Eq 1.

loss ðx; aÞ ¼ �
Xm

p¼1

xp ∗ logðapÞ ð1Þ

Table 2. Samples in each sport category in unbalanced and balanced condition.

Sport category Number of samples

Unbalanced dataset Balanced dataset

Training Validation Testing Training Validation Testing

Cricket 413 118 63 650 270 100

Badminton 579 168 84 650 270 100

Football 459 130 64 650 270 100

Tennis 420 125 63 650 270 100

Basketball 285 78 38 650 270 100

Boxing 431 125 61 650 270 100

Chess 293 86 43 650 270 100

Formulaone 420 121 64 650 270 100

Gymnastics 393 121 63 650 270 100

Hockey 329 106 54 650 270 100

Kabaddi 281 77 42 650 270 100

Motogp 441 119 66 650 270 100

Shooting 335 91 49 650 270 100

Swimming 434 121 60 650 270 100

Volleyball 444 129 64 650 270 100

Wrestling 327 94 48 650 270 100

https://doi.org/10.1371/journal.pone.0303462.t002
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x represents the original probability distribution and a represents the predicted probability

distribution. p denotes the number of classes in the classification problem.

• N ¼ fN1;N2,N3 . . .Nhg denotes the number of hidden units in the layer hth of the original

model, and I denotes the total number of hidden units in the original model, i.e.,

I ¼ fN1 þ N2 þ N3 þ . . .Nhg.

• Ch ¼ fC1;C2;C3; . . .Ch} denotes the number of hidden units in the layer hth in the opti-

mized model based on optimization and D ¼
Ph

i¼1
Ci.

• Q denotes the original deep neural network model with h number of hidden layers, and the

set of weights is represented byC.

• < denotes the optimized deep neural network model, and the set of its weights is denoted by

W with the constraint thatW⊆C.

• AN denotes the accuracy of Nth client, and it is computed using the following equation (refer

to Eq 2).

AN ¼
No: of correctly predicted sample by Nthclient
Total number of samples pass to Nth client

ð2Þ

In this article, we aim to find the < which must be a minimal subset of C with the con-

straint that the performance of < should be nearQ over the test dataset. Three major objec-

tives have been considered, which ensure that the performance of the optimized model is near

that of the original model. Our first objective is the maximization of average accuracy in an FL

environment with N clients, represented using Eq 3. This objective ensures that the optimized

model has the highest average accuracy on N clients.

Objective 1 : Max
PN

i¼1
Ai

N
ð3Þ

The second objective is to minimize the average loss in the network. Therefore, we have

added the losses of individual clients and divided the sum by the number of clients. We have

thus taken into account the input of every client to determine the optimal structure of the base

model. The second objective is presented in Eq 4.

Objective 2 ¼ Min
PN

i¼1
pi

N
ð4Þ

The third objective is the minimization of the number of hidden units in the base model.

Minimizing hidden units helps us to improve the inference time as well as reduce storage

space. It helps us to improve the inference time as fewer operations have taken place due to the

fewer hidden units. If fewer operations are there in a deep neural network, then computational

time is also less. Moreover, due to the smaller number of hidden units, less storage is required

to store the trained model (refer to Eq 5).

Objective 3 ¼ Min
D

I
ð5Þ

There are two objectives that we have to minimize and a third objective that we have to

maximize. In an optimization problem either we have to maximize or minimize so to put all

objectives in the same scale we have converted the first objective for minimization by reducing
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from 1, i.e., Min (1-

PN

i¼1
Ai

N ). After using the weighted sum approach, we have combined all

three objectives and derived a final objective, which is represented in Eq 6.

Objective ¼ Min fw1 � 1 �

PN
i¼1
Ai

N

� �

þ w2 �

PN
i¼1
pi

N

� �

þW3 �
D

I

� �

g ð6Þ

where, w1 + w2 + w3 = 1. The above objective is utilized as a fitness function in a genetic algo-

rithm to find the optimal base model, i.e., <.

4 Proposed methodology

In this section, a discussion about federated learning (FL), the use of federated learning for

sports classification, and the generation of an optimal base model for FL are discussed. In the

next subsection, a brief discussion about federated learning is presented.

4.1 Introduction to federated learning

Federated learning is a special type of artificial intelligence technique that enables the training

of machine and deep learning algorithms in decentralized data sources, such as IoT devices,

without transferring the data to a central server [35–37]. The pictorial representation of feder-

ated learning is presented in Fig 1.

From the Fig 1, it is clearly visible that there are N diverse datasets which passed through

the N different computing devices. These devices process the respective data and share the

computed weights with the central server. Moreover, on each computing device, the same

deep learning architecture has been deployed. The role of the central server is to generate the

Fig 1. A general architecture of federated learning model.

https://doi.org/10.1371/journal.pone.0303462.g001
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aggregated model and share the aggregated model back with the devices. This process is con-

tinued until the performance of the aggregated model is not up to the mark or as per the user’s

requirements [38, 39].

4.2 Federated learning model generation using global averaging

In federated learning, the global model updates the weight using the federated average method.

In this method, the weight of the global model is updated using the average value of the client’s

weight [36]. A graphical representation is shown in Fig 1 where the red color line shows the

weight sharing to the server and the green line represents the updated weight sharing to the cli-

ent for the second round of communication.

The aggregation typically involves taking the average of the model parameters from the dif-

ferent devices or servers. This averaging process helps to combine the knowledge learned from

the various data sources while preserving privacy. Without having direct access to the raw

data, the central server may make use of the local models’ combined intelligence by averaging

them [37].

In federated learning, global averaging ensures that the final global model combines the

knowledge acquired from many devices or servers, making it more reliable and representative

[40]. Additionally, it helps to reduce the effects of potential biases in the specific local models.

The formula for global averaging may be shown as follows in mathematics (refer to Eq 7)

[40, 41].

yglobal ¼ ðw1 � y1 þ w2 � y2 . . .þ wn � ynÞ=ðw1 þ w2 þ :::þ wnÞ ð7Þ

where:

• θglobal denotes the global model’s parameter.

• θ1, θ2, . . ., θn denote the parameters of the models from each client.

• w1, w2, . . ., wn denotes weight assign to individual client.

The weights w1, w2, . . ., wn are commonly decided depending on elements like the volume

of data on each device or the computing power of each device. The weights may, for instance,

be inversely proportional to the processing resources or proportional to the amount of data

samples. By using the weighted average, the contributions from each device or server are

included in the overall model, enabling a collaborative and privacy-preserving learning process

[42]. It’s important to note that the specific formula for global averaging may vary depending

on the federated learning framework or algorithm being used. Different approaches may use

different weighting schemes or aggregation methods [37, 40].

4.3 Generation of an optimal base model for FL

Here, a discussion about the use of a genetic algorithm (GA) for the generation of an optimal

base model is presented. In the first section, we have discussed the genetic algorithm and its

intermediate operations, and in the next sub-section, the discussion of the use of the genetic

algorithm for optimizing the base model is presented with suitable examples.

4.3.1 Introduction to GA. Genetic Algorithm (GA) is one of the oldest optimization and

search techniques, inspired by natural selection [43, 44]. Moreover, it is also known as a search

technique as it searches for the optimal solution from the provided search space by performing

the intermediate operations [45]. The flowchart of the genetic algorithm is presented in Fig 2.

The process of GA starts with the generation of the initial population, which is also known

as the collection of chromosomes. Generally, chromosomes are generated randomly, and they

PLOS ONE FLGA: Enhancing sports image data classification
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are the valid solution to a given problem. In the proposed work, the length of the chromo-

somes is constant, which is equal to the number of hidden units in a deep neural network, and

after the intermediate operations of GA, there is no change in the length of the chromosomes

[46, 47].

In GA, selection, crossover, and mutation are the major three intermediate activities. After

the generation of chromosomes, a selection operation takes place to identify strong chromo-

somes based on the fitness value. A higher fitness value indicates that chromosomes are strong,

Fig 2. Flowchart of genetic algorithm.

https://doi.org/10.1371/journal.pone.0303462.g002
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and strong chromosomes always generate stronger chromosomes after the execution of cross-

over and mutation operations [48]. All the intermediate operations, i.e., selection, crossover,

and mutation, are executed until the termination criteria is not met [45].

4.3.2 Use of GA for the development of an optimized base model. Here, a discussion

about using GA to find the optimal structure of the base model in a federated learning

Fig 3. (a) Sample architecture of the deep neural network, which consists of 4 layers including input and output (b) Representation of weights of

the deep neural network presented in a part using vector (c) Chromosome for deep neural network presented in part an in binary.

https://doi.org/10.1371/journal.pone.0303462.g003
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environment is presented. In the previous section, we discussed that the GA process started

with the generation of the initial population, which is also known as the pool of chromosomes.

Therefore, first, we discuss the generation of chromosomes.

Chromosome representation. In the proposed work, chromosomes are generated ran-

domly, and the length of the chromosomes is equal to the number of hidden units in the

deep neural network or base model. Moreover, there is no change in the length of the chro-

mosomes after performing the other intermediate operations. In part (a) of Fig 3, a neural

network is presented that consists of two hidden layers with three hidden units in each layer.

From the figure, it is visible that there are 21 weights in the network i.e., o11
11

. . .o31
13

, and all

the weights are presented in the form of a vector (refer to part (b)).

Fig 4. Crossover operation.

https://doi.org/10.1371/journal.pone.0303462.g004

Fig 5. Mutation operation.

https://doi.org/10.1371/journal.pone.0303462.g005

Table 3. Parameter used in genetic algorithm.

Parameter used in the study Value or range

Randomly generated chromosome 500

Selection algorithm Roulette wheel

Crossover 1-point

Mutation 0.1%–0.7%

Termination criteria Difference between score of best two chromosomes � 0.0001

https://doi.org/10.1371/journal.pone.0303462.t003
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In presentations that have been vectorized, we first insert all of the weights between the

input and the first hidden layer, and then we place the weights between the first hidden and

second hidden layers in the vector. The process continues until all the weights are processed

and placed in the array. After presenting all the weights in a vectorized way, we generated the

chromosomes randomly by placing the random binary values in a vector with a length equal to

the number of hidden units. A sample chromosome is presented in Fig 3 part (c). The corre-

sponding neural network architecture for this chromosome is presented in Fig 3 part (a). In

any chromosome, value 0 represents that the corresponding weight is not considered, and vice

versa in the final architecture of the model.

In the proposed work, for the implementation of a genetic algorithm for minimizing the

architecture of the base model, 500 chromosomes have been generated and 20% chromosomes

are selected. Moreover, for the computation of fitness value, we have used the formula pre-

sented in Eq 6 with the Roulette Wheel selection algorithm [49] to select the strong

chromosomes.

Crossover. After the generation of a pool of chromosomes, crossover operations have been

performed. Crossover is also known as reproduction or biological crossover. In a crossover

operation, two parents’ chromosomes exchanged information and created two child chro-

mosomes. There are various methods to apply the crossover, but we have applied the 1-point

crossover operation. In Fig 4, an example of a crossover operation has been presented. More-

over, after performing the crossover operation, there are 4 chromosomes (2 child & 2 par-

ent), and based on fitness value, two chromosomes out of four are discarded and the rest two

join the pool of population. Crossover operation helps to find the optimal solution quickly,

as after every crossover operation, GA only adds the better chromosomes to the population

pool [50, 51].

Mutation. After performing the crossover operation, the mutation is another important

intermediate operation in the genetic algorithm. In simple terms, we can define the mutation

as a small tweaking in the chromosome for getting a new chromosome [52]. The mutation pro-

cess helps GA to achieve quick convergence of the algorithm, and it is applied with low proba-

bility. Moreover, mutation is also related to the exploration of the search space. There are

various methods, i.e., bit flip, random resetting, inversion, etc., to apply the mutation. In our

proposed work, we have applied the bit-flipping method to mutation. In the bit-flipping

approach, we have randomly selected a gene, and its value is flipped. Here, flipping means that

if the gene value is 0 then the changed value is 1, and vice versa. In the proposed work, our

goal is to reduce the size of the base model; hence, we tried to turn the 1s into 0s during muta-

tion. The mutation process is depicted visually in Fig 5.

Termination criteria. For the generation of an optimal base model, selection, crossover, and

mutation operations are executed until termination criteria is satisfied to achieve the higher

Fig 6. Architecture of AlexNet.

https://doi.org/10.1371/journal.pone.0303462.g006
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fitness score. Moreover, we have used the termination criteria in such a way that the difference

between the fitness scores of the top two chromosomes is less than 0.0001. The values of hyper

parameters used in GA are presented in Table 3.

4.4 Performance evaluation metrics

Especially in deep learning and information retrieval, binary classification tasks frequently

employ the F1 score, recall, and accuracy measurements. By taking into account many facets

of a model’s predictions, they aid in evaluating its performance. Ratio of true positive

Fig 7. Architecture of VGG19.

https://doi.org/10.1371/journal.pone.0303462.g007
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predictions (TP) and the total number of true positive predictions and false positive predic-

tions (FP) made by the model is called the precision of the model. A mathematical expression

is shown in Eq 8.

precision ¼ TP=ðTP þ FPÞ ð8Þ

On the other hand, recall is the ratio of true positives to the total number of true positive

predictions and false negative (FN) predictions. In Eq 9, a mathematical expression of recall is

shown.

recall ¼ TP=ðTP þ FNÞ ð9Þ

Fig 8. Architecture of efficientNetB3.

https://doi.org/10.1371/journal.pone.0303462.g008
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Fig 9. Architecture of ResNet50. a) ResNet50 architecture; b) Stem block; c) Block1-Stage 1; d) Block2-Stage 1; e) FC

Block.

https://doi.org/10.1371/journal.pone.0303462.g009
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F1-score is another important parameter to test the model performance, and it is the har-

monic mean of precision and recall. A mathematical expression is given in Eq 10.

F1 ¼ ½2 ∗ ððPrecision ∗ RecallÞ=ðPrecisionþ RecallÞÞ� ð10Þ

AUC-ROC is one of the important matrices that validates the performance of deep learn-

ing models. The high area under the curve denotes better performance, while the lower area

indicates a less reliable model. The ROC plot includes a true positive rate (TPR) and a false

positive rate (FPR). In Eqs 11 and 12 show the mathematical representation of FPR, TPR

respectively.

FPR ¼ FP=ðFP þ TNÞ; where FP ¼ False positive and TN ¼ True Negative: ð11Þ

TPR ¼ TP=ðTP þ FNÞ;where TP ¼ True positive and FN ¼ False Negative: ð12Þ

5 Experimental results

All the experiments were performed on the NVIDIA DGX V-100 system, which features eight

NVIDIA Tesla P100 GPUs, each with 16GB of memory, for a total of 128GB of GPU memory.

The system also includes two Intel Xeon E5–2698 v4 CPUs, 512GB of RAM, and 7.68TB of

SSD storage. For the code development, the Python programming language has been used.

Different libraries of Python, such as Keras, Tensorflow, and Matplotlib, have been extensively

explored for the computation of the results.

In the proposed federated learning model, we have executed four famous deep learning

architectures, namely AlexNet, VGG19, ResNet50, and EfficientNetB3, as the base model in

FL. The major reason for the use of these pre-trained architectures is data scarcity in the pro-

posed work. For experimental work, a sports image dataset has been used (refer to Table 2 in

section 1 to know more about the dataset) and samples are equally shared with all the FL cli-

ents for training, validation, and testing purposes.

AlexNet is one of the popular deep convolutional neural networks promoted by Geoffrey

Hinton and Alex Krizhevsky in 2012 [53]. Moreover, the architecture won the title of the

famous image recognition challenge named ILSVRC in 2012 by achieving state-of-the-art per-

formance on the ImageNet dataset [54]. AlexNet comprises eight layers, out of which five are

for convolution operations and three are fully connected, with over 50+ million parameters.

The architecture of AlexNet is provided in Fig 6.

VGG19 (Visual Geometry Group) is another popular deep learning model architecture that

has 19 layers and is very popular after AlexNet. It has 16 convolution layers along with five

max pooling and three fully connected dense layers with 4096 nodes [55]. The pictorial repre-

sentation of the VGG19 architecture is presented in Fig 7, where all the layers are represented

Table 4. Parameter used in federated learning model.

Parameters in FL Range or values

Client {2, 4, 6, 9,10}

Communication round 250

Iteration per communication round 5

Epoch 100

Learning rate 0.001

Optimizer Adam

Batch size 32

https://doi.org/10.1371/journal.pone.0303462.t004
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Fig 10. (a) Input image; (b) Activation values after the first convolution operation; (c) Activation values after the batch

normalization operation; (d) Activation values at convolution layer 2; (e) Activation values after the max-pooling operation.

https://doi.org/10.1371/journal.pone.0303462.g010
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with different colors. The input image shape in VGG19 is 224*224*3 for the RGB image, and it

uses a (3*3) kernel along with a 1 pixel stride size. In VGG19, spatial padding is used to pre-

serve the spatial resolution of images. All the max-pooling is performed over a 2*2 pixel win-

dow with stride 2 [56].

EfficientNet is another architecture that is known as a better version of the ResNet18 model

[57]. A model can be scaled up either depth-wise or width-wise. It was also random, and a deep

neural network was sometimes required to take the input of a larger image as input and make it

Fig 11. Loss vs. Accuracy with the VGG19 base model over a balanced data set: a) 2 clients, b) 4 clients, c) 6 clients, d) 9 clients, e) 10 clients.

https://doi.org/10.1371/journal.pone.0303462.g011
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have better accuracy. EfficientNet can take large images as input, and it uses a special technique

called compound coefficient to scale up the model to reach higher accuracy. This compound

technique helps to scale the model uniformly from all sides instead of randomly width- or

depth-wise. It uses AutoML and the scaling method to achieve better accuracy by scaling up

uniformly. This architecture uses an inverted bottleneck convolution, which is similar to Mobi-

leNetV2, but it is much larger due to the increase in FLOPS, which helps scale up the base

model of EfficientNet [58]. The schematic diagram of an efficient net is shown in Fig 8.

Fig 12. Loss vs. Accuracy with the VGG19 base model over an unbalanced data set: a) 2 clients, b) 4 clients, c) 6 clients, d) 9 clients, e) 10 clients.

https://doi.org/10.1371/journal.pone.0303462.g012
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ResNet is also a deep learning architecture that can have a variable size depending on how

big each of the layers is. In this architecture, each layer has a 3*3 convolution layer followed by

a max pooling layer. It consists of stem blocks and finally fully connected layers [59].

The schematic diagram of ResNet50 is shown in Fig 9.

In this article, we consider four models, and each model runs with several clients (i.e., 2, 4,

6, 9, and 10). A complete list of hyperparameters related to FL is shown in Table 4 and unbal-

anced & balanced datasets have been passed in each model for experimental work.

Fig 13. Loss vs. Accuracy with the ResNet50 base model over a balanced data set: a) 2 clients, b) 4 clients, c) 6 clients, d) 9 clients, e) 10 clients.

https://doi.org/10.1371/journal.pone.0303462.g013
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In federated learning, the server distributes the model, random weight pair to the clients.

Upon receiving the model, random weight pair, each client locally trains the model using their

private dataset. As a result of the training, different new weights are produced by individual cli-

ents which are later shared by the clients to the server. As and when the server receives weights

from each client, it computes the average of the received weights for fitness evaluation (we

assume that the server initiates the process of weight averaging only when it receives weights

from each client). The average weight value is again shared by the server to the client. Since in

Fig 14. Loss vs. Accuracy with the ResNet50 base model over an unbalanced data set: a) 2 clients, b) 4 clients, c) 6 clients, d) 9 clients, e) 10 clients.

https://doi.org/10.1371/journal.pone.0303462.g014
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FL the server holds a validation dataset, the fitness of the model depends on the average weight

computed by the server in each communicated round using the Eq 6. However, the communi-

cation round stops as and when the fitness measured in the current round is found to be

greater than the previous round.

Activation values indicate the data that is kept in the hidden layers. As we know, a convolu-

tional neural network is the combination of a convolutional layer, a max-pooling layer, and a

fully connected layer. The activation values for the AlexNet architecture over the balanced

sports dataset is presented in Fig 10.

Fig 15. Loss vs. Accuracy with the AlexNet base model over a balanced data set a) 2 clients; b) 4 clients; c) 6 clients; d) 9 clients; e) 10 clients.

https://doi.org/10.1371/journal.pone.0303462.g015
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In deep learning, loss, and accuracy are both crucial measures. By calculating the difference

between forecasts and actual values, loss aids in learning, whereas accuracy offers a general

indicator of correctness. Academicians and practitioners may iteratively enhance the perfor-

mance of their models by tracking and optimizing these measures. The loss vs. accuracy for

different architectures as base models over balanced and unbalanced datasets is presented in

Figs 11–18. Data values for Figs 11 and 14 are provided in the S1 Table (see S1 Table). More-

over, we have also computed the training time in both cases: 1) global model generation using

Fig 16. Loss vs. Accuracy with the AlexNet base model over an unbalanced data set: a) 2 clients, b) 4 clients, c) 6 clients, d) 9 clients, e) 10 clients.

https://doi.org/10.1371/journal.pone.0303462.g016
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the averaging method and 2) development of an optimized global model using GA. The results

are provided in Table 5.

An indicator of how well a deep learning model predicts class labels is accuracy, a com-

monly used and straightforward statistic. It is useful for model selection and comparison,

tracking model performance during training, and determining how effectively the model gen-

eralizes to new data. As accuracy is an important metric to check the performance of deep

Fig 17. Loss vs. Accuracy with the EfficientNetB3 base model over a balanced data set a) 2 clients, b) 4 clients, c) 6 clients, d) 9 clients, e) 10

clients, and an unbalanced dataset e) 2 clients, f) 4 clients, g) 6 clients, h) 9 clients, i) 10 clients.

https://doi.org/10.1371/journal.pone.0303462.g017
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learning models we calculate the accuracy over balanced and unbalanced data sets. In Fig 19,

the accuracy is shown for different base models and also for different numbers of clients. In

the case of an unbalanced data set, EfficientNetB3 gives the best accuracy for 9 clients. Table 6

has a summary of F1-Score, recall, and precision for various models that is deployed against

balanced and unbalanced data sets.

Fig 18. Loss vs. Accuracy with the EfficientNetB3 base model over an unbalanced data set a) 2 clients; b) 4 clients; c) 6 clients; d) 9 clients; e) 10

clients.

https://doi.org/10.1371/journal.pone.0303462.g018
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During experiments, the data set is randomly assigned among the clients in both cases. In

the proposed work, the number of clients has varied from 2 to 10, and both types of data sets

(balanced and unbalanced) have been used for performance evaluation purposes. The accuracy

with respect to communication round and number of clients over an unbalanced and balanced

dataset is presented in Figs 19 & 20 respectively.

Table 5. Time spent to train the various base architecture models in federated learning using the proposed methodology and global averaging.

# Clients Model Training time (in seconds)

FL with global averaging Proposed approach

2 AlexNet 8848 11520

4 15598 26852

6 16998 35246

9 17563 39656

10 18559 45696

2 VGG19 9854 12659

4 10558 13256

6 11557 15696

9 15555 16989

10 15545 189789

2 ResNet50 7854 13569

4 8857 15696

6 10255 14787

9 11245 12569

10 11285 15236

2 EfficientNetB3 6854 7589

4 7968 8958

6 7854 10225

9 8696 11457

10 9698 147588

https://doi.org/10.1371/journal.pone.0303462.t005

Fig 19. Comparison of accuracy for an unbalanced dataset using different deep learning models as the base model

in federated learning. a) AlexNet as the base model; b) EfficientNetB3 as the base model; c) ResNet50 as the base

model; d) VGG19 as the base model.

https://doi.org/10.1371/journal.pone.0303462.g019
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From Figs 19 & 20, it has been visible that maximum accuracy has been achieved by the

proposed methodology over a balanced dataset with 10 clients.

In Fig 21, the accuracy comparison between FL with global averaging and the proposed

algorithm on the balanced and unbalanced data sets is presented, and it is visible that the pro-

posed algorithm performs better as compared to the global averaging approach. The main rea-

son behind the same is that the proposed algorithm always selects a set of existing weights for

Table 6. A tabular representation of Recall, Precision, F1-Score for unbalanced and balanced dataset for all used model.

Model Unbalanced Dataset Balanced Dataset

F1-Score Recall Precision F1-Score Recall Precision

AlexNet 0.84 0.89 0.89 0.84 0.90 0.88

VGG19 0.89 0.88 0.87 0.89 0.88 0.87

ResNet50 0.90 0.89 0.88 0.91 0.90 0.90

EfficientNetB3 0.91 0.91 0.91 0.92 0.91 0.93

https://doi.org/10.1371/journal.pone.0303462.t006

Fig 20. Comparison of accuracy for a balanced dataset using different deep learning models as the base model and

federated learning. a) EfficientNetB3 as the base model; b) ResNet50 as the base model; c) AlexNet as the base model;

d) VGG19 as the base model.

https://doi.org/10.1371/journal.pone.0303462.g020

Fig 21. Comparison of accuracy after compression using GA and using EfficientNetB3 as the base model a)

Unbalanced b) Balanced data set.

https://doi.org/10.1371/journal.pone.0303462.g021
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which the accuracy is highest. Moreover, intermediate operations such as crossover and muta-

tions also help the algorithm achieve better performance quickly.

In Figs 22–Fig 25, the ROC curve is shown with the AUC value for AlexNet, EfficientNetB3,

ResNet50, and VGG19, respectively, and it also shows the AUC for balanced and unbalanced

datasets with and without GA for all models.

Fig 22. AUC-ROC with area under curve for VGG19 base model: a) 2 clients; b) 4 clients; c) 6 clients; d) 9 clients; e) 10 clients.

https://doi.org/10.1371/journal.pone.0303462.g022
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We have also applied the proposed approach to different datasets (Potato [60], tomato [61]

and Indian food [62]) to check the efficacy of the proposed approach and results under the dif-

ferent performance evaluation metrics are presented in Table 7.

The proposed GA-based model also helps to improve inference time and storage space. The

fitness function used in the method always discards hidden units or nodes that are not contrib-

uting too much to the decision-making process. The storage space and inference time before

Fig 23. AUC-ROC with an area under curve for ResNet50 base model: a) 2 clients; b) 4 clients; c) 6 clients; d) 9 clients; e) 10 clients.

https://doi.org/10.1371/journal.pone.0303462.g023

PLOS ONE FLGA: Enhancing sports image data classification

PLOS ONE | https://doi.org/10.1371/journal.pone.0303462 July 11, 2024 30 / 37

https://doi.org/10.1371/journal.pone.0303462.g023
https://doi.org/10.1371/journal.pone.0303462


and after compression is depicted in Figs 26 and 27. Data values for Figs 26 and 27 are pro-

vided in the S1 Table (see S1 Table).

6 Conclusion

In the proposed work, a novel genetic algorithm-based method has been discussed to develop

an optimized base model for FL. Therefore, the model can be easily deployed on such devices

Fig 24. AUC-ROC with area under curve for AlexNet base model: a) 2 clients; b) 4 clients; c) 6 clients; d) 9 clients; e) 10 clients.

https://doi.org/10.1371/journal.pone.0303462.g024
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that are constrained by limited resources, i.e., computational power, memory, etc. For a better

understanding of the proposed algorithm, all the intermediate steps of GA have been discussed

with suitable examples. Here, we have developed a novel fitness function that is based on aver-

age loss, accuracy, and minimization of hidden units or nodes in the base architecture. More-

over, the strength of the chromosomes is measured using the fitness function. We have used

four different deep learning architectures as the base model in FL and generated the global

model by the global averaging method with an optimized base structure. The performance of

Fig 25. AUC-ROC with area under curve for EfficientNetB3 base model: a) 2 clients; b) 4 clients; c) 6 clients; d) 9 clients; e) 10 clients.

https://doi.org/10.1371/journal.pone.0303462.g025
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all these models is compared under various performance evaluation metrics such as accuracy,

F1-score, AUC-ROC, etc. We have proposed a generalized approach that can be applied to

other datasets, i.e., potato & Tomato leaf disease and Indian food, to check its validity. In the

tests, it was seen that EfficientNetB3 works better as a base model than other architectures. It

also got 92.34% accuracy with 9 clients on a balanced dataset using the suggested GA-based

method. The proposed GA-based method also helps to improve the inference time by 20%.

The work can be expanded by generating the same using a GA-based approach in place of the

global average method. Since the GA does not always yield the best answer, we can achieve bet-

ter outcomes by adjusting a few more hyper-parameters.

Table 7. Accuracy, F1 Score, precision, recall for other datasets with proposed algorithm over balance and unbalanced dataset.

Model Dataset Unbalanced Balanced

F1-score Recall Precision Accuracy F1-score Recall Precision Accuracy

AlexNet Tomato .84 .89 .90 .88 .82 .89 .87 .88

Potato .81 .81 .84 .78 .87 .74 .78 .79

Food .62 .68 .77 .75 .64 .68 .68 .67

ResNet50 Tomato .85 .86 .86 .87 .84 .89 .91 .94

Potato .84 .84 .84 .82 .86 .85 .86 .84

Food .71 .78 .78 .79 .75 .79 .78 .77

VGG19 Tomato .87 .90 .90 .845 .85 .88 .86 .85

Potato .81 .87 .77 .75 .84 .86 .86 .89

Food .75 .74 .75 .74 .71 .88 .87 .77

EfficientNetB3 Tomato .77 .87 .72 .75 .92 .88 .88 .87

Potato .79 .81 .81 .89 .91 .89 .77 .76

Food .75 .74 .77 .76 .89 .89 .87 .77

https://doi.org/10.1371/journal.pone.0303462.t007

Fig 26. Comparison of model size after and before pruning.

https://doi.org/10.1371/journal.pone.0303462.g026
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