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Abstract

This paper aims to extend the applications of the projected fractional improved Adomian

Decomposition method (fIADM) to the fractional order new coupled Korteweg-de Vries

(cKdV) system. This technique is significantly recognized for its effectiveness in addressing

nonlinearities and iteratively handling fractional derivatives. The approximate solutions of

the fractional-order new cKdV system are obtained by employing the improved ADM in frac-

tional form. These solutions play a crucial role in designing and optimizing systems in engi-

neering applications where accurate modeling of wave phenomena is essential, including

fluid dynamics, plasma physics, nonlinear optics, and other mathematical physics domains.

The fractional order new cKdV system, integrating fractional calculus, enhances accuracy in

modeling wave interactions compared to the classical cKdV system. Comparison with exact

solutions demonstrates the high accuracy and ease of application of the projected method.

This proposed technique proves influential in resolving fractional coupled systems encoun-

tered in various fields, including engineering and physics. Numerical results obtained using

Mathematica software further verify and demonstrate its efficacy.

1 Introduction

Analytical solutions for non-linear evolution equations (NLEEs) play a crucial role in under-

standing nonlinear problems across various applied sciences [1–4]. The pursuit of analytical

solutions for diverse NLEEs is essential, and recent literature reflects a notable effort to obtain

traveling wave solutions [5–8], typically relying on variables associated with traveling waves [9,

10]. However, obtaining analytical solutions for these differential equations can be challenging,

leading to the introduction of semi-analytical techniques for representation in series form.
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Furthermore, assessing series convergence is imperative, often involving the analysis of abso-

lute errors when theoretical examination of convergence is feasible. Some semi-analytical

methods suggest considering a limited number of terms in the series to achieve significantly

improved approximations to exact solutions [11–14].

In recent decades, notable advancements have been made in exploring fractional differen-

tial equations (FDEs) and fractional calculus, carrying implications across diverse domains of

applied sciences and engineering [15–17]. Fractional calculus, which addresses derivatives and

integrals of non-integer order, has garnered substantial attention due to its capacity to accu-

rately describe complex behaviors and phenomena in areas such as electromagnetic fields,

acoustics, viscoelasticity, electrochemistry, cosmology, and material science [18–21]. This

accuracy surpasses that achieved by traditional integer-order calculus. Given the inherent

complexity of many fractional differential equations, exact solutions often remain elusive.

Consequently, there has been a significant focus on developing approximate analytical solu-

tions for FDEs, becoming a prominent area of interest in both academic research and practical

applications. The application of fractional calculus has proven beneficial in modeling and con-

trol theory across a diverse array of fields [22–25].

Recently, several methodologies have emerged to address fractional differential equations.

Noteworthy methods include the differential transform method [26], Meshless method [27],

the ADM [28], and He’s variational iteration technique [29]. Abdulaziz applied the homotopy

perturbation method (HPM) to solve systems of fractional differential equations [30], while in

another study (Ref. [31]), the variational technique was employed to address systems of auton-

omous differential equations. Moreover, researchers have focused on solving fractional

NLEEs, employing diverse techniques such as the Homotopy Analysis Method [32], VIM

(Ref. [33]), He’s HPM [34], ADM [35, 36], homotopy asymptotic scheme [37], and reduced

differential transform method [16]. Ren recently contributed results related to Caputo-type

partial differential equations [38].

The ADM [35, 39], initially introduced by the American mathematician Adomian, has

proven to be a powerful approach for approximating solutions to various nonlinear differential

equations. This classical yet effective method has undergone refinements over time to address

inherent limitations in the solution process and enhance result accuracy. For instance, Waz-

waz in [40] introduced an innovative algorithm for computing Adomian polynomials, advanc-

ing the ADM. This modified approach effectively solved differential equations with robust

non-linear terms. Another variation, based on Newton’s method, was proposed by Abbas-

bandy [41], introducing not only a modified ADM but also formulating numerical algorithms

based on it. These contributions significantly improved the performance of the conventional

ADM.

The exploration of analytical solutions for new coupled systems is crucial for understanding

the characteristics of non-linear problems and soliton theory in mathematical physics and

applied sciences [42, 43]. Analyzing traveling wave solutions, especially for non-linear coupled

systems and higher-order NLEEs [44], provides valuable insights into the underlying physical

phenomena. Lately, several systematic and potent methods have been developed to derive

wave solutions of NLEEs such as modified extended algebraic method [45, 46], double (G0/G,

1/G)-exponential technique [47], positive quadratic technique [48] and so on [49, 50]. The

investigation of solutions, structures and interactions has garnered substantial attention,

resulting in diverse and meaningful outcomes [51–54].

Constructing approximate solutions for fractional order new coupled KdV system can be

quite challenging and useful in various fields, particularly in the study of nonlinear wave phe-

nomena. Approximate solutions help researchers gain insights into the behavior of these sys-

tems without having to rely solely on numerical simulations or exact analytical solutions,
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which may not always be feasible. Different research works have explored various forms of

fractional coupled KdV equations to develop approximate solutions. The authors in [55] con-

structed approximate solutions for the fractional-order Korteweg-de Vries (KdV) equation. In

[56], the authors focused on numerical solutions of the fractional-order coupled KdV equation

with several different kernels. Additionally, the authors in [57] constructed approximate solu-

tions for the generalized coupled KdV equation. Furthermore, in [58], the Time-Fractional

Coupled KdV equation was solved using the natural decomposition technique.

In this study, we employ the projected fIADM to derive approximate solutions for the frac-

tional order new coupled KdV system. The obtained approximate results demonstrate the

effectiveness and power of this technique for fractional coupled systems. Additionally, we con-

duct a comparative analysis at ρ = 1, specifically focusing on the solutions of bright and dark

solitary waves. To validate our approach and showcase its effectiveness, we perform numerical

experiments using Mathematica software. To the best of our knowledge, no previous work has

been reported in the literature on this fractional wave system, confirming the novelty of our

results.

This manuscript is structured as follows: Section 2 provides an overview of Preliminaries.

The description of the projected fADM is presented in Section 3. Section 4 describes the frac-

tional new cKdV system. The analysis of the method for the fractional new cKdV system is

detailed in Section 5. Section 6 discusses the obtained numerical results. Finally, Section 7 con-

cludes the paper.

2 Preliminaries

The foundational definition of Caputo fractional-order integration and differentiation is intro-

duced here, playing a crucial role in defining various fractional derivatives with order ρ> 0

[11, 16, 19, 23, 59]. The Caputo fractional derivative is particularly emphasized for its signifi-

cance and relevance within this study. By embracing this fundamental definition, the research

ensures a consistent and cohesive approach to the domain of fractional calculus and its practi-

cal applications. Notably, the Caputo derivative is derived from the Riemann-Liouville deriva-

tive, offering adjustments that address some of the limitations associated with the traditional

Riemann-Liouville approach to fractional derivatives.

Definition 2.1: Supposing λ 2 R and n 2 N. A real valued function ψ: R+! R belongs to

space Cλ, if 9 l 2 R, l> λ and ψ1 2 C[0,1) such that ψ(x) = xlψ1(x), 8 x 2 R+. Moreover, c 2

Cn
l

iff ψ(n) 2 Cλ.

Definition 2.2: The fractional derivative of ψ(x) of order ρ in Caputo sense is defined as

Dr
tcðtÞ ¼

1

Gðn � rÞ

Z t

0

ðt � tÞn� r� 1
c
ðnÞ
ðtÞdt; ð1Þ

for n � 1 < r � n; n 2 N; t > 0;c 2 Cn
l
; l � � 1.

Here, ρ and b represent the order of the derivative and initial value of the function ψ(t).
Caputo’s fractional derivative has several important properties, some of which are described as

follows;

• Dr
t A ¼ 0; where A is constant:

• Dr
t t
a ¼

0; if a � r � 1;

Gðaþ 1Þ

Gða � rþ 1Þ
ta� r; if a > r � 1:

8
><

>:
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• Fractional-order differentiations in Caputo’s sense is indeed a linear operation, like to differ-

entiation of integer order:

Dr
t ðZf ðtÞ þ ngðtÞÞ ¼ ZD

r
t f ðtÞ þ nD

r
t gðtÞ;

where η and ω are constants.

• Leibniz rule:

Dr
t ðf ðtÞ∗gðtÞÞ ¼

X1

k¼0

Gðrþ 1Þ

Gðkþ 1ÞGðr � kþ 1Þ
Dr� k

t f ðtÞDk
t gðtÞ:

Definition 2.3: The Caputo fractional derivative of order ρ> 0 for an integer n greater

than ρ, we can use the following expression:

Dr
tcðx; tÞ ¼

@
r
cðx; tÞ
@tr

¼

@
n
cðx; tÞ
@tn

; if r ¼ n 2 N;

1

Gðn � rÞ

Z t

0

ðt � tÞn� r� 1 @
n
cðx; tÞ
@tn

dt; if n � 1 < r < n:

8
>>>>><

>>>>>:

ð2Þ

To establish our result, it is necessary to introduce the following Riemann-Liouville frac-

tional integral operator.

Definition 2.4: The fractional integral whiteSoperator of Riemann Liouville with order ρ>
0, of a function ψ(t) 2 Cλ, λ� −1, is defined as

a Jrt cðtÞ ¼
1

GðrÞ

Z t

a

ðt � sÞr� 1
cðsÞds; r > 0; t > 0: ð3Þ

Here, some properties of the operator Jρ [39], for c 2 Cl; l � � 1; r; x > 0 listed as

• J0
t cðtÞ� ¼ cðtÞ.

• Jrt J
x
t cðtÞ ¼ Jrþxt cðtÞ.

• Jrt J
x
t cðtÞ ¼ Jxt J

r
t cðtÞ.

• Jrt t
k ¼

Gðkþ1Þ

Gðrþkþ1Þ
trþk.

For additional mathematical insights into the properties of fractional integrals and deriva-

tives, interested readers can explore the works cited in [11, 15, 16, 19, 23, 31, 59], as well as the

sources referenced within those publications.

3 Method description

Let the following be the general fractional order NLEE as

Dr
tcðx; tÞ þ Rcðx; tÞ þ Ncðx; tÞ ¼ hðx; tÞ; ð4Þ

with the following Initial-condition

cðx; 0Þ ¼ f ðxÞ: ð5Þ
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The Eq (4) can be written as

Dr
tcðx; tÞ ¼ hðx; tÞ � ½N þ R�cðx; tÞ: ð6Þ

Now applying Jρ to Eq (6), we can obtain

cðx; tÞ ¼ φþ Jrhðx; tÞ � JrðN þ RÞcðx; tÞ; ð7Þ

where φ is obtain through their initial conditions. The commonly used approach known as the

ADM [35, 39, 40] proposes that the solution μ(x, t) can be expressed as an infinite series con-

sisting of components.

cðx; tÞ ¼
X1

n¼0

cnðx; tÞ; ð8Þ

and nonlinear term Nψ(x, t) is decomposed as follows

Ncðx; tÞ ¼
X1

n¼0

An; ð9Þ

where An correspond to Adomian polynomials, which are established by the following defini-

tion:

An ¼
1

n!

dn

dln N
X1

i¼0

l
i
ci

 !" #

l¼0

; n � 0: ð10Þ

For the sake of clarity, the initial several terms of the Adomian polynomials will be pro-

vided.

A0 ¼ Nðc0Þ;

A1 ¼ c1Nð1Þðc0Þ;

A2 ¼ c2Nð1Þðc0Þ þ
1

2!
c

2

1
Nð2Þðc0Þ;

A3 ¼ c3Nð1Þðc0Þ þ c1c2Nð2Þðc0Þ þ
1

3!
c

3

1
Nð3Þðc0Þ;

A4 ¼ c4Nð1Þðc0Þ þ
1

2!
c

2

2
þ c1c3

� �

Nð2Þðc0Þ þ
1

2!
c

2

1
c2N

ð3Þðc0Þ þ
1

4!
c

4

1
Nð4Þðc0Þ;

..

.

ð11Þ

When we insert the series decompositions Eqs (8) and (9) into both sides of Eq (6), we

arrive at the subsequent connection:

X1

n¼0

cnðx; tÞ ¼ φþ Jrhðx; tÞ � JrR
X1

n¼0

cnðx; tÞ � Jr
X1

n¼0

An: ð12Þ
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The Adomian technique is analogous to the subsequent relation, which can be articulated

as

c0ðx; tÞ ¼ φþ Jrhðx; tÞ;

c1ðx; tÞ ¼ � Jr½Rc0 þ A0�;

c2ðx; tÞ ¼ � Jr½Rc1 þ A1�;

..

.

cnþ1ðx; tÞ ¼ � Jr½Rcn þ An�:

4 Fractional order new coupled KdV system

The fractional-order new cKdV system is indeed an intriguing extension of the classical KdV

equation. One of the captivating equations within this framework is the fractional-order new

cKdV system, expressed as:

Dr
t u ¼ buxxx þ aðuvÞx þ gðuwÞx;

Dr
t v ¼ bvxxx þ lðuwÞx;

Dr
t w ¼ bwxxx þ lðuvÞx;

ð13Þ

where 0< ρ� 1 and α, β, γ, λ are arbitrary constants, the inclusion of the fractional-order

parameter not only extends the classical KdV equation but also prompts a deeper exploration

of the system’s behavior. With its fractional derivatives, this system introduces a new dimen-

sion to the study of nonlinear wave phenomena. The fractional-order parameter adds com-

plexity, providing a nuanced perspective on the interplay between dispersion and nonlinearity.

At ρ = 1, this system was investigated by the authors in [42]. This dynamical model delves into

the analysis of this fractional-order coupled system, shedding light on its unique dynamics and

potential implications for the broader field of nonlinear wave theory.

5 Analysis of the technique

In this section, we present the projected fractional IADM as a potent technique for solving the

fractional-order new cKdV system. The fractional operator Dr
t represents the Caputo deriva-

tive as defined in Eq (1). The method involves applying the inverse operator Jρ of Dr
t on both

sides of Eq (13) to obtain the solution as

uðx; tÞ ¼ uðx; 0Þ þ bJruxxx þ JrA;

vðx; tÞ ¼ vðx; 0Þ þ bJrvxxx þ JrB;

wðx; tÞ ¼ wðx; 0Þ þ bJrwxxx þ JrC:

ð14Þ
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According to the decomposition technique, we assume that the solution of the unknown

functions can be expressed as a series as

uðx; tÞ ¼
X1

n¼0

unðx; tÞ;

vðx; tÞ ¼
X1

n¼0

vnðx; tÞ;

wðx; tÞ ¼
X1

n¼0

wnðx; tÞ:

ð15Þ

We represented the nonlinear terms in Eq (13) as follows:

A ¼ aðuvÞx þ gðuwÞx;

B ¼ lðuwÞx;

C ¼ lðuvÞx;

ð16Þ

where An, Bn, Cn (n� 0), denote Adomian polynomials as

An ¼
1

n!

dn

dln N

 
X1

i¼0

l
i
ðuðx; tÞ

!

l¼0

;

Bn ¼
1

n!

dn

dln N

 
X1

i¼0

l
i
ðvðx; tÞ

!

l¼0

;

Cn ¼
1

n!

dn

dln N

 
X1

i¼0

l
i
ðwðx; tÞ

!

l¼0

:

ð17Þ

Substituting the decomposition series Eqs (16) and (15) in Eq (14), we get

X1

n¼0

unðx; tÞ ¼ uðx; 0Þ þ Jrb
X1

n¼0

ðunðx; tÞÞxxx þ Jr
X1

n¼0

An;

X1

n¼0

vnðx; tÞ ¼ vðx; 0Þ þ Jrb
X1

n¼0

ðvnðx; tÞÞxxx þ Jr
X1

n¼0

Bn;

X1

n¼0

wnðx; tÞ ¼ wðx; 0Þ þ Jrb
X1

n¼0

ðwnðx; tÞÞxxx þ Jr
X1

n¼0

Cn:

ð18Þ
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Hence, through the analysis of decomposition, the subsequent recursive relationships are

introduced as

u0ðx; tÞ ¼ uðx; 0Þ:

v0ðx; tÞ ¼ vðx; 0Þ:

w0ðx; tÞ ¼ wðx; 0Þ:

ð19Þ

unþ1ðx; tÞ ¼ Jrb
X1

n¼0

ðunðx; tÞÞxxx þ Jr
X1

n¼0

An:

vnþ1ðx; tÞ ¼ Jrb
X1

n¼0

ðvnðx; tÞÞxxx þ Jr
X1

n¼0

Bn:

wnþ1ðx; tÞ ¼ Jrb
X1

n¼0

ðwnðx; tÞÞxxx þ Jr
X1

n¼0

Cn:

ð20Þ

Finally, the approximate solution to Eq (13) is obtained through backward substitution as

follows:

uðx; tÞ ¼ u0ðx; tÞ þ u1ðx; tÞ þ u2ðx; tÞ þ ::::

vðx; tÞ ¼ v0ðx; tÞ þ v1ðx; tÞ þ v2ðx; tÞ þ ::::

wðx; tÞ ¼ w0ðx; tÞ þ w1ðx; tÞ þ w2ðx; tÞ þ ::::

ð21Þ

6 Numerical results

Consider fractional order new coupled KdV system in Eq (13) with � = 2, K = 1, d2 = −2.

For the sake of simulation, we also include the exact solution of the fractional new cKdV

system from Eq (13), established in reference [42] for ρ = 1, as follows

uðx; tÞ ¼
2bd2K2

3l
2 �

3þ tanh2 ε

ffiffiffiffiffiffiffiffiffi

�
d2

3

r

ðKx � otÞ

 !

tanh2 ε

ffiffiffiffiffiffiffiffiffi

�
d2

3

r

ðKx � otÞ

 !

0

B
B
B
B
@

1

C
C
C
C
A
;

vðx; tÞ ¼ �
bd2K2ða �

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
a2 þ 4gl
p

3l
2 �

3þ tanh2 ε

ffiffiffiffiffiffiffiffiffi

�
d2

3

r

ðKx � otÞ

 !

tanh2 ε

ffiffiffiffiffiffiffiffiffi

�
d2

3

r

ðKx � otÞ

 !

0

B
B
B
B
@

1

C
C
C
C
A
;

wðx; tÞ ¼
bh2K2ða �

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
a2 þ 4gl
p

3l
2 �

3þ tanh2 ε

ffiffiffiffiffiffiffiffiffi

�
d2

3

r

ðKx � otÞ

 !

tanh2 ε

ffiffiffiffiffiffiffiffiffi

�
d2

3

r

ðKx � otÞ

 !

0

B
B
B
B
@

1

C
C
C
C
A
;

ð22Þ

where o ¼ �
4bd2K2

3
. Now, let’s consider the initial condition at t = 0 as stated in Eq (22), and
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investigate the following two cases as

uðx; 0Þ ¼
2bd2K2

3l
2 �

3þ tanh2 ε

ffiffiffiffiffiffiffiffiffi

�
d2

3

r

Kx

 !

tanh2 ε

ffiffiffiffiffiffiffiffiffi

�
d2

3

r

Kx

 !

0

B
B
B
B
@

1

C
C
C
C
A
:

vðx; 0Þ ¼ �
bd2K2ða �

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
a2 þ 4gl
p

3l
2 �

3þ tanh2 ε

ffiffiffiffiffiffiffiffiffi

�
d2

3

r

Kx

 !

tanh2 ε

ffiffiffiffiffiffiffiffiffi

�
d2

3

r

Kx

 !

0

B
B
B
B
@

1

C
C
C
C
A
:

wðx; 0Þ ¼
bd2K2ða �

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
a2 þ 4gl
p

3l
2 �

3þ tanh2 ε

ffiffiffiffiffiffiffiffiffi

�
d2

3

r

Kx

 !

tanh2 ε

ffiffiffiffiffiffiffiffiffi

�
d2

3

r

Kx

 !

0

B
B
B
B
@

1

C
C
C
C
A
:

ð23Þ

Case 1: α = 0.001, β = 0.001, λ = 0.01, γ = 0.01, � = 2.

Table 1. Approximate solution (n = 2) is computed of u(x, t) for various values of ρ, and a comparison of the absolute error is performed at ρ = 1 of Eq (21) for Case

1.

t x Exact solution Approximate Solution ρ = 1 Approximate Solution ρ = 0.5 Absolute Error

0.1 1 0.33260008414074643 0.33242137089454 0.33242137089454 1.7871324620644113 × 10−4

0.2 2 0.26899919711886017 0.2689933891861401 0.2689933891861401 5.807932720092168 × 10−6

0.3 3 0.26675534834141734 0.2667550306812397 0.2667550306812397 3.176601776622156 × 10−7

0.4 4 0.26667004738901595 0.26667003131216377 0.26667003131216377 1.607685218285581 × 10−8

0.5 5 0.2666667955597643 0.2666667947958156 0.2666667947958156 7.639486820920638 × 10−10

0.6 6 0.2666666715808518 0.2666666715460007 0.2666666715460007 3.485106647715952 × 10−11

0.7 7 0.2666666668540253 0.26666666685247964 0.26666666685247964 1.545652494883143 × 10−12

0.8 8 0.2666666666738099 0.2666666666737428 0.2666666666737428 6.711298183859071 × 10−14

0.9 9 0.2666666666669389 0.26666666666693606 0.26666666666693606 2.831068712794149 × 10−15

1 10 0.2666666666666772 0.2666666666666769 0.2666666666666769 3.330669073875469 × 10−16

https://doi.org/10.1371/journal.pone.0303426.t001

Table 2. Approximate solution (n = 2) is computed of v(x, t) for various values of ρ, and a comparison of the absolute error is performed at ρ = 1 of Eq (21) for Case

1.

t x Exact solution Approximate Solution ρ = 1 Approximate Solution ρ = 0.5 Absolute Error

0.1 1 0.31638557051936744 0.31624294367981326 0.31624294367981326 1.4262683955418298 × 10−4

0.2 2 0.25588527636597774 0.2558812220386966 0.2558812220386966 4.054327281122205 × 10−6

0.3 3 0.25375081696725427 0.2537505973519397 0.2537505973519397 2.19615314545063 × 10−7

0.4 4 0.2536696745028406 0.25366966338180913 0.25366966338180913 1.112103148459553 × 10−8

0.5 5 0.2536665812028024 0.253666580673836 0.253666580673836 5.289663707053194 × 10−10

0.6 6 0.2536664632679585 0.2536664632438035 0.2536664632438035 2.415501132446707 × 10−11

0.7 7 0.2536664587715685 0.2536664587704962 0.2536664587704962 1.072308908334207 × 10−12

0.8 8 0.25366645860013876 0.2536664586000922 0.2536664586000922 4.657385588302532 × 10−14

0.9 9 0.25366645859360276 0.2536664585936008 0.2536664585936008 1.942890293094024 × 10−15

1 10 0.2536664585933538 0.25366645859335357 0.25366645859335357 2.220446049250313 × 10−16

https://doi.org/10.1371/journal.pone.0303426.t002
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Table 3. Approximate solution (n = 2) is computed of w(x, t) for various values of ρ, and a comparison of the absolute error is performed at ρ = 1 of Eq (21) for Case

1.

t x Exact solution Approximate Solution ρ = 1 Approximate Solution ρ = 0.5 Absolute Error

0.1 1 −0.31638557051936744 −0.31624294367981326 −0.31624294367981326 1.4262683955418298 × 10−4

0.2 2 −0.25588527636597774 −0.2558812220386966 −0.2558812220386966 4.054327281122205 × 10−6

0.3 3 −0.25375081696725427 −0.2537505973519397 −0.2537505973519397 2.19615314545063 × 10−7

0.4 4 −0.2536696745028406 −0.25366966338180913 −0.25366966338180913 1.112103148459553 × 10−8

0.5 5 −0.2536665812028024 −0.253666580673836 −0.253666580673836 5.289663707053194 × 10−10

0.6 6 −0.2536664632679585 −0.2536664632438035 −0.2536664632438035 2.415501132446707 × 10−11

0.7 7 −0.2536664587715685 −0.2536664587704962 −0.2536664587704962 1.072308908334207 × 10−12

0.8 8 −0.25366645860013876 −0.2536664586000922 −0.2536664586000922 4.657385588302532 × 10−14

0.9 9 −0.25366645859360276 −0.2536664585936008 −0.2536664585936008 1.942890293094024 × 10−15

1 10 −0.2536664585933538 −0.25366645859335357 −0.25366645859335357 2.220446049250313 × 10−16

https://doi.org/10.1371/journal.pone.0303426.t003

Table 4. Approximate solution (n = 2) is computed of u(x, t) for various values of ρ, and a comparison of the absolute error is performed at ρ = 1 of Eq (21) for Case

2.

t x Exact solution Approximate Solution ρ = 1 Approximate Solution ρ = 0.5 Absolute Error

0.1 1 0.33204482166407284 0.33069799422511365 0.3301655580378987 1.3468274389591972 × 10−3

0.2 2 0.26896281180421 0.268909716688929 0.2687898625861433 5.3095115281009964 × 10−5

0.3 3 0.2667532870873321 0.26675043269263665 0.26674582304681194 2.854394695439577 × 10−6

0.4 4 0.26666994303567765 0.2666698038643308 0.26666964007414545 1.391713468357203 × 10−7

0.5 5 0.2666667906059158 0.2666667842538761 0.26666677865788957 6.352039727541836 × 10−9

0.6 6 0.2666666713550871 0.2666666710773379 0.26666667089232227 2.7774921251833 × 10−10

0.7 7 0.266666666844022 0.26666666683224133 0.2666666668263283 1.178068753659999 × 10−11

0.8 8 0.26666666667337585 0.26666666667288746 0.2666666666727059 4.883871085326064 × 10−13

0.9 9 0.26666666666692057 0.26666666666690053 0.2666666666668952 2.003952559448407 × 10−14

1 10 0.2666666666666762 0.26666666666667543 0.26666666666667527 7.771561172376096 × 10−16

https://doi.org/10.1371/journal.pone.0303426.t004

Table 5. Approximate solution (n = 2) is computed of v(x, t) for various values of ρ, and a comparison of the absolute error is performed at ρ = 1 of Eq (21) for Case

2.

t x Exact solution Approximate Solution ρ = 1 Approximate Solution ρ = 0.5 Absolute Error

0.1 1 0.31585737752168913 0.31479254701256393 0.31425718876913666 1.064830509125203 × 10−3

0.2 2 0.2558506648638074 0.2558130690623424 0.25571106346062705 3.759580146500685 × 10−5

0.3 3 0.2537488562009141 0.25374682575849444 0.2537428251638899 2.030442419642675 × 10−6

0.4 4 0.25366957523680905 0.25366947505338366 0.2536693297053994 1.001834253888667 × 10−7

0.5 5 0.2536665764904579 0.25366657185808894 0.25366656677559024 4.632368932888653 × 10−9

0.6 6 0.2536664630532001 0.25366646284778355 0.2536664626755915 2.054165726406154 × 10−10

0.7 7 0.253666458762053 0.253666458753207 0.2536664587475591 8.846035015608322 × 10−12

0.8 8 0.2536664585997259 0.2536664585993531 0.2536664585991748 3.728128916691275 × 10−13

0.9 9 0.2536664585935854 0.25366645859356973 0.2536664585935644 1.56541446472147 × 10−14

1 10 0.25366645859335296 0.25366645859335235 0.2536664585933522 6.106226635438361 × 10−16

https://doi.org/10.1371/journal.pone.0303426.t005
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Table 6. Approximate solution (n = 2) is computed of w(x, t) for various values of ρ, and a comparison of the absolute error is performed at ρ = 1 of Eq (21) for Case

2.

t x Exact solution Approximate Solution ρ = 1 Approximate Solution ρ = 0.5 Absolute Error

0.1 1 −0.31585737752168913 −0.31479254701256393 −0.31425718876913666 1.064830509125203 × 10−3

0.2 2 −0.2558506648638074 −0.2558130690623424 −0.25571106346062705 3.759580146500685 × 10−5

0.3 3 −0.2537488562009141 −0.25374682575849444 −0.2537428251638899 2, 030442419642675 × 10−6

0.4 4 −0.25366957523680905 −0.25366947505338366 −0.2536693297053994 1.001834253888667 × 10−7

0.5 5 −0.2536665764904579 −0.25366657185808894 −0.25366656677559024 4.632368932888653 × 10−9

0.6 6 −0.2536664630532001 −0.25366646284778355 −0.2536664626755915 2.054165726406154 × 10−10

0.7 7 −0.253666458762053 −0.253666458753207 −0.2536664587475591 8.846035015608322 × 10−12

0.8 8 −0.2536664585997259 −0.2536664585993531 −0.2536664585991748 3.728128916691275 × 10−13

0.9 9 −0.2536664585935854 −0.25366645859356973 −0.2536664585935644 1.56541446472147 × 10−14

1 10 −0.25366645859335296 −0.25366645859335235 −0.2536664585933522 6.106226635438361 × 10−16

https://doi.org/10.1371/journal.pone.0303426.t006

Fig 1. The 3D graphical comparison of exact solutions ((a), (b), (c) at ρ = 1) with approximations ((d), (e), (f) at ρ
= 1, and (g), (h), (i) at ρ = 0.5) for u, v, and w in Case 1.

https://doi.org/10.1371/journal.pone.0303426.g001
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Case 2: α = 0.01, β = 0.01, λ = 0.1, γ = 0.1, � = 1.5.

The simulation results for the two aforementioned cases are now presented. Tables 1

through 3 display an analysis of different combinations of x and t, comparing these outcomes

with the exact solution obtained for Case 1. These tables provide a comprehensive view of the

system’s behavior at different spatial and temporal points. In Tables 4 through 6, we similarly

explore various values of x and t, but focus on the simulated results derived from the exact

solution for Case 2. This comparative analysis allows us to assess the accuracy and perfor-

mance of the numerical approximations under different parameter configurations. These

tables include values for the exact solution, as well as the approximate solutions for two diverse

values of ρ (1 and 0.5). The calculated error values offer insights into the convergence and reli-

ability of the numerical simulations.

Visual representations of the solutions to the fractional-order new cKdV system for the two

considered cases are showcased in Figs 1–4. Specifically, Figs 1 and 3 present three-dimen-

sional profiles capturing the exact solution (at ρ = 1), approximate solution (at ρ = 1) and

approximate solution (at ρ = 0.5) of the system described by Eq (13). These 3D graphs offer an

insightful depiction of the system’s behavior under varying parameter configurations. In con-

trast, Figs 2 and 4 provide two-dimensional representations, offering a focused view of specific

aspects of the solutions. In each case, the exact solution in Eq (22). is juxtaposed with the corre-

sponding numerical solution obtained from Eq (21). This side-by-side presentation facilitates

a visual assessment of the accuracy and agreement between the analytical predictions and the

results derived from numerical simulations, encompassing both 2D and 3D graphs. The color-

coded surfaces in each figure emphasize the dynamic nature of the solutions, allowing for a

more intuitive understanding of the system’s response in each case.

7 Conclusion

In this work, we successfully employed the projected fractional improved ADM to the frac-

tional-order new cKdV system and obtained approximate solutions, thereby extending its

applicability to phenomena with non-integer order characteristics and spatial extensions. The

fractional new cKdV system extends the classical coupled KdV system, incorporating frac-

tional calculus for a more accurate representation of wave interactions, which finds applica-

tions in various areas such as fluid dynamics, plasma physics, nonlinear optics, and other fields

Fig 2. The 2D graphical comparison of exact and approximate solutions for Case 1.

https://doi.org/10.1371/journal.pone.0303426.g002
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of mathematical physics. This enhanced model promises to deepen our understanding and

predictive capabilities across these disciplines, paving the way for advancements in theoretical

and applied research. This technique is significantly recognized for its effectiveness in address-

ing nonlinearities and iteratively handling fractional derivatives. These solutions play a crucial

Fig 3. The 3D graphical comparison of exact solutions ((a), (b), (c) at ρ = 1) with approximations ((d), (e), (f) at ρ = 1, and (g), (h), (i) at

ρ = 0.5) for u, v, and w in Case 2.

https://doi.org/10.1371/journal.pone.0303426.g003
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role in designing and optimizing systems in engineering applications where accurate modeling

of wave phenomena is essential, including fluid dynamics, plasma physics, nonlinear optics,

and other mathematical physics domains. Comparison with exact solutions demonstrates the

high accuracy and ease of application of the projected method. The numerical experiments

conducted in this study serve a dual purpose: validating the accuracy and efficiency of the

ADM-based approach and unraveling the intricacies associated with fractional-order systems.

These findings significantly contribute to our understanding of the behavior of fractional-

order KdV systems. The obtained approximate results prove that this proposed technique is

influential in solving fractional coupled systems encountered in various fields such as engi-

neering and physics. Numerical results obtained using Mathematica software further verify

and demonstrate its efficacy.

Author Contributions

Conceptualization: Muhammad Arshad, Saba Batool.

Investigation: Saud Fahad Aldosary, Irfan Hussain.

Methodology: Saud Fahad Aldosary.

Software: Irfan Hussain, Naveed Hussain.

Supervision: Muhammad Arshad, Saud Fahad Aldosary.

Validation: Muhammad Arshad.

Writing – original draft: Saba Batool.

Writing – review & editing: Naveed Hussain.

References
1. Arshad M., Seadawy A. R., Lu D., Modulation stability and dispersive optical soliton solutions of higher

order nonlinear Schrödinger equation and its applications in mono-mode optical fibers, Superlattices

and Microstructures, 113 (2018) 419–429. https://doi.org/10.1016/j.spmi.2017.11.022

2. Wang D.-S., A class of special exact solutions of some high dimensional non-linear wave equations, Int.

J. Mod. Phys. B, 24(23) (2010) 4563–4579. https://doi.org/10.1142/S0217979210056621

Fig 4. The 2D graphical comparison of exact and approximate solutions for Case 2.

https://doi.org/10.1371/journal.pone.0303426.g004

PLOS ONE Numerical exploration of fractional-order new coupled KdV system using the ADM

PLOS ONE | https://doi.org/10.1371/journal.pone.0303426 May 28, 2024 14 / 17

https://doi.org/10.1016/j.spmi.2017.11.022
https://doi.org/10.1142/S0217979210056621
https://doi.org/10.1371/journal.pone.0303426.g004
https://doi.org/10.1371/journal.pone.0303426


3. Arnous A.H., Hashemi M. S., Nisar K.S., Shakeel M., Ahmad J., Ahmad I., Jan R., Ali A., Kapoor M.,

Shah N.A., Investigating solitary wave solutions with enhanced algebraic method for new extended

Sakovich equations in fluid dynamics. Results in Physics, 57 (2024) 107369. https://doi.org/10.1016/j.

rinp.2024.107369

4. Vivas-Cortez M., Arshad S., Sadaf M., Perveen Z., Akram G. Numerical simulation of the soliton

dynamic for a nonlinear biological model. Modulation instability analysis. PLoS One 18(2) (2023)

e0281318. https://doi.org/10.1371/journal.pone.0281318 PMID: 36795692

5. Shehzad K., Seadawy A. R., Wang J., Arshad M., Multi peak solitons and breather types wave solutions

of unstable NLSEs with stability and applications in optics. Optical and Quantum Electronics, 55(1)

(2023) 1–18. https://doi.org/10.1007/s11082-022-04252-z

6. He J.-H., Homotopy perturbation method: a new nonlinear analytical technique, Appl. Math. Comput.,

135(1) (2003) 73–79.

7. Shang Y., Analytical solution for an in-host viral infection model with time-inhomogeneous rates, Acta

Phys. Pol. B, 46(8) (2015) 1567–1577. https://doi.org/10.5506/APhysPolB.46.1567

8. Arshad M., Seadawy A.R., Lu D., Wang J., Travelling wave solutions of Drinfel’d-Sokolov-Wilson, Whi-

tham-Broer-Kaup and (2+1)-dimensional Broer-KaupKupershmit equations and their applications,

Chin. J. Phys., 55 (3) (2017) 780–797. https://doi.org/10.1016/j.cjph.2017.02.008

9. Zaman U. H. M., Arefin M. A., Akbar M. A., Uddin M. H. Study of the soliton propagation of the fractional

nonlinear type evolution equation through a novel technique. Plos One, 18(5), (2023) e0285178.

https://doi.org/10.1371/journal.pone.0285178 PMID: 37216390

10. Arefin M. A., Saeed M. A., Akbar M. A., Uddin M. H. Analytical behavior of weakly dispersive surface

and internal waves in the ocean. Journal of Ocean Engineering and Science, 7(4), (2022) 305–312.

https://doi.org/10.1016/j.joes.2021.08.012

11. Sarwar A., Gang T., Arshad M., Ahmed I., Ahmad M.O., Abundant solitary wave solutions for space-

time fractional unstable nonlinear Schrödinger equations and their applications, Ain Shams Engineering

Journal, 14 (2023) 101839. https://doi.org/10.1016/j.asej.2022.101839

12. Chen Y., Yan Z., Zhang H., New explicit solitary wave solutions for (2+1)-dimensional Boussinesq equa-

tion and (3+1)-dimensional KP equation. Phys Lett A, 307(23) (2003) 107–113. https://doi.org/10.1016/

S0375-9601(02)01668-7

13. M.J. Ablowitz, P.A. Clarkson, Solitons, nonlinear evolution equations and inverse scattering transform,

Cambridge Univ Press, Cambridge (1991).

14. Arshad M., Seadawy A. R., Lu D., Ali A., Dispersive Solitary wave solutions of strain wave dynamical

model and its stability, Communications in Theoretical Physics, 71 (2019) 1155–1162. https://doi.org/

10.1088/0253-6102/71/10/1155

15. Miller K. S., Ross B., An introduction to the fractional calculus and fractional differential equations. New

York: John Wiley and Sons; 1993.

16. Arshad M., Lu D., Wang J., (N+1)-dimensional fractional reduced differential transform method for frac-

tional order partial differential equations, Communications in Nonlinear Science and Numerical Simula-

tion, 48 (2017) 509–519. https://doi.org/10.1016/j.cnsns.2017.01.018

17. Ahmad I., Ali I., Jan R., Idris S.A., Mousa M., Solutions of a three-dimensional multi-term fractional

anomalous solute transport model for contamination in groundwater. Plos one, 18(12), (2023)

e0294348. https://doi.org/10.1371/journal.pone.0294348 PMID: 38064451

18. Podlubny I., Fractional differential equations, New York: Academic Press; 1999.

19. Hilfer R., Applications of fractional calculus in physics, Singapore: Word Scientific Publishing Com-

pany; 2000.

20. Akram G., Arshed S., Sadaf M., Sameen F. The generalized projective Riccati equations method for

solving quadratic-cubic conformable time-fractional Klein-Fock-Gordon equation. Ain Shams Engineer-

ing Journal, 13(4), (2022) 101658. https://doi.org/10.1016/j.asej.2021.101658

21. Arefin M. A., Zaman U. H. M., Uddin M. H., Inc M. Consistent travelling wave characteristic of space–

time fractional modified Benjamin–Bona–Mahony and the space–time fractional Duffing models. Optical

and Quantum Electronics, 56(4), (2024) 588. https://doi.org/10.1007/s11082-023-06260-z

22. Caldern A., Vinagre B., Feliu V., Fractional order control strategies for power electronic buck converters,

Signal Process, 86(10) (2006) 2803–2819. https://doi.org/10.1016/j.sigpro.2006.02.022

23. Petras I., Fractional-order nonlinear systems: modeling, analysis and simulation. Beijing: Higher Edu-

cation Press; 2011.

24. Ahmad I., Bakar A.A., Ali I., Haq S., Yussof S., Ali A.H., Computational analysis of time-fractional mod-

els in energy infrastructure applications. Alexandria Engineering Journal, 82 (2023), 426–436. https://

doi.org/10.1016/j.aej.2023.09.057

PLOS ONE Numerical exploration of fractional-order new coupled KdV system using the ADM

PLOS ONE | https://doi.org/10.1371/journal.pone.0303426 May 28, 2024 15 / 17

https://doi.org/10.1016/j.rinp.2024.107369
https://doi.org/10.1016/j.rinp.2024.107369
https://doi.org/10.1371/journal.pone.0281318
http://www.ncbi.nlm.nih.gov/pubmed/36795692
https://doi.org/10.1007/s11082-022-04252-z
https://doi.org/10.5506/APhysPolB.46.1567
https://doi.org/10.1016/j.cjph.2017.02.008
https://doi.org/10.1371/journal.pone.0285178
http://www.ncbi.nlm.nih.gov/pubmed/37216390
https://doi.org/10.1016/j.joes.2021.08.012
https://doi.org/10.1016/j.asej.2022.101839
https://doi.org/10.1016/S0375-9601(02)01668-7
https://doi.org/10.1016/S0375-9601(02)01668-7
https://doi.org/10.1088/0253-6102/71/10/1155
https://doi.org/10.1088/0253-6102/71/10/1155
https://doi.org/10.1016/j.cnsns.2017.01.018
https://doi.org/10.1371/journal.pone.0294348
http://www.ncbi.nlm.nih.gov/pubmed/38064451
https://doi.org/10.1016/j.asej.2021.101658
https://doi.org/10.1007/s11082-023-06260-z
https://doi.org/10.1016/j.sigpro.2006.02.022
https://doi.org/10.1016/j.aej.2023.09.057
https://doi.org/10.1016/j.aej.2023.09.057
https://doi.org/10.1371/journal.pone.0303426


25. Podder A., Arefin M. A., Akbar M. A., Uddin M. H. A study of the wave dynamics of the space–time frac-

tional nonlinear evolution equations of beta derivative using the improved Bernoulli sub-equation func-

tion approach. Scientific Reports, 13(1), (2023) 20478. https://doi.org/10.1038/s41598-023-45423-6

PMID: 37993529

26. Matteo A. D., Pirrotta A., Generalized differential transform method for nonlinear boundary value prob-

lem of fractional order, Commun Nonlinear Sci Numer Simul, 29(13) (2015) 88–101. https://doi.org/10.

1016/j.cnsns.2015.04.017

27. Wang F., Ahmad I., Ahmad H., Alsulami M. D., Alimgeer K. S., Cesarano C., Nofal T. A., Meshless

method based on RBFs for solving three-dimensional multi-term time fractional PDEs arising in engi-

neering phenomenons. Journal of King Saud University-Science, 33(8) (2021), 101604.

28. Duan J.-S., Chaolu T., Rach R., Solutions of the initial value problem for nonlinear fractional ordinary dif-

ferential equations by the Rach–Adomian–Meyers modified decomposition method, Appl Math Comput,

218(17) (2012) 8370–8392.

29. Momani S., Abuasad S., Application of He’s variational iteration method to Helmholtz equation, Chaos

Solitons Fractals, 27(5) (2006) 1119–1123. https://doi.org/10.1016/j.chaos.2005.04.113

30. Abdulaziz O., Hashim I., Momani S., Solving systems of fractional differential equations by homotopy-

perturbation method, Phys Lett A, 372(4) (2008) 451–459. https://doi.org/10.1016/j.physleta.2007.07.

059

31. He J.-H., Variational iteration method for autonomous ordinary differential systems, Appl Math Comput,

114(23) (2000) 115–123.

32. Masjedi P. K., Weaver P. M., Analytical solution for arbitrary large deflection of geometrically exact

beams using the homotopy analysis method, Applied Mathematical Modelling, 103 (2022) 516–542.

https://doi.org/10.1016/j.apm.2021.10.037

33. Ozis T., Arseven D., He’s homotopy perturbation method for solving heat-like and wave-like equations

with variable coefficients, Phys Lett A, 372 (38) (2008) 5944–5950. https://doi.org/10.1016/j.physleta.

2008.07.060

34. Molliq R. Y., Noorani M. S. M., Hashim I., Variational iteration method for fractional heat- and wave-like

equations, Nonlinear Anal Real World Appl, 10(3) (2009) 1854–1869. https://doi.org/10.1016/j.nonrwa.

2008.02.026

35. Adomian G., A review of the decomposition method in applied mathematics, J. Math. Anal. Appl., 135

(1988) 501–544. https://doi.org/10.1016/0022-247X(88)90170-9

36. Abassy T.A., Improved Adomian decomposition method, Comput. Math. Appl., 59 (2010) 42–54.

https://doi.org/10.1016/j.camwa.2009.06.009

37. Chu Y.-M., Ullah S., Ali M., Tuzzahrah G. F., Munir T., Numerical Investigation of Volterra Integral Equa-

tions of Second Kind using Optimal Homotopy Asymptotic Method, Applied Mathematics and Computa-

tion, 430 (2022) 127304. https://doi.org/10.1016/j.amc.2022.127304

38. Ren J., Sun Z.-z., Dai W., New approximations for solving the Caputo-type fractional partial differential

equations, Appl Math Model, 40(4) (2016) 2625–2636. https://doi.org/10.1016/j.apm.2015.10.011

39. G. Adomian. Solving Frontier Problems of Physics: The Decomposition Method, Kluwer Academic Pub-

lishers., Boston, 1994.

40. Wazwaz A.M., A new algorithm for calculating Adomian polynomials for nonlinear operators, Appl.

Math. Comput., 111 (2000) 33–51.

41. Abbasbandy S., Extended Newton’s method for a system of nonlinear equations by modified Adomian

decomposition method, Appl. Math. Comput., 170 (2005) 648–656.

42. Seadawy A.R., Arshad M., Lu D., Stability analysis of new exact traveling-wave solutions of new cou-

pled KdV and new coupled Zakharov-Kuznetsov systems. The European Physical Journal Plus 132

(2017) 162. https://doi.org/10.1140/epjp/i2017-11437-5

43. Wazwaz A.M., Completely integrable coupled KdV and coupled KP systems. Communications in Non-

linear Science and Numerical Simulation 15 (2010) 2828–2835. https://doi.org/10.1016/j.cnsns.2009.

11.031

44. Zhang B.-G., Liu Z.-R., Xiao Q., New exact solitary wave and multiple soliton solutions of quantum

Zakharov–Kuznetsov equation. Applied mathematics and computation 217 (2010) 392–402. https://

doi.org/10.1016/j.amc.2010.05.074

45. Lu D., Seadawy A.R., Arshad M., Wang J., New solitary wave solutions of (3 + 1)-dimensional nonlinear

extended Zakharov-Kuznetsov and modified KdV-Zakharov-Kuznetsov equations and their applica-

tions. Results in physics 7 (2017) 899–909. https://doi.org/10.1016/j.rinp.2017.02.002

46. Arshad M., seadawy A.R., Lu D., wang J., Travelling wave solutions of generalized coupled Zakharov–

Kuznetsov and dispersive long wave equations. Results in Physics 6 (2016) 1136–1145. https://doi.

org/10.1016/j.rinp.2016.11.043

PLOS ONE Numerical exploration of fractional-order new coupled KdV system using the ADM

PLOS ONE | https://doi.org/10.1371/journal.pone.0303426 May 28, 2024 16 / 17

https://doi.org/10.1038/s41598-023-45423-6
http://www.ncbi.nlm.nih.gov/pubmed/37993529
https://doi.org/10.1016/j.cnsns.2015.04.017
https://doi.org/10.1016/j.cnsns.2015.04.017
https://doi.org/10.1016/j.chaos.2005.04.113
https://doi.org/10.1016/j.physleta.2007.07.059
https://doi.org/10.1016/j.physleta.2007.07.059
https://doi.org/10.1016/j.apm.2021.10.037
https://doi.org/10.1016/j.physleta.2008.07.060
https://doi.org/10.1016/j.physleta.2008.07.060
https://doi.org/10.1016/j.nonrwa.2008.02.026
https://doi.org/10.1016/j.nonrwa.2008.02.026
https://doi.org/10.1016/0022-247X(88)90170-9
https://doi.org/10.1016/j.camwa.2009.06.009
https://doi.org/10.1016/j.amc.2022.127304
https://doi.org/10.1016/j.apm.2015.10.011
https://doi.org/10.1140/epjp/i2017-11437-5
https://doi.org/10.1016/j.cnsns.2009.11.031
https://doi.org/10.1016/j.cnsns.2009.11.031
https://doi.org/10.1016/j.amc.2010.05.074
https://doi.org/10.1016/j.amc.2010.05.074
https://doi.org/10.1016/j.rinp.2017.02.002
https://doi.org/10.1016/j.rinp.2016.11.043
https://doi.org/10.1016/j.rinp.2016.11.043
https://doi.org/10.1371/journal.pone.0303426


47. Arshad M., Seadawy A.R., Tanveer M., Yasin F., Study on Abundant Dust-Ion-Acoustic Solitary Wave

Solutions of a (3+1)-Dimensional Extended Zakharov-Kuznetsov Dynamical Model in a Magnetized

Plasma and Its Linear Stability, Fractal and Fractional, 7(9) (2023) 691. https://doi.org/10.3390/

fractalfract7090691

48. Attar M. U., Arshad M., Seadawy A. R., Ahmed I., Tanveer M., Exploration conversations laws, diferent

rational solitons and vibrant type breather wave solutions of the modify unstable nonlinear Schrödinger

equation with stability and its multidisciplinary applications, Optical and Quantum Electronics 56 (2026)

420.

49. Seadawy A.R., Arshad M., Lu D., The weakly nonlinear wave propagation theory for the Kelvin-Helm-

holtz instability in magneto hydrodynamics flows, Chaos, Solitons & Fractals, 139 (2020) 110141.

https://doi.org/10.1016/j.chaos.2020.110141

50. Akram G., Sadaf M., Zainab I. New graphical observations for KdV equation and KdVBurgers equation

using modified auxiliary equation method. Modern Physics Letters B, 36(01), (2022) 2150520. https://

doi.org/10.1142/S0217984921505205

51. Nasreen N., Rafiq M.N., Younas U., Arshad M., Abbas M., Ali M. R., Stability analysis and dynamics of

solitary wave solutions of the (3+1)-dimensional generalized shallow water wave equation using the

Ricatti equation mapping method, Results in Physics, 56 (2024) 107226. https://doi.org/10.1016/j.rinp.

2023.107226

52. Arshad M., Lu D., Wang J., Abdullah, Exact Traveling Wave Solutions of a Fractional Sawada-Kotera

Equation, East Asian J. on Applied Mathematics, 8(2) (2018) 211–223. https://doi.org/10.4208/eajam.

090617.231117a

53. Qian X., Lu D., Arshad M., Shehzad K., Novel Traveling Wave Solutions and Stability Analysis of Per-

turbed Kaup-Newell Schrodinger Dynamical Model and its Applications, Chinese Physics B 30(2)

(2021) 020201. https://doi.org/10.1088/1674-1056/abbbfc

54. Chan C. K., Akram G., Riaz M. B., Sadaf M., Zainab I., Alzaidi A. S., Abbas M. Abundant soliton solu-

tions of the modified KdV-KP equation. Results in Physics (2024) 107478. https://doi.org/10.1016/j.rinp.

2024.107478

55. Inc M., Parto-Haghighi M., Akinlar M. A., Chu Y.-M., New numerical solutions of fractional-order Korte-

weg-de Vries equation, Results in Physics, 19 (2020) 03326. https://doi.org/10.1016/j.rinp.2020.

103326

56. Saad K. M., Srivastava H. M., Numerical Solutions of the Multi-Space Fractional-Order Coupled Korte-

weg-De Vries Equation with Several Different Kernels, Fractal Fract., 7(10) (2023) 716. https://doi.org/

10.3390/fractalfract7100716

57. Alqahtani A. M., Prasad J. G., Solution of local fractional generalized coupled Korteweg–de Vries

(cKdV) equation using local fractional homotopy analysis method and Adomian decomposition method,

App. Math. Science and Engin., 32(1) (2024) 2297028. https://doi.org/10.1080/27690911.2023.

2297028

58. Ahmed S. A., Abdalla Y. T., Hdidi W., A New Solution of Time-Fractional Coupled KdV Equation by

Using Natural Decomposition Method, Abstract and Applied Analysis, 2020 (2020) 3550816.

59. Xu H., Cang J., Analysis of a time fractional wave-like equation with the homotopy analysis method,

Phys Lett A 372 (8) (2008) 1250–1255. https://doi.org/10.1016/j.physleta.2007.09.039

PLOS ONE Numerical exploration of fractional-order new coupled KdV system using the ADM

PLOS ONE | https://doi.org/10.1371/journal.pone.0303426 May 28, 2024 17 / 17

https://doi.org/10.3390/fractalfract7090691
https://doi.org/10.3390/fractalfract7090691
https://doi.org/10.1016/j.chaos.2020.110141
https://doi.org/10.1142/S0217984921505205
https://doi.org/10.1142/S0217984921505205
https://doi.org/10.1016/j.rinp.2023.107226
https://doi.org/10.1016/j.rinp.2023.107226
https://doi.org/10.4208/eajam.090617.231117a
https://doi.org/10.4208/eajam.090617.231117a
https://doi.org/10.1088/1674-1056/abbbfc
https://doi.org/10.1016/j.rinp.2024.107478
https://doi.org/10.1016/j.rinp.2024.107478
https://doi.org/10.1016/j.rinp.2020.103326
https://doi.org/10.1016/j.rinp.2020.103326
https://doi.org/10.3390/fractalfract7100716
https://doi.org/10.3390/fractalfract7100716
https://doi.org/10.1080/27690911.2023.2297028
https://doi.org/10.1080/27690911.2023.2297028
https://doi.org/10.1016/j.physleta.2007.09.039
https://doi.org/10.1371/journal.pone.0303426

