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Abstract

Currently, numerous studies focus on employing fMRI-based deep neural networks to diag-

nose neurological disorders such as Alzheimer’s Disease (AD), yet only a handful have pro-

vided results regarding explainability. We address this gap by applying several prevalent

explainability methods such as gradient-weighted class activation mapping (Grad-CAM) to an

fMRI-based 3D-VGG16 network for AD diagnosis to improve the model’s explainability. The

aim is to explore the specific Region of Interest (ROI) of brain the model primarily focuses on

when making predictions, as well as whether there are differences in these ROIs between AD

and normal controls (NCs). First, we utilized multiple resting-state functional activity maps

including ALFF, fALFF, ReHo, and VMHC to reduce the complexity of fMRI data, which dif-

fered from many studies that utilized raw fMRI data. Compared to methods utilizing raw fMRI

data, this manual feature extraction approach may potentially alleviate the model’s burden.

Subsequently, 3D-VGG16 were employed for AD classification, where the final fully con-

nected layers were replaced with a Global Average Pooling (GAP) layer, aimed at mitigating

overfitting while preserving spatial information within the feature maps. The model achieved a

maximum of 96.4% accuracy on the test set. Finally, several 3D CAM methods were

employed to interpret the models. In the explainability results of the models with relatively

high accuracy, the highlighted ROIs were primarily located in the precuneus and the hippo-

campus for AD subjects, while the models focused on the entire brain for NC. This supports

current research on ROIs involved in AD. We believe that explaining deep learning models

would not only provide support for existing research on brain disorders, but also offer impor-

tant referential recommendations for the study of currently unknown etiologies.
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Introduction

Functional magnetic resonance imaging (fMRI) has been widely used for brain mapping

research since the 1990s because of its ability to provide detailed functional information about

the brain without requiring injections, surgery, or exposure to ionizing radiation [1]. Despite

its significant advantages such as non-invasiveness, functional specificity, and high spatial res-

olution, fMRI is not commonly used for clinical diagnosis because of its susceptibility to noise

and the complexity of its data [2, 3]. Since the useful signal variation in fMRI is generally only

2–5% of the signal strength, even a slight amount of noise can significantly affect the quality of

data. Moreover, due to the relatively high temporal and spatial resolutions of fMRI, the com-

plexity of its data is extremely high, which is another primary reason why fMRI data is hard to

be directly utilized for medical analysis and diagnosis. Therefore, various statistical methods,

such as independent components analysis (ICA) [4, 5] and general linear model (GLM) [6, 7],

are often used to reduce data complexity and extract useful information from fMRI data. Tang

et al. [8] proposed a method in which each brain was registered to MNI standard space and

subdivided into 90 regions, and the regional time series were obtained by calculating the aver-

age fMRI signal across all voxels in each region. After that, functional connectivity between

each pair of regions by calculating the Pearson correlation coefficient (PCC). With this

method, features with good discriminative power were extracted and used to finish classifica-

tion. In addition to general statistical methods, researchers have developed various dimension-

ality reduction techniques for fMRI data, such as the amplitude of low-frequency fluctuation

(ALFF) [9], fractional ALFF (fALFF) [9], regional homogeneity (ReHo) [10], and voxel-mir-

rored homotopic connectivity (VMHC) [11]. With these methods, temporal information in

the fMRI is compressed to generate only one brain volume, which significantly reduces the

complexity of the data. In addition, different methods can be used to extract useful informa-

tion from various perspectives.

However, traditional statistical methods require handcrafted feature extraction, which can

result in inefficiencies and occasional errors. Recent advancements in computer hardware pro-

cessing power and innovations in new graphical software have led researchers to focus increas-

ingly on automation informed by deep learning. The combination of raw fMRI data and

convolutional neural networks (CNNs) has recently enabled the automatic classification of

various neurological diseases. As mentioned in [12], AD is the most common cause of demen-

tia among older adults, a progressive disorder that starts with mild symptoms and worsens

progressively. The progress from NC to AD can be subdivided into four stages, namely signifi-

cant memory concern (SMC), early mild cognitive impairment (EMCI), mild cognitive

impairment (MCI), late mild cognitive impairment (LMCI). Approximately 96.85% accuracy

was achieved in classifying fMRI data from patients with AD compared to NC subjects [13].

The fMRI data were preprocessed using a standard pipeline, sliced into two-dimensional

images from axial view and time axes, and randomly divided into training and testing datasets.

LeNet-5 was used for classification. In a previous study [12], a similar pre-processing pipeline

was employed; however, residual neural networks [14] were utilized to classify AD. By fine-

tuning transfer learning, an accuracy of 97.88% was achieved. A modified three dimensional

(3D) CNN has been applied in resting-state fMRI data [2], in which four-dimensional fMRI

data were sliced along the time axis to aid training. This method was approximately 98.96%

accurate for AD. [15] developed a robust low-cost neural network classification system for AD

and Mild Cognitive Impairment (MCI) against NC using a CNN with input images based on

diffusion maps and gray-matter volumes, achieving competitive results of 93.5% for AD/NC

classification. In another study relating raw MRI data [16], the authors employed ResNet-50

and LeNet on AD classification based on MRI slices in three views and categories. The study

PLOS ONE Explainability of 3D CNN for fMRI of Alzheimer’s disease classification based on Grad-CAM

PLOS ONE | https://doi.org/10.1371/journal.pone.0303278 May 21, 2024 2 / 22

link: https://github.com/Neutrino000/3D-VGG-

ADNI The authors do not own data used in the

manuscript. Data obtained were collected and

owned by the Alzheimer’s Disease Neuroimaging

Initiative. Researchers may request and access the

data through the website of the Alzheimer’s

Disease Neuroimaging Initiative (ADNI) (http://adni.

loni.usc.edu). Authors had no special access

privileges to this data.

Funding: This work was supported by Japan

Society for the Promotion of Science KAKENHI,

Grant Numbers JP22K12786, JP22K19650,

JP21H03553, JP22H03699, and JP20H00267,

China Scholarship Council 202106030072. The

funders had no role in study design, data collection

and analysis, decision to publish, or preparation of

the manuscript. Data collection and sharing for this

project were funded by the Alzheimer’s Disease

Neuroimaging Initiative (ADNI) (National Institutes

of Health Grant U01 AG024904) and DOD ADNI

(Department of Defense award number W81XWH-

12-2-0012). ADNI is funded by the National

Institute on Aging, the National Institute of

Biomedical Imaging and Bioengineering, and

through generous contributions from the following:

AbbVie, Alzheimer’s Association; Alzheimer’s Drug

Discovery Foundation; Araclon Biotech; BioClinica,

Inc.; Biogen; Bristol-Myers Squibb Company;

CereSpir, Inc.; Cogstate; Eisai Inc.; Elan

Pharmaceuticals, Inc.; Eli Lilly and Company;

EuroImmun; F. Hoffmann-La Roche Ltd. and its

affiliated company Genentech, Inc.; Fujirebio; GE

Healthcare; IXICO Ltd.; Janssen Alzheimer

Immunotherapy Research \& Development, LLC.;

Johnson \& Johnson Pharmaceutical Research \&

Development LLC.; Lumosity; Lundbeck; Merck \&

Co., Inc.; Meso Scale Diagnostics, LLC.; NeuroRx

Research; Neurotrack Technologies; Novartis

Pharmaceuticals Corporation; Pfizer Inc.; Piramal

Imaging; Servier; Takeda Pharmaceutical

Company; and Transition Therapeutics. The

Canadian Institutes of Health Research is providing

funds to support ADNI clinical sites in Canada.

Private sector contributions are facilitated by the

Foundation for the National Institutes of Health

(\href{blue}{www.fnih.org}). The grantee

organization is the Northern California Institute for

Research and Education, and the study is

coordinated by the Alzheimer’s Therapeutic

Research Institute at the University of Southern

California. The authors are thankful for the support.

Competing interests: The authors have declared

that no competing interests exist.

https://doi.org/10.1371/journal.pone.0303278
https://github.com/Neutrino000/3D-VGG-ADNI
https://github.com/Neutrino000/3D-VGG-ADNI
http://adni.loni.usc.edu
http://adni.loni.usc.edu
http://www.fnih.org


demonstrated that the selecting slices performed better than using entire slices in MRI images

for AD classification and the coronal view showed higher accuracy. Although these methods

demonstrate high accuracy, their models lack explainability, thereby diminishing the credibil-

ity of the model due to the inability to explain its predictions.

Deep learning models extract features from the input data based on labeled data distribu-

tions and then make predictions based on these features. The use of raw fMRI data would evi-

dently increase the difficulty in extracting useful information for the model, which would

subsequently affect performance. In some studies, statistical methods or other means have

been employed to reduce the complexity of raw fMRI data as a preprocessing step to reduce

the difficulty of feature extraction by the model. A framework for the early diagnosis of AD

has been developed using deep neural networks and various medical information, in which

functional brain networks were constructed from resting-state fMRI signal correlations and

used as correlation coefficient data to train the neural network [17]. Similarly, [18] proposed a

deep learning-based method to realize binary classification between each pair of the different

stages of AD. The accuracy exceeded 99%. In addition, [19] reduced the dimensionality of

fMRI data by extracting features as 3D spatial maps for classifying resting-state fMRI images

using a 3D-CNN. An accuracy of 85.27% was obtained for the binary classification of AD ver-

sus NC. Dimensionality reduction method have not only been applied to AD, but also to

schizophrenia. In [20], Group ICA was considered as a preprocessing step for extracting ICA

components from a schizophrenia dataset, and 3D-CNN was employed to complete the classi-

fication. Furthermore, 98.09% ten-fold cross-validated classification accuracy was achieved. In

[3], fMRI images were preprocessed, and functional connectivity analysis was used to extract

features. Subsequently, 3D-CNN and a long short-term memory recurrent network were uti-

lized to extract spatial and temporal information for classifying functional activity maps. They

achieved an accuracy of 92.32% for the Center for Biomedical Research Excellence dataset

[21]. [22] investigates the utility of correlated transfer function (CorrTF) as a novel biomarker

for extracting crucial features from resting-state fMRI data. Employing a support vector

machine (SVM) in hierarchical and flat multi-classification schemes, the research achieved

competitive results of 98.2% for distinguishing between various stages of AD. In our opinion,

the more detailed the manually extracted features are in the entire classification task, the sim-

pler the process of automatic feature extraction required by the deep learning models; thus, the

performance of the models may be better. However, we cannot guarantee that the manually

extracted features are precisely the features required by the model for classification. Therefore,

there is a trade-off between manually pre-extracting features and allowing the model to auto-

matically extract features.

Although deep learning has made significant achievements in various fields, it is frequently

referred to as a black box because of its lack of explainability, which means that the underlying

reasons for a given prediction cannot be ascertained. This holds true whether the prediction is

accurate or not and can greatly impact the reliability of the model, particularly in clinical diag-

nosis. A method called class activation mapping (CAM) was proposed in 2016 to visualize the

model [23]. In this approach, the final fully connected layer is replaced by a global average

pooling (GAP) layer and feature maps from the last convolutional layer are used to visualize

the model. A novel method called Gradient-weighted CAM (Grad-CAM), which builds upon

CAM by combining the gradients of the gradient descent algorithm with the feature maps

from the final convolutional layer was introduced in 2017 [24]. Subsequently, multiple CAM-

based methods have been proposed [25–31], and the explainability of models has become an

increasingly important direction in computer vision.

In recent years, visualization techniques have been employed to explain deep learning mod-

els based on MRI images. In 2019, [32] proposed using layer-wise relevance propagation
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(LRP) to visualize CNN decisions for AD based on structural MRI (sMRI) data. The results

showed that a lot of importance is put on areas in the temporal lobe including the hippocam-

pus. [33] also proposed a CNN for the detection of AD based on sMRI. In this work, the associ-

ation of relevance scores and hippocampus volume were evaluated to validate the clinical

utility. A high accuracy (AUC� 0.91) was achieved for AD versus NC. Relevance maps indi-

cated that hippocampal atrophy was found the most informative factor for AD detection. [34]

proposed a 3D-CNN framework using a spatial source phase (SSP) maps derived from com-

plex-valued fMRI data to classify schizophrenia patients (SZ) and NC. Grad-CAM was utilized

to localized all contributing ROIs with opposite stengths for SZ and NC. [35] employed CNN

trained on three orthogonal views of cerebral regions, specifically the hippocampi, amygdalae,

and insulae, to stage the AD spectrum, including preclinical AD, MCI, AD, and NC, using

patched from structured MRI. The performance is comparable to state-of-art methods, show-

casing the potential of patch-based region of interest (ROI) ensembles in providing informa-

tive landmarks for MRI analysis. In addition to MRI images, [36] presented a deep learning

system designed to automatically identify four visually explainable signs of emphysema in

frontal and lateral chest radiographs, providing explainable labels for the detected signs. [37]

leverages a neural network model trained on synthetic NaI(Tl) urban search data to assess and

adapt explanation methods for gamma-ray spectral data. It highlights the superior accuracy of

black box methods, specifically LIME and SHAP, with a preference for SHAP due to its mini-

mal hyperparameter tuning.

Extensive research have explored the application of fMRI based deep neural networks to

diagnose neurological disorders. Despite this, only a limited number of studies have provided

results regarding explainability. In this study, we applied several CAM methods to two

3D-VGG16 models, which were used to classify patients with AD and NC based on four types

of 3D resting-state functional activity maps. AD is a neurological disorder characterized by the

degeneration of memory-related neurons in the brain. As the disease progresses, different

regions of the brain exhibit varying patterns of blood oxygenation levels [38, 39]. Blood oxy-

genation level refers to the proportion of oxygen bound hemoglobin, which can be used to

infer brain activity, as neural activity induces alterations in local blood flow and oxygenation

levels [40]. We hypothesized that fMRI captures blood oxygenation patterns in AD-affected

ROIs. Deep learning models classify AD stages using these patterns and generate Grad-CAM

heatmaps to identify the affected ROIs. The use of heatmaps to explain the model’s focus on

specific ROIs can not only assist and support researchers in studying diseases with known and

unknown causes. Besides, analyzing the heatmaps of cases, where the model made prediction

errors, can help improve the performance of the model. The main aims of our work are as

follows:

• To utilize several resting-state functional activity maps as dataset instead of raw fMRI data,

which can manually assist the model in extracting pertinent information

• To replace fully connected layers with GAP layer in the model serves to preserve spatial

information within feature maps, mitigate overfitting, and enhance model performance

• To employ 3D CAM methods on an fMRI-based 3D-VGG16 model for AD diagnosis, vali-

dating the model’s efficacy, and identifying specific ROIs as the basis for classification,

potentially indicating AD lesions

First, we introduce the dataset used, as well as the preprocessing steps, deep learning frame-

works, and Grad-CAM method in the Materials and methods section. In the Results section,

we present the experimental results, including the model’s performance and 3D Grad-CAM

heatmaps of 3D-VGG16 networks. In the Discussion section, the performance of the models
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and the Grad-CAM results are discussed. The final section concludes with a summary of the

main findings and contributions of the study.

Materials and methods

Alzheimer’s Disease Neuroimaging Initiative (ADNI) dataset and

preprocessing

Here, we introduce the dataset used in our study, as well as the preprocessing steps, deep learn-

ing frameworks. The program is publicly available at https://github.com/Neutrino000/

3D-VGG-ADNI. Data used in the preparation of this article were obtained from the Alzhei-

mer’s Disease Neuroimaging Initiative (ADNI) database (adni.loni.usc.edu). The ADNI was

launched in 2003 as a public-private partnership, led by Principal Investigator Michael W.

Weiner, MD. The primary goal of ADNI has been to test whether serial magnetic resonance

imaging (MRI), positron emission tomography (PET), other biological markers, and clinical

and neuropsychological assessment can be combined to measure the progression of mild cog-

nitive impairment (MCI) and early Alzheimer’s disease (AD). All ADNI studies are conducted

according to the Good Clinical Practice guidelines, the Declaration of Helsinki, and U.S. 21

CFR Part 50 (Protection of Human Subjects) and Part 56 (Institutional Review Boards). Writ-

ten informed consent was obtained from all participants before protocol-specific procedures

were performed. The Institutional Review Boards approved the ADNI protocol of all partici-

pating institutions; for up-to-date information, see www.adni-info.org. Based on multiple

scans obtained at various time points for each subject, the dataset for our study consisted of

163 scans of fMRI data from 50 NCs and 105 scans of fMRI data from 34 patients with AD,

which implies that some subjects possess multiple sets of scan data. Table 1 presents some

characteristics of the ADNI dataset. The small size of datasets is a common issue in medical

data. Therefore, the typical practice is to include all samples [19, 41–43], which may result in

data imbalance. However, larger datasets often offer better generalization performance, lead-

ing to a trade-off. A standardized preprocessing pipeline is employed to process the ADNI

dataset. The pipeline included various steps to remove noise and improve generality.

First, the dataset was converted from the Digital Imaging and Communications in Medi-

cine (DICOM) format to Neuroimaging Informatics Technology Initiative (NIFTI) format

using the dcm2niix toolbox [44]. Subsequently, Data Processing and Analysis for Brain Imag-

ing (DPABI) [45] on the MATLAB 9.12.0 (2022a) platform were applied to the remaining pre-

processing steps. Brain extraction was performed using anatomical and functional images.

Subsequently, temporal adjustment was achieved through slice-timing correction, while the

influence of head motion on data acquisition was removed by motion correction. In addition,

the entire dataset was subjected to intensity normalization to ensure that the mean intensity

remained consistent and uniform. Spatial registration was then conducted to align the fMRI

images from the participants’ individual spaces to the standard space of the MNI152 template.

Finally, a 4-mm full-width at half-maximum (FWHM) cubic Gaussian filter was used for

Table 1. Characteristics of the ADNI dataset.

Study Number of subjects fMRI scans Mean Age

NC 50 163 74.80

AD 34 105 74.68

Total 84 268

https://doi.org/10.1371/journal.pone.0303278.t001
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spatial smoothing during the application of deconvolution to the 3D images. The standard pre-

processing pipeline is shown in Fig 1A.

After all the preprocessing steps was completed, a data matrix of sized 61 × 73 × 61 × 140

was obtained for each participant, where each volume consisted of 61 × 73 × 61 data points

recorded over 140 time points.

Fig 1. Overview of the proposed 3D-VGG16-GAP in AD classification. A. The standard preprocessing pipeline used

in this study. B. Overview of the proposed 3D-VGG16 network and Grad-CAM methods. C. Framework of

3D-VGG16 and 3D-VGG16-GAP.

https://doi.org/10.1371/journal.pone.0303278.g001
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Resting-state functional activity maps

fMRI is an imaging technique that can capture information with high spatial resolution and

relatively high temporal resolution. It can detect activity in the ROIs within a spatial range of a

few millimeters with a temporal resolution of several seconds to tens of seconds. However, the

high-dimensional images indicate the high complexity of the data, which limits accurate analy-

sis and description. Although deep learning excels at extracting information from massive

amounts of data, highly complex data can still affect the performance of the model.

In this study, four different resting-state functional activity maps-ALFF [9], fALFF [9],

ReHo [10], and VMHC [11, 46, 47] were extracted from resting-state fMRI data which

describe fMRI data from different aspects but with lower complexity [3]. All resting-state func-

tional activity maps were obtained using DPABI. Fig 2 showed these four kinds of resting-state

functional activity maps between NC and AD subjects.

ALFF. After preprocessing, the fMRI data were temporally band-pass filtered (0.01 <

f< 0.1Hz) to eliminate low-frequency noise from drift and high-frequency noise from respira-

tory and cardiac activity. Using the fast Fourier transform (FFT), the time series of each voxel

were transformed into the frequency domain:

xðtÞ ¼
XN

k¼1

½akcosð2pfktÞ þ bksinð2pfktÞ� ð1Þ

Since the power of a specific frequency is proportional to the square of the corresponding

amplitude, the mean square root of the power spectrum across a frequency range of 0.01

− 0.1Hz for each voxel was computed as follows:

ALFF ¼
X

K:fk2½0:01;0:1�

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
a2
kðf Þ þ b2

kðf Þ
N

r

ð2Þ

fALFF. fALFF is a variant form of ALFF, which can further reduce the physiological noise

by considering the ratio of each frequency (0.01< f< 0.1Hz) to the total frequency range. In

addition, the application of fALFF enhances both the sensitivity and specificity of detecting

Fig 2. Resting-state functional activity maps.

https://doi.org/10.1371/journal.pone.0303278.g002
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spontaneous activity. fALFF is calculated as follows:

fALFF ¼
P

K:fk2½0:01;0:1�

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
a2
kðf Þþb

2
kðf Þ

N

q

PN
K¼1

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
a2
kðf Þþb

2
kðf Þ

N

q ð3Þ

ReHo. ReHo measures the similarity of the time series of a given voxel to those of its near-

est neighbors in a voxel-wise manner using Kendall’s coefficient concordance (KCC) [48].

ReHo is calculated as follows:

KCC ¼
P

R2
i � nð�R2Þ

1

12
k2 n3 � nð Þ

ð4Þ

in which Ri is the number rank of the ith time point; �R ¼ ððnþ 1ÞKÞ=2 is the mean of Ri; K is

the number of time series within a measured cluster (K = 27 in our study, which means one

given voxel plus the number of its neighbors); and n is the number of ranks.

VMHC. VMHC is a method employed in the analysis of fMRI scans that enables the

assessment of functional similarity between the two hemispheres of the brain. To generate

VMHC maps, the fMRI data of each participant were used to compute the PCC between a par-

ticular voxel and its corresponding voxel in the opposite hemisphere, followed by the applica-

tion of Fisher’s z-transform to enhance the normality of the values. It is calculated as follows:

rx;y ¼
Pn

i¼1
ðXi �

�XÞðYi �
�Y Þ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Pn

i¼1
ðXi �

�XÞ2
q ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

Pn
i¼1
ðYi �

�Y Þ2
q ð5Þ

Deep learning framework

After obtaining all the resting-state functional activity maps, 3D VGG was used to finish fea-

ture extraction and classification.

Three-dimensional VGG. VGG16 [49] is a deep CNN model developed by the Visual

Geometry Group. It is part of the VGG family of models and was designed for image classifica-

tion tasks. In this study, a 3D version of the VGG16 model was used, as illustrated in Fig 1B

and 1C.

The 3D-VGG16 model consisted of 16 layers, including 13 3D convolutional layers and

three fully connected layers. The entire model was divided into five VGG blocks, with the first

two VGG blocks containing two convolutional layers each, and the last three VGG blocks con-

taining three convolutional layers each. There was a max-pooling layer with a 2 × 2 × 2 filter

and stride of 2 × 2 × 2 voxels at the end of each VGG block. The convolutional layers were

composed of 3 × 3 × 3 filters with a stride of one voxel and padding of one voxel, each of which

was followed by a batch normalization layer and rectified linear unit (ReLU) as the activation

layer. The fully connected layers had 2, 048 and 1, 024 units separately, and the final layer was

a softmax layer with two units corresponding to the two AD and NC classes.

Global average pooling layer. Since the CAM method [23] must expectedly be used for

the explainability of 3D-VGG16 in our study, we replaced the fully connected layers at the end

of the model with a global average pooling layer (GAP) layer [50], which is a necessary struc-

ture for CAM method. It is worth noting that GAP layer is not required for other CAM meth-

ods, such as Grad-CAM. The model with the GAP layer can retain its remarkable localization
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ability until the final layer and easily identify discriminative image regions. In addition, GAP

layer can also be employed to prevent overfitting due to the reduced number of parameters

[51]. As shown in Fig 1C, the GAP layer computes the average value of each feature map unit

in the last convolutional layer, which is then combined using a weighted sum to produce the

final output of the model. In our experiment, we employed five CAM methods, including the

original CAM [23], Grad-CAM [24], Grad-CAM plus plus [25], Eigen-CAM [26] and Eigen

Grad-CAM. However, there was little difference between the heatmaps generated using the

different CAM methods. Therefore, owing to space limitations, only the results obtained using

the Grad-CAM method are presented in the Results section.

Grad-CAM

Grad-CAM [24] is an improved method based on CAM. The gradient information that flowed

into the last convolutional layer of the model was used to determine the significance of each

neuron in making predictions. In deep learning models, the features extracted by convolu-

tional layers become increasingly high-level as they progress deeper into the network. There-

fore, we chose to utilize the feature maps corresponding to the last convolutional layer. It is

worth noting that Grad-CAM can be applied beyond the last convolutional layer in the neural

network architecture, allowing for its utilization across multiple layers for visualizing the

importance of features.

First, the gradients of the score for a particular class, c, which was denoted by, yc, was com-

puted with respect to the feature maps, Ak, of the last convolutional layer, i.e. @yc/@Ak in the

last convolutional layer. Subsequently, global average pooling was employed on the gradients

to calculate the neuron importance weights, ack, as follows:

ack ¼
1

Z

X

i

X

j

@yc

@Ak
ij

ð6Þ

The weight, ack, represents the importance of the feature map, k, in predicting the target

class, c. Z signifies the number of elements in Ak.

Subsequently, a weighted combination of forward feature maps was applied. Finally, ReLU

was employed to remove the negative values as follows:

Lc
Grad� CAM ¼ ReLu

�
X

k

ackA
k

�

ð7Þ

A coarse heat-map was generated with the same resolutions as the feature maps of the final

convolutional layer. Once the coarse Grad-CAM heat map was obtained, bilinear interpolation

algorithms are required to match the resolutions of the original images, which enables the visu-

alization and comparison of the results in a more intuitive manner.

Results

Experimental setup

The models were built and trained using Python 3.6 with pytorch 1.9.0. on a Linux machine

with 512 GB RAM and 32 GB NVIDIA GPU card. To compare the discriminative power, each

functional activity map was trained as a dataset individually, aside from combining maps

trained as the dataset. For the combined maps, we combine each individual functional activity

maps together in a manner akin to assembling RGB channels in natural images.

The Adam optimizer that has a learning rate of 5 × 10−5 was utilized. Due to the small size

of ADNI dataset, a small value of 4 is set as batch size, which could enhance the model’s
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generalization by introducing more randomness in each batch to help prevent overfitting and

improve model’s performance on unseen data. Furthermore, due to the limited exposure to

data in each batch, the model is compelled to acquire more generalized features rather than

memorizing specific samples from the entire dataset. The decay rate of the weights was set to

5 × 10−4. Given that various train/test splits result in dramatically different rankings of models

[52, 53], each model was trained 10 times to obtain the average accuracy for the generality and

robustness of the model. For every training session, 80% of the data was randomly selected as

the training set, whereas 20% was randomly selected as the testing set for prediction. It is note-

worthy that, given the presence of multiple scans for certain subjects, subject-level data split is

employed to prevent data leakage. Furthermore, each scan corresponds to only one set of rest-

ing state functional activity maps. Finally, for normal 3D-VGG16 without a GAP layer, a drop-

out layer was applied in each fully connected layer at a rate of 0.5.

Evaluation of deep learning models

As shown in Tables 2 and 3, the accuracies of the combined maps were 91.1% and 96.4% for

3D-VGG16 and 3D-VGG16-GAP, respectively. When a single functional activity map was

used as dataset, the ReHo map achieved the highest accuracy of 87.5% on 3D-VGG16, whereas

the ALFF map and ReHo maps achieved the highest accuracy of 91.1% on 3D-VGG16-GAP.

Combining maps achieved the highest average accuracies of 84.1% and 87.9% for both two

models, respectively, which may be due to the most comprehensive information contained in

the dataset. For 3D-VGG16, both the ALFF and ReHo maps achieved an average accuracy of

approximately 80%, the VMHC map obtained an accuracy of approximately 72%, and the

fALFF map had the lowest accuracy at 66.8%. For 3D-VGG16-GAP, the average accuracy of

the ALFF map at 84.7% was second only to that of the combined maps. The ReHo map

achieved an accuracy of approximately 82%, which was 7% higher than that of the VMHC

map. The accuracy of the fALFF map was the lowest among the functional activity maps.

Overall, 3D-VGG16-GAP performed better than 3D-VGG16, which may be due to the

effective reduction in the parameters and suppression of overfitting by replacing the fully con-

nected layers with the GAP layer [52]. In addition, the combined maps achieved the highest

Table 2. Accuracy of 3D-VGG16 with ten training runs.

1 2 3 4 5 6 7 8 9 10 Average

(%) ALFF 83.9 83.9 76.8 76.8 83.9 80.4 78.6 82.1 80.4 80.4 80.7 ± 2.6

fALFF 69.6 60.7 66.1 64.3 64.3 67.9 64.3 71.4 64.3 75.0 66.8 ± 4.0

ReHo 69.6 87.5 87.5 82.1 75.0 78.6 82.1 87.5 71.4 78.6 80.0 ± 6.2

VMHC 76.8 78.6 62.5 80.4 76.8 67.9 67.9 66.1 62.5 78.6 71.8 ± 6.7

Combined 83.9 83.9 91.1 87.5 82.1 82.1 82.1 82.1 80.4 85.7 84.1 ± 3.0

https://doi.org/10.1371/journal.pone.0303278.t002

Table 3. Accuracy of 3D-VGG16-GAP with ten training runs.

1 2 3 4 5 6 7 8 9 10 Average

(%) ALFF 80.4 91.1 80.4 83.9 78.6 80.4 89.3 89.3 87.5 85.7 84.7 ± 4.3

fALFF 73.2 78.6 71.4 69.6 71.4 64.3 80.4 73.2 67.9 75.0 72.5 ± 4.5

ReHo 83.9 78.6 80.4 85.7 78.6 78.6 75.0 85.7 91.1 80.4 81.8 ± 4.5

VMHC 75.0 69.6 82.1 75.0 75.0 66.1 85.7 73.2 76.8 73.2 75.2 ± 5.3

Combined 87.5 85.7 85.7 83.9 89.3 85.7 85.7 91.1 87.5 96.4 87.9 ± 3.5

https://doi.org/10.1371/journal.pone.0303278.t003
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accuracy for both models. For the single functional activity map, the performances of the

ALFF and ReHo maps were better than that of the VMHC map, whereas the fALFF map had

the lowest accuracy. The confusion matrices of the different maps of the two models are

shown in Fig 3.

Explainability of deep learning models based on Grad-CAM

In this section, 3D version of the Grad-CAM heatmaps of the two models are presented. It

must be noted that in our experiment, we employed five CAM methods, including the original

CAM [23], Grad-CAM [24], Grad-CAM plus plus [25], Eigen-CAM [26] and Eigen Grad-

CAM. However, there was little difference between the heatmaps generated using the different

CAM methods. Therefore, owing to space limitations, only the results obtained using the

Grad-CAM method are presented.

Similar to some studies that proposed CAM methods [23–26], we used the heatmaps shown

in Figs 4 and 5 to visually demonstrate the results of Grad-CAM. Because the coarse heat map

has the same resolution as the feature map of the last convolutional layer, which is only 14 × 14

× 14, it is difficult to compare it visually with the original image. Therefore, bilinear interpola-

tion algorithms were employed to match the resolutions of the Grad-CAM and original brain

images.

Figs 4 and 5 show the average Grad-CAM images of all the test samples of the two models,

respectively. As shown, the left column shows the orthographic projection of the Grad-CAM

images for the NC category based on different resting-state functional activity maps, while the

Fig 3. Confusion Matrix of AD and NC for ReHo map on 3D-VGG16 (a), combined maps on 3D-VGG16 (b),

ALFF map on 3D-VGG16-GAP (c), and combined maps on 3D-VGG16-GAP (d).

https://doi.org/10.1371/journal.pone.0303278.g003
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right column shows the orthographic projection of the Grad-CAM images for the AD cate-

gory. In the NC category, the model tended to focus on the entire brain without focusing on

any specific local region. However, for AD, the model tended to focus more on specific local

regions. Because of the low initial resolution of Grad-CAM images (i.e. 14 × 14 × 14), even

after interpolation, they can only provide rough localization of a certain region and cannot

achieve precise localization of a specific brain area. Compared with that, the precuneus region

was highlighted in all Grad-CAM images, as shown in the left column of Fig 6. In addition,

exception for fALFF, which had the lowest accuracy, the heatmaps of all other functional activ-

ity maps highlighted the hippocampal region, as shown in the right column of Fig 6.

The Grad-CAM heatmaps of the two patients that were incorrectly predicted are shown in

Fig 7. The model focused on areas other than the precuneus and hippocampus, resulting in

inaccurate feature extraction and ultimate incorrect prediction.

Discussion

In this section, we explore the potential of deep learning techniques for distinguishing AD

from NC using fMRI data. As mentioned in the Introduction, large quantities of information

can be extracted from fMRI data owing to its high temporal and spatial resolutions. Generally,

Fig 4. Average heatmaps based on Grad-CAM method of 3D-VGG16. The Grad-CAM heatmaps of the ALFF map

for NC (a) and AD (b), the ReHo map for NC (e) and AD (f), and the combined maps for NC (i) and AD (j) tend to

highlight some specific ROIs such as precuneus and hippocampus, corresponding to the fact that the accuracy of the

ALFF map, the ReHo map, and the combined maps is relatively high. However, the heatmaps of the fALFF map for

NC (c) and AD (d), and the VMHC map for NC (g) and AD (h) cannot locate any specific regions, which could be the

reason for the lower accuracy of both. In addition, due to the need to flatten the final feature maps into vector form in

3D-VGG16, the spatial structure of the feature maps is destroyed, resulting in the poor imaging performance.

https://doi.org/10.1371/journal.pone.0303278.g004
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the relevant signal variation accounts for only 2% to 5% of the overall signal strength. Conse-

quently, even a minor amount of noise can significantly affect the data. Additionally, a collec-

tion of fMRI data can consist of millions of data points because each voxel is scanned in both

space and time, resulting in a relatively high level of complexity in the data. In our study, four

different kinds of resting-state functional activity maps were used to extract the useful data

from four different aspects.

As shown in Tables 2 and 3, our findings demonstrate that utilizing functional activity

maps can result in relatively high accuracy in diagnosing AD from the ADNI dataset. Overall,

the classification performance of 3D-VGG16-GAP was superior to that of 3D-VGG16. How-

ever, [54] reported a prediction performance loss because of the GAP layer, in which sMRI of

ADNI serves as dataset, and 3D-VGG and 3D-ResNet are employed for classification. We

believe that the main rationale of the performance loss overturned as a benefit is the difference

of dataset. In our method, resting-state fMRI is utilized as the raw data from which several rest-

ing-state functional activity maps are extracted to form the dataset. fMRI and sMRI images

capture different types of information. While fMRI reflects dynamic changes in brain and may

benefit from GAP in capturing global properties due to stronger inter-regional correlations,

sMRI depicts the anatomical structure of the brain, with lower inter-regional correlations,

potentially leading to information loss with GAP application, resulting in performance loss.

Fig 5. Average heatmaps based on Grad-CAM method of 3D-VGG16-GAP. Unlike 3D-VGG16, fully connected

layers are replaced with GAP layer in 3D-VGG16-GAP, so that the spatial structure of the final feature maps is

retained, resulting in the better imaging performance. All the Grad-CAM heatmaps for NC subjects (ALFF (a), fALFF

(c), ReHo (e), VMHC (g), and combined maps (i)) tend to focus the whole brain, whereas the the Grad-CAM

heatmaps for AD subjects (ALFF (b), fALFF (d), ReHo (f), VMHC (h), and combined maps (j)) tend to highlight some

specific ROIs such as precuneus and hippocampus.

https://doi.org/10.1371/journal.pone.0303278.g005
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The use of the GAP layer also reduces the number of model parameters and effectively mitigat-

ing overfitting, which is very common in medical image classification tasks with limited

samples.

By comparing the results obtained using a single functional activity map versus combining

maps, we found that the classification accuracy increased when the combined maps were

applied as dataset. For the single functional activity map, the ALFF map exhibited an accuracy

value second only to the combined maps on both models because of its precise reflection of the

intensity of neuronal activity. Except for these two methods, the ReHo map achieved relatively

high accuracies of 80.0% and 81.8% for 3D-VGG16 and 3D-VGG16-GAP, respectively. The

ReHo map describes the local functional connectivity of a voxel to neighboring voxels, which

Fig 6. ROIs highlighted by deep learning models. As shown in Fig 5, all the Grad-CAM heatmaps cover the

precuneus. In some cases, such as the heatmaps of the ReHo, VMHC, and combined maps, the hippocampus is also

covered.

https://doi.org/10.1371/journal.pone.0303278.g006

Fig 7. Grad-CAM heatmaps of samples that were predicted incorrectly on 3D-VGG16-GAP.

https://doi.org/10.1371/journal.pone.0303278.g007
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may be an important indicator for diagnosing AD becasue of the strong separation perfor-

mance of the model. The accuracy of the VMHC map was lower than that of the combined,

ALFF, and ReHo maps. The VMHC map measures functional homotopic connectivity

between a voxel and its mirrored voxel in the contralateral brain hemisphere. The reason for

the low accuracy of the VMHC map may be because there was no strong difference in func-

tional homotopic connectivity between the AD and NC categories. Additionally, the models of

VMHC map demonstrate the highest variance across all the maps, indicating its pronounced

instability in performance on random datasets. The key distinction of VMHC map from other

maps lies in its computation of the functional homotopic connectivity between the left and

right hemispheres, resulting in symmetric data. We hypothesize that this symmetry may con-

tribute to the model’s susceptibility to overfitting on random split datasets, leading to unstable

performance. Finally, the accuracy of the fALFF map was the lowest. The difference between

the fALFF and ALFF maps was that the effect of noise is reduced and suppressed by consider-

ing the ratio of each frequency to the total frequency range. However, we believe that, while

the influence of noise is reduced, the intensity of some useful information required for model

classification, such as neuronal activity signals, may also be suppressed, which may be the rea-

son for the poor performance of the model. Table 4 presents the performance comparison

between the proposed method and previous studies, demonstrating that our method is com-

petitive and promising.

In general, CNNs extract features from input images in a hierarchical manner. Therefore,

the convolutional layers closer to the front of the model extract the lower-level features,

whereas those closer to the back extract the higher-level features. The final fully connected lay-

ers integrate these high-level features and perform classification. In our study, the feature

maps from the final convolutional layer of the model captured the high-level features of AD.

Therefore, by using Grad-CAM to visualize the feature maps from the last layer, the disease-

related features can be visualized, and the ROIs associated with the disease can be identified,

which provides informative guidance for disease research and improves the performance of

the model.

As shown in Fig 4, the ADNI dataset performed worse on 3D-VGG16 than on

3D-VGG16-GAP, which is likely due to the inappropriate high-level features extracted by the

model. As shown in Table 2, the accuracy of the fALFF map was the lowest, corresponding to

the fact that the distribution of the highlighted regions was random, and the model did not

find any specific ROIs to focus on. By contrast, the accuracy of the VMHC map was also rela-

tively low; however, the model focused on almost the entire brain, as shown in Fig 4. For the

ALFF, ReHo, and combined maps, which had higher accuracy, the model tended to highlight a

specific ROI. We also believe that the improved imaging performance of Grad-CAM heatmaps

on 3D-VGG16-GAP can be attributed to the fact that the GAP layer preserves the spatial struc-

ture information to a greater extent, in contrast to the fully connected layers in 3D-VGG16

Table 4. Comparative analysis with previous research on resting-state fMRI.

Study Accuracy Participants (n) Data Source Methods

Duc et al. [40] 85.27% 331 Private 3D-CNN

Gupta et al. [41] 81% 88 ADNI FNN

Lu et al. [43] 71.9% 60 ADNI Autoencoder

Qiao et al. [55] 95.59% 68 Private 2D-DAGNN

Bi et al. [56] 94.44% 60 ADNI RSVM-C

Proposed Method 87.9% 84 ADNI 3D-VGG16-GAP

https://doi.org/10.1371/journal.pone.0303278.t004
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which tend to destroy such information due to the flatten operation. Fig 8 shows the Preci-

sion-Recall curves of 3D-VGG16 and 3D-VGG-GAP. For the well-preforming resting-state

functional activity maps, such as ALFF, ReHo and combined maps, the performance of

3D-VGG16-GAP consistently surpasses that of its corresponding 3D-VGG16 counterpart,

which can be considered as support for the aforementioned discussion.

As shown in Tables 2 and 3, the overall accuracy of 3D-VGG16-GAP was higher than that

of 3D-VGG16. Intuitively, the Grad-CAM heatmaps in Fig 5 also show that the effect is better

than that shown in Fig 4. For the NC category, 3D-VGG16-GAP focused on the entire brain.

Specific regions are highlighted in the AD category for comparison. Compared with that in Fig

6, all the Grad-CAM heatmaps cover the precuneus. In some cases, such as the heatmaps of

the ReHo, VMHC, and combined one, the hippocampus is also covered.

The precuneus is located inside the brain between the two cerebral hemispheres in the pos-

terior region between the somatosensory cortex and anterior to the cuneus. It has various cog-

nitive and neural functions, including spatial perception, visual attention, perception and

consciousness, memory, self-awareness, and emotion processing. Some studies suggest that

atrophy and pathology of the precuneus are the main causes of AD. [57] indicated that patients

with early-onset AD exhibit a significant and distinct reduction in precuneus size, which is not

observed to the same extent in patients with late-onset AD. In addition, the activity of choline

acetyltransferase in the precuneus was found to be significantly lower in individuals with AD

than in NC and similar between individuals with mild cognitive impairment and NC [58].

There is novel evidence of a difference in repetitive transcranial magnetic stimulation of the

precuneus between patients with AD and NCs [59]. In our study, the highlighted ROIs overlay

the precuneus area, suggesting that the model’s classification is probably based on this area.

Thus, the primary difference between NC and AD is likely located within the precuneus area.

This supports and corroborates prior medical research results.

In both primates and humans, the hippocampus is a relatively small structure located in the

medial aspect of the temporal lobe, adjacent to the lateral ventricle, and is typically character-

ized by its horseshoe-shaped morphology, hence its name “hippocampus”. According to sev-

eral studies [60–63], the hippocampus is one of the earliest regions in the brain that experience

damage in various forms of dementia, including AD. This is because the hippocampus is

responsible for memory formation and retrieval and plays a critical role in the formation of

new memories. As dementia progresses, hippocampal damage worsens, leading to memory

impairments and other cognitive deficits.

Fig 8. Precision-Recall curves of 3D-VGG16 and 3D-VGG16-GAP.

https://doi.org/10.1371/journal.pone.0303278.g008
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As previously stated, it is believed that for complex datasets such as fMRI, the more manual

feature extraction, the less the model needs to do, and thus the better the model’s performance

may be. However, manually extracted features may not be the features required for classifica-

tion by the model, indicating that they may be not discriminative enough for the model.

Therefore, the required features for different fMRI data of diseases may vary, and the same

method is likely to be ineffective for different diseases. In our study, several 3D resting state

functional activity maps extracted from 4D fMRI data are utilized as the dataset, which differs

from using 2D or 3D slices of 4D fMRI data. This approach eliminates data leakage and resting

state functional activity maps possess higher-level features than raw slices. This may alleviate

the pressure on the model for feature extraction, thus improving the model’s performance.

Additionally, using 3D resting-state functional activity maps could also retain more spatial

information in the model’s feature maps, which could enhance the explainability of the model.

Even for AD, due to the small size of the dataset used in this study, which is a common issue in

medical datasets due to the strict data collection conditions and the high cost of acquiring

equipment, the generalizability is still limited, and further validation is required to determine

its applicability to other AD patients.

The lack of explainability in deep learning models has been a longstanding issue; how-

ever, it has been partially addressed by the introduction of CAM methods. In our study,

Grad-CAM was utilized to explain the model, which not only contributes to the explainabil-

ity of the model for the diagnosis and research of the disease, but also helps improve the

accuracy of the model by studying the cases that were incorrectly predicted. However,

because of the inherent limitations of CAM methods [23, 24], in which the feature maps

with the maximum resolution of 14 × 14 × 14 are used, even after interpolation, the imaging

scope is coarse. In medical imaging, this can undoubtedly affect the accurate localization of

lesions.

As mentioned above, the LRP method [32] was proposed to solve the problem of low reso-

lution of CAM methods. However, the LRP method only takes into account model parameters

and neuron activations. By this, the heatmaps are less prone to group effects in the data

because they are produced individually. The LRP method is very specific for individuals with

high inter-patient variability, which is not conducive to the detection of the common features

among patients with the same disease. Unlike LRP method, the generation of Grad-CAM heat-

maps not only relies on feature maps individually but also takes into account the shared

parameters of gradients and other model-related features. The combination of these two points

may result in superior performance when extracting common features among different

individuals.

In future research, we hope to develop a new method for extracting high-level features with-

out reducing the resolution of feature maps to address the aforementioned limitations. In

addition, the improved CAM method could help fix this limitation by explaining models that

are unrestricted by the resolutions of feature maps. In addition, considering that the brain is

mutually interconnected, with different ROIs forming a topological map based on the strength

of their connections with each other, other forms of deep learning models, such as graph neu-

ral networks (GNN), may be used to achieve higher accuracy in disease classification [52, 64].

Additionally, relatively little research has been conducted on explainability methods based on

GNNs [65], which may be another promising direction for further exploration.

Conclusion

In this study, we applied Grad-CAM to an fMRI-based 3D-VGG16 network for AD diagnosis

to substantiate its validity, thereby achieving the localization of AD-related ROIs. In addition,
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the use of resting-state functional activity maps as the dataset successfully reduced the com-

plexity of the fMRI data, facilitating more efficient feature extraction by the model. Grad-

CAM helped achieve the precise localization of disease lesions and analysis of the reasons for

misclassification. The results showed that during the prediction process following training, the

ROIs on which the model focused were almost identical to the areas where lesions have been

shown in current research on AD. This supports and corroborates current research and facili-

tates the use of deep learning to study other diseases with unknown etiology. However, issues

with localization accuracy are still present. Improving the deep learning models, changing the

types of deep learning models, and improving the CAM method may help alleviate this

limitation.
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