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Abstract

Binary classification methods encompass various algorithms to categorize data points into

two distinct classes. Binary prediction, in contrast, estimates the likelihood of a binary event

occurring. We introduce a novel graphical and quantitative approach, the U-smile method,

for assessing prediction improvement stratified by binary outcome class. The U-smile

method utilizes a smile-like plot and novel coefficients to measure the relative and absolute

change in prediction compared with the reference method. The likelihood-ratio test was

used to assess the significance of the change in prediction. Logistic regression models

using the Heart Disease dataset and generated random variables were employed to validate

the U-smile method. The receiver operating characteristic (ROC) curve was used to com-

pare the results of the U-smile method. The likelihood-ratio test demonstrated that the pro-

posed coefficients consistently generated smile-shaped U-smile plots for the most

informative predictors. The U-smile plot proved more effective than the ROC curve in com-

paring the effects of adding new predictors to the reference method. It effectively highlighted

differences in model performance for both non-events and events. Visual analysis of the U-

smile plots provided an immediate impression of the usefulness of different predictors at a

glance. The U-smile method can guide the selection of the most valuable predictors. It can

also be helpful in applications beyond prediction.

Introduction

Binary classification methods are a variety of techniques and algorithms for the classification

of data into two distinct classes or categories. If these techniques also determine the likelihood

of belonging to a class, they are often called prediction methods. Some of these methods

include Logistic Regression, Receiver Operating Characteristic (ROC) analysis, Matthews
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Correlation Coefficient, Support Vector Machines, Decision Trees and Neural Networks.

These methods play a crucial role in both practical and scientific areas. For example, logistic

regression models are used in economics to assess credit risk [1] and in marketing to target

populations most likely to become customers for new products or services. The ROC curve,

originally developed to detect enemy aircraft during World War II, has been used for decades

in fields as diverse as psychology, medicine, radiology, biometrics, natural hazard forecasting,

meteorology, and model performance evaluation [2–4]. It is also increasingly used in machine

learning and data mining research. Although the Matthews correlation coefficient was origi-

nally introduced in biochemistry [5], it has gained popularity in several scientific disciplines,

including software error prediction [6], pattern recognition [7], and medicine [8, 9]. In addi-

tion, binary classification problems are prevalent in social and data sciences, such as classifying

social media users [10] and predicting mental health [11]. Accurate risk prediction models are

crucial to making informed decisions in various areas, including medicine and epidemiology.

Adding a new predictor to an existing model (a nested setting) may improve the model’s per-

formance. New risk factors are constantly being discovered. It is essential to use appropriate

statistical methods to assess their usefulness and ensure their practical applicability [12]. Some

examples of this approach include the addition of high-density lipoprotein cholesterol, high-

sensitivity C-reactive protein, or coronary artery calcium score to various risk assessment

models [13–15].

Many methods assess the improvement in model performance offered by the new predictor

[16–19]. The difference in the area under the receiver operating characteristic (ROC) curves

(ΔAUC) of the models compared with and without the new predictor is a common approach.

However, ΔAUC has several limitations. A useful predictor may increase the AUC too little to

yield a significant difference, especially if the existing model already has a relatively high AUC
[20–22]. Such an increase may be difficult to see when the two ROC curves are plotted on the

same graph.

Another common limitation of the ΔAUC analysis and many standard methods is that they

evaluate models globally, without examining the improvement in prediction separately for

both outcome classes (e.g. healthy and diseased, or non-event and event groups).

However, some methods and measures used to assess the added value of new biomarkers or

predictors in an existing model can be decomposed into separate components for the event

and non-event classes. The Brier score (BS) and the net reclassification index (NRI) are com-

mon examples [23–26]. In this paper, we will abbreviate NRI to I.
The BS measures the accuracy of predicted probabilities for binary or categorical outcomes

[26]. It reflects the magnitude of the error between the predicted probabilities and the actual

outcomes. The I [25] is based on the number of prediction changes (called reclassifications)

and does not quantify their magnitude. It compares the ability of two models to correctly clas-

sify individuals into risk categories based on their predicted probabilities and actual outcomes.

Although the BS and I remain popular methods, they have been criticised for many reasons.

The BS can be sensitive to outliers and extreme predictions and may not reflect the clinical rel-

evance of the predictions. On the other hand, the continuous I counts even minimal changes

in the probability predicted by the models being compared. Furthermore, it does not consider

the overall prediction accuracy. Unlike the ΔAUC, the I is not a proper scoring rule. [27–30].

In this methodological study, we propose and validate a novel U-smile method to evaluate

the improvement in prediction due to the addition of a new marker to a set of reference mark-

ers to predict a binary outcome. The method includes the U-smile plot and new coefficients

measuring the absolute (BA) and relative (RB) change in prediction compared with the refer-

ence method. As we will demonstrate later, our novel performance measures, BA and RB, are

closely linked to the Brier score (BS). The BA is associated with the average change in
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prediction—the difference between BS values for the reference and new models. The RB can

be directly expressed as the Brier skill score (BSS), which evaluates the relative change in pre-

diction compared to the reference prediction. We also include the I coefficient for the U-smile

method. Stratified by outcome class, the U-smile plot provides graphical information and the

BA, RB, and I coefficients quantify the improvement in prediction. In this way, we show how

easily the event and non-event classes can be further divided into subclasses of those whose

prediction is improved or worsened by a new model. We further assessed the performance of

the U-smile method using the likelihood-ratio test (LRT), and compared these results to those

obtained with the DeLong’s test to evaluate ΔAUC for two correlated ROC curves.

Methods

Stratification of the prediction error

We consider a binary classification to predict the occurrence of a studied event, D, D 2 {0, 1}.

Let us consider two predictive models: a reference model based on a set of reference predictors,

X, and a new model built by adding a candidate predictor, Y, to the reference model (nested

models). We want to assess the degree of prediction improvement on the reference model

offered by the new predictor. Equivalently, we want to determine how much of the prediction

error of the reference model was reduced. For each individual, we examine model residuals,

i.e. the differences between the observed outcome values and the predicted probabilities of the

reference model (δi(ref)) and the new model (δi):

diðref Þ ¼ dið1 � piðref ÞÞ þ ð1 � diÞpiðref Þ; ð1Þ

di ¼ dið1 � piÞ þ ð1 � diÞpi; ð2Þ

where, for each individual i, i = 1, . . ., n:

pi(ref) and pi are the predicted probabilities of the reference model and the new model,

respectively;

di is the observed outcome value: di = 0 for individuals who do not develop the target event

(the non-events) and di = 1 for those who develop this event (the events).

The smaller the model residuals, the more accurate the predictions; the greater the model

residuals, the more missed the predictions. If the new predictor improves on the reference

model, then the residuals of the new model will be shorter than those of the reference model

(Fig 1 Step 1).

Each individual is cross-tabulated by outcome class (non-event or event) and prediction

subclass (improvement or worsening). By comparing the size of the residuals, we obtain a

four-subclass prediction improvement-worsening (PIW) matrix. (Fig 1 Step 2):

d
þ

0
< d

þ

0ðref Þ; ð3Þ

d
�

0
> d

�

0ðref Þ; ð4Þ

d
�

1
> d

�

1ðref Þ; ð5Þ
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d
þ

1
< d

þ

1ðref Þ; ð6Þ

where subscripts 0 and 1 denote the non-events and events, respectively, and superscripts + and
− denote the better and worse prediction, respectively. This notation will indicate the stratifica-

tion by outcome class and subclass.

Stratification of the residual sums of squares

Let SSðref Þ ¼
Pn

i¼1
d

2

iðref Þ be the residual sum of squares of the reference model. By stratifying

SS(ref) by outcome class and subclass (Fig 1 Step 3), we have:

SSðref Þ ¼ SS0ðref Þ þ SS1ðref Þ ¼ SSþ0ðref Þ þ SS�0ðref Þ þ SS
�
1ðref Þ þ SS

þ
1ðref Þ: ð7Þ

We consider the squared residuals to be the model prediction error. Therefore, the overall

prediction error of the reference model is SS(ref), and it was decomposed into SS0(ref) and SS1

(ref), and further into SSþ0ðref Þ, SS�0ðref Þ, SS
�
1ðref Þ, and SSþ1ðref Þ.

Analogously, let SS ¼
Pn

i¼1
d

2

i be the residual sum of squares of the new model. By stratify-

ing SS by outcome class and subclass, we have:

SS ¼ SS0 þ SS1 ¼ SSþ
0
þ SS�

0
þ SS�

1
þ SSþ

1
: ð8Þ

SS is the overall prediction error of the new model, SS0 and SS1 are the prediction error

Fig 1. Steps to construct the BA and RB coefficients and the U-smile plot. Step 1: Shorten or lengthen the model residuals (δ). The reference model

(subscript (ref)) includes the set of reference predictors, and a candidate predictor is added to the reference model to create a new model. The superscript
+ denotes better prediction, i.e. the new model shortens the residuals, and superscript − denotes worse prediction, i.e. the new model lengthens the

residuals. Step 2: A prediction improvement-worsening (PIW) matrix is a formal cross-tabulation of individuals into four subclasses based on changes

in the residual length of the new versus reference model. Step 3: Compared to each other, the residual sums of squares (SS) of the new model and the

reference model in each of the four subclasses. Step 4: The U-smile plot. The Y-axis shows the coefficients labelled Coeff—a general abbreviation which,

depending on the type of coefficient presented, may be replaced by BA (the size of the absolute average change in residuals), RB (the size of the relative

change in residuals), or I (the proportion of individuals with residuals change). The X-axis shows the division into four subclasses: Coef þ
0

means better

prediction for the non-events (dark blue circle), Coef �
0

—worse prediction for the non-events (light blue circle), Coef �
1

—worse prediction for the events

(light red circle), and Coef þ
1

– better prediction for the events (dark red circle). The connected cilcles form a smile when the magnitude of the prediction

improvement (the external dark blue and red cilcles in the plot) is greater than that of the prediction worsening (the inner light blue and red cilcles in

the plot).

https://doi.org/10.1371/journal.pone.0303276.g001
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remaining within the non-event and event classes, respectively, and SSþ
0

, SS�
0

, SS�
1

, SSþ
1

are the

prediction error remaining within each subclass.

Stratifying ΔSS by outcome subclass, let us define the difference between the prediction

error of the reference model and the new one:

DSS ¼ SSðref Þ � SS ¼ DSSþ
0
� DSS�

0
þ DSSþ

1
� DSS�

1
; ð9Þ

where:

DSSþ
0
¼ SSþ0ðref Þ � SSþ0 ; ð10Þ

DSS�
0
¼ SS�

0
� SS�

0ðref Þ; ð11Þ

DSS�
1
¼ SS�

1
� SS�

1ðref Þ; ð12Þ

DSSþ
1
¼ SSþ1ðref Þ � SSþ1 : ð13Þ

DSSþ
0

and DSSþ
1

express the size of the prediction improvement, while DSS�
0

and DSS�
1

express the size of the prediction worsening in the corresponding outcome class.

The BA and RB coefficients

We define two coefficients, BA and RB. Both describe the change in prediction error (ΔSS) and

theoretically behave similarly only for balanced data where n0� n1 and SS0(ref)� SS1(ref). How-

ever, their interpretation is different. The BA coefficients refer to the average absolute change

in prediction between a new and a reference model. The RB coefficients refer to the change rel-

ative to the prediction of the reference model. For a detailed definition and description of the

coefficients, we refer to the subsections BA and RB. A synthetic description of the interpreta-

tion and the coefficients range can be found in Table 1.

Table 1. Range and interpretation of the BA, RB, and I coefficients in the subclasses and the net coefficients for the classes.

Breakdown of individuals absolute average change relative change proportion of individuals with changed prediction

The non-event class BA0 2 [−1, 1] RB0 2 (−1, 1] I0 2 [−1, 1]

The non-event subclasses:

with better prediction BAþ
0
2 ½0; 1� RBþ

0
2 ½0; 1� Iþ

0
2 ½0; 1�

with worse prediction BA�
0
2 ½0; 1� RB�

0
2 ½0;1Þ I�

0
2 ½0; 1�

The event class BA1 2 [−1, 1] RB1 2 (−1, 1] I1 2 [−1, 1]

The event subclasses:

with worse prediction BA�
1
2 ½0; 1� RB�

0
2 ½0;1Þ I�

0
2 ½0; 1�

with better prediction BAþ
1
2 ½0; 1� RBþ

0
2 ½0; 1� Iþ

0
2 ½0; 1�

Interpretation of the range of coefficients

For classes:

negative values = worse prediction of the new model,

positive values = better prediction of the new model.

For subclasses with better prediction of the new model:

lower limit = no improvement, upper limit = maximum improvement.

For subclasses with worse prediction of the new model:

lower limit = no worsening, upper limit = maximum worsening.

https://doi.org/10.1371/journal.pone.0303276.t001
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The BA coefficients. We define a family of the BA coefficients (Fig 1 Step 4), stratified by

outcome subclass as:

BAþ
0
¼
DSSþ

0

n0

; ð14Þ

BA�
0
¼
DSS�

0

n0

; ð15Þ

BA�
1
¼
DSS�

1

n1

; ð16Þ

BAþ
1
¼
DSSþ

1

n1

; ð17Þ

where n0 and n1 are the numbers of non-events and events, respectively (n0 + n1 = n).

The BA coefficients quantify absolute average changes in the prediction of the reference

model: BAþ
0

and BAþ
1

express an absolute average improvement of the prediction, while BA�
0

and BA�
1

express an absolute average worsening of the prediction in the corresponding out-

come class.

The range of BAþ
0

, BA�
0

, BA�
1

and BAþ
1

is [0, 1]. Values closer to 1 indicate greater differ-

ences between the reference and new predictions in the corresponding outcome subclass.

Therefore, higher values of BAþ
0

and BAþ
1

support adding the new predictor to the reference

model, while higher values of BA�
0

and BA�
1

favour the reference model.

We also define the net BA coefficients stratified by outcome class as:

BA0 ¼ BAþ
0
� BA�

0
; ð18Þ

BA1 ¼ BAþ
1
� BA�

1
: ð19Þ

The range of BA0 and BA1 is [−1, 1]. Positive values mean better prediction, negative values

mean worse prediction, while 0 equals no net improvement of the new predictor. The BA0 and

BA1 coefficients express the net absolute average improvement in prediction for the non-

events and events, respectively.

The RB coefficients. We define a family of the RB coefficients (Fig 1 Step 4), stratified by

outcome subclass as:

RBþ
0
¼
DSSþ

0

SS0ðref Þ
; ð20Þ

RB�
0
¼
DSS�

0

SS0ðref Þ
; ð21Þ

RB�
1
¼
DSS�

1

SS1ðref Þ
; ð22Þ

RBþ
1
¼
DSSþ

1

SS1ðref Þ
; ð23Þ
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where SS0(ref) and SS1(ref) are the prediction errors of the reference model for the non-events

and events, respectively (SS0(ref) + SS1(ref) = SS(ref)).

The RB coefficients quantify the relative changes in the prediction error of the reference

model. RBþ
0

and RBþ
1

are fractions by which the reference error was reduced, while RB�
0

and RB�
1

are fractions by which the reference error was increased in the corresponding outcome class.

The range of RBþ
0

and RBþ
1

is [0, 1], where 1 (100%) means a complete reduction of the ref-

erence error, and 0 means no error reduction. On the other hand, the range of RB�
0

and RB�
1

is

[0,1). The higher their values, the greater the increase of the prediction error.

We also define the net RB coefficients stratified by outcome class as:

RB0 ¼ RBþ
0
� RB�

0
; ð24Þ

RB1 ¼ RBþ
1
� RB�

1
: ð25Þ

The range of RB0 and RB1 is (−1, 1], where 1 means that the prediction error of the refer-

ence model was completely reduced, and 0 means that the prediction of the new model is only

as good as that of the reference model. Negative values indicate that the prediction of the new

model is worse than that of the reference model in the corresponding outcome class. The RB0

and RB1 coefficients express the net relative improvement of the prediction for non-events and

events, respectively. Adding a perfect (and theoretical) new predictor to the reference model

would reduce the overall prediction error. We would observe the following values of the RB
coefficients: RBþ

0
¼ 1, RB�

0
¼ 0, RB�

1
¼ 0, and RBþ

1
¼ 1, and, further, RB0 = 1 and RB1 = 1.

The U-smile plot and the U-smile method

We propose the U-smile method (Fig 1 Step 4) to assess the improvement in the prediction of the

reference model offered by the new predictor. This method quantifies prediction changes strati-

fied by outcome subclass with improvement and worsening coefficients. These values are plotted

in a specific order for the non-events and events, creating the U-smile plot. This plot effectively

portrays the prediction change in the form of connected cilcles. U-smile plot does not always

“smile”. The different shapes of the U-smile plot allow clear assessment and interpretation (Fig 2).

Prediction improvement-worsening plot as a complement to the U-smile

plot

The prediction-improvement Worsening (PIW) plot (Fig 3) visualises the position of the indi-

viduals relative to the probability of the reference model, p(ref) (X-axis), and the probability of

the new model, p (Y-axis) [31]. In essence, if a new model does not alter the probability predic-

tion compared to the reference model, the corresponding individual falls on the identity line,

p(ref) = p. If the new model improves the predictive performance of the reference model, the

darker red points for events and darker blue points for non-events on the PIW plot should

diverge further from the identity line. On the other hand, light red and light blue points for

individuals with worsened prediction should converge closer to the identity line.

Moving the points away from the identity line shows how close they are to the target proba-

bilities, i.e. to the axis of the plot. The residuals of the model are the distances of the points

from the target probabilities (0 for the non-events and 1 for the events) (Fig 3B). The vertical

residuals correspond to the new model (along the Y-axis), and the horizontal residuals corre-

spond to the reference model (along the X-axis). We take the squares of the residuals of the

new and reference models to calculate the BA and RB coefficients. In determining the BA coef-

ficient, we subtract the squares of the residuals, and in determining the RB coefficient, we
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additionally relate this difference to the squares of the residuals of the reference model. In this

way, the BA and RB coefficients reflect the absolute and relative changes, respectively.

Data

We used the Heart Disease dataset [32, 33], available from the UCI Machine Learning Reposi-

tory [34] (accessed December 13, 2022). No sensitive or identifiable patient information such

Fig 2. U-smile plot shapes. (A) The distance between the cilcles representing the non-event outcome class (blue

cilcles) and the event class (red cilcles) on the U-smile plot are the net effect size of prediction improvement offered by

a new marker. (B) Examples of possible shapes of the U-smile plot. Prediction improvement: (a) for both outcome

classes, (b) only for the non-events, (c) only for the events. Prediction worsening: (d) for both outcome classes, (e) only

for the non-events, (f) only for the events. Cilcles lying at an approximately constant level translate into no prediction

improvement or worsening compared to the reference model (g). A zigzag indicates prediction improvement in one

outcome class and prediction worsening in the other (h and i). As the shape of the plot is more important, any grid or

scale is an unnecessary burden of information.

https://doi.org/10.1371/journal.pone.0303276.g002
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as names, addresses, contact details, etc. are available in this dataset. The dataset consists of

four databases and contains 14 attributes. We combined all four databases into one raw data-

set. Coronary artery disease, confirmed by coronary angiography, is the predicted event. It is

defined as luminal narrowing >50% of any major coronary artery.

Only observations without missing values were included in the analysis (complete case

analysis), and observations with resting blood pressure or serum cholesterol equal to zero were

removed (incorrect values assumed). The obtained raw data set consisted of 661 observations:

303 observations (45.8%) from the Cleveland database, 261 (39.5%) from the Hungarian data-

base, and 97 (14.7%) from the VA database. We analysed the following predictors:

• Age in years;

• Gender (1 = male, 0 = female);

• Type of chest pain (1 = typical angina, 2 = atypical angina, 3 = non-anginal pain, 4 = asymp-

tomatic = reference category);

• Resting systolic blood pressure (in mmHg) on hospital admission;

• Cholesterol serum concentration in mg/dl;

• Fasting blood glucose concentration >120 mg/dl (1 = yes, 0 = no);

Fig 3. PIW plot with 4 subclasses stratification. Cross-tabulating changes in predicted probabilities with outcome class (i.e. non-event and event)

across the identity line yields four subclasses of individuals. Subscripts 0 and 1 denote the non-events and the events, respectively. In contrast, according

to the identity line, the superscripts (+) denote changes in a favourable direction (shorter residuals and better prediction of the new model) and the

superscripts (-) denote changes in an unfavourable direction (longer residuals and worse prediction of the new model). Dark blue points represent the

non-events with better prediction, light blue points—the non-events with worse prediction, dark red points—the events with better prediction, and

light red points—the events with worse prediction. (A) A complete prediction improvement-worsening (PIW) plot. (B) Residuals of the reference

model (δ(ref)) and the new model (δ) of an exemplary point for each outcome subclass.

https://doi.org/10.1371/journal.pone.0303276.g003
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• Resting electrocardiographic (ECG) changes (0 = normal—reference category, 1 = ST-T

wave abnormality: T wave inversions and/or ST elevation or depression>0.05 mV, 2 = prob-

able or definite left ventricular hypertrophy according to Estes criteria);

• Maximum heart rate (in beats per minute) achieved during peak exercise on a treadmill;

• Exercise-induced angina (1 = yes, 0 = no);

• Exercise-induced ST depression relative to rest in mm.

The set of real variables included in the heart disease dataset is not sufficient to test the

robustness of the method when expanding the models with variables of arbitrary distributions.

In uninformative and informative scenarios, we generated independent random variables

from some of the most common distributions in nature: the normal, uniform, exponential,

Bernoulli, binomial and Poisson distributions. The six non-informative predictors were gener-

ated without stratification by outcome class, and are denoted by Rnd before the distribution

name. The six informative predictors were generated with stratification by outcome class and

are indicated by Str Rnd before the distribution name. The parameters of the generated ran-

dom variables are shown in Table 2. The parameters set for generating data from the models

in the non-informative scenario used fairly typical conditions. For example, a standardized

normal distribution was chosen, and the Bernuli and binomial distributions reflect the class

imbalances that often appear in the data. For the informative scenarios, the parameters were

chosen so that the added variables were both very strong and distinkt, detectable as significant

by the LRT test and DeLong’s test, e.g., for the normal distribution, remote means (10 and 12)

were chosen, and quite weak, detectable only by the LRT test, e.g., for the Poisson distribution,

the lambda was set to 1 and 1.6.

We expect the non-informative predictors to produce approximately horizontal-shaped U-

smile plots with values of the BA and RB coefficients close to zero, reflecting neither improve-

ment nor worsening of prediction. On the contrary, we expect the informative predictors to

produce smiling U-smile plots and positive values of the net coefficients. Furthermore, we gen-

erated age-dependent random variables from the normal distribution under the non-informa-

tive (Rnd) and informative (Str Rnd) scenarios to confirm that the negative effect of highly

correlated predictors on model prediction will be visible in the U-smile plots. We restricted to

a normal distribution due to the large number of new models in the dependent scenario.

Unstratified variables were generated from the standard normal distribution. Stratified vari-

ables were generated from the distribution in a slightly weaker form than for the independent

scenario, detectable as significant only by the LRT tests. We therefore assumed slightly closer

means N(11, 2) for the events and from the distribution N(10, 2) for the events. These variables

Table 2. Parameters of the independent random variables generated from theoretical probability distributions for

validating the U-smile method. Data were generated to simulate a scenario when a non-informative predictor is

added to the reference model (Random variables) and when an informative predictor is added to the reference model

(Stratified random variables).

Random variables Stratified random variables

Distribution Overall Non-events Events

Normal N(0, 1) N(10, 2) N(12, 2)

Uniform U(0, 10) U(0, 6) U(2, 8)

Exponential exp(λ = 1) exp(λ = 0.5) exp(λ = 1)

Bernoulli Bern(p = 0.8) Bern(p = 0.5) Bern(p = 0.2)

Binomial Binom(n = 6, p = 0.8) Binom(n = 7, p = 0.6) Binom(n = 7, p = 0.5)

Poisson Pois(λ = 1) Pois(λ = 1) Pois(λ = 1.6)

https://doi.org/10.1371/journal.pone.0303276.t002
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were generated from normal distributions with a predetermined Pearson’s correlation coeffi-

cient ranging from 0.1 to 0.9.

The raw dataset was randomly divided into training and test datasets: 331 observations in

the training dataset (disease prevalence 47.4%) and 330 observations in the test dataset (disease

prevalence 47.6%). The proportions of Cleveland, Hungarian and VA databases were repro-

duced from the raw dataset in the training and test datasets to ensure the best representation

of the sample.

Statistical analysis

The reference model was a logistic regression model with sex, age, systolic blood pressure

(SBP) and total cholesterol (Chol) as the set of reference predictors, X. The outcome variable,

D, D 2 {0, 1}, was the presence of coronary disease in a patient. The reference model included

the predictors of the Heart Disease dataset that are also included in the Framingham Risk

Score [35] to simulate a practical approach. The reference model is hence given by:

logitPðD ¼ 1jXÞ ¼ a0 þ a1Sexþ a2Ageþ a3SBPþ a4Chol: ð26Þ

In the independent scenario, we built 18 new models adding each independent candidate

predictor Yj, j = 1, . . ., 18, to the reference model: six real predictors from the Heart Disease

dataset, six random variables without stratification by outcome class, and six random variables

stratified by outcome class. In addition, in the dependent scenario, we built 18 new models by

adding random variables correlated with age (found in the reference model): nine without

stratification and nine stratified by outcome class. Thus, each new model is given by:

logitPðD ¼ 1jX;YjÞ ¼ b0 þ b1Sexþ b2Ageþ b3SBPþ b4Chol þ b5Yj: ð27Þ

All models were fitted on the training dataset and applied to the test dataset for validation.

By definition, I [25] consists of the I coefficients stratified by outcome subclass:

Iþ
0
¼
nþ

0

n0

; ð28Þ

I�
0
¼
n�

0

n0

; ð29Þ

I�
1
¼
n�

1

n1

; ð30Þ

Iþ
1
¼
nþ

1

n1

; ð31Þ

where nþ
0

and n�
0

are the numbers of non-events with better and worse prediction, respectively

(nþ
0
þ n�

0
¼ n0), and n�

1
and nþ

1
are the numbers of events with worse and better prediction,

respectively (n�
1
þ nþ

1
¼ n1). The coefficients I range from 0 to 1 and indicate a proportion of

individuals with a prediction change in each subclass (i.e. a proportion of reclassified individu-

als according to Pencina’s definition of reclassification). Then

I ¼ Iþ
0
� I�

0
þ Iþ

1
� I�

1
¼ I0 þ I1; ð32Þ

where I0 and I1 are the net coefficients for the non-events and events, respectively. The range

of I0 and I1 is [−1, 1], and the range of the I is [−2, 2]. Higher values indicate more correctly
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reclassified individuals, and thus an improvement in prediction relative to the reference

model.

We calculated the BA, RB and I coefficients for all new models and plotted them on the U-

smile plots. The graphical assessment also included the new models’ ROC curves and the PIW
plots. We compared each new model with the reference model using the LRT. The ΔAUC
between the new and reference models was assessed using the DeLong’s test for two correlated

ROC curves [36]. A significance level 0.05 was assumed for the LRT and the DeLong’s test for

two correlated ROC curves. The prediction improvement evaluation using the U-smile method

was repeated for the models derived from the test dataset.

All analyses were performed using statistical software R (v. 4.2.2) [37] and RStudio (v.

2023.6.0.421) [38].

Results

Fig 4 shows the U-smile plots of the BA, RB and I coefficients for the models derived from the

training dataset. The U-smile plots of the BA and RB coefficients take the shape of a smile or

an approximately horizontal line. In contrast, the U-smile plots of the I coefficients have vari-

ous shapes. Table 3 shows the values of the net BA, RB and I coefficients, and Table 4 displays

the results of the LRT and the ROC curve analysis.

The results of the U-smile method for the generated random predictors are consistent with

our assumptions. The U-smile plots of the BA and RB coefficients for the new models with the

non-informative predictors (Rnd + distribution) are horizontal lines close to zero. This means

that the predictions of the reference and new models are only slightly different. The I

Fig 4. The U-smile plots of the BA, RB and I coefficients for each new model derived from the training dataset under the independent scenario.

https://doi.org/10.1371/journal.pone.0303276.g004
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coefficients express the number of prediction changes, regardless of how small or large they

are. Therefore, we observe a high variability of the I coefficients. In particular, the U-smile plot

of the I coefficients indicates prediction improvement for the new model extended with Rnd

uniform. However, for Rnd Poisson it indicates prediction worsening. The results of the LRT
and the DeLong’s test for two correlated ROC curves are above the assumed significance level.

These are consistent with the results of the U-smile method.

The U-smile plots of the BA and RB coefficients for the new models with the informative

predictors (Str Rnd + distribution) have the shape of a smile or the letter U, thus indicating

prediction improvement for both outcome classes. However, in the case of Str Rnd binomial

and Str Rnd Poisson, the smile is less pronounced than in the case of the other stratified pre-

dictors. These random predictors were generated in such a way that adding them to the refer-

ence model only slightly increases the AUC of the reference ROC curve. The LRT results are

below the assumed significance level for the six stratified predictors, consistent with the shape

of the U-smile plots.

The results of the DeLong’s test for two correlated ROC curves are below the assumed sig-

nificance level for all stratified predictors except for Str Rnd binomial and Str Rnd Poisson.

This agrees with the less apparent smile of the U-smile plots of these predictors. The U-smile

plots of the I coefficients show prediction worsening for Str Rnd Poisson for the events and

slight prediction worsening for Str Rnd exponential for the non-events. However, they show

prediction improvement for the other stratified predictors.

Table 3. Values of the net BA, RB and I coefficients stratified by outcome class for 18 new models derived from the training and test datasets under the independent

scenario. The reference model was expanded by six real predictors from the Heart Disease dataset, 6 non-informative random variables (without stratification by outcome

class), and 6 informative random variables (stratified by outcome class).

Training dataset Test dataset

New model BA0 BA1 RB0 RB1 I0 I1 BA0 BA1 RB0 RB1 I0 I1

Real predictors

Chest pain 0.039 0.056 0.205 0.262 0.460 0.592 0.049 0.062 0.269 0.258 0.526 0.541

Glucose 0.003 0.000 0.014 0.001 0.506 -0.452 -0.003 0.000 -0.016 -0.002 0.468 -0.605

ECG 0.001 0.001 0.003 0.003 0.310 -0.108 0.002 0.000 0.012 0.000 0.410 -0.121

Heart rate 0.013 0.013 0.070 0.061 0.253 0.159 0.013 0.032 0.070 0.130 0.202 0.236

Exercise angina 0.038 0.024 0.201 0.111 0.701 0.248 0.041 0.053 0.228 0.220 0.688 0.287

ST depression 0.053 0.028 0.282 0.133 0.609 0.299 0.025 0.050 0.140 0.207 0.434 0.363

Random variables

Rnd normal 0.000 0.000 0.002 0.001 -0.034 0.096 0.001 0.001 0.006 0.003 0.006 0.083

Rnd uniform 0.001 0.000 0.004 0.002 0.092 0.083 0.003 -0.006 0.014 -0.023 0.179 -0.172

Rnd exponential 0.001 0.000 0.004 0.001 0.276 -0.261 -0.002 0.001 -0.012 0.005 0.179 -0.210

Rnd Bernoulli 0.000 0.001 0.002 0.005 -0.552 0.656 -0.004 0.001 -0.019 0.004 -0.734 0.694

Rnd binomial 0.000 0.000 0.000 0.001 -0.241 0.274 0.000 0.000 0.000 0.001 -0.237 0.325

Rnd Poisson 0.000 0.000 -0.001 0.000 -0.069 -0.032 0.000 0.000 0.000 0.000 -0.168 -0.019

Stratified random variables

Str Rnd normal 0.035 0.041 0.186 0.195 0.402 0.414 0.012 0.054 0.067 0.225 0.364 0.439

Str Rnd uniform 0.049 0.046 0.259 0.219 0.356 0.401 0.029 0.045 0.160 0.188 0.434 0.338

Str Rnd exponential 0.017 0.027 0.093 0.125 -0.023 0.529 0.004 0.031 0.020 0.128 -0.098 0.529

Str Rnd Bernoulli 0.020 0.028 0.109 0.131 0.184 0.516 0.023 0.016 0.128 0.067 0.179 0.376

Str Rnd binomial 0.008 0.009 0.043 0.043 0.310 0.096 0.026 -0.002 0.144 -0.008 0.595 -0.057

Str Rnd Poisson 0.013 0.003 0.069 0.015 0.437 -0.096 0.015 0.004 0.085 0.018 0.526 -0.146

ECG, resting electrocardiographic changes

https://doi.org/10.1371/journal.pone.0303276.t003
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When the reference model was expanded by real predictors of the Heart Disease dataset, all

methods produced concordant results. The U-smile plots of the BA, RB and I coefficients

smile for chest pain, heart rate, exercise angina, and ST depression. However, the smile of the

U-smile plots for heart rate is less apparent. The LRT and the DeLong’s test for two correlated

ROC curves yielded results below the significance level for chest pain, heart rate, exercise

angina, and ST depression. Meanwhile, for glucose and ECG, the U-smile plots of the BA and

RB coefficients have the shape of a horizontal line, while the U-smile plots of the I coefficients

have the shape of a zigzag.

The AUC of the reference model is 0.758, and the values of the AUC of the new models are

provided in Table 4. Fig 5 and S2 Fig show the ROC curves of the reference and new models

derived from the training and test datasets, respectively.

Fig 6 shows the U-smile plots of the BA, RB and I coefficients for the models derived from

the test dataset. The values of the BA, RB and I coefficients stratified by outcome subclass for

models derived from the training and test datasets are provided in Tables 1 and 2 of S1

Appendix, respectively. Fig 7 and S1 Fig show the PIW plots of the reference and new models

derived from the training and test dataset, respectively. S3 Fig shows the U-smile plots of the

BA, RB and I coefffcients for models derived from the training and test datasets, with

Table 4. Comparisons of the reference model with each new model derived from the training dataset under the

independent scenario. The reference model was expanded with six real predictors from the Heart Disease dataset, six

non-informative random variables (without stratification by outcome class), and six informative random variables

(stratified by outcome class). Shown are the values of the AUC of all new models. ΔAUC shows the difference in AUC
relative to the reference model. The AUC of the reference model is 0.758. The DeLong’s test for two correlated ROC
curves was used to asses ΔAUC.

New model AUC ΔAUC ΔAUC

P value

LRT

P value

Real predictors

Chest pain 0.853 0.095 0.000 0.000

Glucose 0.761 0.002 0.689 0.103

ECG 0.760 0.002 0.633 0.696

Heart rate 0.789 0.031 0.023 0.000

Exercise angina 0.825 0.067 0.000 0.000

ST depression 0.843 0.085 0.000 0.000

Random variables

Rnd normal 0.757 -0.001 0.765 0.355

Rnd uniform 0.758 0.000 0.986 0.306

Rnd exponential 0.758 0.000 0.931 0.248

Rnd Bernoulli 0.759 0.001 0.839 0.202

Rnd binomial 0.757 -0.001 0.318 0.782

Rnd Poisson 0.758 0.000 0.892 0.917

Stratified random variables

Str Rnd normal 0.843 0.085 0.000 0.000

Str Rnd uniform 0.862 0.104 0.000 0.000

Str Rnd exponential 0.810 0.052 0.002 0.000

Str Rnd Bernoulli 0.814 0.056 0.002 0.000

Str Rnd binomial 0.778 0.020 0.108 0.000

Str Rnd Poisson 0.776 0.018 0.123 0.000

ROC, receiver operating characteristic; AUC, area under the ROC curve; LRT, likelihood-ratio test; ECG, resting

electrocardiographic changes.

https://doi.org/10.1371/journal.pone.0303276.t004
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additional random variables correlated with age. The higher the Pearson correlation coefff-

cient, up to 0.8, the less the U-smile plot smiles until the model loses its resistance to over-

correlation and becomes less stable. This effect is present in the models derived from the

training dataset and is even better visible in the models derived from the test dataset. In the

latter case, the smile disappears and the predictions of the new model are weaker than those

of the reference model.

Fig 5. The ROC curves of the reference and new models derived from the training dataset under the independent

scenario.

https://doi.org/10.1371/journal.pone.0303276.g005
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Discussion

We present a new and validated approach for graphical and quantitative assessment of the pre-

diction improvement gained by adding a new marker to a set of reference markers for predict-

ing a binary outcome: the U-smile method. By design, the U-smile plot smiles when the new

marker improves the prediction of the reference model for both outcome classes: the larger the

smile, the greater the prediction improvement. No smile (a horizontal line) means no

improvement, while an asymmetric smile means improvement for one outcome class. A zigzag

smile indicates improvement for one outcome class but worsening for the other.

To confirm the accuracy of the U-smile method in generating truly smiling or non-smiling

plots, we performed a series of tests using real and generated variables under both informative

and non-informative scenarios. The U-smile method correctly identiffed both non-informa-

tive and informative predictors, regardless of the tested data distribution. Visual evaluation of

the U-smile plots of the BA and RB coefffcients allowed immediate interpretation of the

results. The U-smile plots of the non-informative predictors took the shape of horizontal lines

located at the bottom of the plots and did not obscure the smiling U-smile plots of the infor-

mative predictors.

We also used random predictors with varying degrees of multicollinearity. When the ran-

dom data were correlated with informative parameters, the generated U-smile plots smiled

like for the informative data. This suggests that U-smile plots are able to detect predictive

information hidden in the analysed data.

Fig 6. The U-smile plots of the BA, RB and I coefficients for each new model derived from the test dataset under the independent scenario.

https://doi.org/10.1371/journal.pone.0303276.g006
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Comparison with ROC curves

Due to frequent overlap, a clear graphical comparison of multiple candidate predictors is not

always possible with ROC curves (Fig 5). However, such a comparison is easy when many can-

didate predictors are presented side by side on the U-smile plots. Each predictor has an indi-

vidual U-smile plot with no overlap.

The predictors offering the greatest prediction improvement can be clearly and quickly

identiffed. Therefore, the U-smile method provides deeper insight into prediction

Fig 7. The prediction improvement-worsening (PIW) plots for each new model derived from the training dataset

under the independent scenario.

https://doi.org/10.1371/journal.pone.0303276.g007
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improvement than the ROC curves. In our study, for example, the net effect size of prediction

improvement by ST-segment depression is approximately twice as large for the non-events

than for the events. Similar information is not available from the ROC curves.

The ROC curve measures the model’s ability to discriminate between positive and negative

outcomes. The AUC estimates how well the model predictions are ordered and is not sensitive

to their values. It is the main limitation of this method. ΔAUC for different predictors or mod-

els may not fully capture the improvement in the actual predicted probabilities and may not

provide a complete picture of the model performance.

Not considering the absolute values of the predictions by the ROC curve has its conse-

quence, two models with different predicted probabilities but the same rank order would have

identical AUCs. On the contrary, the U-smile method evaluates the performance of different

models and predictors based on the magnitude of the probability changes relative to the refer-

ence model. We obtained a pair of new models with the same ΔAUC (a pair of ST depression

and Str Rnd normal, as shown in Table 4). However, their BA and RB coefficients (Table 1 in

S1 Appendix), and U-smile plots (Fig 4) were distinct. Various models with identical AUCs

may have different shapes of their ROC curves. The U-smile method describes each new

model by four sets of three different coefficients (BA, RB, and I) and one summary U-smile

plot. The probability of two different models having identical all twelve coefffcients and U-

smile plots is very low, if possible.

The PIW and U-smile plots

The PIW plot visualises the position of the individuals relative to the identity line, representing

no change in probability between the reference model and the new model [31] and shows both

the magnitude and number of changes for each subclass (Fig 7 and S1 Fig). On the PIW plot,

we can observe the nature of the variable added to the model. For example, chest pain is a

4-category variable (3 subject categories and 1 reference category), therefore the points of the

graph are arranged along these categories. Exercise angina is a 2-category variable, so the

points of the PIW plot form 2 curves, and ST depression is continuous, giving a cloud of points

not forming specific lines.

The U-Smile and PIW plots are complementary. The points representing individuals in

each subclass in the PIW plot are aggregated and represented by cilcles of the same colour in

the U-smile plot. Subclass-specific points in different colours on the PIW plot represent the

number of individuals, summarised quantitatively in the I coefficients. The upward and down-

ward distances of the points from their target probabilities are summarised by the BA and RB
coefficients.

The PIW plot allows more precise identification of an individual subject and whether the

new parameter improves, worsens or does not change the prognosis. The U-smile plot, on the

other hand, gives a general impression based on averaged values specific to subclasses.

U smile plots for the I coefficient

We compared the results of the U-smile method with those of the I. Replacing the BA or RB
coefficients with the I components in the U-smile plot may result in different shapes. The I
may falsely indicate positive results by producing a total smile, i.e. for non-events and events,

or a partial smile for only one class. Some examples are Rnd uniform for both outcome classes,

Rnd Bernoulli for the events, or false negatives for Rnd Poisson for both outcome classes.

The BA and RB coefficients quantify the magnitude of prediction changes, while the I
expresses the number of these changes. This explains the difference between these two meth-

ods. Adding a new marker to the reference model almost always changes its predictions,
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however small these changes may be for the non-informative predictors. Therefore, we almost

always have: I�
0
þ Iþ

0
þ Iþ

1
þ I�

1
¼

n�
0
þnþ

0

n0
þ

nþ
1
þn�

1

n1
¼ 1þ 1 ¼ 2. These erroneous values of the I

coefficients, and their U-smile plots suggest that the I alone should not be relied upon as a

measure of prediction improvement. The I should be interpreted in the BA and RB coefficients

context. We suggest treating I coefficients as complementary rather than competing with the

BA and RB coefficients. In this way, we can better understand the factors that contribute to the

prediction of the model.

Collinearity

Collinearity affects the performance and interpretation of predictive models by inflating the

variance of the coefficients, making them unstable and unreliable. Adding similar or redun-

dant information can increase the degree of collinearity and exacerbate the problem. If the cor-

relation between theoretically independent predictors is high enough, reliable model fitting

and interpretation of results may be impossible. Such models behave erratically in response to

small changes in the data or in the procedure used to build the predictive models [39, 40].

We used random predictors generated from normal distributions and correlated with age

already included in the reference model. The U-smile plots became flatter as the correlation

increased, indicating that adding a fairly strongly correlated variable to the reference model

becomes less favourable. For Pearson correlation coefficients above 0.8 and variables stratified

by outcome class, the logistic regression models became less stable, and consequently, the U-

smile plot lost its resistance to over-correlation. The U-smile method, when employed for vari-

able selection, may help mitigate the risk of collinearity in predictive models to a certain

degree. If collinearity is severe, it may not indicate that one of the highly correlated parameters

should be excluded from the model. Currently, the U-smile plot visualises the BA, RB and I
coefficients. In the future, however, the U-smile plot will integrate coefficients obtained from

alternative techniques to represent different subclasses of individuals. Some of these methods

may be effective in removing highly correlated variables.

This study used the simplest form of logistic regression without regularisation to assess col-

linearity. A U-smile plot can also be constructed for model-building methods that use regulari-

sation techniques that are more robust to collinearity, such as least absolute shrinkage and

selection operator (LASSO), ridge regression [41] or other suitable alternatives. Another

potentially important application of the U-smile method is the graphical and transparent com-

parison of the range of robustness to collinearity of different prediction methods using U-

smile plots.

Reproducibility

The reproducibility of a computational method goes beyond simply producing identical results

for the same data. It also includes the ability to reproduce results using the same code and data

generated in similar scenarios, but with different data points.

We have used rigorously tested and validated mathematical algorithms and codes for the

U-smile method. Through numerous simulations, parameter changes and repeated analyses

we have consistently obtained identical results, demonstrating the computational reproducibil-

ity of our algorithms. The data are not shown, but are available through code-based generation

at https://github.com/kbkubiak/U-smile folder: code. File 01 allows users to set parameters for

individual distributions and generate data accordingly, while File 02 enables users to perform

analyses and view the results plotted.
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By generating independent random variables with different distributions, we have demon-

strated the consistency of the U-smile method. For non-informative predictors, the U-smile

plots were approximately horizontal, with the BA and RB coefficients close to zero. In contrast,

for informative predictors, the U-smile plots smiled, and the net BA and RB coefficients were

positive. When random variables added to the reference model were correlated with a variable

in the reference model, the U-smiles smiled again for weak correlations and then consistently

disappeared for moderate correlations.

We observed these effects in all repeated simulations and under various analysed scenarios,

i.e. non-informative versus informative and independent versus dependent. Overall, the U-

smile method ensures high reproducibility of prediction for the same or similar types of

parameters.

Connection with a proper measure: The Brier score

There are few methods for assessing model performance that are both quantitative and strati-

fied. In an imbalanced scenario, the stratified Brier score (BS) was proposed for the non-events

and the events [23, 24, 26]. Like the LRT and ROC curves, the BS is sensitive to imbalance [42,

43]. While the BS describes the average prediction accuracy, ΔBS measures the average change

in the prediction, and the Brier skill score (BSS) quantifies the relative change in the prediction

compared to the reference prediction. The connection between the net BA and net RB coeffi-

cients and the BS is obvious. Clearly, if we define wn0 ¼
n0

n and wn1 ¼
n1

n as weights, then:

wn0 � BA0 þ wn1 � BA1 ¼ BSðref Þ � BS ¼ DBS; ð33Þ

where ΔBS is the difference between the Brier score of the reference model, BS(ref), and the

Brier score of the new model, BS (for derivation see Eq (1) in S1 Appendix).

Moreover, if we define ws0 ¼
SS0ðref Þ
SSðref Þ

and ws1 ¼
SS1ðref Þ
SSðref Þ

as weights, then:

ws0 � RB0 þ ws1 � RB1 ¼ 1 �
BS

BSðref Þ
¼ BSS; ð34Þ

where BSS is the Brier skill score (for derivation see Eq (2) in S1 Appendix).

Regarding propriety, the BA coefficients add up to the ΔBS that is proper [30], and the RB
coefficients add up to the BSS that is asymptotically proper [44]. Propriety is a desired feature

of a performance metric since adding a superfluous predictor to the reference model does not

increase the values of the proper measures but can increase the I [30]. On the other hand, the

size of the area under the ROC curve is referred to as a semi-proper measure [45]. However, a

detailed discussion of propriety is a separate and extensive topic [46, 47] beyond the scope of

this paper.

When does the U-smile plot smile and when does it not?

There are no specific values of the BA and RB coefficients that clearly separate flat U-smile

plots from truly smiling U-smile plots. For this purpose we use the LRT, which is simple, infor-

mative and commonly used. Like the BA and RB coefficients, the LRT is based on the magni-

tude of the residuals of the models being compared. As with other tests, increasing the sample

size of the study usually produces significant differences. So it is not the shape of the smile

itself, but the sample size that might affect the outcome of the LRT and the assessment of

whether a less smiling plot is significantly smiling or not.
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Why are two separate coefficients that produce similar U-smile plots

introduced?

The BA and RB coefficients have the same numerator (ΔSS) but different denominators and

interpretations. By dividing ΔSS by the number of individuals in a given class, the BA reflects

the average absolute change in prediction due to a new parameter in class 0 (non-event) or 1

(event). In contrast, for RB, ΔSS divided by SSref for the corresponding class indicates how the

new parameter affects the error relative to the residual SS.

Our preliminary analysis reveals that BA and RB coefficients exhibit distinct behaviours

with unbalanced data, resulting in non-parallel U-smile curves. Balanced or nearly balanced

data have similar denominator values, i.e. n0 and n1 for BA, and SS0(ref) and SS1(ref) for RB. In

epidemiological and clinical studies, balanced data with comparable or equal numbers of peo-

ple in both the non-event and event classes are rare and often considered exceptional, for

example, in studies with exact matching. In contrast, prospective studies with consecutive

enrolment of patients are more likely to be unbalanced. Our observations show that data

imbalance leads to increasing differences in the shape of the U-smile plots for the BA and RB
coefficients. In such cases, these coefficients are complementary rather than alternative indica-

tors. This highlights the importance of considering both BA and RB for a more comprehensive

understanding of various properties in newer binary classification and prediction methods

using the U-smile approach.

Study limitations and remaining questions

As already mentioned, we investigated a fairly balanced scenario with disease prevalence close

to 50% and found that the U-smile plots of the BA and RB coefficients behave similarly. How-

ever, the numbers of non-events (n0) and events (n1) are unequal in many studies. In such

cases, many prediction models (including logistic regression models) may suffer from an

imbalance between the prediction errors of individual classes SS0(ref) and SS1(ref) [48]. The

problem of prediction error imbalance is often assessed using the BS, which is related to the

BA and RB coefficients [49]. Therefore, the U-smile plots of the BA and RB coefficients can be

particularly useful in models built on imbalanced data. In such cases with unequal class sizes

and prediction errors, the resulting U-smile plots of the BA and RB coefficients are likely to

divert. This is a broad but important topic. However, due to space limitations, it is not covered

in this paper. This issue is the subject of another ongoing investigation.

Various statistical methods and parameters may assess the prediction improvement for a

binary outcome. Some of the commonly used methods are the net reclassification improve-

ment (I), integrated discrimination improvement [25], decision curve analysis [50], calibration

slope and intercept [16, 51], LASSO [19], AUC of the ROC curve, or the above described BSS
and ΔBS.

The I coefficients measure the proportion of individuals correctly reclassified into higher or

lower risk categories by the new model compared with the reference model. The integrated

discrimination improvement examines the difference in average predicted probabilities

between the new and reference models, stratified by the observed outcome. The decision curve

analysis plots the net benefit of using the new model versus the reference model over a range

of threshold probabilities for making a decision based on the predicted outcome. The AUC
measures the ability of the model to discriminate between individuals who experience the out-

come and those who do not, regardless of the threshold probability chosen. The calibration

slope and intercept quantify the agreement between the predicted probabilities and the

observed outcomes by comparing the average predicted probability and the observed outcome

in groups of individuals. LASSO is a regression analysis method that performs both variable
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selection and regularisation by shrinking the regression coefficients and reducing some of

them to zero. This helps to improve the prediction accuracy and interpretability of the result-

ing statistical mode. A set of diagnostic performance based on confusion matrix like sensitivity,

specificity, accuracy, positive and negative predictive values or F1 score are another example

[52].

All of these methods and parameters can be used to evaluate the predictive improvement of

a new marker in different ways, depending on the research question, type of data and clinical

context. The U-smile method has some similarities with several of the above methods. It incor-

porates the I coefficient and combines it with two other coefficients proposed by us, the BA
and RB, and the novel graphical presentation in the form of a smile plot. However, due to

space limitations, we have limited the direct comparison of the U-smile method with the ROC
curve and its AUC, used the I coefficients, and found a relation between BA and ΔBS, and

between RB and BSS. A comparison with other techniques that could be used to analyse the

improvement in prediction obtained by adding a new marker to a reference method is neces-

sary, interesting and important, and it deserves further investigation.

Utility measures how diagnostic tests improve health outcomes by informing clinical deci-

sions, such as starting or stopping treatment for certain patients, while taking into account the

consequences of wrong decisions. Based on this description, we have not directly tested the

utility of the U-smile method and its impact on clinical outcomes. A separate study that com-

pares the results of the U-smile method in improving prediction with real-world outcomes

should be considered to explore this issue.

Potential applications of the U-smile method

The U-smile plots help to compare candidate markers added to the reference model and evalu-

ate their usefulness for prediction improvement. These plots can also visualise, explain and

help understand the process of stepwise selection of variables into a prediction model. Once

interesting models have been identified, the PIW plots can be used to deepen the analysis and

explore where each individual falls relative to the prediction made by the reference and new

models.

The BA, RB and I coefficients, together with the U-smile plot, allow for a more detailed eval-

uation of different prediction models. Our current investigation focuses on applying the U-

smile method to nested models. Theoretical considerations suggest the method might be appli-

cable to non-nested settings as well. However, the applicability of the U-smile approach to

non-nested settings remains to be explored.

We have presented the BA and RB coefficients and the U-smile plot by comparing two

logistic regression models. However, any other type of analysis that predicts binary values,

such as neural networks or decision trees, can be used for the same purpose. The result of such

an analysis yields a value in the range (0, 1) or, if in another range, might be transformable to

that range, e.g. by min-max normalisation or S-function normalisation.

The proposed approach of dividing the studied individuals into four subclasses and display-

ing them on the U-smile plot can easily be applied to other parameters besides the BA, RB and

I coefficients. For example, the U-smile plot can show the results of agreement between the

two methods, as described by Cohen’s Kappa [53]. It can accompany descriptors such as diag-

nostic odds ratios, sensitivity and specificity values, accuracy, F1-score, and other similar mea-

sures based on the confusion matrix. Overall, the U-smile plot is a versatile tool that can be

used to visualise and compare different measures and coefficients in a clear and concise

manner.
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Predictive forecasting and modelling are not unique to medicine and the health sciences.

Optimisation of these processes based on similar approaches is used in economics, physical

sciences, chemical sciences, meteorology, design and operation of engineering systems or pro-

cesses, and many other fields. The U-smile method can compare the prediction performance

in all of them. This method provides researchers and practitioners with a novel and multipur-

pose tool to better understand how new markers are selected and how they affect prediction

accuracy.

Conclusions

The proposed U-smile method allows both a graphical and a quantitative assessment of the

prediction improvement caused by adding a new predictor to the reference model. The U-

smile plot is easy and intuitive to interpret, with the largest smiles indicating the greatest pre-

diction improvement over the reference model.

So far, we have observed that the U-smile method works for balanced or nearly balanced

data, separates informative from non-informative parameters, and is reproducible. It seems to

be robust to moderate multicollinearity between parameters included in the models. This

method fulfils criteria for test propriety and allows efficient comparison of multiple candidate

predictors.

The BA and RB coefficients are stratified by binary outcome class and measure the size of

the prediction improvement. Thus, they offer a more granular view of the effect of the new

marker compared to the ΔAUC of the ROC curves or the I. Using the U-smile method adds

practical relevance and can lead to more informed decisions regarding variable selection.

Supporting information

S1 Fig. The prediction improvement-worsening (PIW) plots for each new model derived

from the test dataset under the independent scenario—For the corresponding analysis as

in Fig 7.

(TIF)

S2 Fig. The ROC curves of the reference and new models (as in Fig 5) derived from the test

dataset under the independent scenario.

(TIF)

S3 Fig. The U-smile plots of the RB and I coefficients for each new model derived from the

training and test datasets under the dependent scenario.

(TIF)

S1 Appendix. Additional calculations and tables. The relationship between the BA and RB
coefficients and the Brier score. Tables with the values of the RB and I coefficients.
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