

## RESEARCH ARTICLE

# Prevalence and associated factors of proliferative diabetic retinopathy among adult diabetic patients in Northwest Ethiopia, 2023: A cross-sectional multicenter study

Abebech Fikade Shumye<sup>1\*</sup>, Mebratu Mulusew Tegegne<sup>1</sup>, Biruk Lelisa Eticha<sup>1</sup>, Matiyas Mamo Bekele<sup>1</sup>, Asamere Tsegaw Woredekal<sup>2</sup>, Lakew Asmare<sup>3</sup>

**1** Department of Optometry, College of Medicine and Health Sciences, Comprehensive Specialized Hospital, University of Gondar, Gondar, Ethiopia, **2** Department of Ophthalmology, College of Medicine and Health Sciences, Comprehensive Specialized Hospital, University of Gondar, Gondar, Ethiopia, **3** Department of Epidemiology and Biostatistics, College of Medicine and Health Sciences, Wollo University, Dessie, Ethiopia

\* [Abebechfikade1@gmail.com](mailto:Abebechfikade1@gmail.com)



## OPEN ACCESS

**Citation:** Shumye AF, Tegegne MM, Eticha BL, Bekele MM, Woredekal AT, Asmare L (2024) Prevalence and associated factors of proliferative diabetic retinopathy among adult diabetic patients in Northwest Ethiopia, 2023: A cross-sectional multicenter study. PLoS ONE 19(5): e0303267. <https://doi.org/10.1371/journal.pone.0303267>

**Editor:** Mulu Tiruneh, Debre Tabor University, ETHIOPIA

**Received:** November 15, 2023

**Accepted:** April 22, 2024

**Published:** May 10, 2024

**Copyright:** © 2024 Shumye et al. This is an open access article distributed under the terms of the [Creative Commons Attribution License](#), which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited.

**Data Availability Statement:** All relevant data are within the manuscript and its [Supporting Information](#) files.

**Funding:** The author(s) received no specific funding for this work.

**Competing interests:** The authors have declared that no competing interests exist.

**Abbreviations:** BMI, Body Mass Index; BP, Blood Pressure; DM, Diabetic Mellitus; DR, Diabetic

## Abstract

### Background

Proliferative diabetic retinopathy is one of the advanced complications of diabetic retinopathy. If left untreated, almost all eyes could lose a significant portion of their vision within four months. There is limited evidence regarding the magnitude of proliferative diabetic retinopathy and associated factors in the study setting and also in Ethiopia.

### Purpose

To determine the magnitude and associated factors of proliferative diabetic retinopathy among adult diabetic patients attending Specialized Comprehensive Hospital-Diabetic Care Clinics in Northwest Ethiopia, 2023.

### Methods

A multicenter, hospital-based, cross-sectional study was conducted on 1219 adult diabetic patients selected by systematic random sampling technique. Data were collected through an in-person interview and physical examination. The Statistical Package for Social Science Version 20 was used to analyze the data. Logistic regression methods were used to test the association between predisposing factors and proliferative diabetic retinopathy. The adjusted odds ratio with a 95% confidence interval was used to determine the strength of association.

### Results

The prevalence of proliferative diabetic retinopathy was 3.1% (95% CI: 2.10%–4.10%). Hypertension (AOR = 4.35 (95% CI: 1.87–10.12)), peripheral neuropathy (AOR = 3.87 (95% CI: 1.57–9.54)), nephropathy (AOR = 2.58 (95% CI: 1.13–5.87)),  $\geq 10$  years duration of

Retinopathy; NVD, New Vessel on Disk; NVE, New Vessel Elsewhere; PDR, Proliferative Diabetic Retinopathy; PRH, Pre Retinal Hemorrhage; VH, Vitreous Hemorrhage.

diabetes mellitus (AOR = 5.30 (95% CI: 2.32–12.14)), insulin use (AOR = 3.07 (95% CI: 1.08–8.68)), and poor adherence to diabetes mellitus medications (AOR = 3.77 (95% CI: 1.64–8.64)) were confirmed to have statistically significant association with proliferative diabetic retinopathy.

## Conclusion

The prevalence of proliferative diabetic retinopathy among adult diabetic patients in the diabetes clinic was higher than the global study. Hypertension, peripheral neuropathy, nephropathy,  $\geq 10$  year's duration of diabetic mellitus, insulin use and poor adherence to diabetes mellitus medications were among the factors significantly associated with proliferative diabetic retinopathy.

## Introduction

According to the World Health Organization, Diabetes Mellitus (DM) is defined as a chronic metabolic disease caused by elevated blood sugar levels in the blood vessels. Over time, it leads to damage to the heart, blood vessels, eyes, kidneys and nerves [1]. A microangiopathy caused by the long-term complications of diabetes mellitus is Diabetic Retinopathy (DR) [2].

Proliferative Diabetic Retinopathy (PDR) which is characterized by the development of abnormal new blood vessels at the optic nerve head or elsewhere in the retina is one of the serious complications of DR [3]. Uncontrolled high blood glucose levels in the blood vessels and untreated Non-Proliferative Diabetic Retinopathy (NPDR) play a vital role in the progression of PDR [3, 4]. It could be manifested as or end up with central and peripheral vision loss, vitreoretinal traction, preretinal hemorrhage, vitreous hemorrhage, tractional retinal detachment, and neovascular glaucoma [5].

The pathophysiology of PDR is associated with fibrosis, angiogenesis and inflammatory cells [6, 7]. Ocular neovascularization is facilitated by several genes, including erythropoietin, cytokines, and vascular endothelial growth factors, which are expressed by inflammatory cells through the processes of cytokinesis and chemokinesis [8].

According to 2019 study report by the International Diabetic Federation (IDF), the global prevalence of PDR was 1.40 [9]. The prevalence of PDR in eye clinics was found to be 33.4% in Sudan [10] and 50.5% in Jamaica [4] whereas the prevalence of PDR observed in diabetic clinics found in Ethiopia ranges from 0.7% to 16.7% [11–13].

Proliferative diabetic retinopathy is the main cause of blindness in DM patients. If left untreated, it has a high chance of progressing to high-risk PDR and an eye will lose a significant amount of its vision [5, 14]. The disease is associated with numerous social and economic burdens for the individual and the healthcare system [15]. Emotional stress, loss of productivity, dependence, stigmatization and social isolation are among the burdens. Those hinder the patient's social activities and affect their quality of life [15]. Similarly, PDR causes both direct and indirect economic burdens through loss of productivity, increased medical costs and caregiver costs [15]. The cost of treatment and rescue from severe vision loss due to PDR in South Africa has been estimated to be \$1,618 and \$13,71313 respectively [16].

Type of DM [17, 18], hemoglobin [19–23], glycerol control [8, 19], duration of DM [18, 21–23], hypertension [23], insulin use [21, 23], creatinine level [23], lipoprotein density [17],

hyperlipidemia [17] and proteinuria [19, 20] have been significantly associated with PDR development.

The International Council of Ophthalmology recommends diabetic patients have regular exercise, regular screening, timely referral to an ophthalmology center and routine eye examinations that help the endeavor to prevent the occurrence of PDR; to detect and treat it as early as possible and make patients aware of their condition [24, 25].

Knowing the magnitude and factors associated with PDR among adult diabetic patients is necessary to set appropriate interventions and administrative measures based on modifiable factors. However, there is limited evidence about the magnitude of PDR and associated factors in the study setting and Ethiopia as well.

Therefore, this study aimed to identify the prevalence of PDR and its associated factors among adult diabetic patients attending Comprehensive Specialized Hospital-Diabetic Care Clinics (CSH-DCCs) in Northwest Ethiopia to identify and fill the gap in terms of reference support for policymakers, program planners and decision makers that will improve early diagnosis and management of the problem.

## Methods and materials

### Study design, study area and period

A multicenter hospital-based cross-sectional study was conducted at the CSH-DCCs in Northwest Ethiopia, from May 8 to June 15, 2023. In Amhara Region, there are about 81 functional hospitals, 858 health centers and 3560 health posts [26]. Five of the hospitals named the University of Gondar, Debre Tabor, Felege Hiwot, Tibebe Ghion and Debre Markos are comprehensive specialized hospitals located in Northwest Ethiopia. Each comprehensive specialized hospitals has a separate adult diabetic clinics under the Department of Internal Medicine and is staffed by specialized internists, general practitioners, nurses and other medical professionals who provide service for both new and follow-up diabetic patients.

### Source population and study population

All adult diabetic patients attending at the CSH-DCCs in Northwest Ethiopia.

### Inclusion criteria

All adult diabetic patients with adequate visualization of the posterior segment in both eyes were included in the study.

### Exclusion criteria

Media opacity obscuring the visualization of the posterior segment in at least one eye including dense corneal opacity, mature cataract, and marked vitreous opacity developed by non-DM causes were excluded from this study. For the sake of getting reliable data patients who were seriously ill and unable to communicate were also excluded from this study.

### Operational definitions

**Proliferative diabetic retinopathy.** Defined as 'Yes' if any of the following were present: Neovascularization of the retina or optic nerve head, preretinal or vitreous hemorrhage, and tractional retinal detachment in at least one eye. 'No' if none of the above features were present in both eyes [27].

**PDR classification.** *Low-risk PDR.* Neovascularization of the disc or retina without vitreous or pre-retinal hemorrhage.

**High-risk PDR.** Neovascularization of the retina or disc with vitreous or pre-retinal hemorrhage.

**Advanced PDR.** High-risk PDR with tractional retinal detachment [27].

**Hypertension.** Defined as 'Yes' if the measured systolic and/or diastolic blood pressure of the diabetic participants were above 140/90 mm Hg during the data collection period or if the participants were taking antihypertensive medication. 'No' if both systolic and diastolic blood pressure was below 140/90 mm Hg during the data collection period and there is no known history of hypertension [28].

**Poor glycemic control.** Fasting blood glucose levels  $>130$  mg/dl at the time of data collection [29].

**Body Mass Index (BMI).** Based on the formula of weight in kilogram over height in meter square, the BMI was calculated to be classified as 'underweight' if the BMI was  $<18.50$  kg/m $^2$ ; 'normal' if the BMI was between 18.50 and 24.99 kg/m $^2$ ; 'overweight' if the BMI was between 25.00 and 29.99 kg/m $^2$ ; and 'obese' if the BMI was  $\geq 30$  kg/m $^2$  during the time of data collection [30].

**Eye checkup practices.** Participants who had undergone an eye examination within the past year were categorized as having good eye checkup practices, while those who had not undergone an eye examination within the past year were categorized as having poor eye checkup practices [31, 32].

**Medication adherence.** The study participants who answered below the median value [6] of the 7-point questions on treatment adherence were considered as having poor adherence to DM medication. However, the study participants who scored above or equal to the median [6] were classified as having good adherence to DM medication [33].

**Adult.** A person who was 18 years old and above [34].

## Sample size determination and sampling technique

The sample size was determined using a single population proportion formula by taking a 13.3% proportion of PDR obtained from a pilot test conducted on 30 subjects at Debre Tabor CSH-DCC. Furthermore, the sample size calculation considered a 5% significance level and a 2% margin of error.

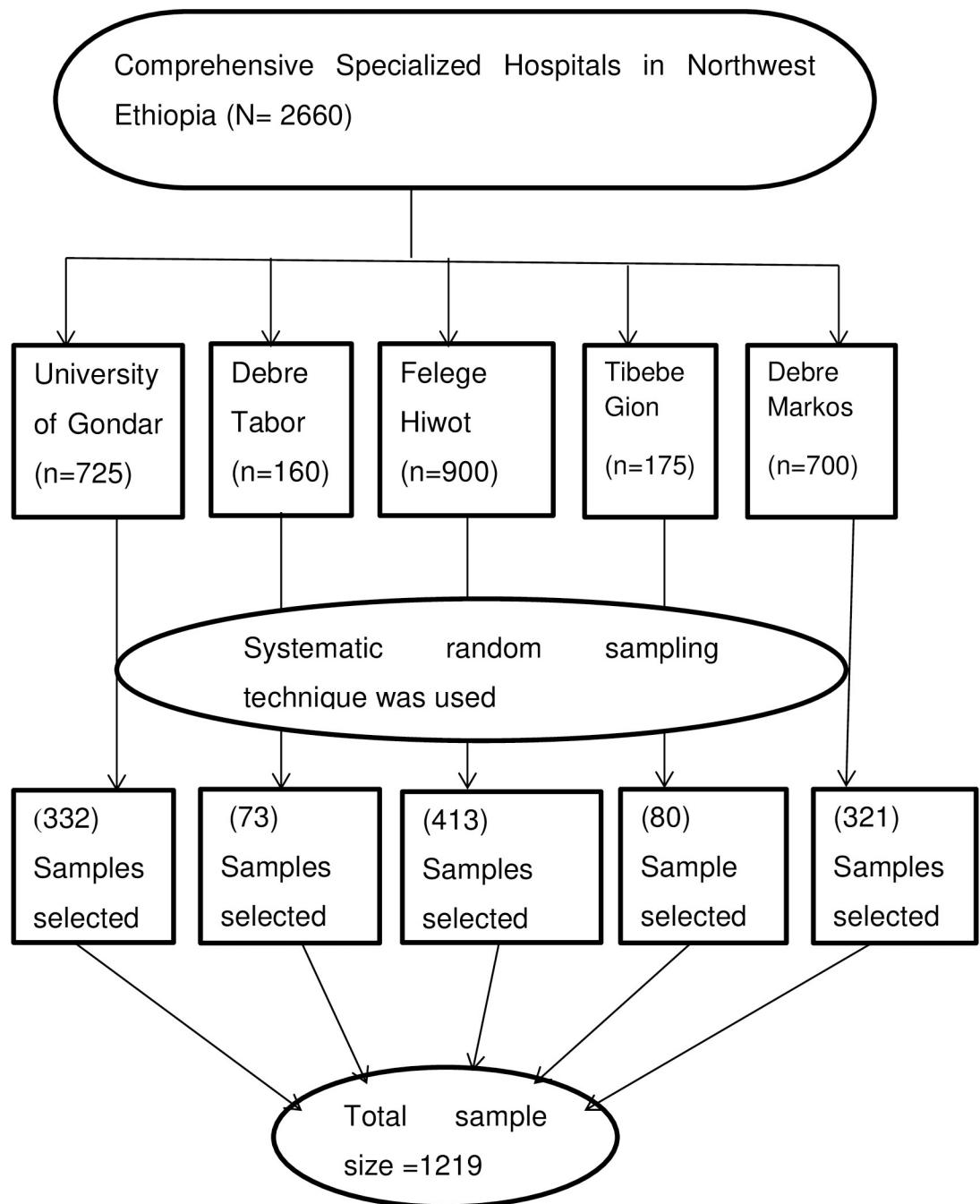
The following formula was used;

$$n = \frac{(Z_{\alpha/2})^2 * P(1 - P)}{d^2} = \frac{(1.96)^2 * 0.133(1 - 0.133)}{0.02^2}$$

$$n = 1107.4$$

Where

n = Sample size


Z = Z statistics for 95% level of confidence = 1.96

P = Estimated proportion of proliferative diabetic retinopathy

d = Margin of error =  $\pm 2\%$

After adding 10% non-response rate the final total sample size was set to be 1219.

The study participants were selected from five CSH-DCCs found in Northwest Ethiopia. Out of the total of 2660 expected average number of diabetic patients attending these CSH-DCCs 1219 study participants were selected using a systematic random sampling technique. Once we got the list of diabetic patients from the registration book proportional allocation was done for each CSH-DCCs. After allocation was done, the sampling interval was



**Fig 1.** This flow diagram shows the sampling procedure and sampling technique of study participants.

<https://doi.org/10.1371/journal.pone.0303267.g001>

calculated and the value was 2. We used the lottery method to draw the 1st sample of the first 2 participants and continued with every other participant (Fig 1).

### Data collection tool and procedure

The data were imported to electronic device Kobo Toolbox version 2022.4.4. The semi-structured interview-based questionnaire includes sociodemographic, DM medication adherence,

systemic and ocular comorbidity, and clinical characteristics related questions used to collect data.

Five trained optometrists and other five trained ophthalmologists collected the data through face-to-face interviews and physical examinations. The overall data collection was conducted under the close supervision of other five optometrists; 1 supervisor for each CSH-DCCs.

By reviewing related literature and considering the current clinical practice the questionnaire was developed in English and then translated to Amharic and later back to English by language experts to ensure the accuracy and reliability of data. Before the actual data collection, the Amharic version of the questionnaire was pretested on 5% of the sample size at Debark Hospital to check the reliability and quality. Based on the feedback we got proper correction was done on the questionnaire.

The socio-demographic characteristics and DM medication adherence comprised of seven questions were assessed by interviewing study subjects in a face-to-face manner. Systemic diseases such as (hypertension, nephropathy, and peripheral neuropathy), type of DM, blood pressure, and FBS, were recorded on the checklist by reviewing patients' medical recording charts. These factors were diagnosed and measured by the physicians at the diabetic care clinic at the time of data collection. Height and weight were measured using a stadiometer.

Once the habitual visual acuity was assessed using a reduced Snellen visual acuity chart at a distance of 3 meters, examining the anterior segment of the eyes using a slit-lamp biomicroscope became the next task of the ophthalmologist. Then, participants who were eligible for the fundus examination got a drop of 1% Tropicamide eye drop to both of their eyes and waited 20 minutes until mydriasis. As time went by eyes became dilated and ready for dilated fundus examination using slit-lamp biomicroscope and a +90.00 Diopter Volk lens. The presence and grade of PDR were recorded on the checklist after the complete ophthalmic examination by the ophthalmologist.

## Data processing and analysis

The collected data was exported to the Statistical Package Social Sciences (SPSS) version 20 for checking, cleaning and analysis. Descriptive statistics such as proportion, frequency, ratios and summary measures such as median and interquartile range were calculated. Chi-square was used to determine the relationship between dependent and independent variables. Bivariable logistic regression analysis was then performed to assess the crude association of the explanatory variables to the dependent variable. Variables with a p-value of less than 0.25 in the bivariable logistic regressions were fitted to the multivariable binary logistic regression model using the Enter method. In multivariable logistic regression, variables with a p-value of less than 0.05 at a 95% confidence interval were considered statistically significant associated factors for PDR. The Hosmer and Lemeshow test of goodness of test was used to assess the fit of the model, and the result of its p-value was 0.83.

## Ethical considerations

Ethical clearance was obtained from the University of Gondar, College of Medicine and Health Sciences, Comprehensive Specialized Hospital, School of Medicine, Ethical Review Committee. An official permission letter was obtained from the Departments of Internal Medicine in each Comprehensive Specialized Hospital. Before the start of data collection, verbal informed consent was obtained from study participants, in which they were informed of the purpose of the study and their right to withdraw or refuse participation at any time. The study was conducted under the principles of the Declaration of Helsinki.

Confidentiality of study participants was maintained by avoiding all personal identifiers from the data collection instruments and keeping the results locked and secure. If additional care and follow-up were required, participants were connected to the eye clinic.

## Results

### Socio-demographic characteristics of the study subjects

Of a total of 1219 study subjects involved 1134 with a response rate of 93% gave valid data regarding the research. The median age of the participants was 53 years with an interquartile range of 37 to 62 years ([Table 1](#)).

### Clinical characteristics of the study participants

The median fasting blood glucose level was 150 mg/dl, (IQR: 126–180 mg/dl). The median and IQR of systolic and diastolic blood pressure were 120 mm Hg (IQR: 120–140 mm Hg) and 80 mm Hg (IQR: 70–80 mm Hg), respectively. The median BMI was 23 kg/m<sup>2</sup> (IQR: 20.70–26 kg/m<sup>2</sup>) ([Table 2](#)).

### Adherence to diabetic medication

Approximately 43% of the study participants had poor adherence to DM medication ([Table 3](#)).

### Ocular and systemic comorbidities

About 14.37% (163) of the study subjects were suffering from a certain type of glaucoma. Besides hypertension was the most common type of systemic comorbidity with 30.95% (351) occurrence ([Table 4](#)).

### Prevalence of proliferative diabetic retinopathy

In this study, the prevalence of PDR was 3.10%, (95%CI: 2.10%–4.10%). Of this prevalence, 51.43% was low risk, 40% was high risk and 8.57% was advanced level.

### Clinical manifestation and treatment modality of PDR

Among the total PDR patients, the majority were manifested as new vessels on the optic disk 40.00% (14), new vessels in the retina 25.71% (9), vitreous hemorrhage 14.29% (5), preretinal hemorrhage 8.57% (3), and tractional retinal detachment 4 (11.43%). Nearly half of the PDR patients, 45.71% (16) had never started treatment to control the PDR they suffered from ([Fig 2](#)).

### Factors associated with proliferative diabetic retinopathy

All variables fulfilling the chi-square assumption were entered separately into the bivariable logistic regression model. Of these variables, glaucoma, duration of DM, treatment modality of DM, nephropathy, peripheral neuropathy, hypertension, eye checkup practices, awareness towards DR, and adherence to DM medication had a p-value of less than 0.25. Thus, these variables got the chance to undergo the multivariable logistic regression. In the multivariable logistic regression, hypertension, peripheral neuropathy, nephropathy, duration of  $\geq 10$  years with DM, insulin use and poor adherence to DM medication were found to be statistically significant factors for PDR.

Study participants living with hypertension were 4.35 times more likely to have PDR than participants without hypertension (AOR = 4.35, 95% CI: 1.87–10.12).

The odds of developing PDR was 3.87 times higher in participants having peripheral nephropathy as compared with participants not having (AOR = 3.87, 95% CI: 1.57–9.54).

**Table 1. Socio-demographic characteristics of adult diabetic patients attending Comprehensive Specialized Hospital-Diabetic Care Clinics in Northwest Ethiopia, 2023 (n = 1134).**

| Variable                               | Category            | Frequency | Percent |
|----------------------------------------|---------------------|-----------|---------|
| Sex                                    | Male                | 619       | 54.59%  |
|                                        | Female              | 515       | 45.41%  |
| Age (in years)                         |                     |           |         |
|                                        | 18–27               | 119       | 10.49%  |
|                                        | 28–37               | 168       | 14.82%  |
|                                        | 38–47               | 291       | 25.66%  |
|                                        | 48–57               | 385       | 33.95%  |
|                                        | >57                 | 171       | 15.08%  |
| Residence                              |                     |           |         |
|                                        | Urban               | 800       | 70.55%  |
|                                        | Rural               | 334       | 29.45%  |
| Educational status                     |                     |           |         |
|                                        | No formal education | 221       | 19.49%  |
|                                        | Primary education   | 386       | 34.04%  |
|                                        | Secondary education | 336       | 29.63%  |
|                                        | College and above   | 191       | 16.84%  |
| Occupational status                    |                     |           |         |
|                                        | Government          | 187       | 16.49%  |
|                                        | Private             | 457       | 40.30%  |
|                                        | Housewife           | 215       | 18.96%  |
|                                        | Retired             | 174       | 15.34%  |
|                                        | Others*             | 101       | 8.91%   |
| Marital status                         |                     |           |         |
|                                        | Single              | 99        | 8.73%   |
|                                        | Married             | 879       | 77.51%  |
|                                        | Divorced            | 73        | 6.44%   |
|                                        | Widowed             | 83        | 7.32%   |
| Health insurance                       |                     |           |         |
|                                        | Yes                 | 706       | 62.26%  |
|                                        | No                  | 428       | 37.74%  |
| Average family monthly income (in ETB) |                     |           |         |
|                                        | ≤ 2500              | 298       | 26.28%  |
|                                        | 2501–4000           | 275       | 24.25%  |
|                                        | 4001–6500           | 278       | 24.51%  |
|                                        | >6501               | 283       | 24.96%  |

Note: ETB—Ethiopian Birr, Other\*—includes student, no job, and farmer, average family monthly income was classified by quartile

<https://doi.org/10.1371/journal.pone.0303267.t001>

While, study participants who developed nephropathy had 2.58 times higher odds of having PDR as compared to participants who had no nephropathy (AOR = 2.58, 95% CI: 1.13–5.87).

Regarding the duration of DM, the odds of having PDR were 5.30 times higher in the study subjects living with DM for 10 years and above than those DM patients diagnosed within the past 10 years (AOR = 5.30, 95% CI 2.32–12.14).

This study unveiled that, the odds of having PDR among insulin users were 3.07 times higher as compared to participants who used the combination of therapy (AOR = 3.07, 95% CI

**Table 2. Clinical characteristics of adult diabetic patients attending Comprehensive Specialized Hospital-Diabetic Care Clinics in Northwest Ethiopia, 2023 (n = 1134).**

| Variable                   | Category      | Frequency | Percent |
|----------------------------|---------------|-----------|---------|
| Type of DM                 |               |           |         |
|                            | Type I        | 264       | 23.28%  |
|                            | Type II       | 870       | 76.72%  |
| Fasting blood sugar level  |               |           |         |
|                            | Poor control  | 836       | 73.72%  |
|                            | Good control  | 298       | 26.28%  |
| Systolic blood pressure    |               |           |         |
|                            | <140          | 973       | 85.80%  |
|                            | ≥140          | 161       | 14.20%  |
| Diastolic blood pressure   |               |           |         |
|                            | <90           | 969       | 85.45%  |
|                            | ≥90           | 165       | 14.55%  |
| Mode of treatment          |               |           |         |
|                            | Insulin       | 292       | 25.75%  |
|                            | Tablets       | 610       | 53.79%  |
|                            | Both          | 232       | 20.46%  |
| BMI                        |               |           |         |
|                            | Underweight   | 165       | 14.55%  |
|                            | Normal        | 541       | 47.71%  |
|                            | Overweight    | 267       | 23.54%  |
|                            | Obesity       | 161       | 14.20%  |
| Family history of DM       |               |           |         |
|                            | Yes           | 407       | 35.89%  |
|                            | No            | 727       | 64.11%  |
| Duration of DM (in year)   |               |           |         |
|                            | <10           | 926       | 81.66%  |
|                            | ≥10           | 208       | 18.34%  |
| Eye checkup practices      |               |           |         |
|                            | Good practice | 664       | 58.55%  |
|                            | Poor practice | 470       | 41.45%  |
| Adherence to DM medication |               |           |         |
|                            | Good          | 648       | 57.14%  |
|                            | Poor          | 486       | 42.86%  |
| Awareness towards DR       |               |           |         |
|                            | Yes           | 448       | 39.51%  |
|                            | No            | 686       | 60.49%  |

Note: DM—Diabetes Mellitus, DR—Diabetic Retinopathy

<https://doi.org/10.1371/journal.pone.0303267.t002>

1.08–8.68). Finally not adhering to DM medication increases the odds of having PDR by 3.77 fold (AOR = 3.77, 95% CI 1.64–8.64) (Table 5).

## Discussion

In this study, the prevalence of proliferative diabetic retinopathy was 3.10%, (95% CI: 2.10%–4.10%). This result was consistent with a couple of studies conducted in the United States 2.4% [35] and 2.3% [36], and a certain study done in Gondar, Ethiopia 3.6% [30].

**Table 3. Adherence to diabetic medication among adult diabetic patients attending Comprehensive Specialized Hospital, Diabetic Care Clinics in Northwest Ethiopia, 2023 (n = 1134).**

| Adherence questions                                                                                                           | Category | Frequency | Percentage |
|-------------------------------------------------------------------------------------------------------------------------------|----------|-----------|------------|
| Do you sometimes forget to take your treatment for diabetic mellitus?                                                         | Yes      | 961       | 84.70%     |
|                                                                                                                               | No       | 173       | 15.30%     |
| In the last two weeks was there any day when you did not take your diabetic medication?                                       | Yes      | 890       | 78.50%     |
|                                                                                                                               | No       | 244       | 21.50%     |
| Have you ever stopped taking your medications or decreased the dose without first warning your doctor because you felt worse? | Yes      | 817       | 80.90%     |
|                                                                                                                               | No       | 217       | 19.10%     |
| When you travel or leave the house, do you sometimes forget to take your medication?                                          | Yes      | 829       | 73.10%     |
|                                                                                                                               | No       | 305       | 26.90%     |
| Did you take your diabetic medication yesterday?                                                                              | Yes      | 288       | 25.20%     |
|                                                                                                                               | No       | 848       | 74.80%     |
| When you feel your fasting blood sugar level is controlled, do you sometimes stop taking your medication?                     | Yes      | 807       | 71.2%      |
|                                                                                                                               | No       | 327       | 28.80%     |
| Have you ever felt distressed for strictly following your diabetic mellitus treatment?                                        | Yes      | 708       | 62.40%     |
|                                                                                                                               | No       | 426       | 37.60%     |

<https://doi.org/10.1371/journal.pone.0303267.t003>

The prevalence of PDR found in this study was lower than in previous studies conducted in Bosnia and Herzegovina 33.73% [37] and Malawi 4.8% [13]. This discrepancy could be due to the differences in the study settings. This study was conducted among all adult DM patients at

**Table 4. Ocular and systemic comorbidity characteristics of adult diabetic patients attending Comprehensive Specialized Hospital, Diabetic Care Clinics in Northwest Ethiopia, 2023 (n = 1134).**

| Comorbidity                      | Category | Frequency | Percentage |
|----------------------------------|----------|-----------|------------|
| Age-related macular degeneration | No       | 1094      | 96.47%     |
|                                  | Yes      | 40        | 3.53%      |
| Glaucoma                         | No       | 971       | 85.63%     |
|                                  | Yes      | 163       | 14.37%     |
| Diabetic macular edema           | No       | 1053      | 92.86%     |
|                                  | Yes      | 81        | 7.14%      |
| Diabetic retinopathy             | No       | 1011      | 89.15%     |
|                                  | Yes      | 123       | 10.85%     |
| Hypertension                     | No       | 783       | 69.05%     |
|                                  | Yes      | 351       | 30.95%     |
| Peripheral neuropathy            | No       | 994       | 87.65%     |
|                                  | Yes      | 140       | 12.35%     |
| Nephropathy                      | No       | 940       | 82.89%     |
|                                  | Yes      | 194       | 17.11%     |
| Chronic foot ulcer               | No       | 974       | 85.89%     |
|                                  | Yes      | 160       | 14.11%     |

<https://doi.org/10.1371/journal.pone.0303267.t004>

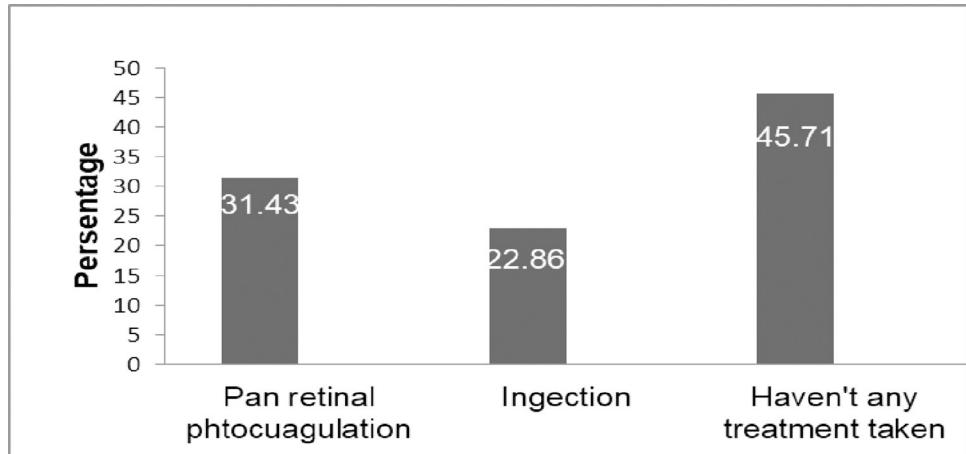



Fig 2. The treatment modality of PDR among adult diabetic patients in Northwest Ethiopia (n = 35).

<https://doi.org/10.1371/journal.pone.0303267.g002>

the diabetic clinic. In contrast, the study in Bosnia and Herzegovina was conducted among adult DM patients attending eye clinics. The patients who attended eye clinics usually had visual complaints that could be associated with PDR. Those who did not attend eye clinics generally had no visual complaints. Thus, the prevalence of PDR is higher in diabetics who attend eye clinics than in the general diabetic population [30].

Similarly, the finding of this study was also lower than that of the studies in Jamaica 50.5% [4] and Sudan 33.4% [10]. This difference could be due to the variation in the unit of analysis. In this study, individuals were analyzed, while in the study in Jamaica, eyes were analyzed. Thus, in the Jamaican study, bilateral PDR was counted as two separate outcomes, whereas in this study it was only one outcome. Religious and cultural differences could also contribute to the differences. In Jamaica, diabetics see their disease as a punishment from God and do not take the necessary medication. This might lead to higher rates of PDR due to uncontrolled blood glucose levels [38]. Furthermore, these studies were only conducted among adult DM patients attending eye clinics [30]. Therefore this finding suggests that increasing community awareness regarding medication adherence will reduce the severity of PDR.

The result of this study was also lower than the studies conducted in China 12.8% [39], Lebanon 8.9% [40] and Addis Ababa, Ethiopia 16.7% [11]. This could be due to the variation in the study population and duration of the study. Studies done in Addis Ababa and Lebanon were conducted among type II DM patients only. Furthermore, the prevalence of PDR in Addis Ababa was reported only among those who developed diabetic retinopathy. Since PDR is more common among DR patients and the denominator does not include all DM patients, its magnitude will be overestimated. The other possible justification might be the study period difference. The study done in China was a period prevalence study. Since old and new cases were included in period prevalence, it is expected to be relatively higher than this point prevalence study.

On the other hand, the result of the current study was higher than a study conducted in Gondar 0.7% [12]. This might be due to differences in study size. The current study was conducted in a multicenter setting where the probability of getting PDR was high. In contrast, a study conducted in Gondar was conducted in a single center.

Living with DM for more than 10 years increases the odds of developing PDR by five times as compared to DM confirmed within the past 10 years (AOR = 5.30, 95% CI 2.32–12.14). With increasing duration, the pancreatic beta cells may become more resistant to the DM

**Table 5. Factors associated with proliferative diabetic retinopathy among adult diabetic patients attending comprehensive specialized hospital-diabetic care clinic, Northwest Ethiopia, 2023 (n = 1134).**

| Variables                  | PDR |     | COR (95%CI)      | AOR (95%CI)      | P value |
|----------------------------|-----|-----|------------------|------------------|---------|
|                            | Yes | No  |                  |                  |         |
| Glaucoma                   |     |     |                  |                  |         |
| Yes                        | 9   | 154 | 2.12(0.97–4.61)  | 1.87(0.75–4.64)  | 0.176   |
| No                         | 26  | 945 | 1.00             | 1.00             |         |
| Hypertension               |     |     |                  |                  |         |
| Yes                        | 25  | 326 | 5.92(2.81–12.48) | 4.35(1.87–10.12) | 0.001   |
| No                         | 10  | 773 | 1.00             | 1.00             |         |
| Peripheral neuropathy      |     |     |                  |                  |         |
| Yes                        | 10  | 130 | 2.98(2.17–6.29)  | 3.87(1.57–9.54)  | 0.003   |
| No                         | 25  | 969 | 1.00             | 1.00             |         |
| Nephropathy                |     |     |                  |                  |         |
| Yes                        | 14  | 180 | 3.40(1.69–6.81)  | 2.58(1.13–5.87)  | 0.023   |
| No                         | 21  | 919 | 1.00             | 1.00             |         |
| Body mass index            |     |     |                  |                  |         |
| Underweight                | 5   | 160 | 1.00             | 1.00             |         |
| Normal                     | 6   | 535 | 0.35(0.10–1.19)  | 0.52(0.14–1.91)  | 0.331   |
| Overweight                 | 12  | 255 | 1.50 (0.52–4.35) | 1.47 (0.44–4.86) | 0.523   |
| Obesity                    | 12  | 149 | 2.57 (0.88–7.49) | 2.60 (0.78–8.72) | 0.12    |
| Duration of DM (in year)   |     |     |                  |                  |         |
| <10                        | 13  | 913 | 1.00             | 1.00             |         |
| ≥10                        | 22  | 186 | 8.30 (4.1–16.78) | 5.30(2.32–12.14) | 0.001   |
| Treatment of DM            |     |     |                  |                  |         |
| Insulin use                | 18  | 274 | 2.11(1.58–6.50)  | 3.07(1.08–8.68)  | 0.034   |
| Tablets use                | 10  | 600 | 0.53(0.13–1.97)  | 0.49(0.16–1.45)  | 0.200   |
| Both                       | 7   | 225 | 1.00             | 1.00             |         |
| Eye checkup practice       |     |     |                  |                  |         |
| Good                       | 11  | 653 | 1.00             | 1.00             |         |
| Poor                       | 24  | 446 | 3.19(1.54–6.58)  | 1.41(0.60–3.31)  | 0.427   |
| Adherence to DM medication |     |     |                  |                  |         |
| Good                       | 11  | 637 | 1.00             | 1.00             |         |
| Poor                       | 24  | 462 | 3.00(1.30–6.36)  | 3.77(1.64–8.64)  | 0.002   |
| Awareness towards DR       |     |     |                  |                  |         |
| Yes                        | 22  | 426 | 2.67(1.33–5.36)  | 1.28(0.56–2.89)  | 0.553   |
| No                         | 13  | 673 | 1.00             | 1.00             |         |

Note: AOR—Adjusted Odds Ration, COR—Crude Odds Ration, CI—Confidence Interval, DM—Diabetes Mellitus, DR—Diabetic Retinopathy, PDR—Proliferative Diabetic Retinopathy

<https://doi.org/10.1371/journal.pone.0303267.t005>

treatment. As a result, glucose levels in the blood vessels will increase to exacerbate the development of PDR [41]. This result was in line with the study conducted in Malaysia [17]. This agreement could be due to similar characteristics of the study participants. For example, the majority of participants in both of the studies were confirmed to have DM within the past 10 years, had bilateral PDR, many of them were taking oral hypoglycemic therapy and the age of the study participants was over 18 years.

This finding was also supported by studies done in China (AOR = 1.75) [18] and United States (AOR = 1.62) [21], (AOR = 22.00) [23]. Even if the strength of association was slightly

different, those were supportive clues for the positive association of  $\geq 10$  years duration of DM with PDR. This strength of association difference might be due to genetic variation. A study conducted in Chinese reported that the vascular endothelial growth factors gene was not correlated with PDR [42].

This result shows that as the duration of DM increases, there is a higher probability of developing PDR. This finding suggests a paramount merit of linking or recommending DM patients to the eye care clinic as soon as possible. The ocular follow-up by itself could give us clues regarding controlling the DM status which supports each level of prevention of blindness related to PDR.

The odds of PDR in the participants who had peripheral neuropathy were four times higher than those who had not peripheral neuropathy (AOR = 3.87, 95% CI: 1.57–9.54). The result of this study was in agreement with a study done in Portugal (AOR = 6.76) [22]. This positive association could be due to the loss of peripheral nerve fibers. As a result, blood supply-induced ischemia leads to motor, sensory, and autonomic fiber dysfunction. The retina is going to form aberrant new blood vessels to get sufficient oxygen to overcome this DM-related ischemia. This aberrant vessel exacerbates the PDR development [22].

This finding was also supported by a study conducted in Malaysia (AOR = 14.23) [17]. Even though the probability of PDR among those who had peripheral neuropathy in the Malaysian study was slightly higher than in this study, it is supportive evidence of this result. This slight difference in the strength of association might be due to variations in the diagnostic criteria of peripheral neuropathy. Peripheral neuropathy was diagnosed based on the symptoms of the participants in the Malaysian study, while it was diagnosed clinically by the physician in this study.

The odds of PDR occurrence among subjects who developed nephropathy were three times higher than those participants without nephropathy (AOR = 2.58, 95% CI: 1.13–5.87). This figure was consistent with a report from United States (AOR = 1.29) [19]. The possible reason for this similarity could be disease metabolism. The increment of kidney creatinine or proteinuria leads to microvascular abnormalities [43]. This causes retinal tiny vessels to be damaged, which has serious consequences like increasing retinal venular diameter and leakage of vessels that might be more likely to have caused the development of PDR [20].

In addition, this finding was also supported by the study held in Malaysia (AOR = 10.23) [17]. This strength of association variation might have occurred due to the difference in the study population. The Malaysian study enrolled type II DM patients who are more exposed to developing late complications of DM that might inflate the strength of association but in this study both type I and II DM patients were included [44].

The result of this study showed that participants with hypertension were four times more likely to develop PDR than participants without hypertension (AOR = 4.35; 95% CI: 1.87–10.12). Hypertension facilitates PDR development through increased vascular endothelial growth factor production and hemodynamic changes. The 40% increase in mean arterial blood pressure has also the ability to impair retinal autoregulation processes leading to irreversible retinal microvascular structural change that causes PDR [45]. Therefore, this finding implies the advantage of preventing hypertension to reduce the occurrence of PDR. This finding was supported by a study in the United States (AOR = 1.64) [23]. Similarity of the study population characteristics could be mentioned as the possible cause of overlapping. Both studies enrolled both types of DM patients with similar proportions.

Using insulin as a choice of therapy increases the ability to develop PDR three times as compared to treating DM by a combination of insulin and tablet (AOR = 3.07, 95% CI 1.08–8.68). In terms of glycemic control, combined treatment is more effective than insulin alone [46]. The other probable justification was that the function of insulin is to regulate the metabolic

functions of insulin-responsive tissues like the liver, adipose tissue, and skeletal muscle. But here in the retina insulin stimulates retinal neuronal development, differentiation, growth, and survival which causes cell dysfunction and death. This results in a high potential to develop PDR [47]. In addition, a higher sensitivity of insulin to environmental factors might make it partially or completely impotent, making insulin less efficient in controlling blood sugar levels in developing nations like Ethiopia. This might also be another possible reason for the observed positive association [48]. Keeping insulin in a room having proper temperature may help control DM, and PDR as well. Especially for those patients having poor adherence to their medication considering the combination of therapy may help more.

This finding was parallel with a couple of reports from the United States (AOR = 6.65) [21] and (AOR = 1.85) [24]. The similarity of the study population could be a possible explanation for being parallel. The possible reason for this positive relationship could be the therapeutic effect.

According to this study, participants who poorly adhered to their DM medication had four times higher odds of having PDR as compared to those of well adhered (AOR = 3.77, 95% CI 1.64–8.64). The possible reason might be type of DM, and treatment of DM. Asymptomatic nature of type II DM, older age, and comorbid conditions could be mentioned as the possible reasons that hinder compliance of type II DM patients to their medication [49, 50]. Insulin alone might have poor compliance due to inappropriate placement, perception and treatment complexity [49, 51]. Spiritual well-being was inversely correlated with treatment regimen adherence to DM patients. While directly correlated with hope and life happiness [4].

The results of this study revealed that poor adherence to DM medication results in more complications due to an uncontrolled blood sugar level. One of the consequences is microvascular abnormalities that aggravate the development of PDR [4]. Therefore, good medication adherence is crucial to prevent the development of PDR.

Overall, this study was more representative of the general diabetic population in Northwest Ethiopia due to its multicenter study design. However, there were some limitations in our study. The first was that, unlike other previously conducted studies in developed countries, we did not use a fundus camera for the diagnosis of PDR. Secondly, blood glucose control was assessed by fasting blood glucose level as there were no facilities to measure HbA1c at the study site. In addition, because income was not recorded using the standard wealth index, personal estimation errors may have occurred in the collection of income data.

## Conclusion

The prevalence of PDR among adult diabetic patients was relatively higher than the global one. Hypertension, duration of DM  $\geq 10$  years, peripheral neuropathy, nephropathy, insulin use and poor adherence to DM medication were significantly associated factors with PDR. In this study, around half of the PDR study participants had DM never treated so far. Approximately forty-three percent of the study subjects had poor adherence to DM medication, and two-thirds of the study participants had poor glycemic control.

## Recommendation

To health-care professionals, it is recommended to give counseling or follow closely whether the patients adhere to their medication. In addition, regular eye examinations at diabetes clinics and established referral linkage to eye clinics are recommended to prevent, detect, and treat PDR early. Furthermore, considering combination of therapies, especially for those having poorly controlled blood glucose levels is recommended to delay the occurrence of PDR. It

would be better for the researchers if further studies are conducted at a national level using an advanced instrument (fundus camera) for better detection of PDR.

## Supporting information

### S1 Data.

(CSV)

## Acknowledgments

We would like to acknowledge the University of Gondar, College of Medicine and Health Sciences, for providing us the ethical clearance to conduct this study. We would also like to extend our appreciation and gratitude to the study subjects for providing us with their invaluable time during the data collection. Our gratitude will also go to our data collectors: without their restless activity, this research would not be realized.

## Author Contributions

**Conceptualization:** Abebech Fikade Shumye.

**Data curation:** Abebech Fikade Shumye, Matiyas Mamo Bekele, Lakew Asmare.

**Formal analysis:** Abebech Fikade Shumye, Biruk Lelisa Eticha.

**Investigation:** Abebech Fikade Shumye.

**Methodology:** Abebech Fikade Shumye, Mebratu Mulusew Tegegne, Biruk Lelisa Eticha, Matiyas Mamo Bekele, Asamere Tsegaw Woredekal, Lakew Asmare.

**Project administration:** Biruk Lelisa Eticha.

**Resources:** Abebech Fikade Shumye.

**Software:** Abebech Fikade Shumye, Mebratu Mulusew Tegegne.

**Supervision:** Mebratu Mulusew Tegegne, Biruk Lelisa Eticha, Asamere Tsegaw Woredekal, Lakew Asmare.

**Visualization:** Matiyas Mamo Bekele, Asamere Tsegaw Woredekal, Lakew Asmare.

**Writing – original draft:** Abebech Fikade Shumye.

**Writing – review & editing:** Abebech Fikade Shumye, Mebratu Mulusew Tegegne, Matiyas Mamo Bekele, Asamere Tsegaw Woredekal, Lakew Asmare.

## References

1. Galicia-Garcia U, Benito-Vicente A, Jebari S, Larrea-Sebal A, Siddiqi H, Uribe KB, et al. Pathophysiology of Type 2 Diabetes Mellitus. *International journal of molecular sciences*. 2020; 21(17). <https://doi.org/10.3390/ijms21176275> PMID: 32872570
2. Fung TH, Patel B, Wilmot EG, Amoaku WM. Diabetic retinopathy for the non-ophthalmologist. *Clinical medicine (London, England)*. 2022; 22(2):112–6. <https://doi.org/10.7861/clinmed.2021-0792> PMID: 35304370
3. Ophthalmology AAo. Diabetic Retinopathy: Causes, Symptoms, Treatment Octo. 27, 2022 [cited 2023 Jul. 19]. Available from: <https://www.aoa.org/eye-health/diseases/what-is-diabetic-retinopathy>.
4. Mowatt L. Diabetic retinopathy and its risk factors at the university hospital in Jamaica. *Middle East African journal of ophthalmology*. 2013; 20(4):321–6. <https://doi.org/10.4103/0974-9233.120017> PMID: 24339682
5. Perais J, Agarwal R, Evans JR, Loveman E, Colquitt JL, Owens D, et al. Prognostic factors for the development and progression of proliferative diabetic retinopathy in people with diabetic retinopathy.

The Cochrane database of systematic reviews. 2023; 2(2):Cd013775. <https://doi.org/10.1002/14651858.CD013775.pub2> PMID: 36815723

- 6. Zhao M, Hu Y, Yu Y, Lin Q, Yang J, Su SB, et al. Involvement of IL-37 in the pathogenesis of proliferative diabetic retinopathy. *Investigative ophthalmology & visual science*. 2016; 57(7):2955–62. <https://doi.org/10.1167/iovs.15-18505> PMID: 27273593
- 7. Limberis L, Batsos G. Vitreous Inflammatory and Angiogenic Factors on Patients with Proliferative Diabetic Retinopathy or Diabetic Macular Edema: the Role of Lipocalin2. 2022.
- 8. Petrović D. Candidate genes for proliferative diabetic retinopathy. *BioMed research international*. 2013; 2013:540416. <https://doi.org/10.1155/2013/540416> PMID: 24066292
- 9. Thomas RL, Halim S, Gurudas S, Sivaprasad S, Owens DR. IDF Diabetes Atlas: A review of studies utilising retinal photography on the global prevalence of diabetes related retinopathy between 2015 and 2018. *Diabetes research and clinical practice*. 2019; 157:107840. <https://doi.org/10.1016/j.diabres.2019.107840> PMID: 31733978
- 10. Elwali ES, Almobarak AO, Hassan MA, Mahmood AA, Awadalla H, Ahmed MH. Frequency of diabetic retinopathy and associated risk factors in Khartoum, Sudan: population based study. *International journal of ophthalmology*. 2017; 10(6):948–54. <https://doi.org/10.18240/ijo.2017.06.18> PMID: 28730087
- 11. Woyessa DNJEMJ. Magnitude of Diabetic Retinopathy in newly diagnosed type 2 diabetes patients in Menelik II Hospital, Addis Ababa. *Ethiopia Medical Journal* 2020 Jun 25. 2020; 58(03).
- 12. Tsegaw A, Alemu S, Dessie A, Patterson CC, Parry EH, Phillips DI, et al. Diabetic retinopathy in type 2 diabetes mellitus patients attending the diabetic clinic of the University of Gondar Hospital, Northwest Ethiopia. *Journal of ophthalmology* 2021 Mar 31. 2021; 2021:6696548. <https://doi.org/10.1155/2021/6696548> PMID: 33859836
- 13. Glover SJ, Burgess PI, Cohen DB, Harding SP, Hofland HW, Zijlstra EE, et al. Prevalence of diabetic retinopathy, cataract and visual impairment in patients with diabetes in sub-Saharan Africa. *The British journal of ophthalmology*. 2012; 96(2):156–61. <https://doi.org/10.1136/bjo.2010.196071> PMID: 21515565
- 14. Hsieh Y-T, Tsai M-J, Tu S-T, Hsieh M-C. Association of abnormal renal profiles and proliferative diabetic retinopathy and diabetic macular edema in an Asian population with type 2 diabetes. *JAMA ophthalmology*. 2018; 136(1):68–74. <https://doi.org/10.1001/jamaophthalmol.2017.5202> PMID: 29167896
- 15. Gabrielian A, Hariprasad SM, Jager RD, Green JL, Mieler WF. The utility of visual function questionnaire in the assessment of the impact of diabetic retinopathy on vision-related quality of life. *Eye (London, England)*. 2010; 24(1):29–35. <https://doi.org/10.1038/eye.2009.56> PMID: 19325572
- 16. Whited JD, Datta SK, Aiello LM, Aiello LP, Cavallerano JD, Conlin PR, et al. A modeled economic analysis of a digital tele-ophthalmology system as used by three federal health care agencies for detecting proliferative diabetic retinopathy. *Telemedicine journal and e-health: the official journal of the American Telemedicine Association*. 2005; 11(6):641–51. <https://doi.org/10.1089/tmj.2005.11.641> PMID: 16430383
- 17. Ali MHM, Draman N, Mohamed WM, Yaakub A, Embong ZJJotUMS. Predictors of proliferative diabetic retinopathy among patients with type 2 diabetes mellitus in Malaysia as detected by fundus photography. *Journal of Taibah University Medical Sciences*, 2016 Aug 1. 2016; 11(4):353–8.
- 18. Zhong ZL, Chen S. Plasma plasminogen activator inhibitor-1 is associated with end-stage proliferative diabetic retinopathy in the Northern Chinese Han population. *Experimental diabetes research*. 2012; 2012:350852. <https://doi.org/10.1155/2012/350852> PMID: 23304115
- 19. Harris Nwanyanwu K, Talwar N, Gardner TW, Wrobel JS, Herman WH, Stein JD. Predicting development of proliferative diabetic retinopathy. *Diabetes care*. 2013; 36(6):1562–8. <https://doi.org/10.2337/dc12-0790> PMID: 23275374
- 20. Roy MS, Klein R, Janal MN. Retinal venular diameter as an early indicator of progression to proliferative diabetic retinopathy with and without high-risk characteristics in African Americans with type 1 diabetes mellitus. *Archives of ophthalmology (Chicago, Ill: 1960)*. 2011; 129(1):8–15. <https://doi.org/10.1001/archophthalmol.2010.340> PMID: 21220623
- 21. Penman A, Hancock H, Papavasileiou E, James M, Idowu O, Riche DM, et al. Risk Factors for Proliferative Diabetic Retinopathy in African Americans with Type 2 Diabetes. *Ophthalmic epidemiology*. 2016; 23(2):88–93. <https://doi.org/10.3109/09286586.2015.1119287> PMID: 26950197
- 22. Laiginhas R, Madeira C, Lopes M, Neves JS, Barbosa M, Rosas V, et al. Risk factors for prevalent diabetic retinopathy and proliferative diabetic retinopathy in type 1 diabetes. *Endocrine*. 2019; 66(2):201–9. <https://doi.org/10.1007/s12020-019-02047-z> PMID: 31407162
- 23. Nittala MG, Keane PA, Zhang K, Sadda SR. Risk factors for proliferative diabetic retinopathy in a Latino American population. *Retina (Philadelphia, Pa)*. 2014; 34(8):1594–9. <https://doi.org/10.1097/IAE.0000000000000117> PMID: 24662751

24. Wong TY, Sun J, Kawasaki R, Ruamviboonsuk P, Gupta N, Lansingh VC, et al. Guidelines on Diabetic Eye Care: The International Council of Ophthalmology Recommendations for Screening, Follow-up, Referral, and Treatment Based on Resource Settings. *Ophthalmology*. 2018; 125(10):1608–22. <https://doi.org/10.1016/j.ophtha.2018.04.007> PMID: 29776671
25. Almalki NR, Almalki TM, Alswat K. Diabetes Retinopathy Knowledge and Awareness Assessment among the Type 2 Diabetics. *Open access Macedonian journal of medical sciences*. 2018; 6(3):574–7. <https://doi.org/10.3889/oamjms.2018.121> PMID: 29610623
26. Chanyalew MA, Yitayal M, Atnafu A, Tilahun B. Assessment of data demand for informed-decisions among health facility and department heads in public health facilities of Amhara Region, northwest Ethiopia. *Health research policy and systems*. 2023; 21(1):62. <https://doi.org/10.1186/s12961-023-01006-5> PMID: 37365611
27. Ophthalmology AAo. How to Classify the Diabetic Eye May 24, 2016 [cited 2023 Jun 9]. Available from: <https://www.aao.org/young-ophthalmologists/yo-info/article/how-to-classify-diabetic-eye>.
28. Ajoy Mohan VK, Nithyanandam S, Idiculla J. Microalbuminuria and low hemoglobin as risk factors for the occurrence and increasing severity of diabetic retinopathy. *Indian journal of ophthalmology*. 2011; 59(3):207–10. <https://doi.org/10.4103/0301-4738.81029> PMID: 21586841
29. Tilahun M, Gobena T, Dereje D, Welde M, Yideg G. Prevalence of Diabetic Retinopathy and Its Associated Factors among Diabetic Patients at Debre Markos Referral Hospital, Northwest Ethiopia, 2019: Hospital-Based Cross-Sectional Study. *Diabetes, metabolic syndrome and obesity: targets and therapy*. 2020; 13:2179–87. <https://doi.org/10.2147/DMSO.S260694> PMID: 32636659
30. Ejigu T, Tsegaw A. Prevalence of Diabetic Retinopathy and Risk Factors among Diabetic Patients at University of Gondar Tertiary Eye Care and Training Center, North-West Ethiopia. *Middle East African journal of ophthalmology*. 2021; 28(2):71–80. [https://doi.org/10.4103/meajo.meajo\\_24\\_21](https://doi.org/10.4103/meajo.meajo_24_21) PMID: 34759663
31. Ovenseri-Ogbomo GO, Aboky S, Koffuor GA, Aboky E. Knowledge of diabetes and its associated ocular manifestations by diabetic patients: A study at Korle-Bu Teaching Hospital, Ghana. *Nigerian medical journal: journal of the Nigeria Medical Association*. 2013; 54(4):217–23. <https://doi.org/10.4103/0300-1652.119602> PMID: 24249945
32. Assem AS, Tegegne MM, Alemu DS, Woredekal AT, Tefera TK. Knowledge about diabetic retinopathy, eye check-up practice and associated factors among adult patients with diabetes mellitus attending at debark hospital, Northwest Ethiopia. *BMC ophthalmology*. 2020; 20(1):453. <https://doi.org/10.1186/s12886-020-01730-4> PMID: 33208125
33. Birhanie SA, Getie GA, Tesfa M, Mulugeta H, Gedfew M, Mekete YS, et al. Treatment adherence and associated factors among glaucoma patients attending Ophthalmic units of referral hospitals in North West Ethiopia, 2019. *Frontiers in Ophthalmology* 2022 Nov 3. 2022; 2:985893.
34. Alemayehu AM, Dagne H, Dagnew B. Knowledge and associated factors towards diabetes mellitus among adult non-diabetic community members of Gondar city, Ethiopia 2019. *PloS one*. 2020; 15(3): e0230880.
35. Varma R, Wen G, Jiang X, Hsu C, Torres M, Klein R, et al. Prevalence of Diabetic Retinopathy in Adult Chinese American Individuals: The Chinese American Eye Study. *JAMA ophthalmology*. 2016; 134(5):563–9. <https://doi.org/10.1001/jamaophthalmol.2016.0445> PMID: 27055063
36. Bursell SE, Fonda SJ, Lewis DG, Horton MB. Prevalence of diabetic retinopathy and diabetic macular edema in a primary care-based teleophthalmology program for American Indians and Alaskan Natives. *PloS one*. 2018; 13(6):e0198551. <https://doi.org/10.1371/journal.pone.0198551> PMID: 29924846
37. Pidro A, Ahmedbegovic-Pjano M, Grisevic S, Sofic-Drino V, Gabric K, Biscevic A. Epidemiology of Diabetic Retinopathy at Eye Clinic Svetlost Sarajevo: Two Years Retrospective Single Center Study. *Materia socio-medica*. 2019; 31(4):290–3. <https://doi.org/10.5455/msm.2019.31.290-293> PMID: 32082096
38. Brown R, Bateman CJ, Gossell-Williams M. Influence of Jamaican Cultural and Religious Beliefs on Adherence to Pharmacotherapy for Non-Communicable Diseases: A Pharmacovigilance Perspective. *Frontiers in pharmacology*. 2022; 13:858947. <https://doi.org/10.3389/fphar.2022.858947> PMID: 35359857
39. Zhang S, Wang J, Song C, Zhu L, Yu Y. Lower prevalence of proliferative diabetic retinopathy in elderly onset patients with diabetes. *Diabetes research and clinical practice*. 2017; 125:47–52. <https://doi.org/10.1016/j.diabres.2016.09.009> PMID: 28167325
40. Harb W, Harb G, Chamoun N, Kanbar A, Harb M, Chanbour W. Severity of diabetic retinopathy at the first ophthalmological examination in the Lebanese population. *Therapeutic advances in ophthalmology*. 2018; 10:2515841418791950. <https://doi.org/10.1177/2515841418791950> PMID: 30140789
41. Alemayehu HB, Tegegn MT, Tilahun MM. Prevalence and associated factors of visual impairment among adult diabetic patients visiting Adare General Hospital, Hawassa, South Ethiopia, 2022. *PloS one*. 2022; 17(10):e0276194. <https://doi.org/10.1371/journal.pone.0276194> PMID: 36227943

42. Yuan Y, Wen Z, Guan Y, Sun Y, Yang J, Fan X, et al. The relationships between type 2 diabetic retinopathy and VEGF-634G/C and VEGF-460C/T polymorphisms in Han Chinese subjects. *Journal of diabetes and its complications*. 2014; 28(6):785–90. <https://doi.org/10.1016/j.jdiacomp.2014.08.003> PMID: 25217793
43. Lee WJ, Sobrin L, Lee MJ, Kang MH, Seong M, Cho H. The relationship between diabetic retinopathy and diabetic nephropathy in a population-based study in Korea (KNHANES V-2, 3). *Investigative ophthalmology & visual science*. 2014; 55(10):6547–53.
44. Wu Y, Ding Y, Tanaka Y, Zhang W. Risk factors contributing to type 2 diabetes and recent advances in the treatment and prevention. *International journal of medical sciences*. 2014; 11(11):1185–200. <https://doi.org/10.7150/ijms.10001> PMID: 25249787
45. Does Hypertension Play a Role in Diabetic Retinopathy? 2005 [updated 6/18/2023; cited 2023 6/18/2023]. Available from: <https://www.japi.org/u2a4e474/does-hypertension-play-a-role-in-diabetic-retinopathy>.
46. Alemu Mersha G, Alimaw YA, Woredekal AT. Prevalence of diabetic retinopathy among diabetic patients in Northwest Ethiopia-A cross sectional hospital based study. *PLoS one*. 2022; 17(1): e0262664. <https://doi.org/10.1371/journal.pone.0262664> PMID: 35061820
47. Poulaki V, Joussen AM, Mitsiades N, Mitsiades CS, Iliaki EF, Adamis AP. Insulin-like growth factor-I plays a pathogenetic role in diabetic retinopathy. *The American journal of pathology*. 2004; 165(2):457–69. [https://doi.org/10.1016/S0002-9440\(10\)63311-1](https://doi.org/10.1016/S0002-9440(10)63311-1) PMID: 15277220
48. Heinemann L, Braune K, Carter A, Zayani A, Krämer LA. Insulin Storage: A Critical Reappraisal. *Journal of diabetes science and technology*. 2021; 15(1):147–59. <https://doi.org/10.1177/1932296819900258> PMID: 31994414
49. Halimi S, Schweizer A, Minic B, Foley J, Dejager S. Combination treatment in the management of type 2 diabetes: focus on vildagliptin and metformin as a single tablet. *Vascular health and risk management*. 2008; 4(3):481–92. <https://doi.org/10.2147/vhrm.s2503> PMID: 18827867
50. Polonsky WH, Henry RR. Poor medication adherence in type 2 diabetes: recognizing the scope of the problem and its key contributors. *Patient preference and adherence*. 2016; 10:1299–307. <https://doi.org/10.2147/PPA.S106821> PMID: 27524885
51. Aminde LN, Tindong M, Ngasiria CA, Aminde JA, Njim T, Fondong AA, et al. Adherence to antidiabetic medication and factors associated with non-adherence among patients with type-2 diabetes mellitus in two regional hospitals in Cameroon. *BMC endocrine disorders*. 2019; 19(1):35. <https://doi.org/10.1186/s12902-019-0360-9> PMID: 30943969