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Abstract

Drug-induced QT prolongation (diLQTS), and subsequent risk of torsade de pointes, is a

major concern with use of many medications, including for non-cardiac conditions. The pos-

sibility that genetic risk, in the form of polygenic risk scores (PGS), could be integrated into

prediction of risk of diLQTS has great potential, although it is unknown how genetic risk is

related to clinical risk factors as might be applied in clinical decision-making. In this study,

we examined the PGS for QT interval in 2500 subjects exposed to a known QT-prolonging

drug on prolongation of the QT interval over 500ms on subsequent ECG using electronic

health record data. We found that the normalized QT PGS was higher in cases than controls

(0.212±0.954 vs. -0.0270±1.003, P = 0.0002), with an unadjusted odds ratio of 1.34 (95%CI

1.17–1.53, P<0.001) for association with diLQTS. When included with age and clinical pre-

dictors of QT prolongation, we found that the PGS for QT interval provided independent risk

prediction for diLQTS, in which the interaction for high-risk diagnosis or with certain high-risk

medications (amiodarone, sotalol, and dofetilide) was not significant, indicating that genetic

risk did not modify the effect of other risk factors on risk of diLQTS. We found that a high-risk

cutoff (QT PGS� 2 standard deviations above mean), but not a low-risk cutoff, was associ-

ated with risk of diLQTS after adjustment for clinical factors, and provided one method of

integration based on the decision-tree framework. In conclusion, we found that PGS for QT

interval is an independent predictor of diLQTS, but that in contrast to existing theories about

repolarization reserve as a mechanism of increasing risk, the effect is independent of other

clinical risk factors. More work is needed for external validation in clinical decision-making,

as well as defining the mechanism through which genes that increase QT interval are asso-

ciated with risk of diLQTS.
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Introduction

Drug-induced long QT syndrome (diLQTS) is the precursor to the potentially fatal arrhyth-

mia, torsades de pointes (TdP), and despite its rarity, has major clinical ramifications due to

the association with both cardiac [1] and noncardiac medications [2–4]. Accurate prediction

of diLQTS prior to administration of a medication would have a high impact on management

decisions. There might be alternatives that could be selected if an individual were identified as

having an increased risk of diLQTS [5]; for example, changing to an antibiotic that is not asso-

ciated with diLQTS. If no alternative medications can be found, a patient could be referred for

closer monitoring [6] or engage in a shared decision-making discussion about the risks and

benefits of use. To date, a number of investigations have proposed models to predict diLQTS

based on clinical [7–10] and genetic [11, 12] information; however, methods to integrate these

prediction models into clinical care decision pathways remain elusive.

To date, there have been no genome-wide association studies (GWAS) specifically target-

ing the phenotype of diLQTS; however, a number of GWAS have been completed with

accurate genetic prediction of the resting QT interval [13–18]. The potential biological link

between resting QT interval and diLQTS comes via a principle called repolarization reserve

[19–21], which is based on the idea that the redundancy of the ion channels responsible for

repolarization is compromised in certain individuals based on genetic variability (i.e., muta-

tions) or clinical conditions, such as heart failure or electrolyte disturbances, such that cer-

tain individuals are more likely to develop diLQTS with exposure to known culprit

medications than others. This principle is supported by the finding that 5–10% of people

who develop TdP after drug exposure harbor rare mutations associated with long-QT syn-

drome [22–24], and forms the basis for guidelines recommending avoidance of known QT-

prolonging medications for individuals with congenital LQTS [25]. In prior work, a signifi-

cant association between a polygenic risk score (PGS) for the QT interval and risk of TdP

[11] was observed, as well as a correlation in the degree of QT prolongation in healthy vol-

unteers [11]. However, these studies did not specifically consider repolarization reserve

reflecting the interaction of genetic risk and specific medications associated with diLQTS,

and in smaller populations, we had previously failed to detect a signal of interaction

between polygenic risk and QT prolongation [12].

The need for better prediction models for diLQTS is evident from inspection of current

clinical decision-support (CDS) tools that have been developed and implemented in hospital

systems to alert providers to potential risk [26, 27]. When evaluated after development, the

impact of these CDS systems has been modest at best [28], with most studies noting a change

in prescriber orders for medications [8, 29]. We recently examined the impact of a CDS based

on the prior QT interval alone and noted that there was a paradoxical increase in mortality in

those patients in whom the provider acknowledged the alert compared with those who ignored

it [30]. This work suggests that more accurate prediction models for diLQTS could improve

long-term results of CDS tools.

As such, an investigation of the potential role of genetic prediction for models to prevent

diLQTS can examine both the biological effect of genes associated with baseline QT pro-

longation with exposure to known QT-prolonging medications (i.e., the repolarization

reserve hypothesis), as well as the various ways in which genetic risk can be incorporated

into risk-prediction models for diLQTS. In this investigation, we seek to examine both, as

we first examine the potential interaction of genetically determined QT interval, via the

polygenic risk score, and then explore the linear and nonlinear impact of genetic risk on

risk of diLQTS.
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Results

Among 2500 participants in the Colorado Center for Personalized Medicine Biobank with

documented exposure to known QT-prolonging medications, there were 281 cases of diLQTS

(11.2%) and 2219 controls (88.8%), Table 1. Among 20 cardiovascular traits, the PGS for QT

interval had the strongest association with diLQTS (S1 Table in S1 File), and was the only trait

with a significant unadjusted association after adjusting for multiple comparisons. PGS for sys-

tolic blood pressure (P = 0.024), diastolic blood pressure (P = 0.027), high-density lipoprotein

(P = 0.0053) and apolipoprotein A level (P = 0.012) were noted to be closest after QT interval,

although these PGS were not explored further.

For the normalized QT interval PGS (mean ~0, standard deviation = 1), the range was

-3.856 to 3.236, inter-quartile range (IQR) was -0.651 to 0.701. Across all medications and

patients, the QT interval PGS was higher in cases than controls: 0.212±0.954 vs. -0.0270±1.003,

P = 0.0002 (Fig 1), with an unadjusted odds ratio of 1.277 (95%CI 1.124–1.450, P< 0.001) for

Table 1. Baseline characteristics.

Cases (N = 281) Controls (N = 2219) Total (N = 2500) P-value (Case versus control)

Average age (± SD) 56.5 ± 15.8 52.8 ± 15.9 53.2 ± 15.9 0.0002

Female sex (%) 150 (53.4%) 1247 (56.2%) 1397 (55.9%) 0.370

Hispanic ethnicity (%) 22 (7.8%) 252 (11.4%) 274 (11.0%) 0.075

Caucasian/White race (%) 219 (77.9%) 1723 (77.7%) 1942 (77.7%) 0.951

African-American/Black race (%) 27 (9.6%) 226 (10.2%) 253 (10.1%)

Other/unknown race (%) 35 (12.5%) 270 (12.2%) 305 (12.2%)

AF diagnosis (%) 107 (38.1%) 300 (13.5%) 407 (16.3%) < 0.001

HF diagnosis (%) 115 (40.9%) 281 (12.7%) 396 (15.8%) < 0.001

SD = Standard deviation; AF = Atrial fibrillation diagnosis; HF = Heart failure diagnosis

https://doi.org/10.1371/journal.pone.0303261.t001

Fig 1. QT PGS by cases (diLQTS) and controls. Kernel density estimates, Epanechnikov kernel function.

https://doi.org/10.1371/journal.pone.0303261.g001
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association with diLQTS. Self-assigned sex, ethnicity, and race were not significantly associated

with diLQTS (Table 1), while increased age was associated with diLQTS (OR 1.02 per year,

95%CI 1.01–1.02, P< 0.001). After adjustment for age, sex, race, and ethnicity, the association

of QT interval PGS and diLQTS remained significant with odds ratio of 1.306 (95%CI 1.148–

1.486, P< 0.001). Interestingly, the interaction of the QT PGS in African-American subjects

was inverse to what it is in Caucasians (S1 Fig in S1 File). This interaction was statistically sig-

nificant, with a P value for the interaction term of 0.003, and an odds ratio of 0.454 (95%CI

0.271–0.760). On exploration of possible mechanisms, we noted that African-Americans were

younger than Caucasians (46.4 ± 0.97 years old versus 54.9 ± 0.35 years old for Caucasians,

P< 0.0001), and had a lower probability of AF diagnosis (OR 0.42, 95%CI 0.27–0.67,

P< 0.001). There was no significant difference in use of high-risk medications, including

amiodarone, levofloxacin, or propofol, nor an increased risk of HF diagnosis (S2 Table in

S1 File). The distribution of QT PGS was also different in African-Americans than Caucasians

(S2 Fig in S1 File), with a bimodal distribution in the African-American population.

When the association with diLQTS was examined by QT-prolonging medication (Table 2),

we found that the QT PGS was independently associated with risk of diLQTS after adjustment

for each type of medication, and that only certain medications were independently associated

with diLQTS; specifically, amiodarone, levofloxacin, dofetilide, and propofol were associated

with increased risk and ondansetron was associated with decreased risk, a finding we have pre-

viously reported in this dataset [10] (Table 2). However, we also found that for none of the

medications was there evidence of a significant interaction between the QT PGS and the medi-

cation (all interaction term P-values > 0.05, Table 2).

To explore the role of patient-level prediction using other diagnostic codes, we calculated

the MIC across 8315 diagnostic and procedure codes (S3 Table in S1 File), from which we

identified the diagnoses of heart failure (HF) and atrial fibrillation (AF) to be associated with

higher risk of diLQTS based on MIC values, and for which variables were created to indicate

the presence of one or both of these diagnoses (N for HF = 396 (15.84%) and for AF = 407

(16.28%)). For patients with a HF diagnosis, the risk of diLQTS was OR 4.78 (95%CI 3.65–

Table 2. Risk of diLQTS by medication.

Drug ORPGS (95%CI) ORDrug (95%CI) P-valueInteraction N

Amiodarone 1.28 (1.11–1.47)* 5.80 (3.87–8.67)** 0.513 118

Levofloxacin 1.26 (1.10–1.44)* 1.79 (1.20–2.66)* 0.588 201

Ondansetron 1.45 (1.20–1.76)** 0.70 (0.54–0.91)* 0.076 1630

Ciprofloxacin 1.28 (1.12–1.45)** 1.01 (0.51–2.00) 0.916 93

Erythromycin 1.26 (1.11–1.44)** 1.06 (0.33–3.39) 0.157 39

Fluconazole 1.27 (1.12–1.46)** 1.49 (0.96–2.32) 0.806 171

Haloperidol 1.27 (1.11–1.45)** 0.99 (0.61–1.61) 0.776 190

Moxifloxacin 1.29 (1.13–1.46)** 0.68 (0.11–4.14) 0.180 24

Azithromycin 1.27 (1.11–1.45)** 0.83 (0.44–1.58) 0.647 126

Citalopram 1.29 (1.13–1.47)** 1.58 (0.91–2.73) 0.675 100

Dofetilide 1.34 (1.17–1.54)** 8.84 (5.07–15.41)** 0.923 63

Methadone 1.30 (1.14–1.47)** 1.62 (0.60–4.41) 0.051 33

Propofol 1.29 (1.13–1.47)** 2.93 (1.89–4.55)** 0.783 118

Sotalol 1.27 (1.12–1.45)** 1.07 (0.35–3.29) 0.576 33

*Indicates P < 0.01

** Indicates P < 0.001

https://doi.org/10.1371/journal.pone.0303261.t002
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6.25, P < 0.001) and for AF the OR was 3.93 (95%CI 3.00–5.15, P< 0.001) in unadjusted mod-

els. Note that in models with AF and HF diagnosis included, the association of age with

diLQTS was no longer significant (OR 1.00 per year, 95%CI 0.99–1.01, P = 0.836). In a model

with age, both diagnoses, and PGS, the OR for diLQTS was OR 1.34, 95%CI 1.17–1.53,

P<0.001 (Age OR 1.00, 95%CI 0.99–1.01, P = 0.667; HF OR 3.70, 95%CI 2.78–4.92, P < 0.001;

AF OR 2.92, 95%CI 2.13–3.99, P < 0.001 in multivariable models). For neither diagnosis nor

age was there evidence of an interaction with PGS (HF interaction P-value = 0.698; AF interac-

tion P-value 0.407, age interaction P-value = 0.813). Age and AF/HF diagnoses were then com-

bined with specific medications that had a significant association with increased risk of

diLQTS (amiodarone, dofetilide, levofloxacin, and propofol; Table 1) and QT PGS to examine

adjusted risk of diLQTS (Fig 2). (Note: ondansetron was dropped from this multivariate

model due to P value 0.967 after adjustment for other medications; others remained significant

at P< 0.05—largest P value was levofloxacin at P = 0.013).

To examine nonlinear effects of PGS, we first examined polynomials (k = 3) of QT PGS in

unadjusted and adjusted models, in which we found that no polynomial for QT PGS was sig-

nificant in either unadjusted or adjusted models, with only linear terms having a significant

association. We then examined quantiles of QT PGS (Table 3) and restricted cubic splines of

QT PGS in adjusted (Fig 3A and 3B) and unadjusted models (Fig 3C and 3D). Neither quan-

tiles nor spline models performed better than the linear model based on information criteria

Fig 2. Marginal (adjusted) probability of diLQTS by level of QT PGS for predictors. A. Heart failure (HF), B. Atrial fibrillation (AF), C.

Dofetilide, D. Amiodarone.

https://doi.org/10.1371/journal.pone.0303261.g002
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or C-statistic. (Linear: AUC = 0.751, AIC 1538.3, BIC 1590.7, df = 9; Quantile: AUC = 0.744,

AIC 1545.0, BIC 1614.8, df = 12; Spline: AUC = 0.750, AIC 1541.4, BIC 1611.3, df = 12).

Since prior work [31] had proposed use of cutoffs to identify high- or low-risk patients

based on ‘genetic risk’, we explored the two possible clinical applications of PGS cutoffs—a

lower cutoff (� 2 standard deviations below mean) to rule-out lower risk subjects and a higher

cutoff (� 2 standard deviations above mean) to rule-in higher risk subjects. Based on these cut-

offs, 69 subjects (2.76%) were considered low-risk for diLQTS. After adjustment for medica-

tions, AF and HF, the low-risk cutoff was not a significant predictor of diLQTS (OR 0.44, 95%

CI 0.17–1.15, P = 0.094), with 6 (8.7%) low-risk individuals actually having diLQTS events.

For the high-risk cutoff, after adjustment for age, medications, HF and AF, there was a sta-

tistically significant increase in risk of diLQTS (OR 3.48, 95%CI 1.61–7.52, P = 0.002) among

Table 3.

3A. Quintiles 3B. Spline knots

Quintile Min Max Knots QT PGS

1 -3.86 -0.82 1 -1.70

2 -0.82 -0.22 2 -0.57

3 -0.22 0.26 3 0.02

4 0.26 0.88 4 0.62

5 0.88 3.24 5 1.54

https://doi.org/10.1371/journal.pone.0303261.t003

Fig 3. Nonlinear evaluation of QT PGS. A. Adjusted quintiles, B. Adjusted restricted cubic splines, C. Unadjusted quintiles, D. Unadjusted

restricted cubic splines.

https://doi.org/10.1371/journal.pone.0303261.g003
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those in the highest risk category. Among these individuals (N = 39) there were 11 who had

diLQTS (28.2%), and 28 (71.8%) who did not, compared with 270 (11.0%) of individuals who

were not high-risk based on QT PGS. As a comparison, the model based solely on clinical pre-

dictors had 34 subjects classified as high-risk (based on predicted probability threshold over

50%), of whom 21 (61.8%) had diLQTS. In the combined model with QT PGS as a linear pre-

dictor, 51 subjects were predicted to be at risk (probability� 50%), of whom 31 (60.8%) had

diLQTS. Comparison of area-under-ROC curve (AUC, Fig 4) showed that the linear PGS

model with clinical predictors (AUC = 0.751) was statistically superior to the clinical predic-

tors only (AUC = 0.729, P = 0.04) and comparable to the model with high-risk cutoff com-

bined with clinical predictors (AUC = 0.738, P = 0.20).

To explore methods to integrate QT PGS into clinical decision-making, we examined crea-

tion of a decision tree, in which we found that nodes based on presence of a HF diagnosis, an

antiarrhythmic agent (amiodarone, sotalol, or dofetilide), and a high-risk QT PGS (� 2 stan-

dard deviations above the mean) provided some measure of discrimination of risk (Fig 5),

although we did not have an external dataset in which to evaluate the decision-tree model.

Discussion

In this single-center study of PGS for prediction of drug-induced QT prolongation, we found

that a model based on genetic predictors of QT interval (QT PGS) provided independent risk

prediction for diLQTS, after adjustment for medications and other clinical risk factors, includ-

ing age, HF and AF, noting that sex, race, and ethnicity were not significant predictors of

diLQTS in our population, and that the effect of age was no longer significant after adjustment

for HF and AF. We found that the contribution of genetic predictors to a model of standard

clinical factors improved predictive ability in an independent manner, such that there did not

appear to be an association with either high-risk diagnoses or with certain high-risk medica-

tions, specifically the antiarrhythmic drugs amiodarone, sotalol, and dofetilide. While we did

not detect any significant nonlinear impact of the polygenic score for QT prolongation across

the range of scores, we noted that a cutoff of QT PGS� 2 standard deviations above the mean

was able to provide some level of increased risk prediction above clinical predictors, which we

demonstrated with integration into a decision-tree, as might be applied in real-world decision-

support tools within the electronic health record.

Fig 4. ROC curves for various models predicting diLQTS.

https://doi.org/10.1371/journal.pone.0303261.g004
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The promise of clinical applications of PGS across diseases is that they provide a possible

biomarker that can be used to guide clinical practice. Specific to diLQTS, such information

could be easily integrated into clinical decision-support tools, particularly in the emerging era

of biobanks such as available at the University of Colorado [32, 33], incorporating genetic

information that could be obtained prior to other clinical diagnostic information, such as the

QT interval itself on an ECG [26, 30]. However, to understand how this information might be

used clinically, more work is needed to examine the predictive accuracy itself, as well as how

the information might be integrated into care decisions. In previous work on this dataset, we

examined the use of machine-learning methods [9, 10] that integrated large amounts of clinical

data in order to make a prediction of risk for diLQTS. One of the challenges with use of such

‘big data’ methods is the need for integration within the EHR, since application of a machine-

learning method would require some method to maintain and retrain models, and with it con-

cerns about compatibility with the electronic framework or methods to map inputs from diag-

nostic codes, medications, and procedure codes into the model to generate the prediction. As a

contrasting approach, many EHR systems, including the one at the University of Colorado

[26, 27, 30], maintain an active system of rule-based alerts for which simple criteria can be eas-

ily integrated in the clinical care process, such as those applied in decision trees. The possibility

that results from a study can be directly examined within such a rule-based system thus

Fig 5. Decision-tree example for integration of QT PGS. Entry into the model is based on a patient for whom a

known QT-prolonging medication is to be prescribed. Nodes corresponding to any heart failure diagnosis (HF Dx),

use of an Class III antiarrhythmic agent (AAD), and QT PGS� 2 SD above the mean are used to define the decision

process. Listed within the leaves (bottom) are the proportion of subjects with diLQTS, and the coverage as a number

and percentage of the total population.

https://doi.org/10.1371/journal.pone.0303261.g005
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provides an alternative to more sophisticated methods, albeit at the trade-off of prediction

accuracy—a situation we have previously described for diLQTS [10].

In this manner, when addressing a new possible biomarker such as a PGS, one can follow

one of two roads towards clinical implementation. The first is to identify methods to integrate

the raw data directly, either using a multivariate prediction model, or perhaps a machine-

learning model, and with it identify a method to ensure the model can be run on the existing

framework and maps inputs appropriately. The second is to identify cutoffs or dichotomize

inputs such that the model can be integrated into a rule-based decision tree, as we have out-

lined here, in which we selected cutoffs from which to derive those at either increased or

decreased risk of diLQTS. There is precedence in this approach, for example in the application

of the biomarker B-type natriuretic peptide (BNP), which is associated with heart failure

exacerbation [34], and was noted to have a direct clinical application in the emergency depart-

ment [35], where values below a selected cutoff of 100 pg/mL [36] were used to ‘rule out’ heart

failure exacerbation as a mechanism of shortness of breath. In theory, such an approach could

be applied in use of QT PGS for diLQTS, where a cutoff could be used to identify subjects who

reach a sufficiently high or low risk as to warrant more stringent (higher risk) or relaxation

(lower risk) of monitoring. In this study, we found the higher cutoff to be predictive in this

respect, but not the lower; however, it cannot be overstated that these results are hypothesis-

generating, and would require external validation to confirm predictive accuracy.

One interesting observation from our investigation was that there did not appear to be any

evidence of an interaction between medications or clinical diagnoses (AF or HF) and genetic

prediction of the QT interval (QT PGS), as might suggest a biological impact of genetics on

risk of diLQTS. This finding is in contrast to the theory of repolarization reserve [37], which

suggested that certain patients with lower repolarization reserve (i.e., higher QT PGS) might

be more susceptible to diLQTS in the presence of high-risk medications or diagnoses. While

we did not have additional clinical factors, such as serum potassium or magnesium levels,

which could provide additional support to our findings, the fact that we were unable to obtain

any signal of impact suggests that this conceptual model may not be entirely applicable in an

in-patient clinical setting when genes are combined in the form of a PGS. In addition, we did

not have a comparison group of subjects who were not exposed to known QT-prolonging

medications, which would be needed to confirm this finding as it could be possible that any

QT-prolonging medication of any effect size could potentiate genetic risk. As such, more work

is needed to evaluate the hypothesis of repolarization reserve in other settings, such as in out-

patients or in those unexposed to known QT-prolonging medications.

The other interesting observations concerned the role of demographic information, includ-

ing age, sex, and race, with regard to the risk of diLQTS. For one, we did not detect an associa-

tion of female sex with risk of diLQTS, which is in contrast with a number of prior studies that

have noted this association [38–40], although not all [41]. Additionally, while we noted that

increased age was associated with the risk of diLQTS, this association appeared to be modu-

lated through increased risk of AF and HF, both of which were a significant risk factor of

diLQTS. When included with these factors in a multivariable model, the effect of age was no

longer significant. Other studies have noted the association of age and diLQTS [40, 42],

although the challenge of disentangling concominant diseases and treatments, including class

III anti-arrhythmic agents such as amiodarone and dofetilide, perhaps limits what can be

extrapolated from existing literature.

We have previously examined the effect of PGS for resting QT interval across subjects of

non-Caucasian ancestry, where we found the PGS derived in Caucasians was not an accurate

predictor of resting QT interval, nor that the PGS created from populations of African ancestry

reached the same level of predictive accuracy as the Caucasian-derived score (likely due to
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inadequate power/sample size) [12]. In this study, we noted an intriguing inverse association

of the Caucasian-derived PGS for QT interval in subjects of African ancestry and risk of

diLQTS. Despite efforts at exploring potential mechanisms of this finding, we could not

uncover a straightforward explanation for this association. Further work will be needed to bet-

ter-understand the role of ancestry and genetic risk-prediction for diLQTS.

Our study was limited in several respects, a number of which have been discussed previ-

ously in analysis of this population [9, 10]. For one, there are concerns about noise that is

inherent in use of diagnostic codes and electronic health record data in general; specific to our

study, we did not prospectively obtain ECG tracings in all patients exposed to known QT-pro-

longing medications, but had only data from those who had an ECG performed for clinical

purposes. This selection bias is likely to have led to potentially fewer diagnoses of diLQTS, and

also highlights concerns that the association with diagnoses such as HF and AF may have

resulted from these individuals having an ECG performed as part of work-up for those diagno-

ses. Only through systematic collection of ECGs and QT measurements can one overcome

such a bias, and it is unknown how this bias would have impacted the role of genetics in pre-

diction of diLQTS.

A second limitation of our findings was that the PGS applied for diLQTS was based on the

resting QT interval, and not specifically the entity of diLQTS. As discussed above, the rationale

of this application is based on the biological hypothesis of ‘repolarization reserve’, which we

were unable to validate through examination of drug-PGS and disease-PGS interactions, and

rather noted an inverse association with African-American race and risk of diLQTS with

increasing QT PGS. To our knowledge, there has not been a PGS developed specifically for

diLQTS that has been validated to the same extent as the PGS for resting QT interval, and it is

possible that such a score could provide a better method for risk-stratification than the meth-

ods proposed here. Future work on genetic risk of diLQTS in the future will be needed to

examine this possibility.

In conclusion, we found that genetic risk of QT prolongation, in the form of a polygenic

risk score, was an independent predictor of diLQTS, and that while linear models of polygenic

risk provided superior predictive accuracy, use of a cutoff� 2 standard deviations above the

mean may provide a method for more facile clinical implementation. We could not confirm

prior hypotheses about the role of repolarization reserve as a mechanism of genetic risk of

diLQTS [11], although further work is needed to examine this theory directly. More work is

also needed on external validation and clinical integration to confirm the application of PGS

in clinical decision-making.

Materials and methods

Study population

The study population has been described previously [9, 10]. Briefly, the broader study popula-

tion was obtained through query of the electronic health record (EHR) to obtain 35,639 inpa-

tients treated between 2003 and 2018 with at least 1 of 39 medications associated with risk of

diLQTS, who had an electrocardiogram in the system performed within 24 hours of medica-

tion administration. The primary outcome of diLQTS was defined as any individual with an

ECG that had a computer-measured QTc over 500ms at any point during the inpatient

encounter after exposure to a known QT-prolonging agent, after exclusion of ECGs with con-

duction disease (QRS� 120 ms due to bundle branch block, intraventricular conduction dis-

ease, ventricular pacing). Predictors included any medication or diagnosis (ICD-9 or ICD-10)

listed in the medical record that was present at the time of medication administration, which

totaled 8315 diagnostic codes. From this original dataset, we examined 2500 subjects with
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genotype data available as part of the Colorado Center for Personalized Medicine (CCPM)

Biobank, from which calculation of polygenic risk score (PGS) for QT interval and other car-

diovascular traits could be determined. Among these 2500 subjects, there were 14 known QT-

prolonging medications to which they were exposed (Table 1).

Polygenic risk scores

The CCPM Biobank (CCPM) is an institutional biobank with broad consent from subjects for

genetic analyses and EHR review. Ethical approval and consent were reviewed and approved

by the Colorado Multiple Institutional Review Board (#15–0461). Genomic DNA was

extracted from whole blood (Potassium/sodium ethylenediaminetetraacetic acid tubes) sam-

ples, and genotyping was performed on a custom single-nucleotide polymorphism (SNP)

microarray (MultiEthnic Global Array, Illumina, Inc). Microarray data were subjected to a

per-sample 0.985 call-rate filter. The genetic information was further imputed through the

Trans-Omics for Precision Medicine (TOPMed) imputation server [43], and annotated as

Freeze-2 of the CCPM Biobank, with loci having r2>0.7 being kept (For detailed information,

see Wiley et al. [33]). The PGS for QT interval and other cardiac phenotypes (S1 Table in

S1 File) was calculated based on weights obtained from the largest genome-wide association

study (GWAS) for QT interval to date [13], and normalized across the biobank population.

The PGS weight files were retrieved from the PGS catalog [44] (https://www.pgscatalog.org).

Quality control of the weights was performed before any score calculation, including (1)

removing the variants with ambiguous allele codes to avoid strand mismatch with the target

data (i.e. the subjects in CCPM freeze 2), (2) removing variants with an allele code that is dif-

ferent from those in the target data, despite strand flipping, (3) and other standard process

such as matching genome builds and variant IDs with those in the target, discarding dupli-

cates, and matching strands (full description of the pipeline is available at www.menglin44.

com/ESCALATOR). The score was calculated under the standard definition of PGS using

PLINK 2.0 [45] (Chang et al., GigaScience, 2015), as additive of weight values across variants

weighted by genotypes for each individual. Each score was normalized by subtracting the

mean and dividing by the standard deviation across the genotyped population.

Analysis plan

We first examined the correlation of normalized PGS for each of the 20 cardiac traits with the

label of diLQTS using a standard one-way analysis of variance (ANOVA) comparison, with P-

values adjusted for multiple testing according to Bonferroni correction (alpha = 0.05/

20 = 0.0025). Because only the QT PGS reached a level of statistical significance based on this

criterion (S1 Table in S1 File), we focused the rest of the analysis on this score. We first mod-

eled unadjusted risk of diLQTS for QT PGS using logistic regression, reporting the odds ratio

(OR), followed by adjusted models for each of the 14 known QT-prolonging medications

available in this dataset, including interaction terms to examine effect modification. To iden-

tify associated diagnostic codes, we performed maximum entropy coefficient (MIC; minepy.

MIC, version 1.2.6), which examines both linear and non-linear associations with diLQTS

based on mutual information [46], and ranked diagnoses based on association with diLQTS,

from which we categorized the most associated diagnoses to examine in models. We then

examined adjusted models that included specific highly associated medications and diagnostic

categories along with QT PGS. To examine for nonlinearity and possible cutoffs for use in clin-

ical prediction, we performed logistic regression using quantiles and restricted cubic splines.

We then examined clinical decision applications through examination of high (� 2 standard

deviations above the mean) and low (� 2 standard deviations below the mean) QT PGS, and
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compared models with only clinical predictions and linear QT PGS. Models were compared

based on Akaike and Bayes’ information criteria, as well as area-under ROC curve (‘roccomp’

module in Stata), with specific attention on categorization of risk across models. Finally, we

performed decision tree analysis using the R package (rpart, version 4.1.19). Results are pre-

sented as estimates from logistic regression models, as well as marginal predictions from fit

models. Data processing and cleaning was performed using Python (version 2.9.12). Analysis

was performed using Stata IC, version 17 (StataCorp, Inc., College Station, TX, USA). The

authors did not have access to information that could be used to identify individual partici-

pants during or after data collection.
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