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Abstract

Extracting biological interactions from published literature helps us understand complex bio-

logical systems, accelerate research, and support decision-making in drug or treatment

development. Despite efforts to automate the extraction of biological relations using text

mining tools and machine learning pipelines, manual curation continues to serve as the gold

standard. However, the rapidly increasing volume of literature pertaining to biological rela-

tions poses challenges in its manual curation and refinement. These challenges are further

compounded because only a small fraction of the published literature is relevant to biological

relation extraction, and the embedded sentences of relevant sections have complex struc-

tures, which can lead to incorrect inference of relationships. To overcome these challenges,

we propose GIX, an automated and robust Gene Interaction Extraction framework, based

on pre-trained Large Language models fine-tuned through extensive evaluations on various

gene/protein interaction corpora including LLL and RegulonDB. GIX identifies relevant publi-

cations with minimal keywords, optimises sentence selection to reduce computational over-

head, simplifies sentence structure while preserving meaning, and provides a confidence

factor indicating the reliability of extracted relations. GIX’s Stage-2 relation extraction

method performed well on benchmark protein/gene interaction datasets, assessed using

10-fold cross-validation, surpassing state-of-the-art approaches. We demonstrated that the

proposed method, although fully automated, performs as well as manual relation extraction,

with enhanced robustness. We also observed GIX’s capability to augment existing datasets

with new sentences, incorporating newly discovered biological terms and processes. Fur-

ther, we demonstrated GIX’s real-world applicability in inferring E. coli gene circuits.

Introduction and motivation

The scientific literature holds significant biological insights about issues such as disease-caus-

ing mutations, health intervention methods, genome analysis, and potential drug targets. In

this research, we focused on the inference of transcriptional regulatory behaviour by identify-

ing genome-wide relationships among macromolecular entities such as genes, proteins, and

RNAs [1]. The identification of such relations is relevant in developing accurate computational
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models of genetic networks, providing insights into disease progression, intracellular func-

tions, and drug behaviour.

The automated acquisition of prior knowledge from unstructured text is crucial but chal-

lenging, given the exponential growth in the published literature due to recent technological

advancements in scientific research [2]. Medline (PubMed) reported a doubling of indexed

articles on Gene Regulatory Networks in the last decade, reflecting increased interest in under-

standing genomic interactions at a cellular level, both experimentally and computationally [3].

Despite the huge number of papers available, only those with experimentally observed tran-

scriptional links are relevant to the extraction of relationships among biological entities. Fur-

ther, only sections containing key sentences can be used for identifying biological interactions.

These sentences reference multiple biological entities, and have complex structures comprising

several clauses and technical terminology [4]. Biological experiments are susceptible to errors

during data collection, demanding substantial efforts to establish the relevance and authentic-

ity of extracted regulations. Thus, most structured databases such as TRANSFAC [5] and Reg-

ulonDB [6], rely on human experts to pre-process scientific papers, extract domain-related

relations, and authenticate the information [7].

Manually curating genomic repositories and annotating genetic relationships from litera-

ture is time-consuming and challenging [8]. Traditional reading and summarising lack scal-

ability, are subject to personal interpretations, and are time-consuming. Automating the pre-

processing of scientific literature and post-processing of extracted information using Natural

Language Processing (NLP) techniques can address these limitations. Several researchers have

studied automating pre-processing and post-processing for accurately extracting relations

from unstructured data. Most pre-processing techniques involve the extraction of all available

abstracts within a specific timeline from online resources such as PubMed [9–11]. However,

these steps, while effective in domains with simple concepts and interactions, prove inefficient

in the complex biological domain, with entity relations specific to organisms, cell function, or

disease conditions.

In the relation extraction (RE) stage following pre-processing, statistical methods aim to

capture entity relationships through feature extraction [1]. Approaches such as sentence sim-

plification [12], link grammar parsing [13], and a combination of vector and tree-based kernels

[14] enhance protein-protein interaction (PPI) relation extraction in simpler sentences. How-

ever, these methods face limitations in handling complex biological sentences, and simplifica-

tion can lead to overfitting and information loss. These methods heavily depend on tools like

MedPost (a POS tagger) or existing biological knowledge bases. Fundel et al. [15] reported that

most of the false interactions predicted by RelEx, a rule-based parse tree NLP technique, are

due to incorrectly tagged entities, POS-label error, or insufficient rule-based sentence con-

struction. Recently introduced pre-trained neural network models provide substantial benefits

when capturing both syntactic and semantic information, surpassing the capabilities of

machine learning methods and word embedding techniques [16–18]. Despite the specific bio-

medical training of BioBERT (a pre-trained Bert-based model), its improvement in relation

extraction tasks is marginal [19]. The complex sentence structure describing causal depen-

dency still limits the applicability of RE techniques. Despite rigorous pre-processing and RE,

inferred interactions may still contain noisy entities, inaccurate predictions, and conditional

relations. A post-processing step such as unsupervised clustering [20] and confidence level cal-

culation [21], if integrated with prior knowledge and model prediction confidence, can further

refine results by eliminating falsely predicted named entities and relations.

Researchers have tackled different stages of relation extraction from the literature, including

pre-processing, post-processing, and relation extraction itself. However, there is no overarch-

ing framework that comprehensively addresses all aspects of biological relation extraction.
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While specific tools and technologies may evolve or change over time, a well-designed frame-

work offers a stable underlying structure, methodology, or approach. To this end, we propose

systematic, automated and robust Gene Interaction Extraction (GIX), that efficiently identifies

relevant publications with minimal keywords, optimises sentence selection, and provides a

confidence factor for the reliability of extracted biological relations. GIX is a novel three-stage

framework for Gene Interaction Extraction, involving: (i) Pre-processing; (ii) Relation extrac-

tion; and (iii) Post-processing. Leveraging the fine-tuned pre-trained domain-specific NLP

models, GIX is designed to optimally extract regulatory links among genes/proteins in a set of

abstracts from PubMed. It automates all of the processes required for biological RE, and elimi-

nates the manual intervention required to gather and transform problem-specific data into an

acceptable RE format. The pre-processing phase involves an abstract search for target-network

information, selecting sentences on transcriptional regulation to eliminate irrelevant text,

reduce computational overload, and improve accuracy. In the Relation Extraction stage, we

harness the biological contextual understanding of BioBERT and BERN2 (a pre-trained Bert-

based Bio-named entity recognition model). Additionally, an entity-labelling schema is pro-

posed to enhance the accuracy of relation prediction. This schema works by reducing sentence

complexity without compromising grammatical structure, avoiding information loss. In post-

processing, BERN2 and tailored NLP techniques refine extracted biological relational entity

names, incorporating a novel confidence measure to authenticate regulations and sources and

improve accuracy by eliminating false positives.

Several experiments were performed using datasets including BioInfer [22], HPRD50 [15],

IEPA [23], and LLL [24]. The proposed RE model (Stage-2 of the framework) achieved a sig-

nificant improvement of 13.7% in F-Score for HPRD50 compared to the previous best-per-

forming method. GIX, achieved superior performance in RE from dataset LLL and database

RegulonDB. In experiments with LLL, our results showed that our GIX framework not only

achieved optimum accuracy but also reported multiple relation dictating sentences per regula-

tion, as opposed to the single-sentence per relation manner common in benchmark datasets.

The structure of the paper is as follows: an overview of the relevant preliminaries is pro-

vided in the "Background" section. The "Methods" section details the processes and models

used in our three-staged GIX framework. In the "Results" section, we cover the experimental

setup of benchmark datasets, present their respective results, and discuss the outcomes. Lastly,

the "Conclusion" section concludes the paper and explores future directions.

Background

Unstructured text and relation extraction

Structured data, such as tables and databases, have a consistent layout and predictable pattern.

In contrast, unstructured data such as written and spoken text lacks a predefined structure,

making it difficult to process [25]. These data can consist of diverse languages, and contain

grammatical errors, abbreviations, and context-dependent meanings. It is difficult to retrieve

only relevant data, because of the size of datasets, the diversity of publications, and the rapid

evolution of multidisciplinary fields. Efforts to standardise vocabulary in biomedical literature,

such as MeSH, help tackle unstructured data by assigning terms, aiding in information

retrieval and relation extraction, thereby enhancing biomedical research. RE is more challeng-

ing than named entity recognition or classification, due to the lack of explicit markers for rela-

tionships and the complex contextual dependencies between entities, which make it hard to

accurately identify and extract the underlying relationships from unstructured text. RE tasks

can be classified into one of two categories: (1) rule-based methods which identify pre-defined

patterns; and (2) machine-learning (ML) models which treat RE as a classification problem
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[26]. ML based RE approaches have been further classified into kernel-based, feature-based,

and deep learning (DL) categories. Various ML methods have been used to extract regulations

among genes and gene products However, building and training RE models is a complex and

time-consuming task, as the models need to be trained using a large dataset. Advanced NLP

techniques, including text mining, RE, and named entity recognition, have proved very effec-

tive in extracting meaningful information from complex and variable unstructured text [27].

Pre-trained large language models

In recent years, pre-trained models based on NLP techniques have been shown to work effec-

tively with unstructured text, and have been used in a range of applications. Being pre-trained

on large data, they require little or no training. Well known large language models (LLM) such

as Embeddings from Language Models (ELMO) [28] and Bidirectional Encoder Representa-

tions from Transformers (BERT) [29] are pre-trained on massive amounts of text data, allow-

ing them to learn rich linguistic patterns and semantics. ELMO introduced contextual word

embeddings, in which each word representation is dynamically generated based on the sur-

rounding context. BERT is a transformer-based model that learns bidirectional contextual rep-

resentations of words. Both ELMO and BERT models have demonstrated excellent

performance across various NLP tasks, including named entity recognition, part-of-speech

tagging, sentiment analysis, and RE [30–33]. However, BERT has been shown to surpass

ELMO in performance, as it learns bidirectional contextual representations, enabling a deeper

understanding of semantic relationships [34]. The domain-specific LLMs perform RE by cap-

turing specific knowledge, thus improving accuracy. BioBERT, the BERT model optimized for

biomedical text mining, is domain-specific, and is pre-trained on PubMed abstracts and PMC

articles [19]. BioBERT can easily be fine-tuned to perform text extraction tasks, and has been

successfully applied to tasks such as the allocation of phenotypes to protein-protein interac-

tions and the extraction of drug-drug interactions [35,36]. It has outperformed other state-of-

the-art NLP-based RE methods in the biological domain [19].

Named entity recognition

Named entity recognition (NER) and biological NER (BioNER), identifies biological entities

such as genes, proteins, diseases, drugs, and miRNAs [37]. BioNER methods fall into one of

three categories: (1) knowledge-based; (2) rule-based; or (3) machine learning [38]. A knowl-

edge-based approach uses an existing database or dictionary to identify known entities. Such

methods are simple to implement, but limit NER tagging to known entities [39]. The rule-

based approach tends to overfit and fails to generalise, and thus is ineffective when applied to

all cases. State-of-the-art machine learning techniques use POS tags and apply grammatical

structure and interdependencies within a text to conveniently identify the named entities.

Gene and protein names have been labelled using a combination of conditional random fields

(CRF) and bidirectional long short-term memory (LSTM) architecture [40]. ML models such

as Support Vector Machines (SVMs) and hidden Markov models have been used for BioNER.

Although ML techniques perform better than other traditional methods, they require a large

amount of manually annotated training data [38]. Pre-trained language models such as Bio-

BERT can be fine-tuned to easily perform BioNER without needing a large amount of training

data. BERN2, a BioNER tool reported in 2022, not only supports NER, but also allows named

entity normalization (NEN). NEN allows mapping recognised named entities to a common or

canonical form ensuring uniform representation of named entities. BERN2 has outperformed

existing BioNER tools, including BERN, on several applications, including the identification of

diseases, drugs, species, genes, and proteins.
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Datasets

Some of the comprehensive repositories of curated protein and genetic interactions collected

from the scientific literature are BioInfer [22], HPRD50 [15], IEPA [23], and LLL [24]. These

resources are commonly used as benchmark datasets with which to study RE [15,41,42]. BioIn-

fer contains a total of 9,666 full dependency annotations of gene, protein, and RNA regulations

from 1,100 sentences. HPRD50 includes 50 abstracts from Human Protein Reference Database

(HPRD) for direct regulation relation annotation. IEPA, is an Interaction Extraction Perfor-

mance Assessment of 300 abstracts using two named biochemical entities. LLL, the Learning

Language in Logic challenge, contains 330 gene/protein interactions labelled as regulatory

from 77 unique sentences. Processing these datasets for RE requires a combination of

advanced NLP techniques, domain knowledge, and careful pre-processing to handle the wide

range of interaction types, varying sentence structures, and the need to disambiguate entities

and their relationships.

RegulonDB is a manually annotated, publicly available database containing transcriptional

regulations in Escherichia coli, also known as E. coli [6]. The database contains transcription

factor (TF) regulations including TF-gene, TF- transcriptional unit, TF-operon, and TF-TF.

Each regulation is classified as weak or strong based on the type of experiment used to identify

the interaction. For instance, a ChIP analysis with statistical validation is considered to provide

stronger evidence than ChIP-chip only or ChIP-sequence analysis.

Methods

This section addresses the improvement of the prediction accuracy of genetic interactions

using the published literature. We propose an automated framework involving two Large Lan-

guage Models (LLM)—BioBERT and BERN2—which are pre-trained on a large corpus of bio-

logical data. The overall architecture of the proposed LLM based framework is presented in

Fig 1. The framework has three stages: (i) Stage-1: Pre-processing; (ii) Stage-2: Relation extrac-

tion; and (iii) Stage-3: Post-processing. The pre-processing and post-processing stages in GIX

play a crucial role in addressing the inherent imbalance in biological datasets. In a sentence

with 2 entities, the number of potential relationships, taking direction into consideration is

Fig 1. Schematic of fully automated relation extraction using an LLM based GIX framework. The white blocks

signify the processes, and the grey blocks indicate the tools utilised within those processes.

https://doi.org/10.1371/journal.pone.0303231.g001
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two. As the number of entities in a sentence increase, the possible relationships amongst them

can grow exponentially. However, the number of true relationships does not grow at a similar

pace, thereby, leading to a situation when the number of non-interactions far exceed the num-

ber of interactions and resulting to imbalance dataset. The pre-processing (Stage-1) and post-

processing stages (Stage-2) in GIX are designed to recognise non-relation entity pairs, to

decrease the number of sentences classified as true negatives. This reduces the gap between the

two classes, which contributes to the imbalance, thereby enhancing the overall performance

and accuracy of relation extraction. We begin with the explanation for each component of

Stage-1.

Pre-processing

In Stage-1, we pre-process the input publications to extract only highly relevant text. This task

is challenging because genomic transcriptional regulations can differ between organisms, and

molecular entities may behave differently under different cell conditions. We formulated a

search criterion which ensured the extracted literature’s association to the specified condi-

tional parameters. Known attributes of the target network, such as the organism and cell func-

tion, were included to in narrow down the search to closely related literature. As published

papers often include a keywords section that helps indexers, these were also used to establish

relevance. Multi-cellular organisms may exhibit different regulatory relations under different

cell conditions; thus, the use of additional criteria can significantly improve the quality of

obtained literature, thereby improving the accuracy and relevancy of extracted relations. The

chosen set of keywords used for this study is outlined in the experiment section under "Selec-

tion of Keywords."

The Bio.Entrez module facilitates data retrieval from PubMed, a comprehensive biomedical

literature database [43]. To find relevant PubMed articles, we crafted a search query using

PubMed Bio.Entrez utilities. The PubMed search query requires a set of keywords and speci-

fies the maximum number of documents to retrieve, resulting in a list of PubMed IDs ranked

by relevance according to the provided keywords. With the retrieved PubMed IDs, we used

the web scraping tool BeautifulSoup [44], a Python library, to extract titles and abstracts from

the papers on PubMed. The set of abstracts obtained using the selected keywords is further

processed to eliminate those papers which do not contain a reference to the organism, either

in its full form, or as abbreviations.

Sentence tokenization. We split the final set of abstracts into individual sentences using

Punkt sentence tokenizer from the Natural Language Toolkit (NLTK) [45]. Punkt is a pre-

trained unsupervised machine learning model designed for detecting sentence boundaries.

Then the tokenized sentences undergo two consecutive sentence elimination processes: the

first utilises a fine-tuned BioBERT (biobert_v1.1_pubmed) classification model, and the sec-

ond involves BERN2, as detailed in the subsequent sections.

Sentence eliminator 1. Sentence eliminator 1 identifies and removes sentences that do

not discuss a regulatory interaction. A fine-tuning dataset was created from annotated PPI cor-

pus sentences. The specific datasets used for fine-tuning and testing in each experiment are

outlined in the results sections. To create the fine-tuning dataset, sentences dictating at least

one regulatory relationship receive a positive classification label, while the rest are labelled as

negative. Once finetuned, the BioBERT model evaluates test sentences, assigning a classifica-

tion of 0 if there are no genetic interactions or if the sentence discusses non-regulation, and 1

if the sentence contains a relational context of a gene/protein interaction. Sentences classified

as 0 are eliminated, while those classified as 1 undergo further evaluation for the presence of

named entities.
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Sentence eliminator 2. For the second sentence elimination step, since at least two enti-

ties are involved in a regulatory relationship, all sentences that contain fewer than two gene or

protein entities are excluded. This elimination is carried out using BERN2, without any addi-

tional fine-tuning, to recognise gene and protein entities in a sentence. BERN2 can be imple-

mented through their RESTFUL API [46]. For each sentence, BERN2 produces a JSON list of

annotations, containing the entity phrase, its entity type, and a probability score. Sentences are

eliminated if the annotation list contains fewer than two gene/protein entities.

Relation extraction

In Stage-2 of GIX, we used BERN2 for NER and fine-tuned BioBERT for relation classification.

Through fine-tuning on expert-annotated data, pre-trained models efficiently transfer general

language knowledge to domain-specific tasks, resulting in improved task performance and

adaptability. In this work, our goal was to extract binary relations according to their suitability

for comparison, interpretability, and scalability. To extract binary relations, each entity pair in

a sentence is substituted with a label to clearly identify both the agent and target entities

involved in the relationship. Sentence eliminator-2, filters out sentences with fewer than two

gene/protein entities, so the sentences undergoing processing for relation classification invari-

ably contain a minimum of two gene/protein entities, irrespective of the presence or absence

of an actual relationship. The labelling criteria remain consistent for all sentences before rela-

tion extraction. To extract binary relations, each entity pair in a sentence is substituted with a

label to clearly identify both the agent and target entities involved in the relationship. The first

entity of a pair is replaced with $GENE_AGENT# and the latter is substituted with $GENE_-

TARGET#. The selected entity labels are descriptive, unique, and ensure consistency. Despite

the advantages of selected labels, the structural complexity and presence of multiple entities in

biological sentences can hinder the sequence classifier model’s ability to recognize the labeled

entities. To address this issue, any entity in a sentence other than the current pair is replaced

with the word “BLANK”, so that the model can easily identify the pair in consideration during

classification. For example, in Fig 2, three genes—SigK, GerE, and ykvP—appear in the sen-

tence, and for the gene pair Sigk ($GENE_AGENT#) and ykvP ($GENE_TARGET#) the

remaining third gene is labelled BLANK. BioBERT, pre-trained on biomedical data, has a con-

textual understanding of complex biological terms and is able to manage this style of labelling.

While the selected labelling tags ($GENE_TARGET#, $GENE_AGENT#) in complex sen-

tences may not effectively highlight the target of the classification task and thereby limit model

performance, anonymizing the entities additional to the tagged pair using “BLANK” effectively

suppresses the unwanted entity without altering the lexical and semantical structure of the

sentence.

The output of the RE process is a set of entity pairs from BioBERT, with classification pre-

diction values varying between 0 and 1.

Post-processing

The extracted relations may still contain wrongly predicted interactions or entities, due to the

biological complexity of the relationships. We cannot assume that all stated relations in

Fig 2. Illustration of NER tagging in sentences with multiple gene or gene products.

https://doi.org/10.1371/journal.pone.0303231.g002
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published text are necessarily correct. Positive results are more likely to be published than neg-

ative or inconclusive results. This bias can lead to an overrepresentation of certain findings,

which can skew the domain knowledge. Studies with small sample sizes, which are not repre-

sentative of a larger population, may contain results that are unreliable or not generalizable.

Additionally, even though our entity labelling schema aims to identify the controlling ($GEN-

E_AGENT#) and child ($GENE_TARGET#) entities in a relationship, not all sentences clearly

indicate the direction of the interaction. In such cases, information about known controlling

entities, such as regulatory genes or transcriptional factors, in the target network can help

identify the direction of the relation. In the post-processing stage, we therefore evaluate the

trueness of each extracted relation based on several factors, including whether the relation was

extracted from multiple documents, its existence in online repositories, and whether it involves

a known regulator.

Refinement. The entire three-step refinement process is illustrated in Fig 3.

Before establishing well-known true regulations, the extracted relational entity names are

refined. During NER, BERN2 may recognize a group of words or phrases as the named entity.

For instance, consider the following sentence:

“The Dnak suppressor protein interacts with molecular chaperones to assist in protein folding
and prevent misfolding or aggregation.”

The phrase “Dnak suppressor protein” is identified as a gene/protein entity by BERN2,

helping to reduce the structural complexity of the sentence. However, we need to extract only

the entity name “Dnak” to successfully group regulations extracted from different research

papers. To extract just the entity name, we split the phrases and process the individual words

for NER using BERN2 (Fig 4). As depicted in example (ii) in Fig 4, the BERN2 tagged entity

may not contain the entity name at all. Such entity relations are incomplete, and thus should

be eliminated. For larger datasets, the use of BERN2 to process each word in an entity name

can become computationally expensive. To address this issue, we created a list of the most

repetitive non-entity words (available on the Gene-Interaction-Extraction GitHub repository

Fig 3. Entity name refinement.

https://doi.org/10.1371/journal.pone.0303231.g003

Fig 4. Gene name refinement using BERN2.

https://doi.org/10.1371/journal.pone.0303231.g004
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https://github.com/JaskaranKaurGill1/Gene-Interaction-Extraction) reflecting which non-

entity words are most frequently removed before passing on to BERN2.

If BERN2 is unable to recognise the gene/protein name from a phrase without the adjoining

words, the refined entities which return null names are checked to detect any missing genes or

proteins. Most gene/protein names consist of letters, numbers, and symbols that may not con-

form to typical English language words, leading the spellchecker to flag them as potentially

misspelled. Thus, the checking is done by using the word spell check tool from Textblob [47]

to label individual words in entity names and identify incorrectly spelled words. If a word in

an entity is incorrectly spelt, it is considered to be a protein or gene name, whereas if it is cor-

rectly spelt, it is assumed to be descriptive. The output of the refinement process is a set of

entity-pairs composed only of gene or protein names.

Confidence factor. We developed a new measure, the Confidence Factor CFeaet
, to indi-

cate the likelihood of existence of each of the interactions identified as existing between the

agent/controller entity ea and the target entity et. For each entity pair eaet, its corresponding

CFeaet is computed as follows.

CFeaet ¼
Xn

s¼1

vs þ K
XM

T¼1

PT
eaet

ð1Þ

¼ CF1 þ K∗CF2

Peaet
¼

1; ea is known agent but relation eaet is unknown

3; eaet is known relation

0; otherwise

ð2Þ

8
><

>:

Here, the variable n denotes the total number of unique sentences obtained from GIX pre-

dicting eaet, i.e. the regulation between ea and et. The variable vs is the RE classifier prediction

of regulation eaet, of the sth sentence. It is obtained as the Stage-2 output of the GIX and has a

value between 0 and 1. The parameter Peaet
represents the prior knowledge about both the

agent entity (ea) and its interaction (eaet) with the target entity et. The constant M is the total

number of curated databases under consideration. K is a factor balancing the influence of

terms
Pn

s¼1
vs and

PM
T¼1

PT
eaet

(also referred to as CF1 and CF2). As shown in Fig 5, the discrete

variable Peaet
of Eq 2 can acquire three different values for three different conditions, namely,

(i) If ea is known to be a controller gene and the relation eaet is unknown, Peaet
= 1; (ii) If eaet is

a known relation, the value of Peaet
is given a higher value of 3 compared to (i) accounting for

the presence of two entities and a connecting arc; (iii) For other conditions, Peaet
= 0.

Fig 5. Role of prior knowledge component CF2 with respect to CF1 on overall confidence factor CFeaet
. (i) No prior

knowledge is available (ii) ea is a known controlling entity but eaet is an unknown relation (iii) eaet is a known relation.

https://doi.org/10.1371/journal.pone.0303231.g005
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A specific regulation can appear multiple times in each sentence. For example, in the

sentence

“The study found that the upregulation of TrpE was associated with an increased expression
of trpR in the cell line, and this TrpE -dependent trpR expression initiates the enzyme
activity.”

The relation between TrpE and trpR appears twice with two different values of vs. In such

situations, the average value of vs is considered. Previously curated annotations of a genetic

interaction can also be used to validate the correctness of the GIX’s extracted relation. The

manually curated databases cite multiple published papers reporting genomic interactions. For

instance, RegulonDB confirms the transcriptional interaction between TF CRP-cyclic-AMP

and its target genes deoC, deoA, deoB, and deoD, from 16 sources. Similarly, interactions con-

firmed from a higher number of experimental and/or analytical sources will have a higher

CFeaet and thus, are more likely to be true. A threshold value (CFeaet = γ) is defined, and all reg-

ulations with CFeaet<γ are treated as false positive. The final output of the framework will be a

set of highly confident extracted entity pairs and their corresponding CFeaet values, represent-

ing the accuracy of the retrieved relationships.

Results

We first describe the experimental setup, including the hyperparameter configuration and eval-

uation metrics used. Subsequently, we discuss the selection of keywords for the extraction of

relevant information from the target-related literature. We conducted three independent exper-

iments to assess the effectiveness of GIX. The first experiment (Exp1) demonstrated the Rela-

tion Extraction Capability (Stage-2) of the GIX framework using four well-known benchmark

datasets for gene/protein interactions. The second experiment (Exp2) evaluated automated

extraction using GIX against the manual curation of a benchmark dataset. The third experi-

ment (Exp3) evaluated GIX against the manual curation of a real-world database of transcrip-

tional regulations. Finally, as a demonstration of the significance of GIX-extracted relations

with their confidence factors, we used the relations for constructing gene regulatory networks.

Experimental setup

We implemented our models using PyTorch transformers: an open-source library for machine

and deep learning models [48]. The framework was written in Python 3.10.11 in Google Colab

Pro. The hyper-parameters setup for the BioBERT model is given in Table 1. We trained our

model on Google Colab using a GPU (Tesla P100-PCIE-16GB) with a BertAdam optimizer.

Table 1. Hyperparameters used for the RE classification model.

Hyper-parameters Value

Model biobert_v1.1_pubmed

Token max length 256/ 512 depending on the average length of sentences of the dataset

Optimizer BertAdam

Batch Size 8

Number of epochs 10 / 20 depending on the dataset size.

Learning rate (BertAdam) 2e-5

Warmup (BertAdam) 0.1

Learning rate decay (Weight decay rate) 0.01

https://doi.org/10.1371/journal.pone.0303231.t001
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To assess the model performance, the metrics Recall (R), Precision (P), and F-score (F)

were evaluated. Recall and Precision provide complementary insights into the performance of

a model. Recall measures the proportion of relevant instances correctly identified, while Preci-

sion represents the accuracy of the model’s positive predictions. The F-score provides a bal-

anced assessment of a model’s performance by considering both Precision and Recall, offering

a single metric with which to evaluate classification accuracy.

Selection of keywords

The choice of the correct set of keywords is crucial to GIX performance in target-related litera-

ture search. Our choice was based on predefining certain attributes of the required output.

These attributes specify the type of relation being extracted, determining whether they pertain

to a particular organism or a specific cell function. Incorporating these attributes makes the

keyword selection process effective in focusing our search on finding literature directly related

to specific aspects of the target network. We identified frequently used keywords in published

papers related to genetic entity regulation and interaction. Fig 6 depicts the 20 most repeated

keywords among papers used by RegulonDB for the manual extraction of the transcriptional

relations of Escherichia coli. The name of the organism embodying the regulatory system is the

most repeated keyword, and is thus included as one of the preferred keywords. Other impor-

tant words—“gene regulation”, “gene expression”, “transcriptome”, “transcription factor”, “regu-
lation”, and “posttranscriptional regulation”—which are repeated frequently are also included

as search terms. Thus, the selected set of keywords for this research is the combination of the

common words “gene regulation gene expression transcriptional” and the name of the target

organism.

Exp1- Relation extraction capability (Stage-2) of the GIX framework

The performance of our RE with its improved entity-labelling schema (Stage-2 of the GIX

framework, referred as GIX RE) was investigated using four well-known benchmark gene/pro-

tein interaction datasets: BioInfer, HPRD50, IEPA, and LLL. The distribution of positively and

negatively annotated sentences for these four datasets is given in Table 2.

Fig 6. Top 20 most repeated keywords included in papers referenced by RegulonDB for TF-binding sites.

https://doi.org/10.1371/journal.pone.0303231.g006

PLOS ONE Gene interaction extraction framework

PLOS ONE | https://doi.org/10.1371/journal.pone.0303231 May 21, 2024 11 / 22

https://doi.org/10.1371/journal.pone.0303231.g006
https://doi.org/10.1371/journal.pone.0303231


To evaluate a model’s performance and generalisation ability, we employed the widely used

10-fold cross validation provided by the KFold library from Scikit-Learn [49] to each of the

four datasets (HPRD50, BioInfer, IEPA and LLL). In brief, the method involves dividing the

dataset into 10 equal subsets, with 9 subsets used for fine-tuning and the isolated 10th subset

used for testing. For each dataset, the process is repeated 10 times using a different fold as the

test set, and each time, the relation classification model gets fine-tuned from scratch (original

setting). The overall accuracy is determined by averaging the results from the 10 individual

experiments (folds) conducted on each dataset (shown in Fig 7). This ensures comprehensive

evaluation across diverse data samples, contributing to the model’s robustness and generalisa-

bility. This approach has been commonly used in several state-of-the-art methods in different

domains including Biological relation extraction,e.g. Bi-LSTM [50], MCCNN [51], GK [52],

NHGK [53], EDG ([54], PIPE [42], WWSK [55], RCNN [56], DNN [57], RNN + CNN [56]

and iLSTM+tAttn [41]. We used a token length of 256 for BioInfer, HPRD50, IEPA, and LLL.

The smaller datasets, HPRD50, IEPA, and LLL, required 20 epochs for fine-tuning, whereas

the larger dataset,, BioInfer, achieved stability in just 10 epochs. The performance of the pro-

posed RE with the improved entity-labelling schema (Stage 2 of GIX), compared with other

state-of-the-art methods, is given in Table 3.

GIX outperformed all RE methods/models in Precision, Recall, and F-score for all four

datasets: BioInfer, HPRD50, IEPA, and LLL. GIX produced a significant improvement of 12%

in Precision on HPRD50 compared to the previous best model. BioBERT’s improved perfor-

mance in biological RE compared to traditional models like CNN and LSTM can be attributed

to its pre-training on biological text, capturing contextual word representations, and transfer

learning capabilities. The combination of BERN2’s ability for normalization of named entities,

along with the proposed anonymization of entities reduces sentence complexity without alter-

ing the lexical structure, and thus contributes to enhancing the model’s accuracy of prediction.

The robustness of the superior performance of GIX was further confirmed by its consistent

performance across all four datasets.

Table 2. Distribution of positive and negative classifications in five benchmark PPI corpora.

Dataset Positive Negative Unique Sentences

BioInfer 2534 7132 1100

IEPA 335 482 486

HPRD50 163 270 145

LLL 164 166 77

https://doi.org/10.1371/journal.pone.0303231.t002

Fig 7. The 10-fold cross-validation process for evaluating the relation extraction capability (Stage-2) of the GIX. Here, each

iteration consists of equally divided 10 folds of the dataset, where 9 folds (white blocks) are used for fine-tuning, and the 10th fold

(grey block) is used for testing. The overall performance (Ɵ) is obtained by averaging the performance of each iteration (Ɵi). The

notations P, R and F represent Precision, Recall, and F-score.

https://doi.org/10.1371/journal.pone.0303231.g007
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Exp2- comparison of GIX with manual curation of a benchmark dataset

The objective of this experiment was to evaluate the performance of GIX in capturing genetic

relations against a manually curated benchmark dataset. We experimented using the known

target network information for the LLL dataset. The other three datasets, IEPA, HPRD50 and

BioInfer, contain generic interactions involving different organisms, including humans and

model organisms, while the relations present in the fourth dataset, LLL, are confined to a single

bacterial species, Bacillus subtilis. In GIX, fine-tuning is required for both the Sentence Elimina-

tor 1 (Stage-1) and Relation Classification (Stage-2), as they use a variant of the BioBERT

model. As given in Table 4, the fine-tuning was performed using sentences from the HPRD50,

BioInfer, and IEPA datasets, while the testing was done using the independent LLL dataset. The

LLL dataset contains sentences containing genetic interactions of type action, regulation, bind-

ing, and promotion of cell transcription activity in B. subtilis. The keywords used to extract

information from PubMed about transcription in B. subtilis from the abstracts of published lit-

erature were “Bacillus subtilis gene expression regulation transcriptional”. The maximum num-

ber of retrieved articles was set to 1000, so that only highly relevant papers were extracted.

The search for transcriptional regulations in Bacillus subtilis returned 371 abstracts contain-

ing 2,865 sentences. The Sentence Eliminator-1 and Sentence Eliminator-2 rejected 1,184 and

692 sentences, respectively, leaving 989 sentences for RE. The process extracted 1,120 relations

from these sentences. Through the refinement step in the GIX post-processing stage, the

extracted relations were further processed and condensed into 706 interactions (shown in Fig 8).

Table 3. Ten-fold cross-validation results (%) P: Precision; R: Recall; F: F-score.

Methods BioInfer HPRD50 IEPA LLL

P R F P R F P R F P R F

DNN [57] 53.9 72.9 61.6 58.7 92.4 71.3 71.8 79.4 74.2 76.0 91.0 81.4

Bi-LSTM [50] 87.0 87.4 87.2 - - - - - - - - -

RNN + CNN [58] 56.7 67.3 61.3 69.6 82.7 75.1 64.3 65.8 63.4 72.5 87.2 76.5

MCCNN [51] 81.3 78.1 79.6 - - - - - - - - -

GK [52] 56.7 67.2 61.3 69.6 82.7 75.1 64.3 65.8 63.4 72.5 87.2 76.5

CK [59] 65.7 71.1 68.1 67.5 78.6 71.7 68.5 76.1 70.9 77.6 86 80.1

NHGK [53] 59.3 68.1 63.4 72.4 79.8 75.3 67.8 85.3 74.6 86.2 92.1 89.1

EDG [54] 57.6 59.9 58.7 69.9 76.2 72.9 76.7 83.3 79.9 92.1 78.2 84.6

PIPE [42] 68.6 70.3 69.4 62.5 83.3 71.4 63.8 81.2 71.5 73.2 89.6 80.6

WWSK [55] 61.8 54.2 57.6 66.7 69.2 67.8 73.7 71.8 72.9 76.9 91.2 82.4

iLSTM+tAttn [41] 88.9 89.3 89.1 78.6 78.7 78.5 81.7 82.3 81.3 84.8 84.3 84.2

RCNN [56] 87.4 86.5 86.9 74.9 82.8 77.7 71.6 80.6 75.5 80.5 87.2 83.2

GIX RE 91.1 92.9 92.0 91.5 93.3 92.2 89.4 89.5 88.9 93.9 92.4 93.9

https://doi.org/10.1371/journal.pone.0303231.t003

Table 4. Dataset used for fine-tuning of BioBERT models for RE classification and sentence elimination 1.

Experiments Relation extraction

classification

Dataset Experiment with benchmark dataset

(Exp2): LLL

Experiment real-world database (Exp3):

RegulonDB

Positive Negative

LLL x 164 166

IEPA x x 335 482

HPRD50 x x 163 270

BioInfer x x 2000 2500

https://doi.org/10.1371/journal.pone.0303231.t004
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To calculate CFeaet using Eq 1, prior information about known regulators and regulations

was obtained from Subtiwiki [60], a comprehensive online resource and database dedicated to

the bacterium Bacillus subtilis. As depicted in Fig 9, we observed that the CFeaet of the majority

of relations when not considering prior knowledge, lay between 0.9 and 1. To achieve a bal-

anced impact of prior knowledge and literature-based extraction on the overall CF, we set K to

Fig 8. GIX’s extraction process for Bacillus subtilis relations illustrating outputs at each step (dark grey blocks) and inputs

such as datasets, databases, or target-specific keywords (light grey blocks).

https://doi.org/10.1371/journal.pone.0303231.g008

Fig 9. Confidence factor (CFeaet
) of the extracted relations for Bacillus subtilis distribution of CFeaet

with and without prior knowledge.

https://doi.org/10.1371/journal.pone.0303231.g009
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1. The impact of the CFeaet
is evident in Fig 9, which shows an increase in the number of rela-

tions within higher CFeaet intervals with the activation of the prior knowledge component.

After incorporating the prior knowledge component, the threshold value, γ, for CFeaet was set

at 0.88. This setting was experimentally determined after performing ROC curve analysis to

identify the best trade-off between true positive rate and false positive rate (shown in Fig 10).

With γ = 0.88, 590 interactions were extracted.

Table 5 displays the results of two experiments labeled as Exp2-(i) GIX-RE (only relation

extraction model) and Exp2-(ii) GIX (Full Framework). In experiment Exp2-(i), only the rela-

tion extraction model of GIX, corresponding to Stage-2 of the framework, is utilised. The data-

sets used for fine-tuning of the relation classification model for experiment Exp2-(i) include

HPRD50, IEPA, and BioInfer while LLL dataset is used for testing. In experiment Exp2-(ii),

the full GIX framework is under investigation. Here, the fine-tuning datasets consist of

HPRD50, IEPA, and BioInfer. While the testing dataset comprises of sentences extracted from

PubMed related to Bacillus Subtilis regulatory interactions. These two experiments demon-

strate that GIX, using just a few target-related keywords instead of the manually refined and

formatted sentences was able to maintain a similar level of accuracy of extracted interactions

without losing any of the sentences. The GIX framework is therefore robust, because, despite

the elimination of a large number (2,109) of sentences during pre-processing and the loss of

Fig 10. ROC curve analysis used to determine the optimum threshold (γ) using relations extracted using GIX

from 77 sentences in the LLL dataset.

https://doi.org/10.1371/journal.pone.0303231.g010

Table 5. Performance comparison of relation extraction from LLL sentences (i) using the GIX RE model and LLL sentences from the dataset, and (ii) using the GIX

Framework and target-related keywords.

Method Precision Recall F-score Number of instances confirming true interactions found

GIX RE (LLL– 330 sentences) 86.30 79.35 81.29 130

GIX (Full Framework) 86.30 79.35 81.29 255

https://doi.org/10.1371/journal.pone.0303231.t005
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almost half of the interactions due to post-processing refinement, there was no loss of informa-

tion when using GIX. Furthermore, 130 out of 164 true interactions were confirmed 255 times

by GIX by extracting the same interactions from multiple sentences, demonstrating its ability

to leverage several sources for identifying true regulations. As a result, we augmented the data-

set with an additional 125 sentences with labelled entities containing LLL’s true regulations.

This experiment also demonstrated GIX’s proficiency in efficiently enriching benchmark data-

sets with sentences containing newly introduced terminologies, biological processes, and

relationships.

We observed a difference between model accuracies when fine-tuning and testing sentences

belong to the same dataset (LLL) and when the model was fine-tuned on non-LLL data (BioIn-

fer, HPRD50, and IEPA) and tested on LLL. The disparities in accuracies can be attributed to

differences in the fine-tuning data. The use of non-related datasets in Exp2 is realistic because

in the real-world, often, the data is not always truly aligned with the training dataset. In past,

the attempts by researchers at generalisation have been less successful with their accuracies

decreasing significantly. For instance, in ([41], the model that was trained using only BioInfer

and tested on LLL exhibited a low accuracy of 33.50%. In contrast, our proposed model has a

Precision of 86.30% which is a slight decrease from Exp1 but still higher than other models.

Combination of diverse non-related datasets (BioInfer, IEPA and HPRD50) has led to better

generalisation and hence improved performance.

Exp3- comparison of GIX with manual curation of a real-world database

We used E. coli interactions available in the database RegulonDB to evaluate GIX’s ability to

automatically extract TF-gene, TF-transcriptional unit, TF-operon, and TF-TF regulations. The

extracted relationships are validated using known relations from RegulonDB, ensuring accuracy,

and the overall confidence factor is adjusted based on this ground truth for evaluating GIX-

based relationships against manually curated ones by RegulonDB. The database maintains refer-

ences to articles for each curated interaction. The corpus neither records the article segment

(such as Abstract, Introduction, or Conclusions) nor the sentences used to report the interaction.

To evaluate the performance of GIX, we compared the accuracy of extraction of regulations by

GIX with the RegulonDB regulations that had been curated from abstracts. We identified 578

unique interactions in 554 associated papers that mention the entities (gene/protein name) in at

least one sentence of the abstract. For sake of convenience, throughout the paper, these 578 inter-

actions are referred as abstract-level relations. The datasets used for fine-tuning the Sentence

Eliminator– 1 (Stage-1) and the Relation Classification (Stage-2) were the four available bench-

mark datasets, BioInfer, HPRD50, IEPA and LLL. The testing dataset was formulated using sen-

tences not found in the fine-tuning data sets. These sentences were extracted by GIX through

keyword-based extraction from PubMed. The sentences comprising the testing dataset, obtained

from published literature, are related to E. coli, while the benchmark datasets used for fine-tuning

represent different domains. For example, the IEPA dataset is focused on biochemical relations

and the LLL is dedicated to Bacillus subtilis. Thus, there is no overlap between the content of

these four datasets and the E. coli-related sentences used for testing. The keywords used to extract

the abstracts of published literature describing E. coli transcription from PubMed were “E coli
Escherichia coli gene expression regulation transcriptional”. To ensure the extraction of only

highly relevant papers, the maximum number of retrieved articles was set to 1000. As in the pre-

vious experiment, we determined the threshold value γ for CF, which was set at 1.5. The inputs

and outputs of each process in GIX for Exp3 are depicted in Fig 11.

As depicted in Fig 12, in the absence of prior knowledge, the CF1 associated with the major-

ity of relations is distributed within the ranges [0, 2] and [4,10]. As per Eq 2, CF2 will vary
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between 0 and 3. To balance the influence of prior knowledge and extraction based on existing

literature on the cumulative CF, we set the parameter K to 2, after averaging the higher values

within the ranges of CF1 and subsequently dividing by the maximum value of CF2. To com-

pute the CFeaet
value using Eq 1 and validate the extracted relations, we used the regulatory

interactions TF-TF, TF-operon, TF-gene, TF-TU, and the regulators annotated in RegulonDB

as prior knowledge.

We retrieved 954 abstracts containing 7,358 sentences. During pre-processing, 4,022 sen-

tences were eliminated, leaving 3,336 sentences The RE stage extracted 8,014 positive entity

pairs from within these 3,336 sentences. After post-processing refinement, we extracted 2,866

interactions. Upon evaluating the extracted relations against the 578 abstract-level interactions,

456 interactions were accurately identified. An additional 622 GIX extracted regulations were

confirmed by relationships from RegulonDB that have not been annotated from abstracts of

Fig 11. GIX’s extraction process for Escherichia coli relations illustrating the outputs at each step (dark grey

blocks) and inputs such as datasets, databases, or target-specific keywords (light grey blocks).

https://doi.org/10.1371/journal.pone.0303231.g011

Fig 12. (i) Confidence factor (CFeaet
) pertaining to the extracted relations for the E. coli distribution CFeaet

of without

prior knowledge (PR) (ii) the percentage of relations extracted whose confidence factor CFeaet
was influenced by prior

knowledge.

https://doi.org/10.1371/journal.pone.0303231.g012
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referenced literature. Of the regulations extracted by GIX, 92% were influenced by prior

knowledge in their computed CF. Fig 12 shows that a significant number of relations with

high confidence values are either known relations or have a known controlling entity. The

interaction yielding the highest confidence value, of 24.65, was CytR!CRP. The high confi-

dence value of the extracted relations provides a strong certainty in the accuracy and reliability

of the extracted information.

Application of GIX

Transcriptional regulation relations automatically extracted using GIX are important for

understanding biological processes, particularly in the area of gene regulatory network infer-

ence. In this section, we demonstrate the way in which the output generated by GIX can serve

not only as a basis for the inference of Gene Regulatory Networks (GRNs) but can also incor-

porate. CFeaet
to provide valuable information about the reliability of each interaction.

For GRN inference, we chose the top 500 GIX-extracted transcriptional regulations of

E. coli obtained in Experiment Exp3. The selection was based on the CFeaet assigned to each

relation. We used Cytoscape [61], an open-source software platform, to visualize the network

(Fig 13). With the confidence factor of each relation used as its corresponding weight, an arc

appears thicker for higher CFeaet . The node size corresponds directly to the in-degree of the

node. The GRN can help understand the complex regulatory mechanisms governing gene

expression in E. coli. These networks can also serve as prior knowledge for reconstructing

GRNs using more advanced computational methodologies and address the excessive computa-

tional overhead.

Biological circuits offer valuable insights into molecular-level interactions, especially within

GRNs. From the presented GRN network for E. coli, entities CRP, fnr, CytR, fis, MarA, csgD
stand out as the key regulatory genes, regulating 77 genes among themselves. Identifying con-

troller genes is crucial as they govern gene expression, influencing cell state and offer help in

developing targeted treatments for genetic disorders like cancer. GRNs exhibit sparsity, evi-

dent in the presented network where 334 genes exhibit only 500 interactions. Further, it may

also be noted that due to the high cost of wet lab experiments to determine interactions,

exhaustive exploration of relationships among thousands of genes becomes impractical. While

significant efforts have been made to develop advanced computational methods for inferring

relationships using gene expression data, yet the noisy and scarce nature of the data poses

Fig 13. Network diagram of 500 extracted E. coli gene/protein relations visualized using Cytoscape [61].

https://doi.org/10.1371/journal.pone.0303231.g013
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several challenges in achieving improved accuracy and efficiency. Integrating relationships

obtained via GIX as a-priori knowledge in the reconstruction process can significantly reduce

convergence time, enhance overall accuracy, and facilitate the discovery of new relations. This

iterative process, once refined, allows for cost-effective high-throughput experiments targeting

specific entities, reducing the overall expense of uncovering crucial relationships.

Conclusions

GIX (Gene Interaction Extraction), our systematic and robust relation extraction framework,

focuses on mining biological entity interactions from journal paper abstracts using domain-

specific strategies and pre-trained attention-based models. The methodology underlying the

GIX framework involves three stages: (i) pre-processing, (ii) relation extraction, and (iii) post-

processing. The pre-processing stage uses a selection of keywords to obtain abstracts of highly

relevant literature. Sentences that do not contain functional interactions and entity pairs are

automatically excluded at this stage. In the relation extraction stage, the pre-trained large lan-

guage models BERN2 and BioBERT are used for NER and RE. The associated entity-labelling

schema reduces sentence complexity and improves model prediction accuracy. The post-pro-

cessing stage refines the extracted relations by removing incorrectly recognised entities and

assigns a novel confidence factor to quantify the correctness of an extracted relation. This con-

fidence factor depends on both the information from multiple documents that corroborate a

given regulatory relationships, and the pre-existing knowledge available from manually

curated databases. The performance of GIX was validated using four benchmark datasets of

gene/protein interactions. GIX’s relation extraction ability surpassed the performance of previ-

ous state-of-the-art methods. GIX’s performance against manually curated datasets and reposi-

tories was robust. We also observed the ability of GIX to augment existing datasets with new

sentences from abstracts of published literature containing newly discovered terminologies

and biological processes. The application of GIX to infer an E. coli gene regulatory network

demonstrated its ability to work effectively with real world data.

Despite the rapid execution and high performance of pre-trained domain-specific large lan-

guage models, the RE techniques described in the existing literature remain primarily confined

to paper abstracts. The title, author list, affiliation, abstract, and keywords are easily available

on Medline’s PubMed repository. Designing a method to automatically extract text from the

body of the paper may require source-specific code, authentication requirements and addi-

tional permissions to run data-scraping web services. Therefore, automatically extracting

pieces of text from the body of the paper is relatively a more complex task than extracting text

from abstracts. While the proposed method has focused on extracting relations using abstracts

of publications, the approach is generic, and it can be easily extended for extracting relations

using entire documents. For future work, we aim to extend GIX’s applicability by seamlessly

integrating extracted genetic relationships as prior knowledge for improved GRN reconstruc-

tion. Additionally, we will explore GIX’s ability to identify multi-sentential relationships, pro-

viding a more comprehensive understanding of complex biological interactions.
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