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Abstract

Lung cancer is a major public health challenge and, despite therapeutic improvements, is

the first leading cause of cancer worldwide. The current cure rate from advanced cancer

treatment is excessively low. Therefore, it is of great importance to identify novel, potent and

less toxic anticancer agents for the treatment of lung cancer. The aim of our research is to

synthesize a new biscoumarin 3,3’-((3,4,5-trifluorop -phenyl)methylene)bis(4-hydroxy-2H-

chromen-2-one) (C35) as an anticancer agent. C35 was simply prepared by 4-hydroxycou-

marin and 3,4,5-trifluorobenzaldehyde under ethanol and its structure was analyzed by

spectroscopic analyses. The anti-proliferation effect of C35 was detected using CCK-8

assay. Migration abilities were measured by Transwell assay. The expression of correlated

proteins was determined by Western blot. The results showed that C35 displayed strong

cytostatic effects on lung cancer cell proliferation. In addition, C35 possessed a significant

inhibition of migration by reducing the expression of matrix metalloproteinases-2 (MMP-2)

and MMP-9 in lung cancer cells. Furthermore, C35 treatment suppressed the phosphoryla-

tion of p38 in lung cancer cells. Moreover, in vivo experiments were carried out, in which we

treated Lewis tumor-bearing C57 mice via intraperitoneal injection of C35. Results showed

that C35 inhibited tumor growth in vivo. In conclusion, our study demonstrated the antican-

cer activity of C35 via suppression of lung cancer cell proliferation and migration, which is

possibly involved with the inhibition of the p38 pathway.

Introduction

Lung cancer is the most common cause of cancer death, accounting for 24% of cancer-related

deaths, with a 5-year survival rate of only 15% after diagnosis. Treatment options for lung can-

cer include surgery, chemotherapy, radiotherapy, immunotherapy and targeted therapy. In

recent years, significant progress has been made in immunotherapy and targeted therapy for

lung cancer, but the 5-year survival rate of lung cancer patients is still low, and lung cancer is
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prone to recurrence and metastasis. Therefore, it is of great importance to identify novel,

potent, and less toxic anticancer agents for lung cancer treatment.

The natural products are important sources of drugs with a significant proportion of cur-

rent drugs being natural products or derived from natural products. Coumarin, also known as

1,2-benzopyranone, has a large conjugated system in which the benzene ring and the pyranone

ring in its structure can form a large conjugated system, making coumarin highly modifiable

and capable of introducing a variety of functional groups [1]. Coumarin-derived compounds

obtained through total synthesis or structural modification can enhance their anti-tumor

activity. Accumulating data have shown a number of synthesized coumarin-derived com-

pounds for their potential anti-tumor activities [1]. Those coumarins-based anticancer agents

have been identified for a variety of mechanisms of action, including alkylating agents, topo-

isomerase inhibitors, angiogenesis inhibitors, apoptosis inducers, human carbonic anhydrase

inhibitors, telomerase inhibitors and miscellaneous agent [1].

Biscoumarin, a coumarin-derived compound, is mainly used as an anticoagulant for the

prevention and treatment of thrombosis. Recently the anti-diabetic [2] and anti-tumor [3]

effects of biscoumarin have also been reported. Methylenebis (4-hydroxy-2H-chromen-2-one)

biscoumarins are easily and simply synthesized by 4-hydroxycoumarin and different substitu-

ent benzaldehydes. Different substituent benzaldehydes affect the efficiency of synthesis and

the activity of the product. Therefore, the selection of benzaldehyde with different substituents

is particularly important. Previously, we found that the synthesized biscoumarin 3,3’-

((4-chlorophenyl)methylene)bis(4-hydroxy-2H-chromen-2-one) suppressed non-small cell

lung cancer cell proliferation and induced cell apoptosis, possibly involving receptor interact-

ing protein-1 [4]. Fluorine and chlorine are both halogen elements, and the rational design by

the introduction of fluorine into a compound has achieved success in the development of

organic anticancer drugs [5–7]. So here we synthesized another similar biscoumarin 3,3’-

((3,4,5-trifluoropHenyl)methylene)bis(4-hydroxy-2H-chromen-2-one) (compound C35),

with three fluorine substituents instead of one chlorine substituent on the benzaldehyde unit,

in order to explore more potential candidates for lung cancer treatment.

Materials and methods

Chemicals and apparatus

The established H1299 and Lewis cell lines were obtained from The Chinese Center for Type

Culture Collection. NMR data were collected on a Bruker AM-400 spectrometer in DMSO-d6

(Bruker, Fällanden, Switzerland). HR-ESI-MS were performed in MeOH on a thermofisher

Q-Fleet spectrometer (Thermofisher Scientific, San Jose, CA, USA). The melting point was

detected by RY-2 melting point meter (Tianjin analytical instrument factory, Tianjin, China).

Synthesis of compound biscoumarin (C35)

The synthesis of C35 is according to our previous paper [4]. In detail, 1.62 g (10 mmol) 4-hydroxy-

coumarin (1) and 5 mmol 3,4,5-trifluorobenzaldehyde (2) were dissolved in 20 mL ethanol, placed

in a 50 mL round-bottom flask, stirred and heated at reflux for 4 h, solid precipitation could be

seen in the reaction, monitored by thin layer chromatography (TLC) until the end of the reaction,

cooled and filtered, the precipitate was recrystallized with ethanol to obtain 3 (C35, Fig 1).

Cell culture

H1299, Lewis, H9C2 and Beas-2B cells were maintained in Dulbecco’s modified Eagle’s

medium (DMEM; Gibco, Waltham, MA, USA) supplemented with 10% fetal bovine serum
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(FBS; Gibco, Waltham, MA, USA). All cells were cultured at 37˚C in a humidified atmosphere

containing 5% CO2. The cell authentication was performed via STR profiling and species

authentication. All the cells were passaged fewer than 20 times.

Cell proliferation assay

The H1299, Lewis, H2C9 and Beas-2B cells were plated (2 × 103/well) in 96-well plates and

incubated with C35 (0, 10, 20 μM) for 72 h, respectively. CCK-8 solutions (Dojindo, Japan)

were then added and maintained at 37˚C for 1 h. Finally, the absorbance was measured at

450 nm.

Western blot

Western blot was performed according to our previous paper [4]. In brief, whole cell extracts

were prepared by lysing the cells in lysis buffer (KeyGEN biotech, Nanjing, China). Then the

equal amounts of total proteins were resolved by SDS-PAGE and the proteins of interest were

probed by Western blot. Subsequently the Western blot results were visualized by enhanced

chemiluminescence according to manufacturer’s instructions (Millipore, Billerica, MA, USA).

The expression of protein was quantified by Image J software.

Transwell assay

A Transwell chamber (Corning, MA, United States) was used to analyze cell migration capac-

ity. Briefly, the lung cancer cells in serum-free medium were loaded into the upper chamber

and the lower chamber was loaded with medium containing 5% FBS. Then the cells were

treated with C35 (0, 10, 20 μM). After 24 h of incubation, non-migration cells were removed

and migration cells were stained with crystal violet. Finally, the number of migration cells was

counted by microscopy.

ELISA

The amount of MMP-2 and MMP-9 in cell culture supernatants were determined by ELISA

according to the manufacturer’s instructions (Zikerbio, Shenzen, China). Briefly, cells were

plated on 6-well plates at 70–80% confluence. After overnight culture, cells were treated with

Fig 1. Synthesis of C35.

https://doi.org/10.1371/journal.pone.0303186.g001
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C35 (0, 10, 20 μM) for 72 h, then cell culture supernatants were collected and incubated with

HRP-labelled detection antibody in 96-well plates. After washing 5 times with washing buffer,

50 μL of substrate A and B were added to each well, followed by 50 μL of stopping solution.

OD values were measured at 450 nm.

In vivo study

Six-week-old male mice were purchased from Animal Center (Guangzhou, China) and main-

tained under pathogen-free conditions. All procedures involving animals and their care were

conducted in in accordance with the guidelines of the Institutional Animal Care and Use

Committee of Foshan University. A total of 1× 106 cells in 100uL Phosphate Buffered Saline

(PBS) was subcutaneously injected in the right flank of the mice. After palpable tumors had

developed, mice were randomly divided into three groups and received four intraperitoneal

injections of following agents: (a) PBS control; (b) 50 mg/Kg C35; (c) 75 mg/Kg C35. There are

5 mice in each group. The tumor volumes were measured with a caliper and calculated as the

following formula: V = 0.5 × length × width2, the length was the long axis of the tumor, and

the width was the short axis. At the end of the experiments, mice were euthanized and the

excised tumors were collected and weighed.

Statistical analysis

Data are presented as mean ± SD. Statistical analyses were performed with GraphPad PRISM

6.0 software. Significant differences between two groups were compared using a Student’s t-

test (two-tailed). A one-way ANOVA was used in multiple comparisons.

Results

Identification of C35

3,3’-((3,4,5-trifluoropHenyl)methylene)bis(4-hydroxy-2H-chromen-2-one) (C-35), 1.89g with

the yield of 81%, white power, formula: C25H13F3O6, m.p. 250–252˚C; ESI-MS, m/z: 467 [M

+H]+; IR (KBr): 3070, 2725,2585, 1671 (C = O), 1604, 1528, 1434, 1349, 1101 cm-1; 1H-NMR

(DMSO-d6, 400MHz): d 6.275 (s, 1H, H-11), 7.063 (dd, 2H, J = 6.4, 10.4Hz, H-200,600), 7.289

(td, 2H, J = 1.2, 8.0 Hz, H-6,60), 7.338 (dd, 2H, H-8,80), 7.585 (td, 2H, J = 1.6, 7.6 Hz, H-7,70),

7.894 (dd, 2H, J = 1.6, 8.0Hz, H-5,50), 10.685 (brs, 2H, 2OH). Compared to the literature [8],

the compound is identified as 3,3’-((3,4,5-trifluoropHenyl)methylene)bis(4-hydroxy-2H-chro-

men-2-one) (Fig 1, S1-S3 Figs in S1 File).

C35 inhibited the proliferation of lung cancer cells

To evaluate the anti-proliferative effect of C35, human lung cancer cell H1299 and mouse lung

cancer cell Lewis cells were treated with various concentrations of C35 for 72 h, respectively,

and cell proliferation was measured by CCK-8 assay. We found that C35 inhibited the prolifer-

ation of H1299 and Lewis cells in a manner with dose-dependent (Fig 2A and 2B). In H1299

and Lewis, C35 had IC50 values of 20.77μM and 20.87μM, respectively. In addition, the

human pulmonary epithelial cell line Beas-2B and normal rat cardiomyocytes cell line H9C2

were used to assess the cytotoxic effect of C35. As shown in Fig 2C and 2D, C35 is less toxic to

H9C2 and Beas-2B cells than to H1299 and Lewis cells, which suggests that C35 inhibits lung

cancer growth in a specific manner.
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C35 reduced the migration of lung cancer cells

Cell migration is a key step in the cancer progression. To further investigate the role of C35 on

cell metastasis, the cells were subjected to an Transwell migration assay. As shown in Fig 3,

there is a clear trend towards a dose-dependent decrease in migration cells after C35 treatment

in both H1299 and Lewis cells.

As tumor cells migrate, MMPs degrade the basement membrane [9]. Therefore, the pro-

tein expression of MMP-2 and MMP-9 in lung cancer cells in response to C35 treatment

were evaluated through Western blot and ELISA. The Western blot analysis showed that the

high concentration of C35 (20 μM) stimulation decreased the expression of MMP-9 in

H1299 cells (Fig 4A). In addition, C35 stimulation decreased the expression of MMP-9 and

MMP-2 in Lewis cells (Fig 4B). Moreover, our data showed that C35 treatment significantly

inhibited the amount of MMP-2 and MMP-9 in extracellular fractions in both H1299 and

Lewis cells (Fig 4C and 4D). Taken together, those results suggest that C35 reduces lung

cancer cell migration.

C35 suppressed the phosphorylation of p38 in lung cancer cells

AKT and p38 pathways has been reported to regulate cell proliferation, migration, and inva-

sion in cancer [10, 11]. Consequently, we investigated whether C35 has an impact on these sig-

naling pathways, and found that it decreased p38 phosphorylation (Fig 5), but not AKT

phosphorylation (S4 Fig in S1 File).

Fig 2. The proliferation of lung cancer cells was inhibited by C35. The H1299 (A), Lewis (B), H9C2 (C) and Beas-2B

(D) cells were treated with C35 at the indicated concentrations (0, 10 and 20 μM) for 72 h. And then the cell viability

was measured by CCK-8 assay. Data are presented as mean±SD of three independent experiments. **p<0.01.

https://doi.org/10.1371/journal.pone.0303186.g002
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C35 inhibited the tumor growth in vivo

As shown in Fig 6A–6C, despite the same number of Lewis cells injected, tumor growth in

vivo was significantly reduced in either 50 mg/Kg C35 or 75 mg/Kg C35 treatment groups

compared to PBS group, as evidenced by a decrease in tumor growth rate and weight of the

excised tumor in C35 treated group compared to those in PBS group. Moreover, C35 did not

cause a significant impairment in the bodyweight (Fig 6D) or tissue morphology of mice (S5

Fig in S1 File). All mice survived after treatment with C35 or PBS. In conclusion, consistent

with the in vitro results, C35 had the antitumor activity in vivo.

Discussion

Many natural and synthetic coumarin-like compounds have been extensively studied by many

researchers for their anticancer activity due to their structural, non-toxic and biological prop-

erties [1]. These coumarin-based anticancer drugs have been identified through diverse mech-

anisms of action, such as alkylating agents [12, 13], topoisomerase inhibitors [14, 15],

hormone antagonists [16–19], angiogenesis inhibitors [20–22], antimitotic agents [23–26],

apoptosis inducers [27–31], human carbonic anhydrase inhibitors [32–35], telomerase inhibi-

tors [36, 37]. Biscoumarin, a coumarin-derived compound, has been reported as a potent and

efficient enzyme inhibitor as α-glucosidase inhibitor, α-amylase inhibitor, urease inhibitor,

aromatase inhibitor [38]. Some studies have reported the development and biosynthesis of

coumarin derivatives, and showed their anti-proliferative effects on tumor cells [3, 39–43], but

the mechanism remains largely unknown.

Here, we synthesized biscoumarin C35 and found that C35 exhibited significant cytotoxic-

ity against the lung cancer cells in a concentration dependent manner, but had little effect on

normal cells. Moreover, C35 treatment in vivo did not cause parenchymal organ damage in

brains, hearts, lungs, livers and kidneys. In addition, migration ability is related to the meta-

static potential of cancer cells, which contributes to cancer progression and poor patient

Fig 3. The migration of lung cancer cells was reduced by C35. (A) H1299 and Lewis cells were treated with different

concentrations of C35 (0, 10, and 20 μM) for 24 h. (B and C) The migration cells were photographed and quantified.

Data are presented as mean±SD of three independent experiments. **p<0.01.

https://doi.org/10.1371/journal.pone.0303186.g003
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outcomes [44, 45]. Extracellular matrix and basement membrane are the main barriers for

tumor metastasis [46]. Degradation of stromal collagen by MMP-2 and MMP-9 is the bio-

chemical basis for tumor cell migration and invasion into surrounding tissues [47]. Therefore,

Fig 4. C35 reduced the expression of MMP-2 and MMP-9. (A and B) Western blot analyses of the relative expression

of MMP-2 and MMP-9 in H1299 and Lewis cells treated with or without C35 as indicated concentrations. β-actin

served as loading control. 1, 2 and 3 represent three of the sample in the indicated group. (C and D) The amount of

MMP-2 and MMP-9 in H1299 and Lewis cell culture medias were determined by ELISA. Data are presented as mean

±SD of three independent experiments. *p<0.05.**p<0.01.

https://doi.org/10.1371/journal.pone.0303186.g004

Fig 5. Western blot analyses of the phosphorylation of p38 in H1299 (A) and Lewis (B) cells treated with or without

C35 as the indicated concentrations. β-actin served as loading control. The 1, 2 and 3 represent three of the samples in

the indicated group. Data are presented as mean±SD of three independent experiments. *p<0.05.**p<0.01.

https://doi.org/10.1371/journal.pone.0303186.g005
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the role of MMP-2 and MMP-9 is considered to be one of the key steps in tumor metastasis.

Consistently, our results indicated that C35 dose-dependently inhibited the migration of H1299

and Lewis cells, which concomitant with the reduced expression of MMP-2 and MMP-9.

The MAPK signaling pathway has been reported to play an important role in cell prolifera-

tion, apoptosis and differentiation [48]. The p38 signaling pathway, one of the MAPK signal-

ing pathways, plays a central role in regulating the expression and activity of MMPs [49, 50],

and is integral in carcinogenesis and cancer maintenance [51, 52]. Activation of the p38 signal-

ing pathway has been showed increases the expression of MMP-2 and MMP-9 [53]. In this

study, we observed that C35 significantly repressed the phosphorylation of p38, indicating that

C35 may exert its cytotoxic effect by inactivating p38 signaling pathway.

Furthermore, in our previous study [4] the synthetic biscoumarin 3,3’-((4-chlorophenyl)

methylene)bis(4-hydroxy-2H-chromen-2-one) suppressed non-small cell lung cancer cell pro-

liferation and induced cell apoptosis. Structure-activity relationship (SAR) research revealed

that electron-withdrawing groups such as Cl and NO2 on benzaldehyde showed the most pro-

found anti-cancer activity [54]. Mayank and colleagues [8] have developed furtherly that

chloro- substituent at 2 or 6, or 4 position on benzaldehyde provided good anticancer activity.

The rational design by the introduction of fluorine into a compound has achieved success in

the development of organic anticancer drugs [5–7]. In our present study, although the similar

biscoumarin C35 with 3,4,5-trifluoro substituents instead of 4-chloro on the benzaldehyde

ring have higher IC50 value in Lewis lung cancer cells, biscoumarin C35 inhibited the migra-

tion of lung cancer cells. Most importantly, C35 showed anti-cancer capacity in vivo. It is

worth for further study.

Conclusions

In conclusion, our study showed that the biscoumarin C35 with 3,4,5-trifluoro substituents

instead of 4-chloro on the benzaldehyde ring displayed strong cytostatic effects on lung cell

proliferation, and also possessed a significant inhibition of migration by reducing the

Fig 6. C35 inhibited tumor growth on Lewis allograft tumor in C57 mice. (A) Images of Lewis tumor of C57 mice

treated with PBS or C35 (n = 5 in each group). (B) The tumor volume was measured every 2 days, and the tumor

growth curve was drawn. (C) Tumor weights of the three groups were measured. Each dot represents one sample. (D)

Comparison of body weight of C57 mice before and after C35 or PBS treatment. *p<0.05. **p<0.01.

https://doi.org/10.1371/journal.pone.0303186.g006
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expression of MMP-2 and MMP-9 in lung cancer cells. Moreover, C35 treatment suppressed

the phosphorylation of p38 in lung cancer cells, which may contribute to the anti-cancer activ-

ity of C35. Therefore, C35 may be a novel and effective approach for the treatment of lung

cancer.
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