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Abstract

Accurate delineation of key waveforms in an ECG is a critical step in extracting relevant fea-

tures to support the diagnosis and treatment of heart conditions. Although deep learning

based methods using segmentation models to locate P, QRS, and T waves have shown

promising results, their ability to handle arrhythmias has not been studied in any detail. In

this paper we investigate the effect of arrhythmias on delineation quality and develop strate-

gies to improve performance in such cases. We introduce a U-Net-like segmentation model

for ECG delineation with a particular focus on diverse arrhythmias. This is followed by a

post-processing algorithm which removes noise and automatically determines the bound-

aries of P, QRS, and T waves. Our model has been trained on a diverse dataset and evalu-

ated against the LUDB and QTDB datasets to show strong performance, with F1-scores

exceeding 99% for QRS and T waves, and over 97% for P waves in the LUDB dataset. Fur-

thermore, we assess various models across a wide array of arrhythmias and observe that

models with a strong performance on standard benchmarks may still perform poorly on

arrhythmias that are underrepresented in these benchmarks, such as tachycardias. We pro-

pose solutions to address this discrepancy.

1 Introduction

An electrocardiogram (ECG) is a basic medical diagnostic tool that monitors the electrical

activity of the heart. It is non-invasive, relatively quick to perform, and inexpensive while pro-

viding a wealth of information about the overall health of the heart. Traditionally, the analysis

of the structural elements in an ECG, including the durations and morphology of the QRS

complex, the P and T waves (see Fig 1), plays a key role in identifying abnormalities or irregu-

larities in the heart’s electrical activity that may point towards underlying heart conditions [1].
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Precise delineation, which involves identifying the onset and offset of these waves and not just

the peaks, is hence critical.

As such, automatic delineation of ECGs has been an important and well-developed topic,

starting with rule-based techniques for locating the QRS complex, to wavelet transform-based

delineation, [2–4] and deep learning techniques. Wavelet transforms deliver state-of-the-art

performance in the benchmark QT database (QTDB), [5]. However, as [6, 7] point out, rule-

based approaches typically require the adjustment of a threshold value for high scores, which

may limit their generalizability to other datasets. Deep learning offers an alternative as shown

for example in [6–8]: Jimenez-Perez et al. [6] used a U-Net type architecture [9] to achieve

delineation performance comparable to wavelet-based methods on QTDB, and Moskalenko

et al. [8] reported higher delineation performance compared to wavelet-based algorithms on

the Lobachevsky University Database (LUDB) [10].

Although deep learning based delineation has shown excellent performance on bench-

marks, arrhythmias pose a particular challenge in two important ways. First of all, there is a

lack of data, reflected in the fact that the benchmark datasets are quite small and their samples

tend to have relatively low heart rates. As a result, the variety of arrhythmias for the purpose of

testing delineation quality is limited despite the careful preparation of these databases. A sec-

ond important obstacle is that many arrhythmias cause significant changes in the structural

elements and morphological features of an ECG. These changes are particularly striking in

case of the P wave, which usually has the lowest signal to noise ratio. For example, in atrial

fibrillation (AFIB) and atrial flutter (AFL) the P wave is absent, and a fibrillatory signal or flut-

ter wave is found instead. As noted in [11, 12], false P wave predictions during such events

present a significant challenge for delineation algorithms in clinical practice. Other arrhyth-

mias, such as atrioventricular (AV) block, affect not only the position of P waves in relation to

the QRS complex, but also their occurrence. This can result in P waves and QRS complexes fol-

lowing independent rhythms. In all of these cases, the performance of a P wave delineation

algorithm is affected adversely. For instance, Aziz et al. [13] report a considerable drop in sen-

sitivity for P wave detection in the case of ECGs exhibiting arrhythmia.

In this paper, we investigate this two-fold problem in the setting of deep learning and

develop remedies. Specifically, we evaluate the performance of deep learning models, and find

that the performance drops markedly in the presence of certain arrhythmia, such as various

forms of tachycardia. An example of such failure is shown in Fig 6. Because tachycardia are

underrepresented in both QTDB and LUDB, this drop doesn’t affect the average performance

of delineation in these benchmarks much, which explains why previous approaches still per-

formed well on the benchmark tests. As remedies, we build on prior studies and devise a seg-

mentation model with a U-Net like architecture to delineate ECG signals with diverse

arrhythmias by training on a new dataset consisting of a large number of recordings with vari-

ous arrhythmia types. In addition, we develop a segmentation model using a hybrid loss func-

tion that combines segmentation with the task of arrhythmia classification. This classification

guided approach can ameliorate false P wave predictions for AFIB and AFL in short signals. A

flow diagram of the model is shown in Fig 2.

The key contributions of this paper can be summarized as follows:

• Training a segmentation model that accurately delineates a chosen set of common arrhyth-

mia types, achieved by using a diverse training set and employing a suitable post-processing

strategy.

• Identifying common failure cases of segmentation models through separate validation on

different arrhythmia types.
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• Evaluating our model’s performance on benchmark datasets QTDB and LUDB, demonstrat-

ing generalizability by results comparable with previous research.

• Introducing a classification guided strategy to reduce false P wave predictions for AFIB and

AFL in short signals.

The rest of the paper is structured as follows. The Related Work Section 2 provides a review

of relevant literature on ECG delineation and deep learning-based ECG analysis. The Methods

Section 3 outlines the databases used for this study and presents the proposed delineation algo-

rithm. The Results Section 4 presents performance evaluation metrics and reports experimen-

tal results. The Discussion Section 5 offers interpretations, implications, and discusses

limitations and future directions. Finally, the Conclusion Section 6 concludes the paper.

Fig 1. A schematic representation of an ECG signal measured in lead I or lead II with the main complexes indicated.

https://doi.org/10.1371/journal.pone.0303178.g001

Fig 2. Flow diagram for ECG delineation: An ECG input signal is segmented by a U-Net like model using an optional classification branch, and

post-processed for noise, before producing final delineation results.

https://doi.org/10.1371/journal.pone.0303178.g002
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2 Related work

2.1 Traditional approaches for ECG delineation

Early works on ECG delineation were primarily focused on developing rule-based methods to

identify and locate the QRS complex. Pan and Tompkins [14] presented a seminal example of

detecting the QRS complex by utilizing slope, amplitude, and width information. Subse-

quently, more advanced techniques have been employed to identify also the P and T waves.

These include digital signal processing such as the wavelet transform [2–4, 15], the Hilbert

transform [16, 17], and the phasor transform [18]. Additionally, classical machine learning

approaches like hidden Markov models [19, 20] and Gaussian mixture models [21] have also

been employed. Among these, wavelet-based methods have been widely cited as being the

state-of-the-art, based on their delineation performance on public datasets such as QTDB and

LUDB [4]. However, despite their effectiveness, traditional methods typically require manual

feature extraction or domain-specific knowledge, whereas wavelet-based algorithms demand

careful threshold selection for consistent results on different datasets.

2.2 Deep learning based ECG delineation

In recent years, deep learning has shown remarkable success in ECG processing such as

arrhythmia classification [22–25], which led to its increasing popularity in various downstream

tasks [26]. Deep learning has been adopted in ECG delineation as well, where a segmentation

model with a CNN architecture is typically trained to locate the P, QRS, and T waves, which is

then used to carry out the delineation task. The use of CNN architectures in segmentation

tasks offers the advantage of automatically learning hierarchical features from the ECG signals

[27], enabling the model to effectively identify and localize the relevant waveforms. Jimenez-

Perez et al. [28] presented an adaptation of the U-Net architecture [9] to 1-dimensional data,

while Sereda et al. [29] deployed an 8-layer convolutional network and studied the effects of

using an ensemble of networks as opposed to using a single network for the segmentation.

Moskalenko et al. [8] developed a U-Net-like architecture that achieved state-of-the-art perfor-

mance on LUDB in terms of F1-score, when compared to previous deep learning approaches

[29] and wavelet-based methods [4]. In a similar study, Jimenez-Perez et al. [6] again adapted

a U-Net for segmentation but with added emphasis on regularization techniques for training

with limited data. Their model, when cross-validated on QTDB, demonstrated comparable

performance to those using digital signal processing techniques such as wavelet transforms [3].

Recently, Chen et al. [7] developed a 1D-U-Net model for classifying the sample points of a

single heart-beat into P, QRS, T, and none categories. Together with their proposed post-pro-

cessing strategy, the delineation algorithm outperformed other algorithms in terms of sensitiv-

ity for both QTDB and LUDB. Additionally, advanced architectures for ECG delineation

models were explored in Nurmaini et al. [30] using convolutional recurrent networks, and in

Li et al. [31] through an enhanced U-Net model combined with the transformer’s encoder

module.

2.3 Classification guided segmentation

In developing a neural network for semantic segmentation, it is sometimes beneficial to add

an extra classification task. This approach has been particularly effective in the field of medical

image segmentation, where detection of false positives is common for images in which the

object of interest is not present. Huang et al. [32] addressed this problem of over-segmentation

by introducing a classification guided module (CGM) where the model is trained with the

additional classification objective of deciding whether or not a given image contains an organ.
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By filtering out the segmentation output using the classification output, the number of false

positives is reduced. A similar approach was taken by Shuvo et al. [33], where a separate locali-

zer branch was added together with an additional classifier branch.

In the ECG literature, classification and segmentation tasks have remained separate for the

most part, while deep learning architectures have shown great success for both tasks [26]. In

our current work, we experiment with combining the two tasks by training an ECG segmenta-

tion model together with an additional arrhythmia classification learning objective. Previous

studies have demonstrated the effectiveness of convolutional neural networks for arrhythmia

classification. For example, Hannun et al. [22] trained a 34-layer convolutional neural network

for arrhythmia classification of single-lead ECG signals, showing performance comparable to

that of cardiologists. Ribeiro et al. [34] later used a residual network architecture, an architec-

ture first developed by He et al. [35] in the context of image classification, for the reliable diag-

nosis of 12-lead ECG signals. For a detailed review of deep learning applications in arrhythmia

classification, we refer to the systematic reviews conducted by Xiao et al. [36] and Ansari et al.

[37].

3 Methods

3.1 Data

For this study, we have used both internal and external datasets to develop and test our algo-

rithm. The internal database was used for training the segmentation model and assessing

delineation accuracy across diverse arrhythmias. The standard public datasets QTDB and

LUDB were used for external validation of our algorithm. The characteristics of these datasets

are summarized in Table 1 and elaborated upon in subsequent sections.

3.2 Internal dataset

We have assembled an internal database of ECG signals from 1,557 patients by searching the

electrocardiography database (GE MUSE, GE Healthcare, Waukesha, WI) in a single center

(Seoul National University Hospital, Seoul, South Korea). In the process of ECG extraction, all

personal information was anonymized, so the consent form was waived. This study was then

approved by the institutional review board of the participating center (H-1906–163-1044, con-

tinued as D-2010–096-1165). Data extraction commenced on May 31, 2022 and was com-

pleted on December 16, 2022. During data extraction, some of the authors (MJK, SHK, SYO,

MJC) had access to information that could identify individual participants.

Our intent was to collect a dataset in order to conduct experiments to elucidate the segmen-

tation performance for signals during arrhythmia. To do so, we identified 155 subjects with

atrial fibrillation (AFIB) and 59 with atrial flutter(AFL). Among the rest, arrhythmia types

were identified for 490 subjects as normal sinus rhythm (NSR), 84 as sinus tachycardia (ST),

115 as bundle branch block (BBB), 197 as first degree atrioventricular block (AVB1) and 29 as

ventricular tachycardia (VT). The remaining 428 subjects had other heart conditions (not

arrhythmia in the usual sense), such as premature atrial contraction (PAC) or premature ven-

tricular contraction (PVC). A summary can be found in Table 2.

Table 1. Descriptions of signals and their annotations for each of the databases.

Data Source # Recordings Duration Frequency Leads Boundary Annotations

Internal Database 1557 10 seconds 500Hz, 250Hz 2 (I, II) P, QRS, T on/offsets

QTDB [5] 105 15 minutes 250Hz 2 P, QRS on/offsets, T offsets

LUDB [10] 200 10 seconds 500Hz 12 P, QRS, T on/offsets

https://doi.org/10.1371/journal.pone.0303178.t001
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Initial selection of ECGs from the electrocardiography database was based on the presence

of common clinically significant cardiac arrhythmias. After reviewing ECG records, we

excluded ECGs where disagreement on the review result was found, as well as ECGs that were

too noisy to interpret reliably. The original arrhythmia automatic diagnosis from the database,

the commercial interpretation product, the MUSE Cardiology Information System by GE,

confirmed by an overreader, was then independently reviewed by two expert cardiologists.

Only when both readings were in agreement was it applied to the analysis. After that, the onsets

and offsets for P, QRS, and T waves were manually annotated for each lead independently by a

cardiologist using a custom-made software tool. The annotation results were then confirmed

by another cardiologist. As a quality control measure, we include in the S1 Appendix statistics

on the difference between lead I and lead II annotations.

For each subject, the extracted data consisted of a recording with a duration of 10 seconds

for leads I and II with a sampling frequency of either 250Hz or 500Hz. The dataset was parti-

tioned into a training set and a test set. The training set comprised 1032 recordings and was

organized to include approximately 70% of recordings for each identified arrhythmia class.

The test set was composed of the remaining 525 recordings.

3.3 The QT Database (QTDB)

The QT database (QTDB) [5] is a publicly available database that has been used widely for

developing and evaluating ECG delineation algorithms, due to its inclusion of manual annota-

tions. The database collects recordings from multiple databases including the MIT-BIH

arrhythmia database [38], the European ST-T Database [39], and other databases to represent

various QRS and ST-T morphologies. In total, there are 105 two-lead signals sampled at 250Hz

with each signal lasting for 15 minutes. Manual annotations by cardiologists are included for

at least 30 beats per record, which amounts to more than 3600 beats. The annotations include

the peaks and boundaries of waveforms, and in particular include the onset and offset of the P

wave, the onset and offset of the QRS complex, and the offset of the T wave. These annotations

will be used to measure the delineation quality of our algorithm and to compare with previous

wavelet based methods [4, 7, 40].

3.4 Lobachevsky University Database (LUDB)

The Lobachevsky University Database (LUDB) is a more recently published database, also

developed as an open-access tool for validating ECG delineation algorithms. Unlike QTDB,

LUDB consists of short signals of 10 seconds from 200 unique subjects, with 12-lead record-

ings sampled at 500Hz included for each subject. Furthermore, LUDB contains a complete set

of annotations for all onsets and offsets of P, QRS, and T waves, which is included for each sin-

gle lead signal. In particular, the total number of annotated beats is considerably higher than

that of QTDB, and this large number of annotated single-lead signals has led studies to take

advantage by using LUDB as training data for their ECG segmentation models [8, 29]. In this

paper, we use LUDB for two purposes. First, we use LUDB alongside QTDB to validate our

delineation algorithm and compare with existing methods [4, 8, 29]. Second, we study the

delineation performance on various arrhythmias when the segmentation model is trained on

LUDB as opposed to the diverse training set sourced from our internal dataset.

Table 2. Distribution of arrhythmia of internal database.

Arrhythmia type AFIB AFL AVB1 BBB NSR ST VT Other Total

# Recordings 155 59 197 115 490 84 29 428 1557

https://doi.org/10.1371/journal.pone.0303178.t002
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3.5 Overview of delineation algorithm

The proposed algorithm consists of two stages. The first is a segmentation stage where a single

lead input signal is passed through a deep learning based segmentation model. As a result, the

signal is segmented into intervals that belong to one of four types: P wave, QRS complex, T

wave, or none of these. The second stage consists of post-processing in which the final decision

on the onset and offset for each of the waveforms is made. The details of each stage are given

in the following sections.

3.6 Segmentation model

We have adapted the encoder-decoder structure of U-Net [9] to our model in a similar fashion

as in the previous papers [6, 8, 29] to work in the context of ECG signals. Namely, the original

convolutions are replaced with 1D convolutions to work with time series data. We have further

modified the structure by incorporating full-scale skip connections, and adding a separate clas-

sification branch whose role will be discussed in the Arrhythmia Classification Guidance Sec-

tion 3.8. The resulting high-level architecture of our model is shown in Fig 3.

The encoder takes a single-lead ECG signal sampled at 500Hz as input and encodes it into

five feature maps at multiple scales through a series of 1D convolutional blocks and MaxPool-

ing layers which downsample by a factor 2. The decoder uses convolutional blocks and linear

interpolation layers to transform these features into an output consisting of four channels of

the same resolution as the input. As in the U-Net variants [32, 41], we allow the decoder net-

works to learn from and aggregate features coming from multiple levels by adapting the full-

scale skip connections of [32]. The final segmentation output is obtained by passing the output

of the decoder through a convolutional layer with 4 filters and kernel size 1 and applying a

Fig 3. Segmentation model architecture. Our architecture is similar to U-Net3+, but uses 1D convolutional blocks and has an additional classifier

branch.

https://doi.org/10.1371/journal.pone.0303178.g003
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softmax classifier for four classes: P wave, QRS complex, T wave, and none of these. This gives

four class probabilities for each time stamp.

Note that for all other convolutional layers, we use a kernel size of 9 and padding of 4. As

for the activation function, we use a leaky rectified linear unit with negative slope 0.01 for all

layers. More specific details can be found in our implementation, which is available at https://

github.com/ckjoung/ecg-segmentation.

3.7 Post-processing

The waveform boundaries are determined from the segmentation output through a post-pro-

cessing stage, which consists of the following three steps. First, we extract segments of each type

(P wave, QRS, T wave, none) by taking connected intervals where the probability of that type

outputted by the model is highest. As a second noise reduction step, we discard short connected

regions (of a duration less than 40 ms) and adjust the label based on the segmentation results of

the adjacent intervals. In particular, we adjust the label according to the following rule:

1. if the two intervals adjacent to a short region have the same label, we regard the short seg-

ment as having the same label, thereby gluing the two regions to a single segment;

2. if the labels of the adjacent intervals are different, we discard the short region and label it as

being none of the waveforms.

In the final step, we proceed by choosing the longest intervals labeled as P wave and T wave

between consecutive QRS intervals and obtain their onsets and offsets. It can of course happen

that there is no P wave, for example in the case of atrial fibrillation, or no T wave, which is very

rare. This procedure automatically removes noise and returns unambiguous results.

3.8 Arrhythmia classification guidance

Here, we introduce an arrhythmia classification guided strategy for segmentation. The idea is

to train the segmentation model jointly with a classification loss based on the arrhythmia type

of each input signal. This is done by adding a classification branch following the deepest layer

of the encoder, which predicts the arrhythmia type of the input signal. The weights of the

model are affected by the joint training, and in addition, we can directly suppress the P wave

segmentation output when the signal is predicted to belong to AFIB or AFL (see Fig 3). In the

Reduced False P wave Predictions Section 4.4, we show that this approach can effectively

reduce the number of false positive P wave predictions when delineating 10-second ECG sig-

nals. However, for other experiments, we only use the segmentation model without the classi-

fier branch. Note that the proposed approach is similar to the classification guided modules of

[32, 33], which have been used in the context of biomedical image segmentation. Here, we

have re-designed the structure for the task of arrhythmia classification of ECG signals.

The structure of the arrhythmia classification branch is shown in Fig 4. The classification

branch itself consists of two convolutional layers using 512 filters and a kernel size of 17. We

Fig 4. Arrhythmia classification branch network architecture.

https://doi.org/10.1371/journal.pone.0303178.g004
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apply batch normalization and dropout for regularization following the classification models

of [22, 34]. The arrhythmia classification is performed by the final fully connected layer with

softmax activation, whose output represents the probabilities of the signal belonging to either

an AFIB or an AFL episode or not. A final prediction is made using an argmax function. Note

that we have allowed the classification branch to take as input not just the feature of the last

encoder block, but of encoder blocks of all levels. This is done by an aggregation scheme which

works as follows. We first downsample the features of the first four encoder blocks to a size

equal to that of the last encoder block. The downsampling is done using an average pooling

layer. After the features have been resampled to the same shape, we concatenate the features to

get a single aggregated feature.

3.9 Training

We have trained the network from scratch with convolutional weights initialized as in He et al.

[42] using the Adam optimizer [43] with default parameters. The learning rate was initialized

to be 0.001 and set to follow a cosine annealing schedule. To increase the diversity of training

data, we applied data augmentation using transformations designed to mimic probable physio-

logical noise, such as baseline wander and powerline noise, as used in [44]. The equations for

these transformations are given as follows:

• Baseline wander:

nblwðtÞ ¼
X50

k¼1

ak cosð2ptkDf þ �kÞ ð1Þ

• Powerline noise:

nplnðtÞ ¼
X3

k¼1

ak cosð2ptkfn þ �1Þ ð2Þ

where Δf = 0.01Hz, fn = 50Hz, with ak and ϕk uniformly sampled from [0, 1) and [0, 2π).

We have also randomly resized the input signal by a factor exp(α) where α is uniformly sam-

pled from [log0.5, log2], added random Gaussian noise with zero mean and standard deviation

0.01mV, and applied a constant baseline shift by an offset sampled from a Gaussian distribu-

tion. Fig 5 shows examples of the used transformations.

We adopt focal loss as introduced in [45] as our segmentation loss function. Focal loss mod-

ifies the standard cross-entropy loss by providing smaller weights to well-classified time

stamps, letting the model focus on regions that are difficult to classify. The focal loss general-

ized to our multi-class segmentation setting can be written in the following form:

Lfocal ¼ �
1

N

XN

n¼1

XC

c¼1

ð1 � ŷn;cÞ
gyn;c log ŷn;c ð3Þ

Here, ŷn;c denotes the predicted probability of time stamp n belonging to class c, while yn is the

one-hot vector of the true class label for time stamp n. In our experiments, we use the default

value of γ = 1.0. During arrhythmia classification guidance of the Arrhythmia Classification

Guidance Section 3.8, we use the standard binary cross-entropy loss Lbce for the classification

branch. This gives the overall loss function:

Ltotal ¼ Lfocal þ aLbce: ð4Þ
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The additional trade-off parameter α can be adjusted to balance the effect of classification and

segmentation losses during training. For all our experiments, we used α = 1.

We train and validate our model using single lead ECG signals. To prevent potential issues

arising from incomplete annotations for waveforms near the beginning and the end of a signal,

we proceed as in [8] to exclude the initial and final 2 seconds of our signals during the training

process. Hence, our model performs segmentation and classification using a signal of duration

6 seconds during training, and of 10 seconds during validation. While this scheme was

designed mainly due to its practicality, we note that ECG recordings of 5 or 10 seconds have

been shown to be successful for a CNN based arrhythmia classification [46]. We only use sig-

nals from leads I and II for training and validation of our model. Each input signal is resam-

pled to 500Hz.

4 Results

4.1 Evaluation metrics

In order to evaluate the performance of the proposed delineation algorithm, we compare the

ground truth annotations for the onsets and offsets of P, QRS, and T waves with the predicted

annotations. We follow the usual standard chosen by The Association for the Advancement of

Medical Instrumentation(AAMI) [47], which considers an onset or an offset to be correctly

detected if an algorithm locates the same type of annotation in a neighborhood of 150ms.

Using this threshold value, we examine for each predicted point whether the prediction cor-

rectly detects a point in the ground truth annotation.

If a ground truth annotation is correctly detected, we count a true positive(TP). In this case,

the error is measured as the time deviation of the predicted point from the manual annotation.

If there is no point of the ground truth annotation in the 150ms neighborhood of the predic-

tion, then we count a false positive(FP). Once every prediction has been compared with the

manual labels, we count for each point of the ground truth annotation which has not been

related to any prediction a false negative(FN).

Based on this, we calculate the following evaluation metrics:

Fig 5. Examples of transformations used for data augmentation. (a) Original, (b) baseline wander, (c) baseline shift, (d) resize, (e) powerline noise

and (f) Gaussian noise.

https://doi.org/10.1371/journal.pone.0303178.g005
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• mean error m

• standard deviation of error σ

• sensitivity

Se ¼
TP

TP þ FN
ð5Þ

• positive predictive value

PPV ¼
TP

TP þ FP
ð6Þ

• F1-score

F1 ¼ 2 �
Se � PPV
Seþ PPV

ð7Þ

Se indicates the algorithm’s ability to identify true positives among all ground truth annota-

tions, while PPV quantifies the algorithm’s precision in detecting annotations. Furthermore,

the F1-score, defined as the harmonic mean of Se and PPV, offers a unified assessment of the

algorithm’s performance. These metrics have been commonly used in the literature for the

evaluation of ECG delineation algorithms [3, 4, 8, 40], and we use them to evaluate perfor-

mance of our model.

4.2 Delineation performance on Arrhythmia

In this section we report how lack of arrhythmia diversity in training data affects evaluation

results of our model using a test set with a diverse range of arrhythmia. We will describe

detailed results in the table below, but first let us illustrate how the model’s performance is

directly affected by lack of diverse training data through various ECG signals from the PTB-XL

dataset [48]. In Figs 6–8 we present delineation output of two models, namely model a),

trained on LUDB data, and model b) trained using the internal dataset. In Fig 6, we observe

that model a) fails to detect any P wave in a signal during sinus tachycardia. Looking at other

Fig 6. Delineation of an ECG showing sinus tachycardia (PTB-XL ECG-ID: 857) using two different models: (a) a model trained on LUDB, which is

somewhat short on tachycardia samples, fails to detect the fairly obvious P waves; (b) a model trained on more diverse data with otherwise identical

settings, performs much better.

https://doi.org/10.1371/journal.pone.0303178.g006
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arrhythmias, specifically AVB1 in Fig 7, both models perform well in detection of QRS com-

plexes and T waves, but model a) has trouble with identifying the P waves. As a final example,

Fig 8 presents the performance of the two models on a signal with bundle branch block and

premature ventricular complexes. In this case, both models detect all waves correctly according

to the standard of AAMI. However, model a) underestimates the width of the QRS complex: it

puts the S wave offset well before the J point. We note that this type of defect is only visible in

the mean error. The other metrics do not reveal this type of flaw. We will now check these phe-

nomena systematically by delineating the test set of the internal dataset, which contains a wide

range of arrhythmia. We point out that model a) and b) both perform well on QTDB (and

LUDB); performance on these benchmark sets is addressed in the next section.

To assess the model’s ability to handle signals with diverse arrhythmias, we measure the

F1-scores separately for each of the following arrhythmia types: normal sinus rhythm (NSR),

sinus tachycardia (ST), bundle branch block (BBB), first degree atrioventricular block (AVB1),

atrial fibrillation (AFIB), atrial flutter (AFL) and ventricular tachycardia (VT). We also exam-

ine how the arrhythmia distribution of the training set can affect the delineation performance.

For this, we train a separate segmentation model using LUDB as the only training set and com-

pare the resulting delineation performance. LUDB has often been used in previous studies [7,

29] for training a segmentation model for the purposes of delineation. Here, we follow the

same approach but test it on the internal dataset in order to measure performance for different

Fig 8. Delineation of an ECG showing bundle branch block and premature ventricular complex (PTB-XL ECG-ID: 287) using two different models:

(a) a model trained on LUDB detects all waves correctly, but underestimates the width of all QRS complexes with the exception of the PVC; (b) a model

trained on more diverse data with otherwise identical settings, detects the onsets and offsets accurately.

https://doi.org/10.1371/journal.pone.0303178.g008

Fig 7. Delineation of an ECG showing sinus tachycardia and AVB1 (PTB-XL ECG-ID: 3337) using two different models: (a) a model trained on LUDB

delineates all QRS complexes and T waves, including the premature ventricular complex, correctly, but misses P waves that are in shorter RR intervals;

(b) a model trained on more diverse data with otherwise identical settings, finds all P waves.

https://doi.org/10.1371/journal.pone.0303178.g007
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arrhythmias. For a reliable comparison, each evaluation is repeated 20 times and the average

score is reported.

Table 3 shows the F1-scores for the onset and offset delineation. From the results, we see

that the model trained on the internal dataset can accurately delineate signals of each of the

identified arrhythmia types. The F1-scores are mostly above 0.99, and all above 0.97 except for

VT and P waves for AVB1. By contrast, the model trained on LUDB shows a much higher vari-

ation across different arrhythmia types. For normal sinus rhythm, exceptional F1-scores (over

0.99) are achieved. However, the effect of arrhythmia in delineation accuracy is noticeable in

the F1-scores for P waves during ST and AVB1, and T waves during ST, AFIB, AFL, and VT.

4.3 External validation on QTDB and LUDB

In this section we will see that the improved performance in case of arrhythmia does not come

at the cost of a good benchmark score. Our algorithm’s ability to handle previously unseen sig-

nals is verified using the public datasets QTDB and LUDB. For LUDB, we compared our

results with delineation algorithms using wavelets [4] and previous deep segmentation based

methods [8, 29]. The evaluation was conducted on LUDB signals from leads I and II. Regard-

ing QTDB, we benchmark against wavelet-based techniques [4, 40] and a recent deep learning

approach [7]. Detailed results and comparisons with existing methods are shown in Table 4.

Note that there are some discrepancies in annotation format which we shall elaborate in the

following section.

4.3.1 Discrepancies in annotation format. The study utilizes three databases: internal,

LUDB, and QTDB, each annotated by different cardiologist experts. These databases differ not

only in the number of leads but also in the duration of recordings. Specifically, the internal

and LUDB databases contain short 10-second signals with complete waveform boundary

annotations except possibly for one or two initial and final cardiac cycles [8]. In contrast,

QTDB consists of 15-minute recordings with annotations included for selected beats. Notably,

the annotation format of QTDB, as discussed in [3, 40], does not allow us to measure the exact

Table 3. Arrhythmia dependence of onset and offset delineation performance on a test set comprised of diverse arrhythmia. The training data strongly affects the

models’ performance as highlighted in the bold-faced F1-scores: scores can drop more than 15%.

T raining Rhythm F1-scores (%)

P onset P offset QRS onset QRS offset T onset T offset

Trained on LUDB (limited diversity) NSR 99.84 99.84 99.83 99.84 99.97 99.97

ST 81.54 81.54 99.93 99.93 97.59 98.83

BBB 98.89 98.89 99.94 99.94 99.89 99.94

AVB1 90.53 90.97 99.82 99.82 100.00 100.00

AFIB - - 99.29 99.29 97.92 97.60

AFL - - 99.21 99.21 92.67 93.00

VT - - 91.04 91.11 78.78 78.63

All 90.37 90.46 99.45 99.46 97.42 97.54

Trained on diverse dataset NSR 99.69 99.69 99.78 99.81 99.95 99.95

ST 97.19 97.19 99.91 99.91 99.90 99.94

BBB 99.00 99.00 99.94 99.94 99.88 99.89

AVB1 95.93 95.93 99.84 99.84 100.00 100.00

AFIB - - 99.54 99.54 99.56 99.54

AFL - - 98.97 98.97 98.56 97.57

VT - - 97.83 96.84 94.49 94.61

All 96.47 96.46 99.71 99.69 99.67 99.63

https://doi.org/10.1371/journal.pone.0303178.t003

PLOS ONE Deep learning based ECG delineation of diverse arrhythmias

PLOS ONE | https://doi.org/10.1371/journal.pone.0303178 June 13, 2024 13 / 21

https://doi.org/10.1371/journal.pone.0303178.t003
https://doi.org/10.1371/journal.pone.0303178


PPV value. In fact, when there is no annotation, we cannot decide whether the waveform is

not present or the annotation is simply not included. To address this, we adopt the approach

from [3, 40] and treat an absent manual annotation on a predicted beat as a non-included

annotation. To ensure consistency with [4, 40], we select the lead with the lowest error for each

boundary point.

4.4 Reduced false P wave predictions

Arrhythmia classification guidance was presented in the Arrhythmia Classification Guidance

Section 3.8 as a method to reduce the number of false P wave detections which occur fre-

quently during atrial fibrillation and flutter events. To evaluate its effectiveness, we compared

the number of false positive P wave predictions generated by models trained with and without

classification guidance. Table 5 shows the results, including the PPV and Se scores for the

entire test set as a reference.

4.5 Examples of delineation results

This section presents examples of our algorithm’s delineation outcomes on the MIT-BIH

arrhythmia database [38]. We have chosen multiple instances of arrhythmia to showcase how

our algorithm handles them, as depicted in Fig 9. Other challenges are shown in Fig 10, includ-

ing noise, baseline wander, and loss of signal.

Table 4. Comparison of delineation performance on QTDB and LUDB. For a direct comparison, we have considered the results of Moskalenko et al. [8] which uses sin-

gle lead input, namely lead II. N/A: not applicable, N/R: not reported. This table shows that the performance of model, trained on diverse arrhythmia, has a performance

that is comparable to that of other recent models.

Database Method Metrics P onset P offset QRS onset QRS offset T onset T offset

QTDB Di Marco et al. [40] Se (%) 98.15 98.15 100.0 100.0 - 99.77

PPV (%) 91.00 91.00 N/A N/A 97.76

m ± σ (ms) -4.5 ± 13.4 -2.5 ± 13.0 -5.1 ± 7.2 0.9 ± 8.7 1.3 ± 18.6

Kalyakulina et al. [4] Se (%) 97.46 97.53 98.42 98.42 - 96.16

PPV (%) 97.86 97.93 98.24 98.24 94.87

m ± σ (ms) 3.5 ± 13.8 3.4 ± 12.7 -5.1 ± 6.6 4.7 ± 9.5 13.4 ± 18.5

Chen et al. [7] Se (%) 99.58 99.78 100.0 100.0 - 98.63

PPV (%) N/R N/R N/A N/A N/R

m ± σ (ms) -0.6 ± 20.9 4.9 ± 19.5 1.3 ± 11.4 3.8 ± 18.8 7.4 ± 32.5

Our Method Se (%) 96.51 96.55 100.0 100.0 - 97.50

PPV (%) 97.94 97.97 N/A N/A 95.31

m ± σ (ms) 13.0 ± 16.1 -3.3 ± 18.5 4.1 ± 11.2 2.8 ± 17.3 -0.4 ± 35.1

LUDB Kalyakulina et al. [4] Se (%) 98.46 98.46 99.61 99.61 - 98.03

PPV (%) 96.41 96.41 99.87 99.87 98.84

m ± σ (ms) -2.7 ± 10.2 0.4 ± 11.4 -8.1 ± 7.7 3.8 ± 8.8 5.7 ± 15.5

Sereda et al. [29] Se (%) 95.20 95.39 99.51 99.50 97.95 97.56

PPV (%) 82.66 82.59 98.17 97.96 94.81 94.96

m ± σ (ms) 2.7 ± 21.9 -7.4 ± 28.6 2.6 ± 12.4 -1.7 ± 14.1 8.4 ± 28.2 -3.1 ± 28.2

Moskalenko et al. [8] Se (%) 98.61 98.59 99.99 99.99 99.32 99.40

PPV (%) 95.61 95.59 99.99 99.99 99.02 99.10

m ± σ (ms) -4.1 ± 20.4 3.7 ± 19.6 1.8 ± 13.0 -0.2 ± 11.4 -3.6 ± 28.0 -4.1 ± 35.3

Our Method Se (%) 98.16 98.20 99.67 99.97 99.82 99.63

PPV (%) 96.39 96.36 99.29 99.59 99.66 99.42

m ± σ (ms) 7.4 ± 14.1 -1.8 ± 9.9 6.1 ± 10.5 2.0 ± 10.7 3.0 ± 25.2 4.5 ± 24.4

https://doi.org/10.1371/journal.pone.0303178.t004
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Our method provides accurate delineation in all the presented examples, highlighting its

versatility in several aspects. First, with the exception of signal resampling, no additional signal

processing techniques were used to achieve the results. Second, due to the convolutional

nature of the segmentation model, the algorithm can accommodate signals of varying lengths.

This greatly enhances its utility, particularly in the context of Holter recordings containing

potential arrhythmias, allowing for the algorithm’s application to windows of sizes chosen for

convenience. Our pytorch implementation segments and delineates an ECG record of 30 min-

utes in under 2s-3s on an Ubuntu machine with 64GB DRAM equipped with an NVIDIA

3080Ti with 12GB memory. The model itself uses a little under 20 � 106 parameters, and needs

about 80 MB of memory. In particular, this is both suitable for real time analysis and the

intended application of the analysis of long Holter recordings. Finally, it is worth noting that

no parameter tuning was necessary for the delineation when applied to the MIT-BIH arrhyth-

mia database.

Table 5. Number of false positive P annotations for AFIB and AFL. The PPV and Se scores for the entire test set are shown for reference. The values are averaged over

20 runs.

AFIB (1437 beats) AFL (540 beats) All (14418 beats)

False Positives False Positives PPV (Precision) Se (Recall)

P onset P offset P onset P offset P onset P offset P onset P offset

Trained w/o classification 62.35 62.35 34.25 34.25 97.53 97.52 95.43 95.43

Trained w/ classification 13.85 13.85 1.85 1.9 98.70 98.69 95.31 95.31

https://doi.org/10.1371/journal.pone.0303178.t005

Fig 9. Segmentation results on the MIT-BIH arrhythmia database. (a) Atrial fibrillation in record 221. The small bumps are not misidentified as P

waves, and we have observed the same correct behavior in the presence of atrial flutter. (b) First degree atrioventricular block in record 228, with correct

detection of longer-than-normal PR intervals. (c) Bundle branch block in record 212, featuring a wide QRS complex. (d) Sinus tachycardia in record

209, with heart rate slightly over 100 bpm.

https://doi.org/10.1371/journal.pone.0303178.g009
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5 Discussion

5.1 Delineation of ECGs with arrhythmia

In Table 3 we see that there is a significant difference between the LUDB trained model and

the model trained on internal data with regard to ECGs with certain arrhythmia. There is

almost no performance difference for NSR and BBB, but for the arrhythmias that are not so

well-represented in LUDB, the difference is striking. For example, in LUDB, 15 recordings

represent signals with atrial fibrillation, while only three recordings with atrial flutter and four

recordings with sinus tachycardia are available [10]. The performance drops especially in the

latter case. Fig 3 shows that in some cases of tachycardia all P waves can be missed by an

improperly trained model. Similar problems can occur in AVB1. This brings us to another

problem; the LUDB trained model has a high number of false positive P waves for AFIB and

AFL. Without testing the model on a dataset that has a balanced distribution of arrhythmias, it

is difficult to identify such failure cases. Overall, the results from Table 3 highlight the impor-

tance of using a well-curated dataset that encompasses a broad range of arrhythmias com-

monly seen in clinical practice for developing and validating an ECG delineation algorithm.

For completeness, we reiterate that model a), trained on LUDB, although it has poor perfor-

mance on tachycardia, still performs well on the benchmark QTDB (and of course on LUDB).

The model trained on more diverse data has much better performance in cases of arrhythmia,

while retaining a good performance on the standard benchmark tests as we will discuss next.

5.2 Performance on standard benchmarks

From Table 4 we see that our method shows performance comparable to existing methods in

terms of accuracy and error metrics. Particularly on QTDB, our method shows high

Fig 10. More segmentation results on the MIT-BIH arrhythmia database. (a) Normal sinus rhythm in record 101, with baseline oscillations and

noise. (b) The onset of an episode of atrial flutter in record 222. The early signal displays normal sinus rhythm with PAC, and P waves being detected.

Later, atrial flutter without P waves is observed. (c) An episode of loss of signal in record 232. (d) Ventricular trigeminy in record 201.

https://doi.org/10.1371/journal.pone.0303178.g010
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performance in delineating P wave onsets and offsets, achieving a PPV of over 97.9%, outper-

forming the methods we compared against. In the case of LUDB, our method’s strength lies in

accurate T wave delineation, with both Se and PPV exceeding 99.4%, an improvement over

other methods. Taken together, these results underscore the consistent accuracy of our pro-

posed delineation algorithm across various waveforms. Our method’s weakest point is

observed in the standard deviation of error (σ), particularly noticeable for the T offset of

QTDB signals. In fact, we can observe from Table 4 that deep learning-based methods tend to

exhibit higher σ compared to wavelet-based methods. This also aligns with the observations of

Jimenez-Perez et al. [6], where their deep learning-based delineation also reported a σ larger

than 30ms for T offset delineation in QTDB. We also observe that the onset errors for P and

QRS are shifted positively while the standard deviation remains relatively similar to other

methods, which may partially be an artifact of the independent annotations for training and

test data.

It is worth noting that the comparable performance on the public datasets has been

achieved by training exclusively on the internal dataset. This is important as it implies the high

generalization ability of the proposed algorithm and deep learning based methods in general.

As noted in [6, 8], the ability to handle unseen signals without the need for additional tuning

of parameters is a key advantage of deploying a deep learning model compared to wavelet-

based methods. By using a private dataset as opposed to a portion of either QTDB or LUDB

for training, we have made a clear demonstration of the effectiveness at which deep segmenta-

tion models can be applied to diverse scenarios.

5.3 Arrhythmia guidance

The results on arrhythmia classification guidance, Table 5, indicate a significant reduction in

false positives for both atrial fibrillation and atrial flutter. When compared to the total number

of beats corresponding to the same rhythm type (indicated in the header row of Table 5), the

number of false positives for the classification guided model is less than 1%. The reduction in

false predictions is reflected in the improved PPV scores for P waves belonging to the entire

test set, while recall scores only decreased slightly. As a result, the total F1-score increased

from 96.47% to 96.97%. From the results, we conclude that the classification guided strategy

can be effective in reducing false P wave predictions during AFIB and AFL episodes while

maintaining the overall delineation quality.

We point out that there are two mechanisms via which classification guidance can affect

delineation performance. Firstly, the weights of the segmentation model are influenced by

training with the hybrid loss function (4) which combines both segmentation and classifica-

tion losses. Secondly, the P wave segmentation output is suppressed according to the output of

the classification branch. To illustrate this, delineation results for AFIB in Fig 11 show out-

comes using a model trained with arrhythmia classification guidance: (a) without P wave sup-

pression and (b) with P wave suppression. The positive output from the classification branch

triggers P wave suppression, removing multiple false P wave predictions from the segmenta-

tion output. Note that this direct suppression of P wave segmentation is primarily applicable

to short signals without rhythm changes. In ECGs with rhythm changes, rhythms cannot be

unambiguously classified. A potential avenue for improvement could involve combining with

accurate per-beat classification, which would require more refined training data.

5.4 Limitations and future directions

The current delineation algorithm has limitations which should be considered when applying

it to clinical practice. Firstly, it can only detect a single P wave within an RR interval due to the
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post-processing step (Post-processing Section 3.7), where one P wave segment is selected per

RR interval. This design is particularly effective for mitigating noise, but limits applicability to

abnormal rhythms, such as second or third-degree atrioventricular blocks, where multiple P

waves may precede a QRS complex. Secondly, the assumption of non-overlapping waveforms

(P, QRS, and T) in the algorithm’s output is a further restriction; overlapping waveforms can

for example occur in first, second or third-degree atrioventricular blocks. We note that these

limitations are not unique to our algorithm but are common in deep learning based delinea-

tion approaches [7, 8].

To address these limitations, future work may incorporate flexibility into a delineation algo-

rithm’s output by allowing for the detection of multiple P waves within RR intervals, imple-

menting multi-label classification techniques or separate models for QRS/T waves

(depolarization/repolarization of ventricles) and P waves (depolarization of atria). Moreover,

advanced data augmentation techniques should be investigated to accommodate other

arrhythmias for which collecting annotated data may be challenging or impractical. These

future directions aim to enhance delineation performance and widen its scope of application

in clinical settings.

6 Conclusion

One of the main challenges in ECG delineation is to accurately identify and delineate wave-

forms within irregular cardiac rhythms. This study aimed to develop a deep learning-based

segmentation model capable of detecting the onsets and offsets of P, QRS, and T waves in sig-

nals with potential arrhythmias. By evaluating on the internal dataset, we have highlighted the

impact of arrhythmias on delineation quality. We observed significant drops in F1-scores for

waveform boundary detection, particularly with arrhythmias such as ST, AVB1, AFIB, AFL,

and VT, with reductions of up to 15% in certain cases, emphasizing the need to account for

arrhythmias when developing and evaluating segmentation models for ECG analysis. To

address this, we experimented with training on a diverse dataset and employing a post-pro-

cessing strategy that can handle noise during the final delineation step. Furthermore, we

assessed generalization capability through experiments on the QTDB and LUDB datasets. Our

model demonstrated strong performance on the LUDB dataset, achieving Se and PPV scores

above 99% for QRS and T wave boundaries, and above 98% and 96% respectively for P waves,

showing comparable performance without direct training on LUDB signals. Overall, our study

shows a deep learning based segmentation model to be a versatile tool for delineation which

can be highly adaptive to various situations, while addressing the challenge of accurately

Fig 11. Delineation of atrial fibrillation sample (PTB-XL ECG-ID: 5634) using a model trained with arrhythmia classification guidance (a)

without P wave suppression and (b) with P wave suppression.

https://doi.org/10.1371/journal.pone.0303178.g011
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delineating waveforms in abnormal cardiac rhythms. Future research and development could

focus on broadening the scope of automatic delineation to encompass a wider range of

arrhythmias, through more manual annotations or advanced data augmentation techniques.
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