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Abstract

Tumor microenvironment (TME) is a complex dynamic system with many tumor-interacting

components including tumor-infiltrating leukocytes (TILs), cancer associated fibroblasts,

blood vessels, and other stromal constituents. It intrinsically affects tumor development and

pharmacology of oncology therapeutics, particularly immune-oncology (IO) treatments.

Accurate measurement of TME is therefore of great importance for understanding the tumor

immunity, identifying IO treatment mechanisms, developing predictive biomarkers, and ulti-

mately, improving the treatment of cancer. Here, we introduce a mouse-IO NGS-based

(NGSmIO) assay for accurately detecting and quantifying the mRNA expression of 1080

TME related genes in mouse tumor models. The NGSmIO panel was shown to be superior

to the commonly used microarray approach by hosting 300 more relevant genes to better

characterize various lineage of immune cells, exhibits improved mRNA and protein expres-

sion correlation to flow cytometry, shows stronger correlation with mRNA expression than

RNAseq with 10x higher sequencing depth, and demonstrates higher sensitivity in measur-

ing low-expressed genes. We describe two studies; firstly, detecting the pharmacodynamic

change of interferon-γ expression levels upon anti-PD-1: anti-CD4 combination treatment in

MC38 and Hepa 1–6 tumors; and secondly, benchmarking baseline TILs in 14 syngeneic

tumors using transcript level expression of lineage specific genes, which demonstrate effec-

tive and robust applications of the NGSmIO panel.

Introduction

Immunological components not only play vital roles in the pathogenesis of many human dis-

eases, including cancers, but also in the disease pharmacology. Modern tumor immunology

reveals that tumor microenvironment (TME), including tumor-infiltrating leukocytes (TILs),

cancer associated fibroblasts (CAF) and other tumor stromal components (e.g., endothelia), all

play fundamental and complex roles in tumor development and pharmacology, particularly

the pharmacology of immuno-oncology (IO) treatment [1–4]. Cancers are heterogeneous dis-

eases, not only reflected in tumor cell genetics but also in TMEs. We recently demonstrated
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that intrinsic tumor immunity of four tumor models (MC38, Hepa 1–6, CT26 and EMT-6)

determines their responses to immune-checkpoint inhibitor (ICI) [3]. Therefore, a compre-

hensive understanding of the tumor immunity is critical for revealing mechanism of action

(MOA) and predictive biomarkers of IO treatments [5].

Multi-parametric (including multi-omics) profiling of various tumors is important to reveal

baseline tumor immunity as well as their corresponding pharmacodynamics. For instance,

multi-color flow cytometry analysis is the most common method to reveal TILs in bulk tumor

tissues [5], while whole transcriptome sequencing (or RNAseq) [3, 6, 7] and microarray [8–10]

analysis can reveal immuno-genomics, and proteomics can expose immune-proteomics

parameters of tumors [3]. Pathology-based approaches, e.g., immunohistochemistry (IHC)

and immunofluorescence (IF) can also be particularly revealing for the spatial distribution of

the immune-components in tumor tissues. Apparently, different methodologies have pros and

cons in their applications, so one should carefully consider methods according to the study

objectives.

Mouse tumor models, including syngeneic cell derived tumors and mouse tumor homo-

grafts [4, 5], along with various humanized mouse tumor models [11], are the main workhorse

of IO research, including immunopathogenesis, pharmacology, and MOAs [3, 4, 7, 12, 13].

Flow cytometry profiling of TILs, as well as blood and tissue immune cell analysis, is the most

used methodology for immunophenotyping [3–5, 7], while RNAseq and microarray [8–10]

methods are the choice of methods to examine immuno-genomics of mouse tumors [3–5, 7].

The present report describes a new IO-targeting NGS panel for mouse immuno-genomics

analysis, and discusses the potential applications and advantages, particularly in the context of

the commonly used RNAseq and microarray assays.

Materials and methods

In vivo syngeneic mouse studies

Syngeneic mouse tumor models (MC38 colon cancer and Hepa1-6 liver cancer in C57BL/6

mice), as subcutaneously transplanted tumors in ICI pharmacology investigations, have widely

been described [3, 4, 7]. CD4+ T-cell depletion experiment using anti-mouse CD4 antibody

was also previously described [3]. All the protocols and procedures involving the care and use

of animals were reviewed and approved by the Crown Bioscience Institutional Animal Care

and Use Committee (IACUC) prior to conducting the studies (animal use protocol number

AN-2004-12), in accordance with AAALAC (Association for Assessment and Accreditation of

Laboratory Animal Care) guidelines as reported in the Guide for the Care and Use of Labora-

tory Animals, National Research Council (2011). All animal experimental procedures were

under sterile conditions at SPF (specific pathogen-free) facilities and conducted in strict accor-

dance with the Guide for the Care and Use of Laboratory Animals from the National Institute

of Health, AVMA (2020) and ARRIVE guidelines [14]. Mice were supplied with irradiated

standard rodent chow and 0.2μm filtered, autoclaved reverse osmosis water ad libitum. Mice

were housed in groups of up to five mice per cage in polysulfone individually vented cages,

with enrichment provided in each cage. Daily cage side observations were conducted and

weekly clinical observations by experienced technical staff, which may require euthanasia.

These include chronic and/or severe diarrhea leading to moderate to severe dehydration,

severe anemia indicated by pale feet and ears, evidence of infection that is not readily treatable,

inability/unwillingness to ambulate to reach food or water, blood discharge, labored breathing,

emaciated or moribund condition. Mice showing a net body weight loss >20% compared to

baseline weight measurement were euthanized. Mice were euthanized by CO2, followed by a

secondary euthanasia method of cervical dislocation to alleviate suffering. Tumor growth
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inhibition, through twice weekly tumor volume measurement (1/2 length x width2, maximum

size <2000mm3), was used as pharmacology readout.

Flow cytometry analysis of TILs and immunogenomics analysis of bulk

syngeneic tumors

Baseline (untreated) or treated tumors (ICI or anti-CD4 Antibody) were harvested at

500~700mm3 and were subjected to four different types of analysis. First, multi-color flow

cytometry analysis was used for TIL analysis as described previously in detail [3, 5]. Second,

the same tumor samples were subjected to RNAseq analysis as previously described [3, 15].

Third, microarray analysis, NanoString’s PanCancer Mouse IO 360 Panel [8, 10], of the same

syngeneic tumors followed the same sample collection and subjected to the testing process per

manufacturer recommended procedure.

Fourth, the same samples were subjected to NGSmIO panel test, as per experimental proce-

dure as briefly below, total RNA was prepared from samples (e.g. tumors) using RNeasy Mini

Kit (QIAGEN, Cat.74106) per manufacturer’s instruction. The quantity and quality of the total

RNA are assessed using NanoDrop 2000 and Agilent 2100 BioAnalyzer. Only high-quality

RNA sample (OD260/280 = 1.8–2.0, OD260/230�2.0, concentration> 20ng/μL, amount>1μg,

volume>30μL, RIN (RNA integrity number)�7) is used for the library construction and

sequencing. PolyA mRNA was the isolated from the total RNA samples using two serial rounds

of binding to oligo (dT) magnetic particles (Agilent) then chemically-fragmented to a size

appropriate for RNA sequencing library preparation using RNA Seq Fragmentation Mix (Agi-

lent). Using these short fragments as templates, first stranded cDNA was synthesized by RNA

Seq First Strand Master Mix (Agilent) and Actinomycin D (Agilent), followed by purification

using AMPure XP Beads (Beckman Coulter). Second-strand cDNA synthesis and end repair

were then performed using RNA Seq Second Strand plus End Repair Enzyme Mix (and RNA

Seq Second Strand + End Repair Oligo Mix, Agilent), followed by purification using AMPure

XP Beads (Beckman Coulter). The purified cDNA was then subjected to cDNA 3’ ends dA-

tailing using RNA Seq dA Tailing Master Mix (Agilent) and adaptor ligation using SureSelect

Ligation Master Mix (Agilent), followed by purification using AMPure XP Beads (Beckman

Coulter). The adapter-ligated cDNA library was then amplified by pre-capture PCR Reaction

Mix (Agilent) and purification. After cDNA library construction, Qubit 3.0 fluorometer

dsDNA HS Assay (Thermo Fisher Scientific) was used to quantify concentration, while the

size distribution was analyzed using Agilent BioAnalyzer 2100 (Agilent). cDNA library with

good quality and concentration was then used for the sequencing library hybridization using

SureSelect Block Mix (Agilent) and RNA Capture Library Hybridization Mix (Agilent). Cap-

ture of hybrids was performed by streptavidin beads (prepared from Dynabeads M-270 Strep-

tavidin Beads (Thermo Fisher Scientific)). Sequencing libraries was cleaned up after PCR

amplification of captured libraries and indexing. After library quality control (QC), MGI Easy

Universal Library Conversion Kit (MGI) with High-Throughput Pair-End Sequencing Primer

Kit (MGI) was used to generate clusters. Paired-end sequencing will be performed using a

MGISEQ2000 system following MGI-provided protocols for 2 x 150 paired-end sequencing.

In silico bioinformatics analysis of immuno-genomic raw data

For gene expression profile preprocessing, raw sequencing data derived from NGSmIO panel

were mapped to 1080 genes using pseudo aligner kallisto [16]. 1080 gene expression values

were represented by log2 transformed Transcript per Million (TPM).

The quality of RNAseq fastq raw reads was checked by FastQC software (Babraham Bioin-

formatics, https://www.bioinformatics.babraham.ac.uk/projects/fastqc/). The adapter and
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low-quality sequences were trimmed by Trimmomatic software [17]. The reads were mapped

to reference genes (ENSEMBL GRCh37.66) by Bowtie [18] software, and gene expression was

calculated by RSEM [19] software. The final expression values are log2-transformed TPM val-

ues. Microarray raw intensity counts of 770 genes are quality controlled and normalized by R

package nanostring [20].

For cross-platform analysis, the global clustering was performed by principal component

analysis bases on all gene expression from NGSmIO panel and microarray. Expression matri-

ces of 746 shared genes are retained to perform pairwise Spearman correlation analysis for

related samples from NGSmIO panel, microarray and RNAseq. Pathway and immune signa-

ture scores were computed by gene set variation analysis [21] on NGSmIO panel and RNAseq

based on defined signature gene sets within the NGSmIO panel, and immune signature scores

were correlated with TIL numbers per mg tumor derived flow cytometry. Immune cell propor-

tions in NGSmIO panel and RNAseq data are predicted by deconvolution analysis using EPIC

[22] and were correlated with TIL fractions in total cells derived by flow cytometry. A sche-

matic workflow is shown in S1A Fig.

Results and discussion

The design and construction of mouse IO NGS panel

With the objective of constructing a mouse IO NGS panel for measuring transcripts of immu-

nology/IO interests, we selected 1080 genes, representative of various immune cell lineages

(Fig 1A) and immunological processes (S1B Fig), to be included in the panel. The detailed list

of 1080 IO genes and the relevance is shown in S1 Table. The panel covers 11914 coding exons

regions, with each region including 10 base extension from both 3’ and 5’ ends of regions, and

the total region size of 2.210Mbp.

The gene coverages of NGSmIO panel was compared with the widely used mouse IO panel

based on microarray technology (NanoString’s PanCancer Mouse IO 360 Panel) [8–10], with

770 genes listed in S2 Table), and immune cell lineages represented by these genes in Fig 1B.

There were 746 genes that overlapped between the two IO panels, with the NGSmIO panel

including significantly more IO genes (334 unique genes, as opposed to 24 unique genes for

microarray panel), particularly for the unique-genes representative of various lineage of

immune cells (Fig 1C). The NGSmIO panel also added additional reference genes to ensure

the precision measurement of gene expression. Overall, the additional genes in NGS panel

were designed to be more comprehensive in covering IO related genes and cell lineages, and

more precise in quantification.

Correlation between NGSmIO panel and microarray panel

To test the NGSmIO panel in a real experimental setting, we compared the output to two pre-

viously described experiments [3]: 1) syngeneic MC38 tumors without treatment (G1) and

ones treated by anti-CD4 and anti-PD-1 monoclonal antibodies together (G2); 2) Hepa1-6

without treatment and treated with the same combo-treatment. The tumor responses are

shown in Fig 2A, where depletion of CD4+ T cells by anti-CD4 antibody combined with anti-

PD-1 antibody resulted in retardation of MC38 tumor growth, but in contrast no effect was

seen in Hepa 1–6 tumors (Fig 2A). The samples from tumors, bloods and spleens were then

collected and processed by either NGSmIO panel or microarray analysis. Principal Compo-

nent analysis (PCA) was first performed which displayed separated clusters by tissues type for

both assays (Fig 2B). We also noticed intra-group variance exists among the samples. However,

as expected, NGSmIO-panel data is clustered similarly to that of microarray in general, sug-

gesting it can be used as an effective way to profile IO transcripts.
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Fig 1. IO gene panel design summarizing microarray versus NGSmIO gene coverage. Number of signature genes for immune cell lineages in A.

NGSmIO panel and B microarray gene panel. C. Venn diagram of common and unique genes included in NGSmIO panel (blue).and microarray panel

(yellow).

https://doi.org/10.1371/journal.pone.0303171.g001
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Fig 2. Comparison of NGSmIO and microarray platforms by testing samples collected from syngeneic tumor

pharmacology study. A. Tumor growth curves for in vivo study with mice bearing either MC38 or Hepa1-6

subcutaneous tumors which were treated with 10μg/kg anti-PD-1 plus 250mg/mouse i.p. biweekly (Group 2, orange

♦, n = 3/group) or untreated (Group 1, blue&, n = 3/group). Samples of tumor, spleen, and blood were collected

from all animals on termination day (n = 3/group); B. Global clustering using Principal Component Analysis (PCA)
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Correlation analysis between NGSmIO and microarray panels on shared genes revealed a

high correlation (Spearman correlation coefficients R>0.83) across 12 paired samples (Table 1

and Fig 2C Hepa 1–6 tumors and Fig 2D MC38 tumors)), supporting the notion that both

panels measure gene expression in a comparable way. However, there was notable difference

in the lower expression range, where genes displaying little or no expression in the NGSmIO

panel while being displayed with varying degree of expression in the microarray method in

both tumor tumors (Fig 2C Hepa 1–6 and 2D MC38, left panel). When comparing these low

expression genes against whole transcriptomic data (RNAseq), it seems significant high back-

ground noise in the microarray panel (middle panel, Fig 2C and 2D) as compared to the

NGSmIO panel (right panel, Fig 2C and 2D) in these low expression range. In conclusion, the

broader dynamic range of NGS panel enables more accurate detection of low expressing

genes.

Correlation with RNAseq: NGSmIO-panel vs. microarray

We next computed the pairwise Spearman correlation between tumor samples detected by

RNA-seq, NGSmIO-panel and microarray using the expression of 746 shared genes, and then

clustered these samples from different platforms based on their correlations. The results dem-

onstrated that global gene expressions of both assays are clustered together with RNA-seq data

under the same pharmacological conditions (groups) (Fig 3A). However, NGSmIO panel has

better correlation with RNA-seq than microarray (Fig 3A) for both tumor models.

When the expression changes in treatment over vehicle groups are compared between the

two IO panels and RNA-seq, the NGSmIO panel demonstrated significant better correlation

with RNAseq than the microarray panel (Fig 3B), where NGSmIO panel can accurately detect

gene expression changes under treatment but microarray cannot. Specifically, in comparison

of expression changes for 746 genes between Hepa 1–6 tumors under anti-CD4 (a depletion

antibody) and anti-PD-1 combo-treatment conditions (G2) and no treatment condition (G1),

for samples collected from microarray versus NGSmIO panels. Left: Microarray panel, n = 1/group/tissue; Right: NGS

panel, n = 3/group/tissue; High Dynamic Range of NGSmIO Panel Enables Sensitive Detection of Low Expressing

Genes in C) Hepa1-6 or D) MC38.

https://doi.org/10.1371/journal.pone.0303171.g002

Table 1. Gene expression correlation between NGSmIO panel and microarray panel on the shared genes. Spear-

man correlation coefficient and correlation p-value for 12 paired samples detected from NGSmIO panel and microar-

ray panel based on expression data of 746 shared genes are given.

Sample Spearman correlation coefficient p-value

Hepa 1-6-Blood-G1 0.867 9.94E-227

Hepa 1-6-Blood-G2 0.848 3.99E-206

Hepa 1-6-Spleen-G1 0.830 4.31E-190

Hepa 1-6-Spleen-G2 0.834 1.74E-193

Hepa 1-6-Tumor-G1 0.845 1.1E-203

Hepa 1-6-Tumor-G2 0.834 1.21E-193

MC38-Blood-G1 0.847 4.1E-205

MC38-Blood-G2 0.871 2.16E-231

MC38-Spleen-G1 0.860 3.23E-219

MC38-Spleen-G2 0.859 3.22E-217

MC38-Tumor-G1 0.871 1.84E-230

MC38-Tumor-G2 0.861 2.09E-219

https://doi.org/10.1371/journal.pone.0303171.t001
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Fig 3. Comparing the NGSmIO and microarray against RNAseq. A) Clustering tumor sample RNAseq data with

those of the same two IO panel (NGS vs. microarray) respectively with RNA-Seq Data in tumor samples; B) correlation

(linearity) in fold changes between the treatment groups of NGSmIO and microarray against RNAseq.

https://doi.org/10.1371/journal.pone.0303171.g003
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the overall Spearman correlation coefficient for expression fold changes detected by RNAseq

and NGSmIO panel is 0.604 (p-value = 7.9E-76) while the overall Spearman correlation coeffi-

cient for expression fold changes detected by RNAseq and microarray panel was only 0.172 (p-

value = 2.55E-6, poorer concordance). Similar observation existed for expression changes for

MC38 tumors detected by the NGSmIO panel and RNAseq (R = 0.402, p-value = 3.69E-30), as

compared to those detected by microarray panel and RNAseq (R = 0.159, p-value = 1.27E-5)

(Fig 3B).

NGSmIO panel detection is 10 times more sensitive as compared to

RNAseq with a defined amount of total sequencing data

One of the objectives to create the NGSmIO panel was to focus on the immunological and IO

related genes, by excluding most other unrelated genes, so to enable more in-depth and sensi-

tive analysis on the gene collection of interests. We next set out to evaluate the sensitivity of

the NGSmIO panel by comparing it with the whole-transcriptome sequencing (RNAseq) at

the same data amount. We performed both sequencing methods on 209 murine tumor sam-

ples derived from 21 syngeneic models (S3 Table), and compared the reads aligned to 1080

shared genes, i.e., 1080 IO core genes included in the NGSmIO panel. The average read counts

detected by the NGSmIO panel for 1080 genes across 209 pairs of tumor samples is

2863.32GB, which is on average 12.38±2.10 times of that by RNAseq (254.64GB) (S3A Table).

Particularly in hematological malignances such as J558 myeloma, and lymphomas including

A20, EG7-OVA and EL4, the normalized read counts ratios between the NGSmIO panel and

RNAseq reached 18.25±0.61 and 14.95±1.08, respectively, while in other non-immune cell

driven tumors the mean ratio is 11.57±1.17 (S3B Table). Overall, these results revealed that the

NGSmIO panel has at least 10-fold higher sequencing depth on target IO genes than the con-

ventional RNAseq on the basis of the same data quantity, and suggest that IO panel will be

more sensitive in the detection and quantification of IO genes, particularly for the low

expressed genes, many of which are in the tumors (e.g. TILs).

Detection of pharmacodynamic change of interferon-γ (IFN-γ) expression

levels upon anti-PD-1 and anti-CD4 combination treatments in MC38 and

Hepa 1–6 tumors

We next set out to examine a specific gene expression change upon combination treatment

with anti-PD-1 and anti-CD4 antibodies in MC38 and Hepa1-6 tumors as described previ-

ously [3]. As shown in Fig 4A, the NGSmIO panel detected an increase in IFN-γ expression in

MC38 tumors, in contrast to the decrease in Hepa1-6, both similarly observed by RNAseq and

proteomics analysis [3]. However, the increase was less evident using the microarray method

in MC38 tumor and actually, opposite observation (increase) was seen in Hepa1-6 (Fig 4A).

Furthermore, by Gene Set Variation Analysis (GSVA) [21] on 36 IO pathways, we discovered

that, in contrast to MC38, antigen presentation was significantly depressed (p-value< 0.01) as

well as interferon, chemokine and cytokine signaling (p-value < 0.05) by anti-PD-1 treatment

and CD4 depletion in Hepa1-6 tumors, whereas hypoxia and TGF-β signaling were signifi-

cantly induced (p-value < 0.05) (Fig 4B). Taken together, the NGSmIO panel was more accu-

rate than microarray to detect the pharmacodynamic changes for MOA evaluation.
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Benchmarking the baseline TILs in 14 syngeneic tumors using the

NGSmIO panel

TIL analysis measures important tumor immunity parameters most commonly achieved by

flow cytometry methods [3, 5], as well as other multi-parametric methods such as immuno-

chemistry (IHC) and immunofluorescence (IF). One of the important features of the NGSmIO

panel is that it includes lineage gene signature (Table 2) by design for detecting and measuring

the rare TIL lineages. It is more sensitive than RNAseq as described above, while the available

microarray does not include as comprehensive lineage-specific genes (Fig 5) and has limited

accuracy in detection dynamic ranges as described above. We then set out to perform the

detection and measurement of TIL lineages in a 14 syngeneic mouse tumor panel (10 mice per

model) using transcript levels of the lineage corresponding genes, e.g., CD4 transcript repre-

senting CD4+ T-cells and CD8 transcript representing CD8+ T-cells, etc., as shown in Table 2

(S2 Fig). The estimated contents (% of TIL) of each lineage, based on the reads of the

Fig 4. Pathway analysis identify mechanism of action of immunotherapy. A. Changes in IFN-γ expression levels during treatment, as detected by

different methods: RNAseq, NGSmIO panel and microarray panel. B. Gene set variation analysis on 36 IO related pathways across tissues (blood, spleen

and tumor) and treatment groups (Group 1, untreated and Group 2, treated with 10mg/kg anti-PD-1 plus 250μg/mouse i.p. biweekly) in MC38 and Hepa

1–6.

https://doi.org/10.1371/journal.pone.0303171.g004
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corresponding marker transcripts, are compared to the TIL determination of the same tumor

models by flow cytometry using specific markers or marker combinations (“flow panel”) as

previously described (5). For comparison, the same analysis was also performed using RNAseq

data. The overall absolute cell numbers per mg tumor detected by FACS for 8 TIL populations,

i.e., CD45+ total leukocytes, CD3+-/CD4+/CD8+ T cells, Treg, macrophages, monocytes and

NK cells, were highly correlated with the NGSmIO panel and RNAseq detected signature

Table 2. Correlation analysis of NGSmIO and RNAseq for 8 immune lineage signature scores and FACS derived cell count. Spearman correlation coefficient (Rho)

and correlation p-value for 8 immune lineages by comparing NGSmIO-derived signature scores and FACS-derived cell counts, and RNAseq-derived signature scores and

FACS-derived cell counts are shown. The signature genes used by NGSmIO and RNAseq, with markers used in FACS analysis, are provided in the last two columns.

Lineages Rho

(NGSmIO-FACS)

p-value

(NGSmIO-FACS)

Rho (RNAseq-

FACS)

p-value (RNAseq-

FACS)

Markers used in NGSmIO and RNAseq Markers used in

FACS

CD45+ cells 0.597 7.06E-15 0.601 4.10E-15 Ptprc CD45

T cells 0.556 < 2.20E-16 0.609 < 2.20E-16 Sh2d1a,Cd247,Cd3d,Cd3e,Cd3g,Il2ra CD3

CD4+ T cells 0.375 5.01E-06 0.319 1.20E-04 Cd4 CD4

CD8+ T cells 0.642 1.18E-17 0.628 1.03E-16 Cd8a CD8

Tregs 0.454 2.50E-08 0.343 3.72E-05 Cxcr1,Il15ra,Irak2,Nectin1,Tnfrsf11a,Traf2 FoxP3

Macrophages 0.637 < 2.20E-16 0.584 < 2.20E-16 Cd14,Fcgr3,Cd163,Cd68,Cd84 CD11b+ F4/80

+Gr-1-

Monocytes 0.532 1.37E-11 0.461 9.85E-09 Itgam CD11b+ F4/

80-Gr-1med

NK cells 0.668 < 2.20E-16 0.760 < 2.20E-16 Eomes,Gzma,Khdc1a,Klrb1a,Klrb1b,Klrb1c,

Klre1,Klrg1,Klrk1,Ncr1,Prf1,S1pr5

CD3-CD335+

https://doi.org/10.1371/journal.pone.0303171.t002

Fig 5. Gene signatures of immune cell lineages. NGSmIO panel vs. microarray panel. A. Similar expression patterns in shared signatures; B. NGS panel

includes more depth immune cell signatures.

https://doi.org/10.1371/journal.pone.0303171.g005
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scores defined for the corresponding cell populations, meanwhile NGSmIO panel showed a

slightly better correlation than RNAseq (Table 2). This result suggests that the NGSmIO panel

can be used to estimate the relative TIL components for both contents and relative ratios, simi-

lar to flow cytometry, and if standard curves can be created based on flow cytometry data, the

NGS-panel can in theory provide % cell as flow cytometry.

Conclusion

Mouse tumor models, such as syngeneic cell derived tumors or homograft tumors (4, 5), are

important tools to investigate immunopathogenesis and immunotherapy of cancers, including

MOA and proof of concept (POC). Multiparametric analysis of these tumors, including base-

line and pharmacodynamic changes, are believed to be critical insights into aspects of tumor

immunology, both tumor cells and TME. Multi-omics of different platforms, particularly

those measuring gene expression, are proven to be robust and cost-effective. Among them,

RNAseq, although an effective discovery tool, may not be as robust, cost-effective and produc-

tive as a specially tailored NGS panel in routine and standard characterizations of tumor

immunity, for ease of analysis, sensitivity and high-throughput. On the other hand, NGS panel

seems also have high detection/quantitation dynamic range than the widely used microarray

platform. In particular, at the age of NGS technology becoming ubiquitous, an NGS panel can

be particularly readily adopted for laboratory research for efficiency and lower costs. In partic-

ular, NGS panel is already widely used in the clinics as well as companion diagnostics (CDx)

for the reasons mentioned here. It is also plausible that a preclinical NGS panel could have bet-

ter translatability.

As a comprehensive IO panel, the NGSmIO can reveal disease pathway mechanisms and

IO drug MOAs via mRNA-pharmacodynamic studies as we demonstrated in this report. In

particular, as specifically designed, the lineage analysis of TILs, as an alternative to flow cytom-

etry, could provide additional sampling advantages, without requirement of fresh tumor cells

and facilitating the development of clinical applications. Furthermore, benchmarking the base-

line of large panel of mouse tumor using the NGSmIO-panel together with pharmacology

could also help to reveal the predictive biomarker of IO therapies (manuscript in preparation).

Ultimately this panel could become a powerful tool in the laboratory for IO research.
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S1 Fig. Overview of workflow and mouse I/O RNAseq composition. A. Schematic workflow

of mouse I/O NGS panel process; B. Compositions of mouse I/O RNA-Seq Panel. Left panel:

genes representing various immunological factors included in the NGS panel (total 1080

mouse transcripts); Right panel: genes representing various immune cell lineages and types.

(PDF)

S2 Fig. Comparison of FACS analysis and signature scores. Scatter plots for 8 immune cell

types measured by FACS analysis (cell number per mg) compared to signature score by mIO

NGS panel (top) and RNAseq (bottom).

(PDF)

S1 Table. Ensembl ID and gene symbol. List for 1080 genes in NGSmIO Panel.

(XLSX)

S2 Table. NCBI accession number and gene symbol. List of all 770 genes in NanoString’s

PanCancer Mouse IO 360 Panel.
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S3 Table. Sequencing coverage comparisons on 1080 IO genes between NGSmIO Panel

and RNAseq across 21 syngeneic models. A. Read count comparisons on 1080 IO genes for

209 tumors derived from 21 syngeneic models. B. Overall mean and standard deviation of

read count fold change between NGSmIO Panel and RNAseq for specific categories of cancers.

C. Cell line and mouse strain details for each model.

(XLSX)

S4 Table. Data availability. Data description of raw NGS data in FASTQ format deposited to

the Sequence Read Archive (BioProject accession number PRJNA878935).

(XLSX)
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