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Abstract

One of the primary challenges for autonomous vehicle (AV) is planning a collision-free path

in dynamic environment. It is a tricky task for achieving high-performance obstacle avoid-

ance with velocity-varying obstacle. To solve this problem, a highly smooth and parameter

independent obstacle avoidance method for autonomous vehicle with velocity-varying

obstacle (HSPI-OAM) is presented in this work. The proposed method uses the virtual colli-

sion point model to accurately design the desired acceleration, which makes the obtained

path highly smooth. At the same time, the method gets rid of the dependence on parameter

adjustment and has strong adaptability to different environments. The simulation is imple-

mented on the Matlab-Carsim co-simulation platform, and the simulation results show that

the path planned by HSPI-OAM has good performance for obstacle with acceleration.

Section 1: Introduction

Autonomous driving technology has been greatly developed due to its own merits [1, 2], and

obstacle avoidance is one of the key components of autonomous driving [3]. According to dif-

ferent environments, obstacle avoidance can be divided into static obstacle avoidance and

dynamic obstacle avoidance.

In a dynamic environment, obstacles need to be dealt with. This is critical for autonomous

vehicles, especially those traveling at high speeds in dynamically changing environments. For

this, an efficient computer vision algorithm is proposed and used for speed and depth determi-

nation of obstacles [4]. For the environment perception in navigation, an obstacle detection

method based on visual optical flow is proposed. This method uses the optical flow field con-

structed by image sequence to provide depth clues for obstacle detection, and realizes the

online and real-time processing of the algorithm [5]. Obstacle trajectories in dynamic collision

avoidance methods are often considered linear or known, but this limitation is not accurate in

many real-world situations. An obstacle motion prediction method is proposed, which can be

obtained by training LSTM neural network online [6].

The first step is to implement obstacle avoidance in a static environment. A parallel genetic

algorithm based on graphics processing is proposed and the quasi-optimal solution can be
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found in time for a fast path planning [7]. In [8], an improved bat algorithm based on Cauchy

disturbance and a logarithmic decreasing strategy is designed for a mobile robot, and the pro-

posed method can significantly reduce the length of planned path. Zhu, X. H. improves the tra-

ditional D* Lite algorithm for multi-goal path planning and collision avoidance in unknown

environments, and the issue of limited steering maneuverability during autonomous naviga-

tion is addressed by designing a safe distance and expanding the search range [9]. For real-

time path planning of mobile robot, a navigation control method using an artificial potential

field (APF) algorithm and a grey wolves optimisation (GWO) method is proposed, and the

navigation free from any dead-end situation [10]. The above methods have achieved good per-

formance in static environment, however, the moving of obstacle is completely ignored.

In order to implement obstacle avoidance in a dynamic environment, a strategy of trajec-

tory planning and tracking is presented based on an artificial fish swarm algorithm (AFSA)

[11]. Du Toit [12]] presents a strategy for planning robot motions in uncertain environments

using the reasoning about future evolution and uncertainties of the states of the moving obsta-

cles. In [13], An Elman neural network is proposed to compensate the effect of uncertainties

between the dynamic robot model and the obstacles. Kim, C. J. [14] proposes an obstacle

avoidance method in the position stabilization of the wheeled mobile robots using interval

type-2 fuzzy neural network, and it is robust against uncertainties. In [15], a general formula-

tion of a predictive and multirate reactive planning method for AV in dynamic environments

with uncertainty is introduced. Malone N. [16] uses a stochastic reachable set-based potential

field to improve the success rate of path planning. In [11–16], although dynamic obstacle

avoidance is realized, the speed of obstacle is set to a specific value and ignores the acceleration

of the obstacle. In fact, the speed of obstacle may change in real time, which poses a challenge

to the performance of existing obstacle avoidance methods.

In terms of the smoothness of the road, a smooth and ergonomic optimal lane-change tra-

jectory is planned for an obstacle that moves at low speed [17]. A two-stage control method is

proposed for path planning in highway cruise mode [18]. In order to solve the local path plan-

ning in the structured road, a Regional-Sampling RRT (RS-RRT) algorithm based path plan-

ning method is proposed for obstacle avoidance, and the search efficiency of sampling is

improved by the local biasing and Gaussian distribution sampling [19]. For the situation that

vehicle tire friction may approach the limit in an unsmooth path, resulting in increased diffi-

culty in path tracking and even instability of the vehicle, Liang et al. propose a variable speed

method to design feasible speed and acceleration during path tracking to ensure that the vehi-

cle will not reach the limit of tire friction [20].

In addition, using an improved artificial potential field, Zhang, Z. W. proposes a structured

road-oriented motion planning framework for collision avoidance of AV [21]]. The calcula-

tion time is shortened by reducing the number of design variables of the optimal path in [22].

For low-moving AV, a path planning system is proposed through a supervisory control

method based on a barrier function [23]. A novel path planning system is presented for

dynamic obstacle avoidance [24], and the velocity is considered as constraint to obtain the

optimal velocity. A model predictive path-planning controller with potential functions and

vehicle dynamics terms is introduced [25]. In [26], a 3-D virtual dangerous potential field is

constructed as a superposition of trigonometric functions of the road and the exponential

function of obstacles, which can generate a desired trajectory for collision avoidance. Liu, J. C.

presents a nonlinear model predictive control formulation for large-size autonomous ground

vehicle with high centre of gravity at high speed [27]. Good dynamic obstacle avoidance per-

formance can be achieved in [21–27], while they all depend on the parameters of the evalua-

tion function, and the same parameters may not work well in different environments.

Therefore, reducing the dependence on parameters is critical to the practicability of method.
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Based on the analysis of the above research status, highly smooth and parameter indepen-

dent obstacle avoidance method for autonomous vehicle with velocity-varying obstacle

(HSPI-OAM) is proposed to adapt to the obstacle with complex motion, and the path planned

by HSPI-OAM has high smoothness and low parameter dependence. The contributions of this

work are summarized below:

Fig 1. The obstacle avoidance with different parameters.

https://doi.org/10.1371/journal.pone.0303160.g001

Fig 2. The structural schematic of the HSPI-OAM.

https://doi.org/10.1371/journal.pone.0303160.g002
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Fig 3. The virtual collision point model.

https://doi.org/10.1371/journal.pone.0303160.g003

Table 1. The result of tests.

Test Method Collision avoidance result Minimum distance jβmaxj jγmaxj jemaxj

Test1 HSPI-OAM No collision 6.5m 0.13� 0.94�/s 0.01m

IAPF No collision 5.1m 1.08� 7.79�/s 0.21m

Test2 HSPI-OAM No collision 6.2m 0.08� 1.08�/s 0.03m

IAPF1 No collision 6.9m 0.67� 7.81�/s 0.36m

IAPF2 No collision 7.0m 0.51� 5.88�/s 0.51m

Test3 HSPI-OAM No collision 5.6m 0.95� 2.01�/s 0.05m

IAPF1 Collision 2.7m 2.11� 3.89�/s 0.08m

IAPF2 No collision 6.5m 2.07� 3.87�/s 0.08m

Test4 HSPI-OAM No collision 5.8m 0.19� 2.35�/s 0.06m

IAPF1 Collision 2.9m 0.32� 3.76�/s 0.15m

IAPF2 No collision 6.3m 0.29� 3.52�/s 0.13m

https://doi.org/10.1371/journal.pone.0303160.t001

Table 2. The parameter of tests.

Test Motion parameters Method Performance parameters

Test1 ξO(1) = [−1, 0, 0, 0, 150, 0]T HSPI-OAM 4tv=2

ξV(1) = [0, 0, 10, 0, 0, 0]T IAPF k1=0.1,Q=0.001

Test2 ξO(1) = [−2, 0, −10, 0, 300, 0]T HSPI-OAM 4tv=2

IAPF1 k1=0.1,Q=0.001

ξV(1) = [0, 0, 30, 0, 0, 0]T IAPF2 k1=0.0015,Q=0.001

Test3 ξO(1) = [0.5, 1, −17.5, −15, 208, 112.5]T HSPI-OAM 4tv=2

IAPF1 k1=0.1,Q=0.001

ξV(1) = [0.5, 1, 10, 0, 0, 0]T IAPF2 k1=1.5,Q=0.001

Test4 ξO(1) = [−0.125, 0.25, 14.15, 1.7, 100, 5.78]T HSPI-OAM 4tv=2

IAPF1 k1=1.5,Q=0.001

ξV(1) = [−0.5, 1, 30, 0, 0, 0]T IAPF2 k1=50,Q=0.001

https://doi.org/10.1371/journal.pone.0303160.t002
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• For obstacle with arbitrary acceleration, the HSPI-OAM can achieve high-performance

obstacle avoidance for AV, which allows it to adapt to most dynamic environments.

• The proposed virtual collision point model accurately calculates the required acceleration,

thus ensuring the high smoothness of the path, which is beneficial to the smooth running of

the vehicle and the reduction of path tracking error.

• The performance of obstacle avoidance does not depend on parameter adjustment due to

collision time can be determined to the appropriate value according to demand. This

enhances the adaptability of the method to different environments.

Compared with current obstacle avoidance methods, such as [11–16], the proposed method

implements obstacle avoidance for obstacles with more complex motions, at the same time,

the planned path has high smoothness, and the planning process is less dependent on parame-

ters. The remainder of this paper is organized as follows. In Section 2, the problem statement

is described. Section 3 introduces the design of HSPI-OAM. The simulation and analysis are

provided in Section 4. Finally, Section 5 gives the conclusion.

Fig 4. The trajectory of AV and obstacle of Test 1.

https://doi.org/10.1371/journal.pone.0303160.g004
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Section 2: Problem statement

It may be difficult to achieve high-performance obstacle avoidance by ignoring changes in

obstacle velocity. In order to address this challenge, two problems should be considered: (1)

The smoothness of the path; (2) The dependency issues for parameter.

The smoothness of path

The smoothness of path is critical to the smooth running of vehicle and the accuracy of path

tracking. In general, the path planning problem is considered as [25, 28]:

min J ¼ min
uc ;�

XNp

k¼1

Utþk;tþ k ytþk;t � ytþk;t
des k

2

Q þ

k utþk� 1;t
c k2

R þ k utþk� 1;t � utþk� 2;t
c k2

S þ k �k k
2
P

ð1Þ

where Ut+k,t denotes the cost of obstacle, k ytþk;t � ytþk;t
des k

2
Q is the cost for tracking the desired

path, utþk� 1;t
c k2

R represents the cost of control inputs, k utþk� 1;t � utþk� 2;t
c k2

S is the cost of viola-

tion of control input and k �k k
2
P denotes the cost of slack variables. Q, R, S and P are the corre-

sponding weight matrix. When the vehicle is far from the obstacle, the value of U is small,

Fig 5. The side slip angle of Test 1.

https://doi.org/10.1371/journal.pone.0303160.g005
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while the other penalty terms are relatively large, and the path does not change for obstacle

avoidance. Only when the vehicle is close to the obstacle, the value of U will increase dramati-

cally, and the path will change for obstacle avoidance. At this time, the time for obstacle avoid-

ance is not much, and the change of path must be relatively drastic.

The dependency issues for parameter

Generally speaking, the implementation of obstacle avoidance often depends on evaluation

functions, and needs to evaluate a variety of objects, including obstacle avoidance, lane keep-

ing, etc. These evaluation functions are usually scaled by weight coefficients. In dynamic envi-

ronment, the same group of weight coefficients may not achieve good obstacle avoidance

effect in the changing environment. In expressions (1), U is specifically expressed as:

U ¼
k1

s
dX
Xs
;
dY
Ys

� �k2 ð2Þ

where k1 and k2 denote the intensity and shape parameters, respectively. s dX
Xs
; dY

Ys

� �
is the signed

distance which is consider the velocity of vehicle and obstacle, and more information about it

Fig 6. The yaw rate of Test 1.

https://doi.org/10.1371/journal.pone.0303160.g006
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can be found in [25]. In expressions (1) and (2), the cost of obstacle and the cost of other items

have their respective coefficients. For specific environment, good obstacle avoidance effect can

be achieved through adjusting these coefficients. However, when the velocity of obstacle is

changed, the same parameters may not work well, or even cause obstacle avoidance to fail. The

obstacle avoidance with different parameters is shown in Fig 1.

In Fig 1, the method proposed by [25] is used to avoid moving obstacles. The only differ-

ence between path 1 and path 2 is that k1 = 0.1 in path 1 and k1 = 0.01 in path 2. Obviously

path 1 completes obstacle avoidance, while path 2 collides with the obstacle. The performance

of obstacle avoidance depends on appropriate parameters. Usually in a dynamic environment,

the same parameter is difficult to adapt to environmental changes.

Section 3: The design of HSPI-OAM

The existing methods ignore the acceleration of obstacle, and the avoidance maneuver is not

timely and depend heavily on parameters. It may fail to achieve high-performance obstacle

avoidance, or even lead to collision. To solve this problem, a highly smooth and parameter

independent obstacle avoidance method for autonomous vehicle with velocity-varying

Fig 7. The tracking error of Test 1.

https://doi.org/10.1371/journal.pone.0303160.g007
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obstacle (HSPI-OAM) is presented in this work. The structural schematic of HSPI-OAM is

shown in Fig 2.

In Fig 2, ξO = [aox aoy vox voy xo yo]T denotes the motion parameters of the obstacle, includ-

ing its longitudinal acceleration, lateral acceleration, longitudinal velocity, lateral velocity, lon-

gitudinal position and lateral position. ξV = [avx avy vvx vvy xv yv]
T is the motion parameters of

the vehicle, including its longitudinal acceleration, lateral acceleration, longitudinal velocity,

lateral velocity, longitudinal position and lateral position. Pr represents the predicted relative

motion path. dp is the minimum predicted distance between the vehicle and the obstacle, and

tp denotes the corresponding time. ax and ay are the average longitudinal and lateral accelera-

tions required for obstacle avoidance, respectively. Ov represents the information of virtual

obstacle. Cv denotes the information of virtual collision point.4tv is the advance time for vir-

tual collision.4dv is the additional offset for avoiding collision. The relative motion model

uses the motion parameters of vehicle and obstacle to obtain the predicted relative motion

path. The minimum predicted distance between the vehicle and the obstacle and correspond-

ing time can be predicted by combining the relative motion path and the information of virtual

obstacle. In the virtual collision point model, the location of the virtual collision point is calcu-

lated using the time advance for virtual collision and the information of virtual obstacle. The

virtual path is reconstructed by the input value to obtain the required average acceleration.

Fig 8. The trajectory of AV and obstacle of Test 2.

https://doi.org/10.1371/journal.pone.0303160.g008
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The planned path and the motion parameters of vehicle at the next moment can be obtained

from the vehicle motion model.

In order to visualize the problem, the moving obstacle is treated as stationary and the veloc-

ity of the moving obstacle is appended to the vehicle. For example, the velocity of the vehicle is

vv, the velocity of the moving obstacle is vo, and after the obstacle is regarded as stationary and

the velocity of the moving obstacle is attached to the vehicle, the velocity of the vehicle is vv-vo

and the velocity of the obstacle is regarded as 0. Under such conditions, the relative motion

parameters of the vehicle are expressed as:

xR ¼ xV � xO ¼ ½arx ary vrx vry xr yr�
T

ð3Þ

where [arx ary vrx vry xr yr]
T represent the motion parameters of the vehicle relative to the obsta-

cle, including its longitudinal acceleration, lateral acceleration, longitudinal velocity, lateral

velocity, longitudinal position and lateral position.

In order to improve the efficiency, the vehicle in this paper adopts the single point mass

model considering acceleration [18]. And the relative motion model of the vehicle is expressed

Fig 9. The side slip angle of Test 2.

https://doi.org/10.1371/journal.pone.0303160.g009
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as:

arxðkþ 1Þ ¼ arxðkÞ þ axðkÞ ð4Þ

aryðkþ 1Þ ¼ aryðkÞ þ ayðkÞ ð5Þ

vrxðkþ 1Þ ¼ vrxðkÞ þ arxðkÞ � t ð6Þ

vryðkþ 1Þ ¼ vryðkÞ þ aryðkÞ � t ð7Þ

xrðkþ 1Þ ¼ xrðkÞ þ vrxðkÞ � t þ 0:5 � arxðkÞ � t2 ð8Þ

yrðkþ 1Þ ¼ yrðkÞ þ vryðkÞ � t þ 0:5 � aryðkÞ � t2 ð9Þ

where t represents sampling time interval. The predicted relative motion path can be obtained

by the relative motion model. And the slope of the predicted relative motion path can be

Fig 10. The yaw rate of Test 2.

https://doi.org/10.1371/journal.pone.0303160.g010
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expressed as:

ks1 ¼
vry þ ary � t1

vrx þ arx � t1

ð10Þ

Since the obstacle is considered stationary, Oi can be considered as the initial position of

the obstacle, and it can be denoted as Oi ¼ ½x0
o y0

o�
T
, and the slope from Oi to Pr is:

ks2 ¼
y0

o � ðyr þ vry � t1 þ 0:5 � ary � t2
1
Þ

x0
o � ðxr þ vrx � t1 þ 0:5 � arx � t2

1
Þ

ð11Þ

When the distance from Oi to Pr is the smallest, there is:

ks1 � ks2 ¼ � 1 s:t:ðt1 >¼ 0Þ ð12Þ

When expression (12) is true, dp and tp can be obtained. Then the virtual collision point

model can be constructed as shown in Fig 3.

In general, if dp is less than the collision radius R of the obstacle, the path needs to be offset

outward by R − dp along dp in order to avoid collision. This will increase the lateral offset after

obstacle avoidance because of the lateral acceleration. In order to reduce the lateral offset, Ov is

Fig 11. The tracking error of Test 2.

https://doi.org/10.1371/journal.pone.0303160.g011
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simulated to collide with the vehicle in advance, and the advance collision time is4tv. In the

virtual collision point model, dv is expected to be obtained. The coordinate of Ci is expressed

as:

xci ¼ xr þ vrx � tg þ 0:5 � arx � t2
g ð13Þ

yci ¼ yr þ vry � tg þ 0:5 � ary � t2
g ð14Þ

The coordinate of Cv is expressed as:

xcv ¼ xr þ vrx � ðtg � 4tvÞ þ 0:5 � arx � ðtg � 4tvÞ
2

ð15Þ

ycv ¼ yr þ vry � ðtg � 4tvÞ þ 0:5 � ary � ðtg � 4tvÞ
2

ð16Þ

Fig 12. The trajectory of AV and obstacle of Test 3.

https://doi.org/10.1371/journal.pone.0303160.g012
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The coordinate of Ov is expressed as:

xov ¼ xcv � ðycv � y0
oÞ∗ðxci � x0

oÞ=ðyci � y0
oÞ ð17Þ

yov ¼ y0
o ð18Þ

Then dv can be calculated as:

dv ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

ðyov � ycvÞ
2
þ ðxov � xcvÞ

2

q
ð19Þ

In the virtual collision point model, additional offset4dv is needed to avoid collision.

4dv ¼ R � dv ð20Þ

Fig 13. The side slip angle of Test 3.

https://doi.org/10.1371/journal.pone.0303160.g013
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And the additional offset needs to be done in (tp −4tv) time. Therefore, the acceleration

required is:

av ¼
2 � 4dv

ðtp � 4tvÞ
2 ð21Þ

The corresponding longitudinal and lateral acceleration components are:

avx ¼ av � cosðyÞ ð22Þ

avy ¼ av � sinðyÞ ð23Þ

y ¼ atan2ðyov � ycv; xov � xcvÞ ð24Þ

where atan2 is an extension of the arctangent function, and it returns value in the range (−pi,
pi]. The expression (15)—(22) is subject to t 2 [0, tv −4tv]. When t 2 (tv −4tv, tv), the

Fig 14. The yaw rate of Test 3.

https://doi.org/10.1371/journal.pone.0303160.g014
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expected accelerations are:

avx ¼
vrefx � vrx

4tv
ð25Þ

avy ¼
vrefy � vry

4tv
ð26Þ

where vrefx and vrefy denote the longitudinal and lateral reference velocity of vehicle.avx and avy

are the accelerations required for relative motion, and the actual acceleration components

required by the vehicle are:

ax ¼ avx þ arx ð27Þ

ay ¼ avy þ ary ð28Þ

Finally, the high-performance path for obstacle avoidance and the vehicle motion parame-

ters at the next moment can be obtained using the vehicle motion model.

Fig 15. The tracking error of Test 3.

https://doi.org/10.1371/journal.pone.0303160.g015
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It should be pointed out that the proposed method is planned at the acceleration level and

the acceleration is equalized in the virtual collision point model, so the smoothness of the

planned path is greatly improved.

Section 4: Simulation and analysis

The performance of HSPI-OAM is tested by four comparative simulation tests, and improved

artificial potential field method (IAPF) is used as the contrast method. The IAPF method uses

the combination of artificial potential field and model prediction, both of which are classical

path planning methods. Especially, the combination of the two methods makes the compari-

son method have strong dynamic planning ability by using prediction ability. Meanwhile, the

comparison method can consider the actual physical constraints of vehicles in the model pre-

diction, so that the path planned by the comparison method is smoother. Therefore, it is more

comparable with the method proposed in this paper. In IAPF method, the velocity of obstacle

is taken into account and the cost function is designed as expressions (1) and (2). More infor-

mation about the IAPF method can be found in [28]. The result of test is summarized in

Table 1. βmax is maximum side slip angle of vehicle. γmax denotes the maximum yaw rate of a

vehicle. emax represents the maximum tracking error of vehicle. Generally speaking, after com-

pleting obstacle avoidance, the vehicle needs to return to the global path. At this time, the

Fig 16. The trajectory of AV and obstacle of Test 4.

https://doi.org/10.1371/journal.pone.0303160.g016
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values of βmax, γmax and emax can be reduced through parameter settings. For example, more

time and distance can be used to make the regression path smoother, so as to reduce the above

variables. Therefore, the βmax, γmax and emax in Table 1 refer to the values before obstacle

avoidance. The partial parameter of test is set in Table 2. ξO and ξV are the motion parameter

of obstacle and vehicle as described in Fig 2.4tv is the advance time for virtual collision as

described in Fig 2. Q and k1 are the relative weight coefficient as described in expressions (1)

and (2). In the proposed method, only4tv needs to be determined. This parameter is first

given an approximate value through experience, and then a better value is determined through

multiple simulation tests.

Test 1

The results of Test 1 are shown in Figs 4–7. In Test 1, the obstacle has only longitudinal accel-

eration. As shown in Fig 4, The arrow indicates the direction of motion. The area surrounded

by the star symbol represents the size of the obstacle. The area surrounded by the red star sym-

bol is the initial position of the obstacle, and the areas surrounded by the star symbol in other

colors are the positions of the obstacle when AV is closest to the obstacle in the corresponding

method. It is not difficult to see that both methods HSPI-OAM and IAPF can achieve safe

Fig 17. The side slip angle of Test 4.

https://doi.org/10.1371/journal.pone.0303160.g017
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obstacle avoidance, while the path in method HSPI-OAM is smoother. In Fig 5, the maximum

side slip angle of AV is 0.13� in HSPI-OAM, while IAPF does have 1.08�. And the yaw rate has

the same curve variation trend as shown in Fig 6, which means that the path obtained by

HSPI-OAM is very smooth and conducive to vehicle stability, and the path tracking error of

AV can also be minimized, as shown in Fig 7.

Test 2

The results of Test 2 are shown in Figs 8–11. Compared with Test 1, the motion parameter in

Test 2 is changed. Corresponding to the change of motion parameter, the performance param-

eter involved in HSPI-OAM does not change as shown in Table 2, while the side slip angle,

yaw rate and tracking error of AV remain in a very small range. In IAPF1, the same parameters

as in Test 1 are used. Although obstacle avoidance is still completed, the path is indeed greatly

changed. In IAPF1, the path implements sudden maneuver for obstacle avoidance, which is

not in line with human obstacle-avoidance operation, but also greatly damages the smoothness

of the path. In IAPF2, the weight of obstacle avoidance cost is reduced to k1 = 0.0015, and the

path similar to IAPF in Test 1 is obtained. Therefore, the performance of obstacle avoidance in

Fig 18. The yaw rate of Test 4.

https://doi.org/10.1371/journal.pone.0303160.g018
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IAPF depends on the choice of parameters, while HSPI-OAM achieves good obstacle avoid-

ance performance in Test 1 and Test 2 by using the same parameters.

Test 3

The results of Test 3 are shown in Figs 12–15. Unlike Tests 1 and 2, both obstacle and vehicle

in Test 3 have longitudinal and lateral acceleration, so their trajectories are curved. In

HSPI-OAM, the performance parameter is still unchanged, and AV still achieves obstacle

avoidance while the side slip angle, yaw rate and tracking error remain at fairly small values. k1

= 0.1 in IAPF1 is the same as that in Test 1. Different from Test 1 and Test 2, the vehicle col-

lides with the obstacle because k1 = 0.1 value is too small in Test 3. In IAPF2, k1 is adjusted to

k1 = 1.5 to complete obstacle avoidance again. Not only do IAPF1 and IAPF2 depend on the

parameter, but the side slip angle, yaw rate and tracking error in IAPF1 and IAPF2 is greater

than those in HSPI-OAM.

Test 4

The results of Test 4 are shown in Figs 16–19. As in Test 3, both obstacle and vehicle in Test 4

have longitudinal and lateral acceleration. The difference is that AV and obstacle are moving

Fig 19. The tracking error of Test 4.

https://doi.org/10.1371/journal.pone.0303160.g019
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in the same direction. In HSPI-OAM, the performance parameter is still unchanged, and AV

still achieves obstacle avoidance while the side slip angle, yaw rate and tracking error remain at

fairly small values. k1 = 1.5 in IAPF1 is the same as that in IAPF2 of Test 3. While the parame-

ter that can realize obstacle avoidance in IAPF2 of Test 3 has a collision in this working condi-

tion. In IAPF2, k1 = 1.5 is adjusted to k1 = 50 to avoid collision.

In addition, the comparison method uses the combination of artificial potential field and

model prediction method to plan the path. Adjusting the prediction time domain in the model

prediction can improve the performance of the comparison method to a certain extent. For

example, we use 5, 10 and 15 to as the prediction time. The longer the prediction time domain,

the earlier the comparison algorithm can implement the path planning, thus smoothing the

path to a certain extent. However, the required cost will also increase. More importantly, the

smoothness of its path cannot be compared with that of the proposed method, and the

improvement of yaw rate, side slip angle and tracking error of the vehicle controlled by the

comparison method is also limited. And the proposed method is planned at the acceleration

level and the acceleration is equalized in the virtual collision point model, so the smoothness

of the planned path is greatly improved.

Section 5: Conclusions

The proposed HSPI-OAM can realize highly smooth and parameter independent obstacle

avoidance in the complex obstacle avoidance situation where both the obstacle and the vehicle

have acceleration. In four different working conditions, the comparison method needs to

adjust parameters according to different working conditions to achieve obstacle avoidance,

and the smoothness of the path is not as good as HSPI-OAM. HSPI-OAM can achieve obstacle

avoidance and obtain a smooth path without adjusting parameter, which is conducive to the

stability of the vehicle and the accuracy of path tracking. Since the proposed method accurately

designs the required acceleration according to the motion information of the moving obstacle

and vehicle, it may be necessary to add additional strategies for pre-processing each obstacle in

the face of multiple obstacles, so as to improve the adaptability of the method to the multi-

obstacle environment, which is also a direction for the subsequent efforts of the method.
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7. Roberge V., Tarbouchi M. and Labonté G., “Fast genetic algorithm path planner for fixed-wing military

UAV using GPU,” IEEE Transactions on Aerospace and Electronic Systems, Vol. 54, no. 5, pp. 2105–

2117, 2018 https://doi.org/10.1109/TAES.2018.2807558

8. Yuan. X, Yuan. X. W, Wang. X.H, “Path planning for mobile robot based on improved bat algorithm,”

Sensors, vol. 21, no. 13, pp. 4389, 2021. https://doi.org/10.3390/s21134389 PMID: 34206921

9. Zhu. X. H, Yan. B, Yue. Y, “Path planning and collision avoidance in unknown environments for USVs

based on an improved D* Lite,” Applied Sciences-Basel, vol. 11, no. 17, pp. 7863, 2021. https://doi.

org/10.3390/app11177863

10. Zafar. M. N, Mohanta. J. C, Keshari. A, “GWO-potential field method for mobile robot path planning and

navigation control,” Arabian Journal for Science and Engineering, vol. 46, no. 8, pp. 8087–8104, 2021.

https://doi.org/10.1007/s13369-021-05487-w

11. Zhou. X. B, Yu. X, Zhang. Y. M, Luo. Y. Y, Peng. X. Y, “Trajectory planning and tracking strategy applied

to an unmanned ground vehicle in the presence of obstacles,” IEEE Transactions on Automation Sci-

ence and Engineering, vol. 18, no. 4, pp. 1575–1589, 2021. https://doi.org/10.1109/TASE.2020.

3010887

12. Du. Toit. Noel. E, Burdick. Joel. W, “Robot motion planning in dynamic, uncertain environments,” IEEE

Transactions on Robotics, vol. 28, no. 1, pp. 101–115, 2012. https://doi.org/10.1109/TRO.2011.

2166435

13. Wen. Shuhuan, Zheng. Wei, Zhu. Jinghai, “Elman fuzzy adaptive control for obstacle avoidance of

mobile robots using hybrid force/position incorporation,” IEEE Transactions on Systems Man and

Cybernetics Part C-Applications and Reviews, vol. 42, no. 4, pp. 603–608, 2012. https://doi.org/10.

1109/TSMCC.2011.2157682

14. Kim. Cheol. Joong, Chwa. Dongkyoung, “Obstacle avoidance method for wheeled mobile robots using

interval type-2 fuzzy neural network,” IEEE Transactions on Fuzzy Systems, vol. 23, no. 3, pp. 677–

687, 2015. https://doi.org/10.1109/TFUZZ.2014.2321771

15. Malone. N, “Hybrid dynamic moving obstacle avoidance using a stochastic reachable set-based poten-

tial field,” IEEE Transactions on Robotics, vol. 33, no. 5, pp. 1124–1138, 2017. https://doi.org/10.1109/

TRO.2017.2705034

16. Mora. M. C, “Predictive and multirate sensor-based planning under uncertainty,” IEEE Transactions on

Intelligent Transportation Systems, vol. 16, no. 3, pp. 1493–504, 2015. https://doi.org/10.1109/TITS.

2014.2366974

17. Shamir. T, “How should an autonomous vehicle overtake a slower moving vehicle: Design and analysis

of an optimal trajectory,” IEEE Transactions on Automatic Control, vol. 49, no. 4, pp. 607–610, 2004.

https://doi.org/10.1109/TAC.2004.825632

18. Rosolia. Ugo, De. Bruyne. Stijn, Alleyne. Andrew G, “Autonomous vehicle control: A nonconvex

approach for obstacle avoidance,” IEEE Transactions on Control Systems Technology, vol. 25, no.

2, pp. 469–484, 2017. https://doi.org/10.1109/TCST.2016.2569468

19. Zong. C. F, Han. X. J, Zhang. D, Liu. Y, Zhao. W. Q, Sun. M, “Research on local path planning based on

improved RRT algorithm,” Proceedings of the Institution of Mechanical Engineers Part D-Journal of

Automobile Engineering, vol. 235, no. 8, pp. 2086–2100, 2021. https://doi.org/10.1177/

0954407021993623

20. Liang Z., Zhao J., Liu B., Wang Y. and Ding Z., “Velocity-based path following control for autonomous

vehicles to avoid exceeding road friction limits using sliding mode method,” IEEE Transactions on Intelli-

gent Transportation Systems, vol. 23, no. 3, pp. 1947–1958, 2022. https://doi.org/10.1109/TITS.2020.

3030087

21. Cho. Jang-Ho, Pae. Dong-Sung, Lim. Myo.Taeg, “A real-time obstacle avoidance method for autono-

mous vehicles using an obstacle-dependent gaussian potential field,” Journal of Advanced Transporta-

tion Journal, vol. 2018, 2018.

PLOS ONE Highly smooth and parameter independent obstacle avoidance method for autonomous vehicle

PLOS ONE | https://doi.org/10.1371/journal.pone.0303160 June 6, 2024 22 / 23

https://doi.org/10.3390/rs13163265
https://doi.org/10.3390/rs13163265
https://doi.org/10.1109/LRA.2017.2658940
https://doi.org/10.1109/ACCESS.2021.3097945
https://doi.org/10.1109/ACCESS.2021.3097945
https://doi.org/10.1109/TAES.2018.2807558
https://doi.org/10.3390/s21134389
http://www.ncbi.nlm.nih.gov/pubmed/34206921
https://doi.org/10.3390/app11177863
https://doi.org/10.3390/app11177863
https://doi.org/10.1007/s13369-021-05487-w
https://doi.org/10.1109/TASE.2020.3010887
https://doi.org/10.1109/TASE.2020.3010887
https://doi.org/10.1109/TRO.2011.2166435
https://doi.org/10.1109/TRO.2011.2166435
https://doi.org/10.1109/TSMCC.2011.2157682
https://doi.org/10.1109/TSMCC.2011.2157682
https://doi.org/10.1109/TFUZZ.2014.2321771
https://doi.org/10.1109/TRO.2017.2705034
https://doi.org/10.1109/TRO.2017.2705034
https://doi.org/10.1109/TITS.2014.2366974
https://doi.org/10.1109/TITS.2014.2366974
https://doi.org/10.1109/TAC.2004.825632
https://doi.org/10.1109/TCST.2016.2569468
https://doi.org/10.1177/0954407021993623
https://doi.org/10.1177/0954407021993623
https://doi.org/10.1109/TITS.2020.3030087
https://doi.org/10.1109/TITS.2020.3030087
https://doi.org/10.1371/journal.pone.0303160


22. Dang R., Wang J., Li S., Eben, and Li K., “Path generation algorithm based on crash point prediction for

lane changing of autonomous vehicles,” International Journal of Automotive Technology, vol. 20, no.

3, pp. 507–519, 2019. https://doi.org/10.1007/s12239-019-0048-1

23. Chen. Yuxiao, Peng. Huei, Grizzle. Jessy, “Obstacle avoidance for low-speed autonomous vehicles

with barrier function,” IEEE Transactions on Control Systems Technology, vol. 26, no. 1, pp. 194–206,

2018. https://doi.org/10.1109/TCST.2017.2654063

24. X. Sun, S. Deng and B. Tong, “Trajectory planning approach of mobile robot dynamic obstacle avoid-

ance with multiple constraints,” 2021 6th IEEE International Conference on Advanced Robotics and

Mechatronics (ICARM), pp. 829–834, 2021.

25. Rasekhipour. Y, Khajepour. A, Chen. S. K and Litkouhi. B, “A potential field-based model predictive

path-planning controller for autonomous road vehicles,” IEEE Transactions on Intelligent Transportation

Systems, vol. 18, no. 5, pp. 1255–1267, 2017. https://doi.org/10.1109/TITS.2016.2604240

26. Ji. J, Khajepour. A, Melek. W. W and Huang. Y. J, “Path planning and tracking for vehicle collision avoid-

ance based on model predictive control with multiconstraints,” IEEE Transactions on Vehicular Technol-

ogy, vol. 66, no. 2, pp. 952–964, 2017. https://doi.org/10.1109/TVT.2016.2555853

27. Liu. J. C, Jayakumar. P, Stein. J. L and Ersal. T, “A nonlinear model predictive control formulation for

obstacle avoidance in high-speed autonomous ground vehicles in unstructured environments,” Vehicle

System Dynamics, vol. 56, no. 6, pp. 853–882, 2018. https://doi.org/10.1080/00423114.2017.1399209

28. Wang. H, Huang. Y. J, Khajepour. A, Rasekhipour. Y, Zhang. Y. B and Cao. D. P, “Crash mitigation in

motion planning for autonomous vehicles,” IEEE Transactions on Intelligent Transportation Systems,

vol. 20, no. 9, pp. 3313–3323, 2019. https://doi.org/10.1109/TITS.2018.2873921

PLOS ONE Highly smooth and parameter independent obstacle avoidance method for autonomous vehicle

PLOS ONE | https://doi.org/10.1371/journal.pone.0303160 June 6, 2024 23 / 23

https://doi.org/10.1007/s12239-019-0048-1
https://doi.org/10.1109/TCST.2017.2654063
https://doi.org/10.1109/TITS.2016.2604240
https://doi.org/10.1109/TVT.2016.2555853
https://doi.org/10.1080/00423114.2017.1399209
https://doi.org/10.1109/TITS.2018.2873921
https://doi.org/10.1371/journal.pone.0303160

