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Abstract

Road traffic accidents (RTAs) pose a significant hazard to the security of the general public,

especially in developing nations. A daily average of more than three thousand fatalities is

recorded worldwide, rating it as the second most prevalent cause of death among people

aged 5–29. Precise and reliable decisionmaking techniques are essential for identifying the

most effective approach to mitigate road traffic incidents. This research endeavors to inves-

tigate this specific concern. The Fermatean fuzzy set (FFS) is a strong and efficient method

for addressing ambiguity, particularly when the concept of Pythagorean fuzzy set fails to

provide a solution. This research presents two innovative aggregation operators: the Ferma-

tean fuzzy ordered weighted averaging (FFOWA) operator and the Fermatean fuzzy

dynamic ordered weighted geometric (FFOWG) operator. The salient characteristics of

these operators are discussed and important exceptional scenarios are thoroughly delin-

eated. Furthermore, by implementing the suggested operators, we develop a systematic

approach to handle multiple attribute decisionmaking (MADM) scenarios that involve Fer-

matean fuzzy (FF) data. In order to show the viability of the developed method, we provide a

numerical illustration encompassing the determination of the most effective approach to

alleviate road traffic accidents. Lastly, we conduct a comparative evaluation of the proposed

approach in relation to a number of established methodologies.

1. Introduction

Multi-attribute decision-making (MADM) problems manifest when a predetermined set of

attributes is employed to select one option, action, or nomination from among numerous

alternatives. The MADM technique, which is a subfield of operations research and decision

science, evaluates complex situations with numerous, and at times, inconsistent, factors. Utiliz-

ing the MADM method to manage complex decisions with multiple objectives and trade-offs
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is beneficial. It aids decision-makers in formulating informed and purposeful judgments that

take into account all significant factors, thereby potentially enhancing the outcomes of deci-

sions. MADM is simplified by aggregation operators, which renders it a practical instrument

for tackling pragmatic challenges associated with universally prevalent concerns. Aggregation

operators seek to merge every separate value into a single value. All values are therefore

accounted for in the final aggregate result. Before the discovery of aggregation operators, crisp

sets were extensively used as decision-making procedures.

The presence of ambiguity or inadequate information in numerous domains presents sig-

nificant challenges. Similarly, it can be asserted that decision-making problems often suffer

from inadequate and ambiguous information. The resolution of decision-making problems is

heavily contingent upon imprecision, uncertainty, and incomplete information. The use of

real numbers is inadequate for resolving situations characterized by uncertainty. Thus, fuzzy

sets (FSs) provide the resolution in a situation of uncertainty. Zadeh [1] introduced FS in 1965.

Specifically, determining the degree of membership of a value within a fuzzy set aids in resolv-

ing situations characterized by uncertainty. FSs have advanced significantly in several domains

of engineering and technology. Nevertheless, the constituents of traditional FSs are construed

solely based on the extent of membership. Uncertainty or partial information in a dataset can

be represented by a single membership function. Atanassov [2] defines the extension of the

traditional FS idea. The term used to refer to this structure is intuitionistic fuzzy set (IFS).

IFS is constituted by a membership degree and a non-membership degree that must meet

the requirement that their sum is equal to or less than 1. Thus, it may effectively convey the

ambiguous nature of facts in a more complete and precise manner. The primary challenge that

emerges in decision-making challenges is the integration of disparate pieces of information

provided by numerous sources in order to reach a judgment or draws inferences. To achieve a

high-quality aggregation, researchers employed many methodologies including the utilization

of rules, fusion-specific approaches, probability, possibility, and fuzzy set theory. Each of these

techniques is based on certain quantitative aggregation operations. These operators are mathe-

matical tools that play a crucial role in reducing a set of values to a single unique value. Various

aggregation operations have been developed to combine IF information from different experts,

alternatives, and time periods. Various intuitionistic fuzzy aggregation operators were devised

and used to solve MADM issues in [3,4]. Li [5] investigated the use of generalized ordered

weighted averaging operations to Intuitionistic fuzzy data. Wei [6] proposed the notion of

induced geometric aggregation operators in the context of IF information. Since its inception,

IFS has received considerable attention and has been utilized effectively to resolve MADM

issues [7–9]. However, numerous instances remain in which IFS has been unable to address

the problem.

The Pythagorean fuzzy set (PFS) was introduced by Yager [10,11] as a robust extension of

the IFS. The sum of the squares of PFS membership and non-membership degrees is inside the

interval [0,1]. In comparison to IFS, PFS can handle more uncertain conditions. Therefore,

PFS is superior to IFS in terms of its efficacy in solving practical problems. PFSs have quickly

garnered the interest of several researchers [12–15]. Pythagorean fuzzy weighted geometric/

averaging operators was given by [16]. Zhang [17] introduced the Pythagorean fuzzy ordered

weighted averaging (PFOWA) operator. Garg [18] introduced many Einstein operators,

applied to Pythagorean fuzzy MADM problems for efficiency. Rahman et al. [19] worked on

MADM problems using the Pythagorean fuzzy ordered weighted geometric (PFOWG) opera-

tor and its fundamental features. Undoubtedly, the PFS surpasses the IFS in its ability to accu-

rately depict and analyze intricate ambiguity in practical decision-making scenarios. Although

PFS offer a wider range of possibilities, it is necessary to create a more sophisticated iteration

of fuzzy sets to handle scenarios that are outside the confines of the PFS framework.
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Senapati and Yager [20] extends the concepts of IFS and PFS theories and introduced FFS

theory. It adheres to the criterion 0� μ3 + ν3� 1 and offers enhanced adaptability in resolving

decision-making situations that involve ambiguity. IFSs are capable of handling a greater

degree of uncertainty in MADM problems by providing information about both the degrees of

membership and non-membership of the available alternatives. In addition to these benefits,

this model had several constraints, such as the constraint that the sum of the membership and

non-membership degrees, is limited to 1. PFS is an extension of IFS, distinguished by the con-

dition that the square sum of its membership and non-membership degrees, must not exceed

1. However, in MADM situations, we may encounter a situation where the sum of the degrees

of membership and non-membership of a specific attribute exceed 1. For example, if member-

ship degree of an element in a set is 0.9 and non-membership degree is 0.6, then IFS and PFS

criteria are not met, due to the sum exceeding 1. In contrast, FFS effectively handles this sce-

nario, by the condition that the cubic sum of its degrees of membership and non-membership

does not exceed 1,0.93 + 0.63 = 0.94� 1. This example illustrates that FFS is more flexible and

regarded as a superior tool compared to IFS and PFS in MADM problems. Currently, FFS may

be considered the most widespread collection of fuzzy sets. Senapati and Yager [20] presented

a formal description of fundamental operations on FFSs and introduced score and accuracy

functions for FFSs. In [21], the same authors introduced a new set of operations for FFSs,

including subtraction, division, and Fermatean arithmetic mean operations. In the same

paper, they also proposed using the Fermatean fuzzy weighted product model to address

MCDM problems. In [22], Fermatean fuzzy weighted averaging and geometric operators were

defined, along with the investigation of their useful applications in the decision-making

domain. FFSs have rapidly captured the attention of many scholars. FF is widely used in

MADM problems. The efficacy of employing FF aggregating processes within the COVID-19

testing facility is demonstrated in [23]. The study done in [24] analyzed many scoring func-

tions for FFS and assessed their practical applicability in the domain of transportation issues

and decision-making. The concept for the identification of an effective sanitizer to limit the

transmission of COVID-19 under FF envirnoment is presented in [25]. The weighted aggre-

gated sum product assessment approach was developed in [26] within the context of the FF

environment. Many Fermatean fuzzy capital budgeting approaches have been presented. In

[27]. A recent work [28] has offered a comprehensive approach for determining the most

effective treatment methods for blood cancer in a Fermatean fuzzy setting. In [29] a consen-

sus-based process for selecting healthcare waste treatment system using FF knowledge is pro-

posed. A new notion of complex Fermatean neutrosophic graph was introduced in [30].

Several scholars have extensively studied the intricate structure of FFSs throughout several

fields. For example, interval-valued FF Dombi aggregation operators [31], interval-valued FF

TOPSIS approach and its relevance to the sustainability system [32], q-rung orthopair fuzzy

Frank aggregation operators and its application in MADM [33], multiple attribute group deci-

sion making based on quasirung orthopair fuzzy sets [34], MADM based on quasirung fuzzy

sets [35] and some picture fuzzy aggregation operators based on Frank t-norm and t-conorm

[36].

The exploration of aggregation operators is a captivating field of study in the domain of

decision making. In the last few decades, several operators have been suggested, including the

ordered weighted averaging (OWA) and ordered weighted geometric (OWG) operators.

Ordered weighted aggregation operators Ordered weighted aggregation operators possess

great ability to handle imprecise information. Yager [37] introduced the OWA operator,

which has been extensively applied in resolving numerous problems. This concept has been

examined both theoretically [38–40] and from an implicational perspective. This method has

also been utilized in linguistic decision-making assessments [41], eliminating noise in
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computer vision [42], offering a breakdown of all rank-dependent poverty measures in terms

of inequality, intensity, and incidence [43], and enabling experts to express multiple levels of

self-confidence when stating their inclinations [44]. The introduction of OWG operator by

Chiclana [45] incorporates the notion of fuzzy majority in decision-making procedures with

ratio-scale evaluations, comparable to the OWA operator [46]. OWG utilizes the OWA opera-

tor and the geometric mean. The comprehensive examination of the genesis and applications

of the OWG method in MADM can be found in reference [47].

1.1. Research gap

We can see from references [3,4,17,19] that the theories developed for ordered weighted aggre-

gation operators are based on IFSs and PFSs. Thus, there are many MADM problems, that IFS

and PFS environment cannot handle because the sum of degrees of membership and non-

membership and the square sum of degrees of membership and non-membership exceed 1. As

a result, when decision-makers come up the situations like (0.9, 0.6), or (0.8, 0.7) then the

notions developed in references [3,4,17,19] fail to tackle such kind of data. It means that, there

is need to focus on enhancing proficiency in some advanced structural concepts. Moreover,

weighted aggregation operators involve assigning predetermined weights to different attributes

and lack versatility, making them less suitable for handling uncertainty. The possibility of

information loss is a concern because low-weighted data may have the smallest effect on the

overall aggregation, leading to an insufficient depiction of the data. One can observe these lim-

itations in [3,4,16,22]. Thus, there is a need to develop notions based on ordered weighted

aggregation operator on some advance structure to overcome these issues.

1.2. Motivation

FFSs accommodate greater degrees of uncertainty than IFSs and PFSs, highlighting their suit-

ability for managing situations characterized by increased ambiguity and complexity in

MADM problems. For instant, these sets easily handles scenario like (0.9, 0.6), or (0.8, 0.7), by

the condition that the cubic sum of their degrees of membership and non-membership does

not exceed 1. Ordered weighted aggregation operators do not reliant on predetermined

weights allocated to specific attribute. These operators enable decision-makers to include the

uncertainty and imprecision of real-world situations by introducing reordering of the input

values that precisely convey their significance in the decision-making procedure. The ability of

ordered weighted aggregation operators to be flexible is especially beneficial when handling

subjective and ambiguous data, since it allows decision-makers to present their preferences

without being confined by specific weight values. Although these operators have been estab-

lished for classical fuzzy, intuitionistic fuzzy, and Pythagorean fuzzy environments, there is a

dearth of research discussing their application to data involving FFSs. In order to rectify this

deficiency, it is critical to establish concrete operators for FFSs that can efficiently manage

such settings.

The primary contributions of this work are delineated as follows:

i. Two innovative aggregation operators, FFOWA and FFOWG operators, are defined to deal

with complex decision-making scenarios involving FF data.

ii. The structural characteristics of the proposed operators are proved. This highlights the logi-

cal existence of these operators.

iii. With the help of newly designed operators, a rigorous approach to solve MADM problems

in the framework of FF knowledge is provided.
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iv. The suggested approach is demonstrated by applying it to the resolution of a practical

MADM issue, such as determining the best course of action to reduce traffic accidents.

v. A comprehensive comparative analysis is undertaken to evaluate the feasibility of the pro-

posed approach in comparison to several existing techniques.

This manuscript’s succeeding sections are organized as follows: Section 2 provides essential

terminology for understanding this manuscript’s main discoveries. In the third section,

ordered weighted aggregate operators for FFS are introduced, and their essential features are

examined. Section 4 develops a step-by-step mathematical technique to solve MADM issues

utilizing FF information and ordered weighted aggregating operators. The purpose of Section

5 is to demonstrate how the proposed method can be utilized to determine the most effective

strategy for reducing RTAs. In addition, a comparison study is undertaken to evaluate the via-

bility and efficacy of this novel approach relative to traditional approaches. The conclusion of

this research is outlined in Section 6.

The specifics of the symbols and abbreviations are provided in Tables 1 and 2, respectively.

2. Preliminaries

This section contains the essential descriptions of the terminology required to comprehend

the main findings of this article.

Definition 1. [20]. In the context of a universe of discourse C, a FFS, O, is defined as fol-

lows:

O ¼ x; mO xð Þ; nO xð Þ : x 2 Cf g;

where, μO C! [0,1] describes membership function and νO C! [0,1] describes non-mem-

bership function satisfying 0 � m3
O
ðxÞ þ n3

O
ðxÞ � 1 8x 2 C.

Moreover, for any element ξ 2C, the indeterminacy degree of ξ in context of O, is

described as pO xð Þ ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1 � m3

O xð Þ � n
3
OðxÞ

3
p

.

Table 1. List of abbreviations.

Abbreviations Explanation Abbreviations Explanation

MADM Multi-attribute decision-making PFS Pythagorean fuzzy set

FS Fuzzy set OWA Ordered weighted averaging

FF Fermatean fuzzy OWG Ordered weighted geometric

FFS Fermatean fuzzy set FFOWA Fermatean fuzzy ordered weighted averaging

FFN Fermatean fuzzy Number FFOWG Fermatean fuzzy ordered weighted geometric

IFS Intuitionistic fuzzy set RTAs Road traffic accidents

https://doi.org/10.1371/journal.pone.0303139.t001

Table 2. List of symbols.

Notation Description Notation Description

C Universe S Score function

O Fermatean fuzzy set H Accuracy function

ξ Element of universe R Decision matrix

μ Membership function Rs Permuted decision matrix

ν Non-membership function ϒ Alternative

ω Weight vector χ Attribute

https://doi.org/10.1371/journal.pone.0303139.t002
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Furthermore, we express the degrees of membership and non-membership of ξ inC as ξ =

(μO, νO), which is referred to as a Fermatean fuzzy number (FFN). Here, μO, νO 2 [0,1] and sat-

isfy the condition 0 � m3
O
þ n3

O
� 1.

Definition 2. [20]. Consider two FFNs, O1 ¼ mO1
; nO1

� �
and O2 ¼ mO2

; nO2

� �
. The funda-

mental operational laws that regulate their interrelations are as follows:

i. O1� O2, if mO1
� mO2

and nO1
� nO2

ii. O1 = O2 if and only if O1� O2 and O2� O1

iii. O
c
1
¼ nO1

; mO1

� �

Definition 3. [20]. Let O ¼ mO; nOð Þ; O1 ¼ mO1
; nO1

� �
and O2 ¼ mO2

; nO2

� �
be three

FFNs and ω> 0, then

i. O1 � O2 ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
m3
O1
þ m3

O2
� m3

O1
m3
O2

3
q

; nO1
nO2

� �

ii. O1 � O2 ¼ mO1
mO2

;
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
n3
O1
þ n3

O2
� n3

O1
n3
O2

3
q� �

iii. oO ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1 � ð1 � m3

OÞ
o3

p
; no

O

� �

iv. O
o
¼ mo

O
;

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1 � ð1 � n3

OÞ
o3

p� �

Definition 4. [20]. In the following, we define two crucial functions for every FFN O = (μO,

νO):

i. The expression for the score function SðOÞ is m3
O
� n3

O
. The result in this case falls in [−1, 1].

ii. The expression for the score function HðOÞ is m3
O
þ n3

O
. The result in this case falls in [0, 1].

Also, O1 and O2 fulfill the subsequent comparison rules:

i. S O1ð Þ � S O2ð Þ implies O1� O2

ii. S O1ð Þ � S O2ð Þ implies O1� O2

iii. If S O1ð Þ ¼ S O2ð Þ, then H O1ð Þ � H O2ð Þ implies O1 � O2; H O1ð Þ � H O2ð Þ implies O1�

O2 and H O1ð Þ ¼ H O2ð Þ implies O1 ~ O2

3. Fundamental properties of FFOW aggregation operators

This section provides an introduction to the FFOWA operator and FFOWG operator, and

explores their essential properties.

Definition 5. Let i = 1,2, . . ., n and Oi ¼ ðmOi
; nOi
Þ be a collection F of FFNs. Suppose that

ω = (ω1, ω2, . . ., ωn)T is the associated weight vector of Oi with ωi 2 [0,1] and
Pn

i¼1
oi ¼ 1.

Then FFOWA operator is a function FFOWA : Fn
! F, where

FFOWA O1;O2; . . . ;Onð Þ ¼ �n
i¼1
oi:Os ið Þ

FFOWA O1;O2; . . . ;Onð Þ ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

1 �
Yn

i¼1
1 � m3

Os ið Þ

� �oi3

r

;
Yn

i¼1
n
oi
Os ið Þ

! 
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where (σ(1), σ(2), . . ., σ(n)) is the permutation of i = 1,2,3, . . ., n, such that Oσ(i−1)� Oσ(i), for

all i.
Theorem 1. Let i = 1,2, . . ., n and Oi ¼ ðmOi

; nOi
Þ denote FFNs. The outcome of aggregating

these FFNs via the FFOWA operator is maintained as an FFN. The expression for it is as fol-

lows:

FFOWA O1;O2; . . . ;Onð Þ ¼

 ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

1 �
Yn

i¼1
1 � m3

Os ið Þ

� �oi3

r

;
Yn

i¼1
n
oi
Os ið Þ

!

where, ω = (ω1, ω2, . . ., ωn)T be the associated weight vector of Oi with some conditions ωi 2

[0,1] and
Pn

i¼1
oi ¼ 1.

Proof. To prove this theorem, we use mathematical induction on n. If n = 2, then

FFOWA O1;O2ð Þ ¼ o1:Os 1ð Þ � o2:Os 2ð Þ

Breaking down the components ω1.Oσ(1) and ω2.Oσ(2), in view of Definition 5, we obtain

o1:Os 1ð Þ ¼

 ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

1 � 1 � m3
Os 1ð Þ

� �o13

r

; n
o1

Os 1ð Þ

!

o2:Os 2ð Þ ¼

 ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

1 � 1 � m3
Os 2ð Þ

� �o23

r

; n
o2

Os 2ð Þ

!

Then,

o1:Os 1ð Þ � o2:Os 2ð Þ

¼

 ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

1 � 1 � m3
Os 1ð Þ

� �o13

r

; n
o1

Os 1ð Þ

!

�

 ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

1 � 1 � m3
Os 2ð Þ

� �o23

r

; n
o2

Os 2ð Þ

!

¼

 ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

1 � 1 � m3
Os 1ð Þ

� �o1

1 � m3
Os 2ð Þ

� �o23

r

; n
o1

Os 1ð Þ
n
o2

Os 2ð Þ

!

Consequently,

FFOWA O1;O2ð Þ ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

1 �
Y2

i¼1
1 � m3

Os ið Þ

� �oi3

r

;
Y2

i¼1
n
oi
Os ið Þ

! 

This means that the theorem works for n = 2.

Then, assuming the theorem is valid for n = k> 2, we obtain:

FFOWA O1;O2; . . . ;Okð Þ ¼ �k
i¼1
oiOs ið Þ

FFOWA O1;O2; . . . ;Okð Þ ¼

 ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

1 �
Yk

i¼1
1 � m3

Os ið Þ

� �oi3

r

;
Yk

i¼1
n
oi
Os ið Þ

!
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Now, for the case n = k + 1, we can evaluate it as:

FFOWA O1;O2; . . . ;Ok;Okþ1

� �
¼ �k

i¼1
oiOs ið Þ � okþ1:Os kþ1ð Þ

¼

� ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

1 �
Yk

i¼1
1 � m3

Os ið Þ

� �oi3

r

;
Yk

i¼1
n
oi
Os ið Þ

�

�

� ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

1 � 1 � m3
Os kþ1ð Þ

� �okþ13

r

; n
okþ1

Os kþ1ð Þ

�

This mean that

FFOWA O1;O2; . . . ;Okþ1

� �
¼

 ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

1 �
Ykþ1

i¼1
1 � m3

Os ið Þ

� �oi3

r

;
Ykþ1

i¼1
n
oi
Os ið Þ

!

This proves that the theorem remains valid when n equals k + 1. Thus, it can be deduced

that the assertion holds true for every value of n.

The following example shows the application of Theorem 1.

Example 1. Let O1 = (0.7, 0.6), O2 = (0.8, 0.4), O3 = (0.9, 0.5) and O4 = (0.8, 0.7) be four

FFNs and ω = (0.1, 0.2, 0.3, 0.4)T be the associated weight vector of Oi. First we calculate the

scores of Oi by means of Definition 4,

S O1ð Þ ¼ 0:127;S O2ð Þ ¼ 0:448;S O3ð Þ ¼ 0:604;S O4ð Þ ¼ 0:169

Since S O3ð Þ � S O2ð Þ � S O4ð Þ � S O1ð Þ, then the permutation vector Oσ(i), where

i = 1,2,3,4, is described as follows:

Os 1ð Þ;Os 2ð Þ;Os 3ð Þ;Os 4ð Þ

� �
¼ 0:9; 0:5ð Þ; 0:8; 0:4ð Þ; 0:8; 0:7ð Þ; 0:7; 0:6ð Þð Þ

Thus, considering Definition 5, the following result is obtained:

FFOWA O1;O2; O3;O4ð Þ ¼ 0:783; 0:568ð Þ

Theorem 2. (Idempotency) Let i = 1,2, . . ., n and Oi ¼ ðmOi
; nOi
Þ denote FFNs. Suppose that

ω = (ω1, ω2, . . ., ωn)T is the associated weight vector of Oi such that ωi 2 [0,1] and
Pn

i¼1
oi ¼ 1.

IfOσ(i) = Oσ(j) are mathematically identical where OsðjÞ ¼ mOsðjÞ ; nOsðjÞ

� �
then

FFOWA O1;O2; . . . ;Onð Þ ¼ Os jð Þ:

Proof. Given that Oσ(i) = Oσ(j), for some j 2 {1,2, . . ., n} implying mOsðiÞ ¼ mOsðjÞ and

nOsðiÞ ¼ nOsðjÞ , then by using the above fact in Definition 5, we get

FFOWA O1;O2; . . . ;Onð Þ ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

1 �
Yn

i¼1
1 � m3

Os ið Þ

� �oi3

r

;
Yn

i¼1
n
oi
Os ið Þ

� �

¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

1 � 1 � m3
Os jð Þ

� �
Xn

i¼1
oi3

s

; n

Pn

i¼1
oi

Os jð Þ

0

@

1

A

¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

1 � 1 � m3
Os jð Þ

� �
3

r

; nOs jð Þ

� �

¼
ffiffiffiffiffiffiffiffiffiffi
m3
Os jð Þ

3
q

; nOs jð Þ

� �

¼ mOs jð Þ
; nOs jð Þ

� �
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Consequently,

FFOWA O1;O2; . . . ;Onð Þ ¼ Os jð Þ

Theorem 3. (Boundedness) Let i = 1,2, . . ., n and Oi ¼ ðmOi
; nOi
Þ denote FFNs. Suppose that

O
�
¼ mini mOsðiÞ

n o
;maxi nOsðiÞ

n o� �
and O

þ
¼ maxi mOsðiÞ

n o
;mini nOsðiÞ

n o� �
are the lower and

upper bounds of Oi ¼ mOi
; nOi

� �
. Moreover, ω = (ω1, ω2, . . ., ωn)T is the associated weight vec-

tor of Oi satisfying the conditions ωi 2 [0,1] and
Pn

i¼1
oi ¼ 1. Then

O
�
� FFOWA O1; O2; . . . ; Onð Þ � O

þ
:

Proof. Let us apply FFOWA operator on the set of FFNs, as follows:

FFOWA O1;O2; . . . ;Onð Þ ¼ mO; nOð Þ;

where O = (μO, νO). For each mOsðiÞ , we have

min
i

mOs ið Þ

n o
� mOs ið Þ

� max
i

mOs ið Þ

n o

) min
i

m3

Os ið Þ

n o
� m3

Os ið Þ
� max

i
m3

Os ið Þ

n o

) 1 � max
i

m3

Os ið Þ

n o
� 1 � m3

Os ið Þ
� 1 � min

i
m3

Os ið Þ

n o

)
Yn

i¼1
1 � max

i
m3

Os ið Þ

n o� �oi

�
Yn

i¼1
1 � m3

Os ið Þ

� �oi
�
Yn

i¼1
1 � min

i
m3

Os ið Þ

n o� �oi

) 1 � max
i

m3

Os ið Þ

n o� �Pn

i¼1
oi

�
Yn

i¼1
1 � m3

Os ið Þ

� �oi
� 1 � min

i
m3

Os ið Þ

n o� �
Xn

i¼1
oi

) 1 � max
i

m3

Os ið Þ

n o� �

�
Yn

i¼1
1 � m3

Os ið Þ

� �oi
� 1 � min

i
m3

Os ið Þ

n o� �

) min
i

m3

Os ið Þ

n o
� 1 �

Yn

i¼1
1 � m3

Os ið Þ

� �oi
� max

i
m3

Os ið Þ

n o

)

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

mini m
3
Os ið Þ

n o
3

r

�

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

1 �
Yn

i¼1
1 � m3

Os ið Þ

� �oi3

r

�

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

maxi m3
Os ið Þ

n o
3

r

) min
i

mOs ið Þ

n o
� mO � max

i
mOs ið Þ

n o

ð1Þ

Moreover,

min
i

nOs ið Þ

n o
� nOs ið Þ

� max
i

nOs ið Þ

n o

)
Yn

i¼1
min

i
nOs ið Þ

n o� �oi
�
Yn

i¼1
nOs ið Þ

� �oi
�
Yn

i¼1
max

i
nOs ið Þ

n o� �oi

) min
i

nOs ið Þ

n o� �Pn

i¼1
oi
�
Yn

i¼1
nOs ið Þ

� �oi
� max

i
nOs ið Þ

n o� �
Pn

i¼1
oi

) min
i

nOs ið Þ

n o
� nO � max

i
nOs ið Þ

n o

ð2Þ
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Hence, by comparing relations 1 and 2, we obtain that

O
�
� FFOWA O1; O2; . . . ; Onð Þ � O

þ

Theorem 4. Consider two collections of FFNs Oi ¼ mOi
; nOi

� �
and O

0

i ¼ mO0i
; nO0i

� �
, with i

ranging from 1 to n and ω = (ω1, ω2, . . ., ωn)T be the associated weight vector ofOi andO
0

i satis-

fying the constraints ωi 2 [0,1] and
Pn

i¼1
oi ¼ 1. If mOsðiÞ � mO0s ið Þ

and nOsðiÞ � nO0s ið Þ
, then we can

establish that:

FFOWA O1; O2; . . . ; Onð Þ � FFOWA O
0

1
; O

0

2
; . . . ; O

0

n

� �

Proof. The application of FFOWA on Oi and O
0

i gives the following:

FFDWA O1; O2; . . . ; Onð Þ ¼ mO; nOð Þ and FFDWA O
0

1
; O

0

2
; . . . ; O

0

n

� �
¼ mO0 ; nO0ð Þ

Since mOsðiÞ � mO
0

s ið Þ
, which implies that m3

OsðiÞ
� m3

O
0

s ið Þ
, we can deduce that

1 � m3
Os ið Þ
� 1 � m3

O0
s ið Þ

)
Yn

i¼1
1 � m3

Os ið Þ

� �oi
�
Yn

i¼1
1 � m3

O0
s ið Þ

� �oi

) 1 �
Yn

i¼1
1 � m3

Os ið Þ

� �oi
� 1 �

Yn

i¼1
1 � m3

O0
s ið Þ

� �oi

)

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

1 �
Yn

i¼1
1 � m3

Os ið Þ

� �oi3

r

�

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

1 �
Yn

i¼1
1 � m3

O0
s ið Þ

� �oi
3

s

Hence we can conclude that,

mO � mO0 ð3Þ

Similarly, by considering nOsðiÞ � nO0s ið Þ
, we derive:

Yn

i¼1
n
oi
Os ið Þ
�
Yn

i¼1
n
oi
O0
s ið Þ

Which implies,

nO � nO0 ð4Þ

Therefore, by comparing 3 and 4 and utilizing the Definition 5, we established the desire

result,

FFOWA O1; O2; . . . ; Onð Þ � FFOWA O
0

1
; O

0

2
; . . . ; O

0

n

� �

In our subsequent definition, we introduce an ordered weighted geometric aggregation

operator designed for the FFNs, namely the Fermatean fuzzy ordered weighted geometric

(FFOWG) operator. Additionally, we investigate its structural characteristics.

Definition 6. Let i = 1,2, . . ., n and Oi ¼ ðmOi
; nOi
Þ be a collection F of FFNs. Suppose that

and ω = (ω1, ω2, . . ., ωn)T is the associated weight vector of Oi with ωi 2 [0,1] and
Pn

i¼1
oi ¼ 1.
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Then, FFOWG operator is a mapping FFOWG : Fn
! F, defined by the following rule:

FFOWG O1;O2; . . . ;Onð Þ ¼ �n
i¼1
O
oi
s ið Þ

¼

 
Yn

i¼1
m
oi
Os ið Þ

;

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

1 �
Yn

i¼1
1 � n3

Os ið Þ

� �oi3

r !

Theorem 5. Let i = 1,2, . . ., n and Oi ¼ ðmOi
; nOi
Þ denote FFNs. The outcome of aggregating

these FFNs via the FFOWG operator is maintained as an FFN. The expression for it is as fol-

lows:

FFOWG O1;O2; . . . ;Onð Þ ¼

 
Yn

i¼1
m
oi
Os ið Þ

;

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

1 �
Yn

i¼1
1 � n3

Os ið Þ

� �oi3

r !

where, ω = (ω1, ω2, . . ., ωn)T be the associated weight vector of Oi with some conditions ωi 2

[0,1] and
Pn

i¼1
oi ¼ 1.

Proof. To prove this theorem, we use mathematical induction on n. For n = 2, we have

FFOWG O1;O2ð Þ ¼ O
o1

s 1ð Þ � O
o2

s 2ð Þ

Breaking down the components O
o1

sð1Þ and O
o2

sð2Þ in view of Definition 6, we obtain:

O
o1

s 1ð Þ ¼

 

m
o1

Os 1ð Þ
;

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

1 � 1 � n3
Os 1ð Þ

� �o13

r !

O
o2

s 2ð Þ ¼

 

m
o2

Os 2ð Þ
;

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

1 � 1 � n3
Os 2ð Þ

� �o23

r !

Then,

O
o1

s 1ð Þ � O
o2

s 2ð Þ ¼

 

m
o1

Os 1ð Þ
;

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

1 � 1 � n3
Os 1ð Þ

� �o13

r !

�

 

m
o2

Os 2ð Þ
;

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

1 � 1 � n3
Os 2ð Þ

� �o23

r !

¼

 

m
o1

Os 1ð Þ
m
o2

Os 2ð Þ
;

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

1 � 1 � n3
Os 1ð Þ

� �o1

1 � n3
Os 2ð Þ

� �o23

r !

Consequently,

FFOWG O1;O2ð Þ ¼

 
Y2

i¼1
m
oi
Os ið Þ

;

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

1 �
Y2

i¼1
1 � n3

Os ið Þ

� �oi3

r !

This means that the theorem works for n = 2.

Then, assuming the theorem is valid for n = k> 2, we obtain:

FFOWG O1;O2; . . . ;Okð Þ ¼ �k
i¼1
O
oi
s ið Þ

FFOWG O1;O2; . . . ;Okð Þ ¼

 
Yk

i¼1
m
oi
Os ið Þ

;

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

1 �
Yk

i¼1
1 � n3

Os ið Þ

� �oi3

r !
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Now, for the case n = k + 1, we can express it as:

FFOWG O1;O2; . . . ;Ok;Okþ1

� �
¼ �k

i¼1
O
oi
s ið Þ � O

okþ1

s kþ1ð Þ

¼

 
Yk

i¼1
m
oi
Os ið Þ

;

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

1 �
Yk

i¼1
1 � n3

Os ið Þ

� �oi3

r !

�

 

m
okþ1

Os kþ1ð Þ
;

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

1 � 1 � n3
Os kþ1ð Þ

� �okþ13

r !

This mean that

FFOWG O1;O2; . . . ;Okþ1

� �
¼

 
Ykþ1

i¼1
m
oi
Os ið Þ

;

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

1 �
Ykþ1

i¼1
1 � n3

Os ið Þ

� �oi3

r !

This proves that the theorem remains valid when n equals k + 1. Thus, it can be deduced

that the assertion holds true for every value of n.

The following example shows the application of Theorem 5.

Example 2. Let O1 = (0.7, 0.5), O2 = (0.9, 0.5), O3 = (0.6, 0.8) and O4 = (0.8, 0.7) be four

FFNs, and ω = (0.1, 0.2, 0.3, 0.4)T be the associated weight vector of Oi, where i = 1,2,3,4. Now

we calculate the scores of Oi, by means of Definition 4

S O1ð Þ ¼ 0:218;S O2ð Þ ¼ 0:604;S O3ð Þ ¼ � 0:296;S O4ð Þ ¼ 0:169

Since S O2ð Þ � S O1ð Þ � S O4ð Þ � S O3ð Þ, then the permutation vector Oσ(i), is described as

follows:

Os 1ð Þ;Os 2ð Þ;Os 3ð Þ;Os 4ð Þ

� �
¼ 0:9; 0:5ð Þ; 0:7; 0:5ð Þ; 0:8; 0:7ð Þ; 0:6; 0:8ð Þð Þ

Consequently, in view of Definition 6, we obtain the following outcome:

FFOWG O1;O2;O3;O4ð Þ ¼ 0:702; 0:714ð Þ

Theorem 6. Let i = 1,2, . . ., n and Oi ¼ mOi
; nOi

� �
be FFNs. Suppose that ω = (ω1, ω2, . . .,

ωn)T be the associated weight vector of Oi with some conditions ωi 2 [0,1] and
Pn

i¼1
oi ¼ 1. If

Oσ(i) = Oσ(j) are mathematically identical where OsðjÞ ¼ mOsðjÞ ; nOsðjÞ

� �
then,

FFOWG O1;O2; . . . ;Onð Þ ¼ Os jð Þ

Proof. Given that Oσ(i) = Oσ(j) for all i and for some fixed j implying mOsðiÞ ¼ mOsðjÞ and

nOsðiÞ ¼ nOsðjÞ . Then by using the above fact in Definition 10, we get

FFOWG O1;O2; . . . ;Onð Þ ¼
Yn

i¼1
m
oi
Os ið Þ

;

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

1 �
Yn

i¼1
1 � n3

Os ið Þ

� �oi3

r� �

¼ m

Pn

i¼1
oi

Os jð Þ
;

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

1 � 1 � n3
Os jð Þ

� �Pn

i¼1
oi3

r !

¼ mOs jð Þ
;

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

1 � 1 � n3
Os jð Þ

� �
3

r� �

¼ mOs jð Þ
;
ffiffiffiffiffiffiffiffiffi
n3
Os jð Þ

3
q� �

¼ mOs jð Þ
; nOs jð Þ

� �
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Consequently,

FFOWG O1;O2; . . . ;Onð Þ ¼ Os jð Þ

Theorem 7. Let O
�
¼ mini mOsðiÞ

n o
;maxi nOsðiÞ

n o� �
and O

þ
¼

maxi mOsðiÞ
n o

;mini nOsðiÞ

n o� �
are respectively the lower and upper bounds of the FFNs Oi ¼

mOi
; nOi

� �
and ω = (ω1, ω2, . . ., ωn)T be the associated weight vector of Oi with some condi-

tions ωi 2 [0,1] and
Pn

i¼1
oi ¼ 1. Then

O
�
� FFOWG O1; O2; . . . ; Onð Þ � O

þ

Proof. The proof of this theorem follows the same method as Theorem 3.

Theorem 8. Consider two collections of FFNs, represented as Oi ¼ mOi
; nFi

� �
and

O
0

i ¼ mO0i
; nO0i

� �
, with i ranging from 1 to n and ω = (ω1, ω2, . . ., ωn)T be the associated weight

vector of Oi and O
0

i satisfying the constraints ωi 2 [0,1] and
Pn

i¼1
oi ¼ 1. If mOsðiÞ � mO0s ið Þ

and

nOsðiÞ � nO0s ið Þ
, then we can establish that:

FFOWG O1; O2; . . . ; Onð Þ � FFOWG O
0

1
; O

0

2
; . . . ; O

0

n

� �

Proof. The proof of this theorem follows the same method as Theorem 4.

4. Implementation of suggested Fermatean fuzzy ordered weighted

aggregation operators in MADM problems

In this section, we developed a step-by-step mathematical mechanism to tackle MADM issues

that involve FF information with the help of the proposed operators.

• Let U = {U1, U2, . . ., Um} be the set of alternatives.

• Consider a set of attributes χ = {χ1, χ2, . . ., χn} corresponding to a weight vector ω = (ω1, ω2,

. . ., ωn)T, where ωi� 0 for i = 1, 2, . . ., n, and
Pn

i¼1
oi ¼ 1.

• Let R ¼ ½fji�m � n ¼ mji; nij

� �

m �n
represents the FF decision matrix, where μji and νji indicate

the extents to which alternative Uj fulfills and is unable to fulfill attribute χi, respectively. The

following values follow the given circumstances:

mji 2 0; 1½ �; nji 2 0; 1½ � and ðmjiÞ
3
þ ðnjiÞ

3
� 1

Using the decision knowledge previously provided, we devised an efficient MADM method

to choose and rank the best alternatives.

4.1. Process for FFOWA and FFOWG

Step 1. Obtain decision matrix R ¼ ½fji�m � n in the form of FFNs for alternatives relative to

attributes.

Step 2. In order to obtain the FF permuted decision matrix Rs ¼ ½fsðjiÞ�m � n ¼ msðjiÞ; nsðjiÞ

� �
,

we adopt the following two stages:
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i. Obtain the score values of all criterion χi, corresponding to each alternative Uj by means of

Definition 4.

ii. Obtain the FF permuted decision matrix by arranging the computed values from the above

stage of all criterion χi, corresponding to each alternative Uj in descending order.

Step 3. Utilized the developed FFOWA operator to amalgamate all the preference values fj =

(μj, νj) of all Uj as follows:

FFOWA fs j1ð Þ; fs j2ð Þ; . . . ; fs jnð Þ

� �
¼

 ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

1 �
Yn

i¼1
1 � m3

s jið Þ

� �oi3

r

;
Yn

i¼1
n
oi
s jið Þ

!

Likewise, in the FFOWG framework, the amalgamated values fj are computed as follows:

FFOWG fs j1ð Þ; fs j2ð Þ; . . . ; fs jnð Þ

� �
¼

 
Yn

i¼1
m
oi
s jið Þ;

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

1 �
Yn

i¼1
1 � n3

s jið Þ

� �oi3

r !

Step 4. Calculate the score values of fj for each alternative Uj utilizing Definition 4. If the

score values for some alternatives become equal, then use the accuracy function defined in

Definition 4 to calculate the score values for these alternatives.

Step 5. Assess the set of alternatives Uj and determine which ones are optimal by arranging

them with the help of SðfjÞ.

5. An optimal approach to reduce road traffic accidents under FF

settings

In this section, we implement the offered methods of this article in an efficient manner to

achieve an ideal technique for reducing RTAs using FF knowledge.

5.1. Case study

Transportation is responsible for a considerable amount of preventable fatalities [48]. Accord-

ing to WHO, RTAs cause an estimated 1.3 million fatalities annually, with an additional 20 to

50 million enduring non-fatal injuries that frequently lead to permanent disability [49]. The

prevalence of road traffic injuries is higher in emerging economies, namely in low- and mid-

dle-income nations, which contribute to 93% of fatalities [49]. Car accidents are the primary

cause of mortality in children and teenagers between the ages of 2 and 19, as supported by

research [50,51]. Annually, over 186,300 individuals under the age of 19 lose their lives in road

traffic accidents globally. In developing nations, the daily toll reaches over 500 fatalities, along

with tens of thousands of lifelong injuries [52]. As a consequence, low and middle-income

nations experience a threefold increase in the incidence of fatalities arising from road traffic

incidents among this particular demographic, in contrast to high-income nations [53]. This

disparity is attributed to the escalating velocity and volume of vehicular traffic in urban regions

of developing countries, which adversely affects pedestrian safety and health [54].

Traffic accidents happen when a vehicle makes contact with another item. These obstacles

can be attributed to factors such as road obstructions, people, animals crossing or loitering, or

stable impediments like trees or utility poles. Rear-end collisions, side impact collisions, roll-

overs, head-on collisions, sideswipe collisions, single-vehicle accidents, and multiple-vehicle

pile-ups are among the most common forms of traffic accidents [55,56]. Road accidents have

been identified as a significant contributor to global fatalities, as well as physical impairment.

The WHO recently presented data that unequivocally demonstrates the fact. Reducing road
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accidents should be a priority for everyone, since it is a valid objective set by the European

Union under the Decade of Action for Road Safety (2011–2020). The goal is to decrease the

number of casualties in member countries by 50% by 2020. In accordance with internationally

recognized standards, Portugal has successfully undertaken the task of positioning itself

among the top 10 European nations with the most favorable accident rate. The resolution of

the Ministers Council in May 2014, as part of the Mid-term review for 2013–2015, establishes

a target for Road Safety in Portugal. This objective is to ultimately achieve zero fatalities and

zero serious injuries, with a long-term perspective [57].

Traffic signal control is a mechnism designed to coordinate the timing of several traffic sig-

nals in a given region, with the objective of minimizing pauses and optimizing the flow of vehi-

cles. The system performs control, surveillance, and maintenance operations. This includes

regulating traffic flow by changing and synchronizing traffic signals at junctions, monitoring

traffic conditions using vehicle detectors and overseeing equipment functionality by detecting

any equipment faults. These functions enable a traffic management agency to meet traffic

demand, exchange traffic information with other agencies, and administer and upkeep the

traffic light control system. The complexity of traffic signal management ranges from basic sys-

tems that utilize historical data to establish fixed timing plans, to adaptive signal control,

which optimizes timing plans for a network of lights based on real-time traffic circumstances

[58]. Over the past several years, technology has seen continuous advancements, enhancing

the quality of people’s lives. One example of this is traffic management. Traffic lights were first

equipped with gas-based illumination, but it quickly transitioned into a completely electrical

system. In modern times, traditional traffic lights utilize LED technology because of their little

energy consumption [59].

The three colors that indicate the right of way assigned to users adhere to a universally rec-

ognized color code:

• Red: Prohibits the passage of vehicles and allows pedestrians to cross. It has a duration of 28

to 40 seconds.

• Amber: Indicates an imminent transition of the traffic signal from green to red. It has a dura-

tion of 2 to 5 seconds.

• Green: Permits the passage of vehicles and signals the prohibition of pedestrian crossing. It

has a duration ranging from 28 to 40 seconds.

The relationship between safer roads and police enforcement is intimately linked, as the lat-

ter actively promotes better road user behavior by ensuring compliance with fundamental traf-

fic regulations and laws. Gaining insight into the correlations among law enforcement, driving

conduct, and road safety is a fundamental requirement for maximizing the effectiveness of

enforcement tactics. The implementation of traffic enforcement is carried out by appropriate

government agencies and is directed towards road users. Its objective is to uphold favorable

traffic conduct through the methods of monitoring, prosecution, and penalization [60]. The

traffic violation, which refers to an unlawful driving action, serves as a connection between

police enforcement and accidents. Violations are impacted by police enforcement and also

have the potential to result in crashes. Determining the most efficient adjustments, evaluating

the quality of the public transit transport supply, and ensuring that employees have access to

convenient transportation are all tasks that can be accomplished with the assistance of MADM

problems [61,62].

In following discussion, we present step by step mechanism to choose an appropriate

method to reduce RTAs by means of the proposed strategies under FF environment.

PLOS ONE Selection of an effective approach to reduce road traffic accidents

PLOS ONE | https://doi.org/10.1371/journal.pone.0303139 May 10, 2024 15 / 24

https://doi.org/10.1371/journal.pone.0303139


5.2. Illustration

The administration of certain city wants to implement measures to reduce road traffic acci-

dents. The administration has identified five different alternatives {U1, U2, U3, U4, U5}, for

improving road safety, where

1. U1: Speed limit reduction

2. U2: Public awareness campaign

3. U3: Traffic signal optimization

4. U4: Law enforcement

5. U5: Road maintenance

The decision-makers want to use MADM techniques to select the best option based on five

attributes {χ1, χ2, χ3, χ4, χ5}, where

1. χ1: Maintenance requirements

2. χ2: Effectiveness in accident reduction

3. χ3: Public acceptance

4. χ4: Motorist education

5. χ5: Impact on traffic flow

The decision-maker will assess the five potential alternatives Uj in accordance with the FF

data and the attributes χi. The attribute weight vector is denoted by ω = (0.05, 0.1, 0.15, 0.3,

0.4)T. It can be seen that
P5

i¼1
oi ¼ 1.

Table 3 summarizes the decision-maker’s opinion on each alternative for each attribute in

the form of FFN. Decision matrix R is as follows.

The given MADM problem is analyzed using the FFOWA and FFOWG operators. We pro-

vide the technique and outcomes of two separate approaches that are employed to address this

intricate decision problem.

Step 1. The permuted FF decision matrix Rs ¼ ½fsðjiÞ�5 � 5
¼ msðjiÞ; nsðjiÞ

� �
, is determined as

follows:

i. Obtain the score values of all five criteria corresponding to each alternative by means of Def-

inition 4 as follows:

• For alternative U1, we have

S f11ð Þ ¼ 0:485; S f12ð Þ ¼ 0:127; S f13ð Þ ¼ 0:152, S f14ð Þ ¼ 0:513 and S f15ð Þ ¼ 0:387

Table 3. FF decision matrix R.

χ1 χ2 χ3 χ4 χ5

U1 (0.8,0.3) (0.7,0.6) (0.6,0.4) (0.9,0.6) (0.8,0.5)

U2 (0.6,0.3) (0.7,0.5) (0.6,0.9) (0.9,0.3) (0.7,0.8)

U3 (0.9,0.4) (0.8,0.5) (0.9,0.3) (0.7,0.4) (0.6,0.5)

U4 (0.8,0.7) (0.7,0.6) (0.9,0.5) (0.8,0.3) (0.7,0.4)

U5 (0.9,0.5) (0.8,0.4) (0.7,0.6) (0.6,0.4) (0.9,0.5)

https://doi.org/10.1371/journal.pone.0303139.t003
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• For alternative U2, we have

S f21ð Þ ¼ 0:189; S f22ð Þ ¼ 0:218; S f23ð Þ ¼ � 0:513, S f24ð Þ ¼ 0:702 and S f15ð Þ ¼ � 0:169

• For alternative U3, we have

S f31ð Þ ¼ 0:665; S f32ð Þ ¼ 0:387; S f33ð Þ ¼ 0:702, S f34ð Þ ¼ 0:279 and S f35ð Þ ¼ 0:091

• For alternative U4, we have

S f41ð Þ ¼ 0:169; S f42ð Þ ¼ 0:127; S f43ð Þ ¼ 0:604, S f44ð Þ ¼ 0:485 and S f45ð Þ ¼ 0:279

• For alternative U5, we have

S f51ð Þ ¼ 0:604; S f52ð Þ ¼ 0:448; S f53ð Þ ¼ 0:127, S f54ð Þ ¼ 0:152 and S f55ð Þ ¼ 0:604

ii. Arrange the obtained values from the above stage corresponding to each alternative in

descending order as follows:

• For alternative U1, we have

S f14ð Þ � S f11ð Þ � S f15ð Þ � S f13ð Þ � S f12ð Þ

• For alternative U2, we have

S f24ð Þ � S f22ð Þ � S f21ð Þ � S f25ð Þ � S f23ð Þ

• For alternative U3, we have

S f33ð Þ � S f31ð Þ � S f32ð Þ � S f34ð Þ � S f35ð Þ

• For alternative U4, we have

S f43ð Þ � S f44ð Þ � S f45ð Þ � S f41ð Þ � S f42ð Þ

• For alternative U5, we have

S f51ð Þ � S f55ð Þ � S f52ð Þ � S f54ð Þ � S f53ð Þ

Step 2. Formulate the permuted FF decision matrix Rs ¼ ½fsðjiÞ�5 � 5
¼ msðjiÞ; nsðjiÞ

� �
, in the

framework of the information obtained from step 1 Table 4 represents this matrix.

Step 3. Utilized the FFOWA operator to aggregate all the preference values fj of each Uj as

given in Table 5.

Table 5. Aggregate assessments of alternatives using the FFOWA operator.

Alternatives fj
U1 (0.727,0.482)

U2 (0.674,0.657)

U3 (0.742,0.445)

U4 (0.761,0.546)

U5 (0.748,0.486)

https://doi.org/10.1371/journal.pone.0303139.t005

Table 4. Permuted FF decision matrix Rs.

χ1 χ2 χ3 χ4 χ5

U1 (0.9,0.6) (0.8,0.3) (0.8,0.5) (0.6,0.4) (0.7,0.6)

U2 (0.9,0.3) (0.7,0.5) (0.6,0.3) (0.7,0.8) (0.6,0.9)

U3 (0.9,0.3) (0.9,0.4) (0.8,0.5) (0.7,0.4) (0.6,0.5)

U4 (0.9,0.5) (0.8,0.3) (0.7,0.4) (0.8,0.7) (0.7,0.6)

U5 (0.9,0.5) (0.9,0.5) (0.8,0.4) (0.6,0.4) (0.7,0.6)

https://doi.org/10.1371/journal.pone.0303139.t004
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Similarly, utilized the FFOWG operator to aggregate all the preference values fj of each Uj as

given in Table 6.

Step 4. In order to rank all the alternatives Uj in the framework of FFOWA, compute the

scores S fj
� �

of the entire FF preferences values fj, where j = 1,2,3,4,5. This is accomplished by

applying Definition 6 as follows:

S f1ð Þ ¼ 0:272S f2ð Þ ¼ 0:022S f3ð Þ ¼ 0:320

S f4ð Þ ¼ 0:277S f5ð Þ ¼ 0:303

Similarly, in order to rank all the alternatives Uj in the framework of FFOWG, compute the

scores S fj
� �

of the entire FF preferences values fj. This is again accomplished by applying Defi-

nition 6 as follows:

S f1ð Þ ¼ 0:200S f2ð Þ ¼ � 0:253S f3ð Þ ¼ 0:242

S f4ð Þ ¼ 0:201S f5ð Þ ¼ 0:218

Step 5. The ranking order of the alternatives within FFOWA and FFOWG framework is

established, revealing that U3� U5� U4� U1� U2. Hence Traffic signal optimization is opti-

mal choice to reduce RTAs.

The aforementioned procedure is graphically illustrated in Figs 1 and 2, which displays the

score values of the alternatives obtained from the FFOWA and FFOWG operators

respectively.

5.3. Comparative analysis

In the subsequent section, we address the aforementioned MADM problem by evaluating the

effectiveness and credibility of our suggested operators in comparison to different operators in

the IF, PF and FF environments. We employ many strategies, namely IFWA [3], IFWG [4],

IFOWA [3], IFOWG [4], PFWA [16], PFWG [16], PFOWA [17], PFOWG [19], FFWA [22]

and FFWG [22] operators, to collect and combine identical data. The outcomes obtained by

utilizing these operators are consolidated in Table 7 and arranged in Table 8 based on their

ranking.

It is evident from Table 8 that the optimal solution achieved through the implementation of

the suggested operators remains unchanged when IFOWA [3], IFOWG [4], PFOWA [17], and

PFOWG [19] operators are utilized. This demonstrates the validity of our proposed methods

and their applicability to MADM problems.

Furthermore, it is evident that the IFWA [3], IFWG [4], IFOWA [3], and IFWOG [4] oper-

ators are capable of efficiently managing intuitionistic fuzzy data. PFWA [16], PFWG [17],

PFOWA [18], and PFOWG [19] operators are similarly capable of effectively managing

Table 6. Aggregate assessments of alternatives using the FFOWG operator.

Alternatives fj
U1 (0.699,0.520)

U2 (0.651,0.809)

U3 (0.697,0.458)

U4 (0.747,0.599)

U5 (0.708,0.515)

https://doi.org/10.1371/journal.pone.0303139.t006

PLOS ONE Selection of an effective approach to reduce road traffic accidents

PLOS ONE | https://doi.org/10.1371/journal.pone.0303139 May 10, 2024 18 / 24

https://doi.org/10.1371/journal.pone.0303139.t006
https://doi.org/10.1371/journal.pone.0303139


Pythagorean fuzzy information. Nonetheless, numerous decision-making scenarios demand

FF data. Our research expands the flexibility with which decision-makers can apply FF data to

their particular circumstances. Therefore, upon evaluating all factors, it becomes evident that

the proposed operators offer decision-makers more dependable and efficient support.

Fig 2. Ranking of alternatives using FFOWG.

https://doi.org/10.1371/journal.pone.0303139.g002

Fig 1. Ranking of alternatives using FFOWA.

https://doi.org/10.1371/journal.pone.0303139.g001
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5.4. Advantages

The primary advantage of our suggested methods is that the FFS possesses a broader structure

compared to the IFS and PFS, as it fulfills the criterion μ3 + ν3� 1. Thus, it is better suited for

addressing decision-making situations that involve ambiguity. Moreover, it is apparent that

the techniques described in references [3,4,17,19] represent a particular case of the novel strat-

egies presented in this study.

5.5. Limitations

1. FFSs are unable to handle scenarios where the sum of the cubes of membership and non-

membership values exceeds 1.

2. FFSs cannot handle model cases involving picture fuzzy information and spherical fuzzy

information due to their restriction to accepting only two parameters.

To address these constraints in future research:

Table 7. Aggregated values of the alternatives obtained from different existing operators.

IFWA[3] IFWG[4] PFWA[16] PFWG[16] FFWA[22]

f(U1) (0.812,0.507) (0.783,0.522) (0.814,0.507) (0.783,0.526) (0.818,0.507)

f(U2) (0.771,0.551) (0.731,0.693) (0.776,0.551) (0.731,0.716) (0.781,0.551)

f(U3) (0.740,0.428) (0.701,0.439) (0.746,0.428) (0.701,0.443) (0.752,0.428)

f(U4) (0.779,0.406) (0.761,0.432) (0.781,0.406) (0.761,0.443) (0.783,0.406)

f(U5) (0.808,0.469) (0.758,0.479) (0.813,0.469) (0.758,0.483) (0.818,0.469)

FFWG[22] IFOWA [3] IFOWG [4] PFOWA [17] PFOWG [19]

f(U1) (0.783,0.530) (0.729,0.499) (0.703,0.519) (0.733,0.499) (0.703,0.525)

f(U2) (0.731,0.734) (0.672,0.621) (0.656,0.790) (0.675,0.674) (0.656,0.801)

f(U3) (0.701,0.447) (0.731,0.445) (0.697,0.453) (0.736,0.445) (0.697,0.455)

f(U4) (0.761,0.456) (0.766,0.560) (0.752,0.589) (0.760,0.546) (0.747,0.591)

f(U5) (0.758,0.487) (0.739,0.486) (0.708,0.503) (0.736,0.467) (0.697,0.488)

https://doi.org/10.1371/journal.pone.0303139.t007

Table 8. Score values and ranking of alternatives under existing and newly proposed strategies.

Methods S f 1ð Þ S f 2
ð Þ S f 3

� �
S f

4
ð Þ S f 5

� �
Ranking Order

IFWA [3] 0.305 0.220 0.312 0.373 0.339 U4� U5� U3� U1� U2

IFWG [4] 0.261 0.038 0.262 0.329 0.279 U4� U5� U3� U1� U2

PFWA [16] 0.405 0.298 0.373 0.445 0.441 U4� U5� U1� U3� U2

PFWG [16] 0.336 0.021 0.295 0.382 0.341 U4� U5� U1� U3� U2

FFWA [22] 0.417 0.309 0.346 0.413 0.444 U5� U1� U4� U3� U2

FFWG [22] 0.331 −0.004 0.255 0.345 0.320 U4� U1� U5� U3� U2

IFOWA [3] 0.230 0.051 0.286 0.206 0.253 U3� U5� U1� U4� U2

IFOWG [4] 0.184 −0.134 0.244 0.163 0.205 U4� U5� U1� U4� U2

PFOWA [17] 0.288 0.001 0.343 0.279 0.323 U3� U5� U1� U4� U2

PFOWG [19] 0.218 −0.211 0.278 0.208 0.247 U3� U5� U1� U4� U2

FFOWA 0.272 0.022 0.320 0.277 0.303 U3� U5� U4� U1� U2

FFOWG 0.200 −0.253 0.242 0.201 0.218 U3� U5� U4� U1� U2

https://doi.org/10.1371/journal.pone.0303139.t008

PLOS ONE Selection of an effective approach to reduce road traffic accidents

PLOS ONE | https://doi.org/10.1371/journal.pone.0303139 May 10, 2024 20 / 24

https://doi.org/10.1371/journal.pone.0303139.t007
https://doi.org/10.1371/journal.pone.0303139.t008
https://doi.org/10.1371/journal.pone.0303139


• We will implement the recommended methodologies while operating in complex Fermatean

fuzzy environments.

• We will explore the applicability of the recommended methodologies in q-rung fuzzy

environments.

• We will investigate how the recommended methodologies can be adapted to handle picture

fuzzy and spherical fuzzy information effectively.

6. Conclusions

The objective of this article is to propose innovative approaches to decision-making challenges

in ordered-weighted Fermatean fuzzy environment. In addition to introducing two aggrega-

tion operators, FFOWA and FFOWG, we have analyzed their numerous features. Moreover,

an inventive methodology has been implemented to tackle Fermatean fuzzy MADM chal-

lenges. Through the implementation of the FFOWA and FFOWG operators, this approach

effectively handles decision-related information. We have provided a concrete illustration of

how these recently established methods might be applied to choose the most effective way to

minimize RTAs. To underscore the significance and dependence of these fresh techniques in

contrast to existing approaches, a comparative analysis is conducted.

In the future, the suggested operators can be utilized in many different domains to stream-

line MADM, such as identifying the most favorable investment opportunities, determining

suitable medical treatments, allocating energy resources, ranking projects, evaluating perfor-

mance, prioritizing healthcare initiatives, utilizing big data analytics tools, and managing

inventory. We aim to examine suggested strategies in the environments of interval-valued Fer-

matean fuzzy sets and bipolar fuzzy sets. We also tend to investigate the validity of ordered

weighted aggregation operators on advanced structures such as quasirung fuzzy sets [35].

Additionally, we will explore dynamic ordered weighted aggregation operators in the FF

environment.
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