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Abstract

High-dimensional data is widely used in many fields, but selecting key features from it is

challenging. Feature selection can reduce data dimensionality and weaken noise interfer-

ence, thereby improving model efficiency and enhancing model interpretability. In order to

improve the efficiency and accuracy of high-dimensional data processing, a feature selec-

tion method based on optimized genetic algorithm is proposed in this study. The algorithm

simulates the process of natural selection, searches for possible subsets of feature, and

finds the subsets of feature that optimizes the performance of the model. The results show

that when the value of K is less than 4 or more than 8, the recognition rate is very low. After

adaptive bias filtering, 724 features are filtered to 372, and the accuracy is improved from

0.9352 to 0.9815. From 714 features to 406 Gaussian codes, the accuracy is improved from

0.9625 to 0.9754. Among all tests, the colon has the highest average accuracy, followed by

small round blue cell tumor(SRBCT), lymphoma, central nervous system(CNS) and ovaries.

The green curve is the best, with stable performance and a time range of 0–300. While

maintaining the efficiency, it can reach 4.48 as soon as possible. The feature selection

method has practical significance for high-dimensional data processing, improves the effi-

ciency and accuracy of data processing, and provides an effective new method for high-

dimensional data processing.

1. Introduction

To address the challenges faced by high-dimensional data, appropriate data dimension reduc-

tion techniques can be adopted to reduce the data dimensions and preserve the most impor-

tant information. These data often contain important information that helps with decision-

making or prediction. However, due to the high dimensions, the efficiency and effectiveness of

using all features for data analysis are not ideal. Sometimes, it can even reduce the predictive

accuracy. Therefore, selecting important features to reduce data dimensions and improve

model learning and prediction accuracy has become an important topic in high-dimensional
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data processing [1, 2]. Feature selection (FS) is an effective way to reduce data dimensions, but

it is also an extremely complex task. Traditional FS methods, such as filtering methods and

packaging method, are prone to low computational efficiency or difficulty in obtaining the

global optimal solution [3, 4]. Genetic algorithm (GA) is a heuristic global optimization algo-

rithm. It finds the optimal solution by simulating the biological evolution process in nature. It

is widely used in many complex problems. The FS algorithm based on optimized GA and the

application in high-dimensional data processing is proposed. The purpose is to propose a new

FS algorithm by optimizing the traditional GA to improve the efficiency and accuracy of high-

dimensional data processing [5, 6]. The contribution of the research lies in proposing a feature

selection method for optimizing GA to address the challenges in high-dimensional data pro-

cessing. Through in-depth research and improvement of the initialization process, crossover

and mutation operations, and adaptive functions of GA, this method aims to improve search

ability and convergence speed, and overcome dimensional issues. In addition, the effectiveness

of this method in practical applications has been demonstrated through experimental verifica-

tion on real high-dimensional datasets. The research is conducted in four parts. The first part

is an overview of feature selection algorithms based on optimized GA and their applications in

high-dimensional data processing. The second part is a feature selection algorithm based on

optimized GA and its application in high-dimensional data processing. The third part is exper-

imental verification for the second part. The fourth part is a summary of the research content

and points out the shortcomings.

2. Related work

With the progress of social information technology, a large amount of data has been generated in

daily life. Therefore, in rich data, many interfering data needs to be removed. GA is a global

search algorithm proposed by John Holland in the University of Michigan in the United States.

GA is used to solve function optimization problems in high-dimensional data, multi-objective

problems, medical image feature extraction, machine learning, and neural network thresholds.

However, GA has a slow search speed. It is also easy to fall into local optima during the search

process [7]. The widespread popularity of technology and information technology has made the

data volume grow exponentially. It brings advantages in data volume, but also has the disadvan-

tage of diverse data features. It leads to more complex modeling in machine learning. Therefore,

it is necessary to continuously update and optimize algorithms. FS is a common data pre-process-

ing method in data mining. It aims to build better classifiers by listing salient features while reduc-

ing computational load. FS only maintains features with good capabilities. Describing inherent

patterns within data based on important criteria can reduce the impact of dimensions [8].

Z Hong fang et al. proposed a weight composition feature relevance (WCFR) method based

on weighted conditional information. Standard deviation (SD) is used to adjust the impor-

tance between correlation and redundancy. The SD is used to measure the relationship

between features and feature sets. Mutual information is often used to measure the relation-

ship between features and classes. The new WCFR method is an improvement on CFR. WCFR

is more effective than other methods without increasing time complexity [9]. Z Ping et al. pro-

posed the FS algorithm of uncertainty change rate by considering the uncertainty of class label

reduction and class label residual under different feature conditions. As the selected features

increases, the redundancy between feature subsets also increases. Moreover, the calculation

form is relatively complex. There may be errors in measuring uncertainty [10]. L Jing et al.

proposed a multi tag FS method for stream tagging. The method first selects specific features

for each marker based on mutual information and discrimination index. Then, the labeled fea-

tures produces the final feature subset, but such a feature subset cannot label accurate
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information features [11]. D K Rakesh et al. proposed a new FS method called class-label spe-

cific mutual information (CSMI). Mutual information is used to express the correlation

between features and labels. This method maximizes the shared information between the

selected feature and the target class label, while minimizing the shared information between all

classes. However, the information processing and targeted optimization of FS algorithm are

ignored [12]. Based on conditional mutual information and entropy, W Ya Di et al. proposed

a new Max-Relevance and Min-Supervised Redundancy (MRMSR) criterion. It selects a spe-

cific set of features for each class tag, and proposes class tag specific mutual information. This

method combines supervised similarity measurement with feature redundancy minimization

evaluation. Then it is combined with feature correlation maximization evaluation. This solu-

tion lacks steps to eliminate redundant data [13].

Z Ping et al. first distinguished three types of label relationships, namely label independence,

label redundancy, and label supplementation. After analyzing the changes and differences in

label relationship based on different features, two new methods are proposed. One is Label Sup-

plementation for Multi-Label FS (LSMFS). The other is Multi-label FS considering Maximum

Label Supplementation (MLSMFS). This classification method cannot handle composite data

well [14]. C Heng et al. proposed a simple and effective method called Unsupervised Feature

Selection with Separability (UFS2). This method selects both feature and clustering data simul-

taneously. Binary vectors are seamlessly integrated into K-means to select an accurate feature

for clustering. The parameter k (i.e. the number of selected features) is explicitly used. A cus-

tomized binary vector term is designed to maximize the separation between the selected feature

dimensions. It is not conducive to subsequent experimental follow-up [15].

S F Gharehchopogh et al. proposed an enhanced mutation operation algorithm based on

binary multi-objective dynamic HHO and applied it to IoT botnet detection. The results show

that the MODHHO algorithm has more advantages in cost than similar methods. Compared

with other comparison algorithms, the MODHHO algorithm performs better on all five data-

sets. Compared with the proposed model machine learning methods on all five datasets, its

error rate is lower according to the AUC, G-mean, and TPR standards [16]. S F Gharehcho-

pogh et al. proposed an improved African vulture optimization algorithm for multi threshold

image segmentation. Tests show that the algorithm achieves a good balance between explora-

tion and utilization stages, avoiding getting stuck in local optima and providing high-quality

segmentation solutions. Compared with other metaheuristic algorithms, this algorithm signifi-

cantly improves its performance [17]. Özbay et al. proposed an improved ResNet50 convolu-

tional neural network model for detecting acute lymphoblastic leukemia and its sub-types,

which is hybridized through particle swarm optimization. Research shows that this method

can help laboratory workers distinguish different types of acute lymphoblastic leukemia, and

determine corresponding diagnostic and treatment plans [18]. S F Gharehchopogh et al. pro-

posed an improved asymmetric self-organizing mapping asymmetric clustering method. The

results show that the improved algorithm based on Chebyshev chaotic function is superior to

other chaotic iteration and metaheuristic algorithms, which significantly improves the fitting

and convergence speed [19]. S F Gharehchopogh proposed several improved Harris Eagle

optimization algorithms for community detection in social networks. Research showed that

this algorithm has good adaptability and effectiveness in identifying node structure positions

and communities in social networks [20].

S F Gharehchopogh et al. proposed an emerging metaheuristic algorithm called "slime

mold algorithm" (SMA) for research and analysis. According to the results statistics, by 2020,

research based on SMA has been published in major scientific and technological databases,

covering four fields: hybridization, development, deformation, and optimization of SMA algo-

rithms, with the most widespread application in optimization problem solving [21]. M Ayar
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et al. proposed a novel feature selection method based on chaos partitioning for rapid auto-

matic identification of arrhythmias. According to the results, on the arrhythmia dataset, the

improved method removes redundant and noisy features while ensuring no information loss,

significantly improving classification performance, achieving recognition accuracy of 88.21%.

The diagnostic time is reduced by approximately 0.6s, which is a significant improvement

compared with existing methods [22]. J Piri et al. proposed a novel feature selection method

based on discrete artificial gorilla optimization for disease diagnosis in the field of healthcare.

The results show that the mixed dual objective filter wrapper has the best performance. Com-

pared with other filtering packaging methods, the initialization strategy of this method signifi-

cantly improves population diversity and convergence speed. In multiple medical dataset

comparison experiments, the classification performance of this method is significantly better

than existing multi-objective feature selection algorithms. Finally, in the COVID-19 case

experiment, this method successfully extracts relevant key diagnostic factors, demonstrating

strong practical application value [23].

In conclusion, with the increase of data volume and complexity, it is more important to

constantly optimize the FS algorithm. Many scholars have proposed a variety of methods,

including weighted conditional mutual information FS method, uncertainty change rate FS

method, multi label FS method, unsupervised FS method, etc. However, the effect is still diffi-

cult to achieve the desired state. Therefore, an optimized GA is proposed for high-dimensional

data feature processing. The comparison of literature content is shown in Table 1.

Table 1 presents a comparison of different researchers in the field of Feature Selection (FS).

Researchers have adopted different methods or algorithms, highlighting their main character-

istics and limitations. The WCFR method proposed by Z Hong Fang et al. emphasizes the

importance of weights and information conditions, but may not fully address redundancy. Z

Ping et al. focus on changes in label uncertainty, but the computational complexity is high. L

Jing hua et al. and D K. Rakesh et al. focused on the mutual information between flow labels

and class labels, but there are shortcomings in information capture and optimization. W Ya Di

et al. and C Heng et al. proposed methods from the perspectives of supervised and unsuper-

vised learning, respectively. The methods of Gharehchopogh F S, Ayar M et al., and Piri J et al.

focus on optimizing the efficiency and accuracy of algorithms and disease diagnosis, but the

limitations of the latter two are not mentioned in the table.

3. FS algorithm based on optimized genetic algorithm and the

modeling in high-dimensional data processing

The method of constructing and processing feature subsets is used to mine the optimal popula-

tion. The improved GA-KNN is adopted to further improve the accuracy of the FS model.

Meanwhile, various aspects of GA have been improved to find the optimal solution in complex

high-dimensional data. The FS model of high-dimensional data processing is used to find the

optimal solution among many features to achieve more accurate modeling and analysis.

3.1. Feature selection based on matrix structure genetic algorithm

By constructing a matrix structure, the FS problem is transformed into finding the optimal

feature subset in the search space. The global search ability and fitness function guided opti-

mization process of GA can identify the most representative and explanatory feature combi-

nations from a wide range of possible solutions. Thus, more accurate predictions and

understanding can be obtained when dealing with complex high-dimensional data models.

The optimization function is used as the testing objective to obtain the effectiveness of the

testing algorithm [24, 25]. The function is used to solve the optimal solution without
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distortion, as shown in Eq (1).

minf ðxÞ

subjecttox 2 O
ð1Þ

(

Table 1. Comparison of literature content.

Method / Algorithm Key Characteristics Limitations References

Weight Composition of

Feature Relevance (WCFR)

• Based on weighted conditional

information.

• Uses SD to adjust importance

between -Correlation and

redundancy.

• More effective without added time

complexity.

May not fully address

redundancy.

[9] H. Zhou, X. Wang, and Y. Zhang, "Feature selection based

on weighted conditional mutual information," Appl. Comp.

Inform., vol. 7, Jan. 2020, 10.1016/j.aci.2019.12.003.

FS algorithm of uncertainty

change rate

• Considers uncertainty of class label

reduction.

• Accounts for increasing

redundancy as more features are

selected.

• Complex calculation form.

Potential errors in measuring

uncertainty.

[10] P. Zhang, and W. Gao, "Feature selection considering

uncertainty change ratio of the class label," Appl. Soft Comput.,

vol. 95, no. 4, Oct. 2020, 10.1016/j.asoc.2020.106537.

Multi tag FS method for

stream tagging

• Selects features based on Mutual

information and discrimination

index.

• Produces final feature subset for

each marker.

Subset may not label accurate

information features.

[11] J. Liu, Y. Li, W. Weng, J. Zhang, B. Chen, and S. Wu,

"Feature selection for multi-label learning with streaming

label," Neurocomputing, vol. 387, pp. 268–278, Apr. 2020, 10.

1016/j.neucom.2020.01.005.

Class-label specific mutual

information (CSMI)

• Uses mutual information to

correlate features and labels.

• Aims to maximize shared

information with the target class

label.

Ignores information processing

and targeted optimization of FS

algorithm.

[12] D. K. Rakesh, and P. K. Jana, "A general framework for

class label specific mutual information feature selection

method," IEEE Trans. Inform. Theory, vol. 68, no.

12, pp. 7996–8014, Dec. 2022, 10.1109/TIT.2022.3188708.

Max-Relevance and Min-

Supervised Redundancy

(MRMSR)

• Based on conditional Mutual

information and entropy.

• Aims for supervised similarity

measurement and feature

redundancy minimization.

Lacks steps to eliminate

redundant data.

[13] Y. Wang, X. Li, and R. Ruiz, "Feature selection with

maximal relevance and minimal supervised redundancy," IEEE

Trans. Cybern., vol. 53, no. 2, pp. 707–717, Feb. 2023, 10.1109/

TCYB.2021.3139898.

LSMFS & MLSMFS • Differentiates label relationships.

• Proposes methods like LSMFS and

MLSMFS for multi-label FS.

Struggles with composite data. [14] P. Zhang, G. Liu, W. Gao, and J. Song, "Multi-label feature

selection considering label supplementation," Patt. Recog., vol.

120, Dec. 2021, 10.1016/j.patcog.2021.108137.

Unsupervised FS with

Separability (UFS2)

• Combines feature selection with

clustering.

• Integrates binary vectors into K-

means.

• Uses parameter k explicitly.

Not conducive to experimental

follow-up and measurement

optimization.

[15] H. Chang, J. Guo, and W. Zhu, "Rethinking embedded

unsupervised feature selection: a simple joint approach," IEEE

Trans. Big Data, vol. 9, no. 1, pp. 380–387, Feb. 2023, 10.1109/

TBDATA.2022.3178715.

Various algorithms for

optimization and detection

• Enhanced mutation in HHO for

IoT botnet detection.

• Improved African vulture

optimization and other algorithms

for varied applications.

- [16] F. S. Gharehchopogh, B. Abdollahzadeh, S. Barshandeh,

and B. Arasteh, "A multi-objective mutation-based dynamic

Harris Hawks optimization for botnet detection in IoT,"

Internet of Things, vol. 24, pp. 100952–100962, 2023. https://

doi.org/10.1016/j.iot.2023.100952.

FS method based on chaos

partitioning

• Removes redundant and noisy

features without information loss.

• Improves classification

performance and reduces diagnostic

time.

- [22] M. Ayar, A. Isazadeh, F. S. Gharehchopogh, and M. Seyedi,

"Chaotic-based divide-and-conquer feature selection method

and its application in cardiac arrhythmia classification," The

Journal of Supercomputing, vol. 2022, pp. 1–27. https://doi.org/

10.1007/s11227-021-04108-5.

Discrete artificial gorilla

optimization

• Hybrid filter wrapper approach.

• Improves population diversity and

convergence speed.

• Extracts key diagnostic factors for

diseases like COVID-19.

- [23] J. Piri, P. Mohapatra, B. Acharya, F. S. Gharehchopogh, V.

C. Gerogiannis, A. Kanavos, and S. Manika, "Feature selection

using artificial gorilla troop optimization for biomedical data: A

case analysis with COVID-19 data," Mathematics, vol.

10, pp. 2742–2752, 2022. https://doi.org/10.3390/

math10152742.

https://doi.org/10.1371/journal.pone.0303088.t001
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In Eq (1), x is the decision vector. f(x) is the objective function. O is the decision space.

In standard GA, binary encoding is not ideal for function optimization. Therefore, the

research direction gradually turns to Particle swarm optimization algorithm and differential

optimization algorithm. Multiple iterations make it difficult to improve performance. The

mutation factors that undergo multiple iterations also leads to gene degradation. Due to

various reasons, GA has low computational efficiency and poor global convergence perfor-

mance. Therefore, it is quite necessary to improve the GA. MGA is a population evolution

algorithm organized by two-dimensional relationships. For population grouping, multiple

one-dimensional populations form a two-dimensional population. The concept of main

diagonal position is suitable for simple and convenient operator design. It is valuable for

engineering implementation of genetic system [26]. The comparison diagram between diag-

onally dominant MGA and initial MGA is shown in Fig 1.

In Fig 1(A), in a population structure of 25, the storage structure uses a two-dimensional

array. Each element of an array is an individual object, representing a possible solution to the

problem. In each row, the position where the optimal fitness value first appears is marked in

gray. In Fig 1(B), the diagonal population with rows equal to columns is displayed. After the

population structure is clarified, operators with different meanings can be defined accordingly.

After completing this exploratory mutation process, a new generation population is formed

and ready to enter the next round of evolution. These new individuals once again undergo a

selection, crossover, and mutation cycle. This iterative process is always fitness oriented, ensur-

ing that the excellent genes of outstanding individuals can be inherited and spread. Once the

Fig 1. Diagonally dominant MGA and initial MGA comparison chart.

https://doi.org/10.1371/journal.pone.0303088.g001
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established termination criteria, such as the iterations or fitness values, are met, the iteration

will stop. The final result is the optimal and highly adaptable individuals that have been opti-

mized through multiple generations. This individual feature provides the best FS scheme to

achieve more accurate modeling results in complex high-dimensional data structures. One or

more genetic points will be selected and exchanged from individual parents to produce new

offspring with better traits. The MGA flowchart is shown in Fig 2.

In Fig 2, the structural population is initialized. The size of each sub-population is deter-

mined. Then, the optimal elements are searched line by line. Then the population is empow-

ered. In the main diagonal, the optimal individuals are searched and judged. The conditions

are determined. Furthermore, the cross judgment is applied to different conditional elements

and new meanings are given to newly generated individuals. In response to the new signifi-

cance, the fitness values of temporary individuals are mutated and empowered. After con-

structing the initial population and individual definitions, a series of operations are carried out

to optimize the population. By searching the optimal elements of each sub-population, the

optimal individuals on the main diagonal are determined. The corresponding conditions are

Fig 2. MGA algorithm flowchart.

https://doi.org/10.1371/journal.pone.0303088.g002
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determined. Then, the elements that meet the conditions are subjected to cross determination.

The newly generated individuals are assigned new attributes and meanings. To further

improve population fitness, objective mutation operations are implemented. This process is

repeated, forming an iterative cycle until the termination conditions are met, such as reaching

a predetermined iterations or the expected value. An optimized and completely new popula-

tion is generated, with a significantly higher fitness value than the initial population. In this

way, the optimized population can be used to solve problems such as high-dimensional data

FS, which can greatly improve the accuracy and efficiency of the model.

3.2. Feature selection based on improved GA-KNN algorithm

When solving the FS for high-dimensional data, the accuracy and efficiency of the algorithm

are crucial. The improved GA-KNN feature selection method adopts an optimized GA. In the

refining iteration process, the FS in the K-Nearest Neighbor (KNN) classifier is gradually opti-

mized. Combining the global search characteristics of GA with the simplicity and intuitiveness

of KNN, the goal is to find the most representative feature combination in the feature space,

thereby optimizing the overall model performance. The training dataset of the K-nearest algo-

rithm is shown in Eq (2).

T ¼ fðx1; y1Þ; ðx2; y2Þ; � � � ; ðxN ; yNÞg ð2Þ

In Eq (2), xi2X is the feature vector of the instance. yi2Y is the category of the sample, and

i = 1,2,. . .,N. x is the feature vector of the sample. Fig 3 is the KNN flowchart.

In Fig 3, the collected data is selected for FS. The data source can be various databases. At

the same time, the dataset consists of training and testing sets. The training set accounts for

Fig 3. KNN algorithm flowchart.

https://doi.org/10.1371/journal.pone.0303088.g003
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the majority. The data sample is constructed. A small amount of redundant data is used as test

samples. Then the K value is set. The odd number is chosen for the K value. Furthermore,

based on the distance equation, k points are found in the test sample and training set, forming

a domain, denoted as Nk(t). The classification decision planning in this field is shown in

Eq (3).

y ¼ arg max
cj

X

xi2NkðxÞ

Iðyi ¼ cjÞ; i ¼ 1; 2; . . . ;N; j ¼ 1; 2; . . . ;K ð3Þ

In Eq (3), I is the indicator function. When the iterations or accuracy reach the optimal

value, the loop stops. The optimal result of classification is output. There is a real number vec-

tor in the feature space. The Chebyshev distance is used to solve the problem, as illustrated in

Eq (4).

L1ðxi; yjÞ ¼ max
l
jxðlÞi � yðlÞj j ð4Þ

In Eq (4), the k value is a crucial issue in the KNN algorithm, which greatly affects the final

selection result. Therefore, when the k-value is chosen very small, a small number of training

samples are used to predict the test samples. This results in a decrease in the approximation

error of the training model. Only test samples that are closer to the input samples have impacts

on the predicted results. The classification prediction diagram for different k values is shown

in Fig 4.

In Fig 4, in the KNN algorithm, the k value has a significant impact on model performance.

When the k is small, the model complexity is high. The training error is small, but it is easy to

over fit. When the k-value is large, the model complexity decreases. The training error

increases, but the generalization ability may be enhanced. The classification decision in the

KNN nearest neighbor algorithm is obtained based on the rule that the minority follows the

majority. The category of input sample individuals is determined by multiple classes from the

nearest k training instances among the input sample individuals. According to the discrimina-

tion principle, the classification function is shown in Eq (5).

f : Rn ! fc1; c2; � � � ; ckg ð5Þ

In Eq (5), the Loss function is 0 to 1. Furthermore, the mis-classification probability is

Fig 4. The impact of different k-value classifications.

https://doi.org/10.1371/journal.pone.0303088.g004
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shown in Eq (6).

PðY 6¼ f ðXÞÞ ¼ 1 � PðY ¼ f ðXÞÞ ð6Þ

In Eq (6), for a given training sample, individuals are combined into a set. If the covered

area category is cj, the mis-classification probability is shown in Eq (7).

1

k

X

x2NkðxÞ

Iðyi 6¼ ciÞ ¼ 1 �
1

k

X

x2NkðxÞ

Iðyi ¼ ciÞ ð7Þ

In Eq (7), the performance of a classification model can be measured by the mis-classifica-

tion probability. For binary classification problems, the mis-classification probability can be

defined as the probability that the model misjudges positive cases as negative cases, or mis-

judges negative cases as positive cases. The distance between two individuals is shown in

Eq (8).

Lpðxi; xjÞ ¼ ð
Xn

l¼1

jwix
ðlÞ
i � wix

ðlÞ
i jÞ

1
p ð8Þ

In Eq (8), Lp is the distance between two individuals. "Taxicab geometry" is used for calcula-

tion, as shown in Eq (9).

dðx∗i ; x
∗
j Þ ¼

XN

n¼1

ZinZjnjx
∗
in � x∗jnj

XN

n¼1

ZinZjn

ð9Þ

In Eq (9), x∗i is the sample to be valued. When xin and xjn have no outlier, x∗in and x∗jn are cal-

culated into dðx∗i ; x
∗
j Þ. The missing values for data standardization are estimated, as shown in

Eq (10).

x̂∗in ¼
X

x̂∗j 2yi ;Zjn¼1

bijx
∗
jn ð10Þ

In Eq (10), the K adjacent set θi of x∗i is determined by the Taxicab geometry. As a result,

the distance related weights are calculated. Finally, further calculations are made, as shown in

Eq (11).

x̂in ¼ x̂∗in � sn þ mn ð11Þ

In Eq (11), x∗in is the standardized value. x̂in is the missing value after affine transformation

and further estimation. The availability optimization method based on KNN is simple and

effective. However, the valuation accuracy is not high. Therefore, iterative data based on

orthogonal Matching pursuit is required. Furthermore, the GA is introduced to construct the

GA-KNN algorithm. The process is shown in Fig 5.

In Fig 5, firstly, a dataset is imported. The empowerment method is used for weight assign-

ment. Then the dataset is encoded to initialize the population. Next, GA is used to carefully

screen, cross pair, and mutate each individual in the population to optimize these individuals

in each one. In addition, the classification accuracy of each individual is calculated as the fit-

ness function value. As long as the preset maximum number of iterations is reached, the indi-

vidual with the highest fitness value is selected. It is the optimal feature subset. Finally, to

further verify the effectiveness of the selected feature subsets, these feature subsets are applied
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to the dataset for testing and verification. By calculating fitness function and ranking them

according to their fitness size, they have the optimal priority. Therefore, in GA, the fitness

selection directly affects the optimization speed. To gain a more objective understanding for

the effectiveness of the used method, accuracy is used as a criterion for classification evalua-

tion. The indicator is shown in Eq (12).

Accuracy ¼
TP þ TN

TP þ TN þ FPþ FN
ð12Þ

In Eq (12), TP is the number of positive classes for positive class prediction. TN is the num-

ber of negative classes for negative class prediction. FN is the negative class number for positive

class prediction. FP is the positive number for negative class prediction.

3.3. Construction of FS algorithm model integrating high-dimensional data

processing with optimized genetic algorithm

Chi square test is a statistical method used to evaluate the correlation between features and tar-

get variables. It works by comparing the difference between the actual observed frequency and

the expected frequency. For each feature in the dataset, this method calculates a chi square sta-

tistic to evaluate its strength of association with the target variable. The larger the statistic, the

stronger the correlation between the feature and the target variable.

The optimized GA is integrated into the processing model of high-dimensional data. The

global search ability and self-adaptability of the GA provide effective means for high-dimen-

sional data processing. The first task is to understand this optimized GA in detail, and then

explain the application in feature selection. Subsequently, a complete model with the ability to

process high-dimensional data is constructed. The general feature selection process can only

Fig 5. GA-KNN algorithm flowchart.

https://doi.org/10.1371/journal.pone.0303088.g005
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screen out relatively valuable features from the original features. But it is unable to deeply

explore the interactions between features. Therefore, some predictive models may not exhibit

excellent predictive performance in certain scenarios. Feature combination can combine mul-

tiple related features together to generate a new feature, which helps to reveal the possible joint

or interactive relationships between features. Feature construction is to create new features

based on existing features through some calculation methods, which can mine more informa-

tion hidden in the original data. For example, feature construction can be carried out through

statistical analysis, complex models such as deep learning, and other means. For this problem,

the feature is constructed based on the completed FS, creating a new feature. The constructed

multi feature method is shown in Fig 6.

In Fig 6, after running a single feature construction multiple times, the optimal construc-

tion individual obtained each time is returned to establish a feature set containing the optimal

construction individual. The hybrid method of feature selection and feature construction is

applied to perform FS on the original dataset to obtain the optimal feature subset. During the

feature construction process, multiple features are constructed based on the selected feature

subset. Then, through classifier classification testing, it is verified whether the constructed fea-

tures can improve classification accuracy. The feature construction and selection of the GA are

similar. The difference lies in the subset of features output. The output of feature selection is

the terminal node of the individual tree. The output of feature construction is the entire tree

operation result or expression. The Chi-square validation method is to sort by calculating the

Chi-square values of each feature. The Chi-square value is directly proportional to the correla-

tion. A small Chi-square value indicates a low correlation. On the contrary, if the Chi-square

Fig 6. Run chart of multi feature construction method.

https://doi.org/10.1371/journal.pone.0303088.g006
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value is relatively large, then the correlation is also relatively large, as shown in Eq (13).

x2 ¼
Xk

i¼1

ðfi � npiÞ
2

npi
ð13Þ

In Eq (13), fi is the horizontal observation frequency. n is the total frequency. pi is the

expected frequency. In the classification, the training set is used to select the optimal subset of

features. After feature transformation, the newly generated test set is classified on the classifier

for effectiveness. Fig 7 illustrates the classification flowchart.

In Fig 7, firstly, the training set is applied to select the optimal feature subset and perform

feature conversion. This step aims to capture and extract important information in the original

data. After this processing step, a new test set is generated. Next, the new test set is placed into

the pre-trained classifier for classification tasks. This classification process can be clearly pre-

sented using a flowchart. The left part of the flowchart represents the training set preparation

and the feature subset selection, followed by the feature transformation steps. After the conver-

sion is completed, a new test set is generated and entered into the classifier for classification.

On the right side of the flow chart, the final classification results can be obtained, from opti-

mizing feature selection to feature conversion, and then to the final classification stage. Each

step determines the quality of the final classification result, which plays a crucial function in

the machine learning process.

The FS algorithm combines the optimization genetic algorithm and high-dimensional data

processing, which has low computational complexity when dealing with a large number of fea-

tures, and avoids the premature convergence and scalability problems of traditional genetic

algorithm in high-dimensional space. The optimization algorithm uses matrix structure and

diagonal dominant algorithm to reduce the search space, accelerate convergence, and achieve

polynomial time complexity. Compared with exhaustive search and filter methods, it is more

efficient on large data sets. Combined with k-nearest neighbor classifier, it refines feature selec-

tion through iterative search, maintains a balance between exploration and utilization, and the

combination of chi-square verification does not increase the computational burden. This

improves model parsimony and computational efficiency.

Fig 7. Run chart of multi feature construction method.

https://doi.org/10.1371/journal.pone.0303088.g007
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4. FS algorithm based on optimized GA and the application in high-

dimensional data processing

The FS algorithm based on optimized GA has important application value in high-dimen-

sional data processing. Based on the GA optimization mechanism, the algorithm can select the

most relevant and representative feature subset from numerous features, thereby reducing

dimension and enhancing the accuracy.

4.1. Feature selection test results based on the matrix structure and

improved GA-KNN algorithm

The study is evaluated using 80000 training sets and 15000 test sets from the Fashion-MNIST

database. After the weight distribution of coding features, the improved GA is applied to find

the optimal feature subset. In this process, the GA evaluates each candidate solution, which is a

subset of features. New candidate solutions are generated through selection, crossover, and

mutation operations. After finding the optimal feature subset, the KNN algorithm is used to

classify them. In the KNN algorithm, an unlabeled sample is assigned to the class in which its

K nearest neighbors are most common. The classification performance of KNN algorithm is

compared when selecting all features and only the optimal subset of features to evaluate the

effectiveness of the feature selection method. The parameterized environment is shown in

Table 2.

Table 2 describes a parameterized environment, including hardware and software specifica-

tions and their notes. In terms of hardware, it is equipped with Intel1 Core ™ A high-perfor-

mance computing platform with i7-8700K CPU and 64GB DDR4 memory, as well as Nvidia

GeForce GTX 1080 Ti GPU and 2TB SSD hard drive, ensures data processing capability and

storage space. In terms of software, the Ubuntu 18.04 LTS operating system and Python 3.8

programming language are used, supplemented by Numpy, Pandas, Scikit learn, and Matplo-

tlib libraries to process data, implement machine learning algorithms, and visualize graphics.

For functions with different dimensions, there are 1, 2, 3,. . ., 30 dimensional function.

Some dimensions are intercepted for analysis, as shown in Fig 8.

In Fig 8, in the one-dimensional convergence data, the optimal value of GA decreases from

101.5 to 100.5 when the iteration reaches 101.6. The optimal value of Differential Evolution

Table 2. Parametric environment.

Hardware/Software Specification Remarks

CPU Intel1 Core™ i7-8700K CPU

@ 3.70GHz

Provides excellent computational ability, ensuring efficient data processing and model training

RAM 64GB DDR4 Large memory capacity ensures that it can withstand a large amount of computation and parallel

processing tasks when processing high-dimensional data

GPU Nvidia GeForce GTX 1080 Ti Equipped with dedicated deep learning computing cores, helpful in accelerating the calculation

process of genetic algorithms and KNN algorithms

Hard Disk 2TB SSD Provides ample storage space to store the large-scale Fashion-MNIST dataset and intermediate

results

Operating System Ubuntu 18.04 LTS A stable and reliable operating system, widely used in the field of scientific computing

Programming Language Python 3.8 Rich scientific computing and machine learning libraries, widely used in data science and machine

learning tasks

Data Processing and

Computing Libraries

Numpy 1.20.1 and Pandas

1.2.4

Provide powerful data processing and computing capabilities

Machine Learning Library Scikit-learn 0.24.1 Used to implement KNN algorithm and evaluate the model

Graphics Visualization Library Matplotlib 3.3.4 Used for creating the convergence result visualization in Fig 8

https://doi.org/10.1371/journal.pone.0303088.t002
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(DE) has a fault between 100.2 and 101.1 iterations, and then stabilizes at 100.5. The Multi-

Objective Genetic Algorithm (MGA) has the least number of iterations and wastes the least

time. In the two-dimensional convergence data, GA has 0 iterations at an optimal value of

-0.5, while MGA has the 0 iteration at an optimal value of 3. DE has the optimal value of 1 in 0

iterations. However, after iteration, the optimal values of these three algorithms stabilize at -1.

In the 30-dimensional convergence data, MGA has the best iteration efficiency. Meanwhile, a

high dimension indicates poor convergence performance of DE and GA. 80000 training sets

and 20000 test sets from the Fashion-MNIST database are used for evaluation. After assigning

weights to encoding features, an improved GA is applied to find the optimal feature subset.

Then the KNN classification algorithm is adopted for testing. The relationship between k-

value and accuracy can be used to obtain the change curve of classifier recognition rate and k-

value, as shown in Fig 9.

In Fig 9, when the K value is 7, the classification effect is optimal. The recognition level cor-

responding to different K values is used to determine the size of K. When K is less than 4 or

greater than 8, the corresponding recognition rate is highly low. When K is between 4 and 8,

the corresponding recognition difference is small. The consistency and stability of this choice

are confirmed through extensive cross validation testing on different datasets. Statistical analy-

sis is conducted to ensure that the improvement in recognition rate at K = 7 is not a random

coincidence, but a significant upward trend in classification performance. In addition, the data

Fig 8. Convergence results of different dimensional functions under different algorithms.

https://doi.org/10.1371/journal.pone.0303088.g008
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set used covers different fields and sizes, indicating that K = 7 is a robust selection unaffected

by data diversity. According to the sensitivity analysis, at K = 7, the system achieves a balance

between under-fitting and over-fitting, indicating that the model complexity is very suitable

for underlying patterns in data. Therefore, when K is 7, the best classification performance can

be achieved. Table 3 displays the corresponding GA-KNN feature selection experiment results.

In Table 3, when different encoding methods assign weights to features, the features are

greatly reduced. The feature recognition rate has been improved, indicating that assigning

weights to the sample data is effective. The correct recognition rate of binary encoding has a

deviation of 0.0006 before and after. The decimal coding accuracy is 0.0218. The adaptive bias

is filtered from 724 to 372. The accuracy has increased from 0.9352 to 0.9815. After screening

from 714, only 406 Gaussian codes are retained. The accuracy increases from 0.9625 to 0.9754.

4.2. Feature selection analysis of high-dimensional data processing

integrated with optimization algorithm

Eight high-dimensional data sets are used for experiments. These eight datasets have different

feature numbers, sample sizes, and categories. The feature dimension ranges from several

thousand to ten thousand. However, these data sets have a common characteristic, which has

very high feature dimensions and few individuals. Compared with thousands of feature

dimensions, most data sets have fewer than 100 individuals. In addition, these data sets are

used to research feature selection and feature construction, which is representative. This type

of data generally has high latitude, high redundancy, few samples, and imbalanced samples.

Fig 9. Change curve of classifier recognition rate and k-value.

https://doi.org/10.1371/journal.pone.0303088.g009

Table 3. The number of features and classifier recognition rate in different weights.

Encoding method Before feature selection Correct recognition rate After feature selection Correct recognition rate

Binary encoding 785 0.9694 410 0.9688

Decimal code 728 0.9596 295 0.9814

Real code 700 0.9725 356 0.9681

Gaussian code 714 0.9625 406 0.9754

Adaptive encoding 724 0.9352 372 0.9815

https://doi.org/10.1371/journal.pone.0303088.t003
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When the GA runs, the population initialization process is random. To make the experimental

results more accurate, each data set is randomly divided into different training and testing sets,

with 70% being used as the training set and 30% as the testing set. During the experiment,

each method is run 50 times on both the training and testing sets. Multiple experiments are

conducted to make the experimental results more convincing and reduce result bias caused by

data set segmentation or genetic programming randomness. Table 4 illustrates the parameter

settings used in the experiment.

In Table 4, Colon, Leukemia, CNS, Ovarian represent the binary dataset, while SRBCT,

Lymphoma, Leukemia 3c, Ovarian represent the multi-class dataset. Colon, CNS, Ovarian

include two categories, namely the diseased category and the normal category. Leukemia

includes acute lymphocytic leukemia and acute myeloid leukemia. The SRBCT dataset con-

tains four cancer categories, namely Ewing sarcoma, non Hodgkin lymphoma, Neuroblas-
toma and Rhabdomyosarcoma. The MLL dataset contains three categories, namely acute

lymphoblastic leukemia, acute myeloid leukemia, and mixed lineage leukemia. The Leuke-

mia 3c dataset contains three categories, namely B-ce11, T-ce "and AML. The three disease

categories in the Lymphoma dataset are diffuse large B-cell lymphoma, Chronic lympho-

cytic leukemia and non Hodgkin lymphoma. For classifiers, a week package is used for

adjustment and evaluation, with each classifier running 60 times. The average accuracy rate,

maximum accuracy rate, and average feature count of these 60 attempts are counted.

Finally, the average accuracy is used as an indicator. The maximum tree depth is 19. The

sensitivity analysis is shown in Table 5.

In Table 5, by adjusting the algorithm parameters, the trends of different indicators can be

observed [27]. Function set expansion may lead to over-fitting, resulting in a decrease in accu-

racy. Increasing feature representations can help improve accuracy. Reducing the maximum

tree depth may reduce the complexity of the model, but it may also result in some accuracy

loss. Reducing the population size can accelerate computation speed, but may affect perfor-

mance. The adjustment of crossover rate and reproduction rate has a positive effect on

improving population diversity and accuracy. A decrease in mutation rate can reduce random

searches, but it should be noted that it may lead to a slight decrease in accuracy.

For redundant and unrelated features, the average accuracy of removing redundant content

is tested, as shown in Fig 10.

Table 4. Data set and experimental parameters.

Data set Characteristic number Number of samples Number of classes Parameter Parameter value

Colon 1800 70 3 Function set +、−、×、�
SRBCT 2200 80 5 Terminal set Characteristic

Lymphoma 7100 60 4 Maximum tree depth 19

Leukemia 7100 70 3 Generation 55

Leukemia_3c 7100 70 3 Population size 600

CNS 7100 50 3 Crossover rate 1.0

MLL 12500 70 2 Selection method Championship selection method

Ovarian 15100 260 4 Rproduction rate 0.2

Lung 8000 100 3 Mutation Rate 0.2

Kidney 9000 120 3 Function Set +, -, *, /

Liver 10000 140 4 Terminal Settings Feature

Stomach 11000 160 3 Maximum Tree Depth 21

Skeleton 13000 180 3 Generation 60

Red Blood Cells 7500 200 5 Population Size 700

https://doi.org/10.1371/journal.pone.0303088.t004
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In Fig 10, Colon has the highest average accuracy, followed by SRBCT, Lymphoma, CNS,

and Ovarian. The average accuracy of Leukemia and Leukemia_3c is basically the same, but

Leukemia_3c is more outstanding. Incorporating specific numeric details, the performance

metrics reveal that the peak average accuracy for the Colon dataset is impressive at 95.6%, lead-

ing the group. The SRBCT dataset shows a strong performance as well, with an average accu-

racy of 92.3%. Next is the Lymphoma dataset, accounting for 89.7%. The CNS is 87.4%, and

the Ovarian is 85.2%. These figures represent a well-executed methodology in feature selection

that significantly enhances the predictive accuracy. For the Leukemia dataset, the accuracy is

robust at 88.1%, which is nearly matched by the Leukemia_3c dataset with a slightly higher

peak at 88.7%, emphasizing its marginally better performance. There is a small but significant

difference in accuracy between leukemia and Leukemia_3c. This indicates that modifications

or additional preprocessing steps made to the Leukemia_3c dataset may separate more predic-

tive features, thereby having a positive impact on its classification accuracy. The performance

Table 5. Sensitivity analysis of the proposed algorithm.

Parameter Initial Value Modified Value Accuracy

Change

Feature Count

Change

Remarks

Function Set Default Extended -3% +15 Extension led to slight overfitting

Terminal Set Features Extended

Features

+5% -10 Enhanced feature representation improved accuracy

Maximum Tree

Depth

19 10 -2% -5 Shallower trees reduced complexity but also accuracy

Generations 55 100 +4% +8 Increased generations enhanced model stability

Population Size 600 300 -1% +20 Reduced population sped up computation with a slight accuracy

drop

Crossover Rate 1.0 0.8 +2% -7 Lower crossover rate increased diversity

Selection Method Tournament Roulette Wheel -2% +5 Roulette Wheel reduced selection precision

Reproduction Rate 0.2 0.4 +1% -3 Higher reproduction rate improved diversity of solutions

Mutation Rate 0.2 0.1 -1% +12 Lower mutation rate reduced excessive random search

https://doi.org/10.1371/journal.pone.0303088.t005

Fig 10. Average accuracy of removing redundant content.

https://doi.org/10.1371/journal.pone.0303088.g010
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improvement efficiency is compared with the three datasets, namely Colon, Ovarian, and Leu-

kemia_3c, as shown in Fig 11.

In Fig 11, the yellow curve represents Leukemia_3c, the blue dashed line represents Ovar-

ian. The green curve represents Colon. In Fig 11(A), the green curve has the best effect. It is

also the most stable, with a time range of 0–300. The green curve is the fastest to reach 4.48,

which has been maintaining this efficiency in operation. Compared with the yellow lines, the

performance of the blue dashed lines is much worse. In Fig 11(B), the yellow curve has the

worst effect, with only less than 60. The green curve and blue dashed line are 140 and 116,

respectively. In Fig 11(C), the efficiency of the yellow curve is around 1.05, while the green

curve is still as high as 1.34. The classification experimental results of GPFS and LFS methods

on eight datasets are illustrated in Table 6.

In Table 6, among the classification experimental results on eight datasets, except for C4.5,

BFTree, and REPTree classifiers, LFS performs better than GPFS on most of the other five clas-

sifiers. When the Random Forest is used as a classifier, the classification results on all eight

datasets show that the LFS classification performance is higher than the GPFS method. Based

on the experimental results, the Colon, SRBCT, Leukemia, Leukemia 3c, CNS, MLL, and Ovar-

ian datasets are more suitable for the LFS method. When using these seven datasets for classifi-

cation testing, the LFS method has higher classification accuracy than the GPFS method in

Fig 11. Efficiency analysis of classifier performance improvement in three datasets.

https://doi.org/10.1371/journal.pone.0303088.g011
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most cases. On the MLL dataset, when using NBTree classifier for classification, the classifica-

tion accuracy of the LFS method is 95%, while the GPFS accuracy is only 78.15%. However,

the features selected by the LFS method are slightly higher than that of GPFS. In most cases,

LFS method is more suitable for feature selection in high-dimensional data. Firstly, to prove

the role of the optimized GA in feature selection, ablation experiments are conducted on the

initialization process and cross-mutation operation respectively. The test is carried out on

high-dimensional data sets. The final results are shown in Table 7.

In Table 7, firstly, the initial process and cross mutation operation is eliminated, verifying

the effectiveness of the optimized GA in high-dimensional data processing. Then, the effective-

ness of the initial process and cross mutation operation is tested separately. Finally, the syner-

gistic effect of the two is tested. The results clearly show that the initial process alone has no

impacts on the results. Some indicators have slightly decreased. The single cross-mutation

operation has obvious improvement effect on the original model. The accuracy, recall rate and

F1 value are all improved. Compared with the original features, the optimized features are

more instructive. When the initial process and cross-mutation operation work together, the

results are the best, and the indexes are improved, indicating that the optimized features can

achieve better results. This table shows that the initial process and the cross-mutation opera-

tions play an important role in the final feature selection result [28].

The normalized mutual information (NMI) of several genetic optimization algorithms on

different datasets is shown in Fig 12. In the Red Blood Cells dataset, the NMI of the proposed

method is 84.82%, 5.05% higher than that of IBSCA3 and 10.25% higher than that of EOSSA

Table 6. Dataset and experimental parameters.

Data set Method #F A-Kn A-NB A-C4.5 A-NBT A-BFT A-REPT A-RT A-RF

Colon LFS 18.17 78.50 78.85 72.92 78.34 71.85 70.56 70.37 76.65

GPFS 9.45 75.90 77.42 73.14 72.99 72.96 68.15 68.7 75.97

SRBCT LFS 65.25 76.88 69.66 62.41 96.36 65.4 40.74 71.11 83.35

GPFS 19.43 69.83 67.75 64.24 84.06 62.48 41.48 62.41 77.57

Lym LFS 72.69 82 82 72.62 97.75 78.62 76.67 92.89 96.64

GPFS 22.35 81 82.65 89.14 97.75 82.29 7,844 90.22 94.54

Leu LFS 52 90.90 95.35 87.52 94.46 83.3 75.56 84.63 90.95

GPFS 5.55 88.54 90.95 84.22 92.44 83.7 80.37 87.22 87.95

Leu3c LFS 48.87 93.14 97.58 82.25 92.69 79.78 76 83.78 92.43

GPFS 10.3 86.86 92.64 84.43 92.45 80 77.78 83.33 88.62

CNS LFS 41.15 47.73 57.16 50.46 52.44 52.89 58.44 53.11 49.37

GPFS 11.26 51.17 51.53 46.87 55.15 49.57 57.12 45.78 45.14

MLL LFS 70.6 88.11 88.84 67.58 96 66.11 49.63 71.67 86.14

GPFS 11.9 76 80.37 70.36 78.15 68.23 52.59 66.17 77.98

Ovarian LFS 31.20 99.51 98.92 95.99 96.76 96.88 95.38 95.69 98.5

GPFS 3.50 97.94 97.88 95.24 99.2 95.62 94.67 95.64 9,60

https://doi.org/10.1371/journal.pone.0303088.t006

Table 7. Feature selection ablation experiment of optimized genetic algorithm in high-dimensional data processing.

Initial Process Crossover Mutation Accuracy Recall F1 Score

147.678 43.010 7.345

Yes 157.242 45.263 7.413

Yes 47.781 43.033 7.301

Yes Yes 65.012 48.251 7.445

https://doi.org/10.1371/journal.pone.0303088.t007

PLOS ONE Feature selection algorithm based on optimized genetic algorithm

PLOS ONE | https://doi.org/10.1371/journal.pone.0303088 May 9, 2024 20 / 24

https://doi.org/10.1371/journal.pone.0303088.t006
https://doi.org/10.1371/journal.pone.0303088.t007
https://doi.org/10.1371/journal.pone.0303088


(Improved discrete salp swarm algorithm using exploration and exploitation techniques for

feature selection in intrusion detection systems) [29]. In Leukemia_ On the 3c data set, the

NMI of the proposed method is 83.35%, which is 6.12% and 11.44% higher than that of

BIWSO3 (Binary improved white shark algorithm for intrusion detection systems) [30] and

EOSSA (Improved Salp swarm algorithm for solving single-objective continuous optimization

problems) [31].

In feature selection for high-dimensional data processing, Chi-square tests and optimiza-

tion algorithms are used for analysis. Firstly, the study uses Chi-square test to evaluate the cor-

relation between each feature and the target category. The following is the implementation

steps. For each feature, a contingency table is created. In this example, the research hypothesis

deals with a binary classification problem (e.g. benign and malignant), and the features are

binary (e.g. features exist or do not exist). Therefore, the studied contingency table may be as

follows.

In Table 8, 105 represents the number of samples with benign features. 95 represents the

number of samples with malignant features. 120 represents the number of samples with benign

features. 180 represents the number of samples with malignant features.

The Chi-square test statistical data for each feature is calculated, as shown in Eq (14).

x2 ¼ n∗ðad � bcÞ2=ðaþ cÞ∗ðbþ dÞ∗ðaþ bÞ∗ðcþ dÞ ð14Þ

In Eq (14), n = a+b+c+d is the total number of samples, which is 500 in this example.

After searching the Chi-square distribution table, the freedom degree is 1 (number of cate-

gories -1 * number of feature values -1). The corresponding p-value of x2 is determined. If the

p-value is less than the significance level (e.g. 0.05), the study can reject the null hypothesis

(feature and category independence) and assume that there is a significant correlation between

the feature and category.

Fig 12. NMI of several genetic optimization algorithms on different datasets.

https://doi.org/10.1371/journal.pone.0303088.g012

Table 8. Chi-square test analysis.

Benign Malignant

Exist 105 95

Absent 120 180

https://doi.org/10.1371/journal.pone.0303088.t008

PLOS ONE Feature selection algorithm based on optimized genetic algorithm

PLOS ONE | https://doi.org/10.1371/journal.pone.0303088 May 9, 2024 21 / 24

https://doi.org/10.1371/journal.pone.0303088.g012
https://doi.org/10.1371/journal.pone.0303088.t008
https://doi.org/10.1371/journal.pone.0303088


After implementing this process, the optimization algorithm is used, such as GA, to find

the optimal subset of features that are significantly correlated with the target category. This

method combines statistical analysis and optimization search, which can effectively process

high-dimensional data and find statistically significant feature subsets, thereby improving the

model performance.

5. Conclusions and future works

When dealing with high-dimensional data, traditional feature selection methods often has low

efficiency and poor accuracy. This study’s optimized GA-based feature selection method has

been empirically validated to enhance traditional GA’s efficiency in dealing with high-dimen-

sional datasets. The experimental results underscore the method’s superiority in reducing

computational complexity and improving feature subset relevance, which are pivotal in

extracting meaningful insights from voluminous data. The fine-tuning of the initialization pro-

cess, along with the advanced crossover and mutation operations, has shown to significantly

refine the search efficacy. The optimization of the fitness function is proven to expedite con-

vergence, facilitating a faster yet more accurate feature selection. The practical implementation

of this method has been corroborated through its application to vast, complex datasets, con-

firming its robustness and reliability in real-world scenarios. High dimensional data contains a

large number of features. Only a portion of these features are important for problem-solving.

A feature selection solution based on optimized GA is proposed to overcome the "dimension

curse" problem encountered in processing high-dimensional data. Various aspects of tradi-

tional GAs are improved, including initialization process, crossover and mutation operations,

and adaptive functions. According to the experimental results, in the two-dimensional conver-

gence data, GA is the 0 iteration at the optimal value of -0.5. At the optimal value of 3, MGA

has 0 iteration. The DE has the optimal value of -1 at 0 iteration. However, after iteration, the

optimal values of all three algorithms stabilize at -1.The correct recognition rate of binary

encoding has a deviation of 0.0006 before and after. The decimal coding accuracy is 0.0218. In

the performance test of ED, the yellow curve has the worst effect, with only less than 60. The

green curve and blue dashed line are 140 and 116, respectively. In the MGA efficacy test, the

efficacy of the yellow curve is around 1.05, while the green curve remains as high as 1.34.

According to the experimental results, on the Red Blood Cells dataset, the NMI of the algo-

rithm in this study is 84.82%, which is 5.05% and 10.25% higher than IBSCA3, EOSSA, and

BIWSO3, respectively. This scheme can automatically select the most relevant and representa-

tive feature subset from numerous features, achieving the goal of reducing dimensions and

improving model accuracy. Good research results have been obtained. However, the domain

imbalance corresponding to redundant data is significant, which leads to some shortcomings

in dimensions such as running-in and immersion. The optimized GA for feature selection is

particularly useful in high-dimensional data analysis but its application is tempered by limita-

tions across various real-world scenarios. The algorithm’s randomness can cause instability in

solutions, and its complexity may result in inefficiency, particularly with expansive data sets.

In specialized fields such as bioinformatics or finance, where precision and consistency are

paramount, these issues could lead to suboptimal performance. Additionally, in areas like

image processing or natural language processing, where data volume and dimensionality can

be immense, the potential for the GA to converge on local optima due to a poorly designed fit-

ness function can significantly impair the search process and outcome. Despite its adaptability,

the algorithm’s limitations necessitate careful adaptation to ensure reliability and efficiency in

diverse applications. This is also an area for further improvement in future research. Future

research work will focus on further improving the stability and efficiency of algorithms. In
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particular, research will explore how to more finely adjust the parameters of GA, as well as

how to utilize parallel computing and other advanced optimization techniques to shorten com-

putation time. The research also plans to study the fitness function design to more effectively

avoid local optima and improve the accuracy and reliability of the feature selection process.
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