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Abstract

The advent of smart grid technologies has brought about a paradigm shift in the manage-

ment and operation of distribution networks, allowing for intricate system information to be

encapsulated within semantic network models. These models, while robust, are not immune

to faults within their knowledge entities, which can arise from a myriad of issues, potentially

leading to verification failures and operational disruptions. Addressing this critical vulnerabil-

ity, our research delves into the development of a novel fault detection methodology specifi-

cally tailored for the knowledge entity variables of semantic networks in distribution

networks. In our approach, we first construct a state space equation that models the behav-

ior of knowledge entity variables in the presence of faults. This foundational framework

enables us to apply an unknown input observer strategy to effectively detect anomalies

within the system. To bolster the fault identification process, we introduce the innovative use

of a siamese network, a neural network architecture which is proficient in differentiating

between similar datasets. Through simulation scenarios, we demonstrate the efficacy of our

proposed fault detection method.

Introduction

The inception of smart grid technology has precipitated a paradigm shift in the domain of

power distribution networks, heralding unprecedented levels of operational efficiency,

enhanced reliability, and a harmonious integration of renewable energy sources [1–3]. As con-

duits between electricity suppliers and end-users, distribution networks have evolved into

intricate and dynamic systems [4]. This evolution has necessitated the deployment of sophisti-

cated information and communication technologies to adeptly manage the burgeoning data

landscape, ensuring fluid grid operations [5, 6].

Within this advanced operational context, semantic network models have risen to promi-

nence, providing an essential framework for the representation of system information. These

models are instrumental in elucidating and orchestrating the complex interplay among the

diverse components of the smart grid ecosystem [7, 8].
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Central to these semantic networks are the knowledge entities, which serve as proxies for

the system’s components and their elaborate interconnections [9]. These entities are the linch-

pin in the accurate representation of distribution network behavior, embodying critical data

pertaining to the operational states of tangible infrastructure elements, including transformers,

power lines, and load-bearing units. The fidelity of these knowledge entities is non-negotiable,

as any divergence from their true state can trigger a cascade of operational inefficiencies, mis-

guided decision-making, or in the worst cases, outright system failures [10]. Thus, the reliabil-

ity of distribution networks is inextricably linked to the precision and steadfastness of the data

held within these knowledge entities [11].

Despite their foundational role, knowledge entities are not impervious to faults, which can

emanate from a variety of sources such as sensor dysfunctions, communication breakdowns,

or anomalies in data processing [12–14]. These faults pose a significant threat, potentially

undermining the verification processes and jeopardizing the operational integrity of the distri-

bution network [15–17].

Confronting these challenges is of paramount importance, necessitating focused research

efforts towards the development of intelligent fault detection methodologies that are specifi-

cally designed for the nuanced requirements of knowledge entities in semantic networks [18,

19]. In this paper, we introduce a cutting-edge fault detection approach for knowledge entity

variables within distribution networks. This approach is underpinned by a state space equation

that anticipates potential faults, coupled with the implementation of an unknown input

observer adept at discerning system states amidst the presence of unmeasured disturbances.

To augment the fault detection capabilities, we incorporate Siamese networks into our

methodology. These neural networks are renowned for their proficiency in similarity detection

and pattern recognition, which significantly bolsters our ability to identify and rectify dual

source data discrepancies within knowledge entities. Through this research, we aim to not

only underscore the criticality of maintaining knowledge entity integrity but also deliver a

robust and reliable framework to protect the smart grid infrastructure from the adverse effects

of data faults.

The contributions of this paper are multifaceted and represent a significant advancement in

the field of smart grid management.

1. We develope a state space equation tailored to the state variables of knowledge entities,

explicitly taking into account the potential fault scenarios that may afflict distribution net-

works. This formulation provides a comprehensive description of the system’s operational

state, reflecting a deep understanding of the dynamics at play within the smart grid.

2. We employ an unknown input observer, a sophisticated tool designed to discern fault infor-

mation within the distribution network. This approach leverages the observer’s inherent

capability to detect anomalies, thereby enhancing the reliability of the fault diagnosis process.

3. We apply Siamese networks, leveraging their exceptional pattern recognition abilities, to

identify and isolate fault information in the distribution network. This application show-

cases the potential of advanced neural networks in improving fault detection mechanisms

within complex systems.

Modeling of state space for knowledge entities considering the

fault scenarios

The operational status methodology for the distribution network that this article presents

meticulously incorporates considerations of power shortage and scheduling costs [20, 21].
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Within this framework, power-related state space variables serve to estimate the magnitude of

power shortages afflicting the distribution network, while cost-related state space variables are

instrumental in calculating the incremental costs associated with the optimal scheduling solu-

tions for the distribution network’s challenges.

It is critical to acknowledge that the integrity of knowledge entity information within the

semantic network is foundational to the precision of our estimations. Any deviation in this

data directly impacts the accuracy of power shortage assessments and the computation of

incremental costs, which, in turn, bears upon the stability and economic viability of the distri-

bution network’s operations.

The operational state space equation that accounts for power shortages and scheduling

costs within a distribution network is formulated as follows:

xðkþ 1Þ ¼ AxðkÞ þ BuðkÞ; normal

xðk þ 1Þ ¼ AxðkÞ þ BuðkÞ þMmðkÞ; compromised

(

ð1Þ

where

x ¼ ½xPp x
C
p x
C
h x
H
h �
T

u ¼ ½uPp u
C
p u

C
h u

H
h �
T

where xPp and xCp respectively represent the fault handling capabilities of traditional and distrib-

uted resources in the distribution network; xCh and xHh represent the fault handling costs of tra-

ditional and distributed resources in the distribution network, respectively; uPp and uCp
respectively represent the deviation between the fault handling capabilities of traditional and

distributed resources in the distribution network and the expected ones; uCh and uHh respectively

represent the deviation between the fault handling cost of traditional and distributed resources

in the distribution network and the expected cost; A and B are knowledge graph matrices for

fault handling in distribution networks;m(k) andM are the matrixes to represent the fault.

It can be understood that changes in the state variables of knowledge entities in different

stages of the distribution network fault model will affect the effectiveness of distribution net-

work fault handling. In the next section, observers with different fault knowledge entity vari-

ables were designed to observe faults in the distribution network.

Design of observers for detecting compromised variables in

knowledge graph of distribution network

Observer design of fault handling capabilities considering faults

In this subsection, we focus on the observer for fault handling capabilities. The original system

Sfhc is

xðkþ 1Þ ¼ AxðkÞ þ BuðkÞ þMmðkÞ

yðkÞ ¼ CxðkÞ

(

ð2Þ

By incorporating the fault vectorm(k − 1) from time k − 1 as an additional state, we

enhance our analytical capabilities. This incorporation leads to the formulation of an aug-

mented state vector �xðkÞ ¼ xðkÞ mðk � 1Þ½ �
T
. With this enriched state representation, we are

able to construct an augmented system that provides a more comprehensive understanding of

the network’s dynamics in the presence of faults. This augmented system is presented as
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follows:

�E�xðkþ 1Þ ¼ �A�xðkÞ þ �BuðkÞ

yðkÞ ¼ �C�xðkÞ

8
<

:
ð3Þ

where

�E ¼
In � M

0 0

" #

; �A ¼
A 0

0 0

" #

; �B ¼
B

0

" #

; �C ¼
C

0

" #T

The observer for the augmented system is delineated as follows:

zðkþ 1Þ ¼ R�A�̂xðkÞ þ R�BuðkÞ þ LðyðkÞ � �C �̂xðkÞÞ

�̂xðkÞ ¼ zðkÞ þ TyðkÞ

8
<

:
ð4Þ

Within this framework, let z represent the dynamics of system (3); �̂xðkÞ signifies the estimate

of the augmented state vector �xðkÞ. To optimize the observer’s performance, we introduce

gain matrices R, L and T each carefully dimensioned to align with the system’s parameters.

These matrices are not arbitrary; they are the result of a rigorous design process aimed at

achieving optimal state estimation fidelity.

Theorem 1. The state observer, as delineated in form (4), must adhere to a set of precisely

defined criteria to ensure its effectiveness and reliability. These requirements are twofold: 1)

The first condition necessitates an algebraic relationship where the matrix R, when multiplied

by the augmented system matrix �E, and the matrix T, when multiplied by the augmented out-

put matrix �C, must collectively yield the identity matrix In+q;. This identity matrix has dimen-

sions that correspond to the sum of the system’s state dimensions and the fault vector’s

dimensions, ensuring that the observer gain matrices are correctly calibrated for accurate state

reconstruction. 2)The second condition requires the existence of symmetric positive definite

matrices P andW. These matrices are not merely mathematical constructs; they are pivotal in

defining a Lyapunov function that guarantees the convergence and stability of the observer.

The satisfaction of these conditions is essential for the observer to perform its function with

the requisite level of precision and robustness. The precise mathematical formulations that

codify these requirements are as follows:

� P ðR�AÞTP � �CTWT

∗ � P

2

4

3

5 < 0 ð5Þ

proof. We have the following matrices U 2 RðnþqÞ�ðnþqÞ and V 2 RðnþqÞ�ðnþqÞ satisfied

U�EV ¼
IN 0

0 0

" #

ð6Þ
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So that

rank

In 0

0 0

C 0

2

6
6
6
4

3

7
7
7
5
¼ rank

U 0

0 Im

" # �E

�C

" #

V

( )

¼ rank
�E

�C

" #

¼ nþ q

ð7Þ

Therefore

rank
IN 0

C 0

" #

¼ rank
�E

�C

" #

¼ nþ q ð8Þ

rankðU�EV þ �CVÞ ¼ rank
IN 0

C 0

" #

¼ nþ q ð9Þ

R satisfied

R ¼ VðU�EV þ CVÞ� 1U ð10Þ

T satisfied

T ¼ VðU�EV þ CVÞ� 1 ð11Þ

So, R�E þ T �C ¼ Inþq. [R, T] and �E�C½ �
T

satisfied

�E

�C

" #

R T½ �

�E

�C

" #

¼

�E

�C

" #

ð12Þ

Therefore, we can derive

R T½ � ¼

�E

�C

" #y

þY Inþqþm �
�E

�C

" # �E

�C

" #y0

@

1

A ð13Þ

The matrix Θ, which resides in the real-valued space RðnþqÞ�ðnþqþmÞ is not arbitrarily chosen.

rather, it is selected with a deliberate intention that is grounded in the fundamental principles

of system design.

As to the e(k), we have

eðkÞ ¼ �xðkÞ � �_x ðkÞ ð14Þ

Therefore

eðkþ 1Þ ¼ ðR�E þ T �CÞxðk þ 1Þ � zðkþ 1Þ � Tyðkþ 1Þ

¼ R�Exðkþ 1Þ � zðkþ 1Þ

¼ ðR�A � L�CÞeðkÞ

ð15Þ
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Since

VðkÞ ¼ eTðkÞPeðkÞ; P > 0 ð16Þ

We have

DVðkÞ ¼ Vðkþ 1Þ � VðkÞ

¼ eTðkÞ ðR�A � L�CÞTPðR�A � L�CÞ � P
� �

eðkÞ
ð17Þ

If the following equation holds

� P ðR�A � L�CÞTP

PðR�A � L�CÞ � P

2

4

3

5 < 0 ð18Þ

By invoking the Schur complement theorem in conjunction with the principles of Lyapu-

nov stability theory, we rigorously establish that ΔV(k)< 0. This result is not merely a theoreti-

cal assertion but a demonstrable guarantee of the system’s performance. It signifies that the

Lyapunov function V(k) is strictly decreasing, thereby providing a robust mathematical argu-

ment for the convergence of the error term e(k).
The completion of the proof provides a substantive insight into the resilience of the pro-

posed observer within our control system. Specifically, it has been demonstrated that, even in

the event of a compromise to the incremental cost estimator, the defender retains the capabil-

ity to accurately monitor system variables. This resilience is not an incidental feature but a

deliberate design element, ensuring that the integrity of the system’s observational mecha-

nisms is preserved under adverse conditions. The robustness of the proposed observer is thus

affirmed, underscoring its potential as a reliable tool for maintaining situational awareness

and operational continuity within the system.

Observer design of fault handling costs calculation under faults

In this subsection, we focus on the observer for compromised fault handling costs calculation.

The system Sfhcc can be expressed as

xðkþ 1Þ ¼ AxðkÞ þ BuðkÞ

yðkÞ ¼ CxðkÞ þ NmðkÞ

(

ð19Þ

Incorporating the fault vectorm(k) as an integral component of the system’s state represen-

tation, we construct an augmented state vector �xðkÞ ¼ xðkÞ mðkÞ½ �
T
. This expansion of the

state space enables us to formulate a comprehensive augmented system that encapsulates both

the original dynamics and the fault conditions. This approach not only enhances the descrip-

tive power of our model but also facilitates the development of more sophisticated control

strategies that can account for and adapt to fault-induced variations within the system.

�E�xðkþ 1Þ ¼ �A�xðkÞ þ �BuðkÞ

yðkÞ ¼ �C�xðkÞ

(

ð20Þ
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where

�E ¼
In 0

0 0

" #

; �A ¼
A 0

0 0

" #

; �B ¼
B

0

" #

; �C ¼
C

N

" #T

In parallel with the development of the augmented system, we have successfully extended

our observer design to accommodate this enhanced framework, as delineated by formula (4).

The theoretical underpinnings that guarantee the feasibility of our observer are meticulously

laid out in Theorem 1. While the constraints of this manuscript preclude a detailed repetition

of the proof for the observer’s existence within this subsection, it is imperative to acknowledge

the robust applicability of our observer design methodology.

Observer design in situations of multiple modules being compromised

considering uncertainties

In this subsection, we delve into a more complex scenario where multipoint faults are concur-

rently taken into account. To accurately capture the dynamics of the system under such condi-

tions, we define the compromised system with a formulation that reflects the intricate

interplay between these faults. The representation is given as follows:

xðkþ 1Þ ¼ AxðkÞ þ BuðkÞ þMmðkÞ þ EaoaðkÞ

yðkÞ ¼ CxðkÞ þ NmðkÞ þ EsosðkÞ

(

ð21Þ

Within this analysis, the terms ωa(k) and ωs(k)represent unknown input vectors that encap-

sulate the inherent uncertainties present within the system. The matrices Ea and Es are known

constant coefficient matrices, each carefully dimensioned to align with the system’s structure.

To adeptly incorporate the fault vector into our analytical framework, we introduce it as an

additional state. This strategic maneuver allows us to construct the augmented state vector

�xðkÞ ¼ xðkÞ mðkÞ½ �
T
, which embodies both the system’s state and the fault vector in a unified

representation. With this enhanced state vector, we can articulate the following augmented

system

�xðkþ 1Þ ¼ �A�xðkÞ þ �BuðkÞ þ �EaoaðkÞ þ GmdðkÞ

yðkÞ ¼ �C�xðkÞ þ EsosðkÞ

mdðkÞ ¼ mðkþ 1Þ � mðkÞ

8
>>><

>>>:

ð22Þ

where

�A ¼
A M

0 Iq

2

4

3

5; �B ¼
B

0

" #

; �C ¼
C

N

" #T

�Ea ¼
Ea

0

" #T

G ¼
0

Iq

2

4

3

5

T

Therefore, we can have

zðkþ 1Þ ¼ RzðkÞ þ SuðkÞ þ ðL1 þ L2ÞyðkÞ

�̂xðkÞ ¼ zðkÞ þ TyðkÞ

(

ð23Þ
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Therefore

eðkþ 1Þ ¼ ðI � T�CÞ�xðkþ 1Þ � zðkþ 1Þ � TEsosðkÞ

¼ ½ðI � T�CÞ�A � L1
�C�eðkÞ þ ½ðI � T�CÞ�A

� L1
�C � R�zðkÞ þ ½ðI � T �CÞ�B � S�ukþ

½ððI � T�CÞ�A � L1
�CÞT � L2�yðkÞ

þðI � T�CÞ �EaoaðkÞ þ ðI � T �CÞGmdðkÞ

� L1EsosðkÞ � TEsosðkþ 1Þ

ð24Þ

If

ðI � T�CÞ �Ea ¼ 0 ð25Þ

ðI � T�CÞ�A � L1
�C ¼ R ð26Þ

ðI � T �CÞ�B ¼ S ð27Þ

RT ¼ L2 ð28Þ

We can have

eðkþ 1Þ ¼ ReðkÞ þ ðI � T �CÞGmdðkÞ � L1EsosðkÞ � TEsosðkþ 1Þ ð29Þ

Theorem 2. Upon examination of the augmented system delineated in Eq 22, we postulate

the existence of a robust observer, characterized by Eq 23. This observer is meticulously

designed to ensure that the norm of the error vector e(k), when measured in the l2 space, is

bounded by the inequality keðkÞkl2 �
ffiffiffi
2
p
rkgðkÞkl2 .

The establishment of such a robust observer is contingent upon the fulfillment of a specific

matrix inequality condition. This condition is met if one can ascertain the existence of a posi-

tive definite matrix P and a suitably dimensioned matrix Q, such that:

� P þ I�n ∗ ∗ ∗

0lg��n � r2Ilg ∗ ∗

0lg��n 0lg�lg � r2Ilg ∗

PA1 � Q�C PV1 � QV2 P �V 2 � P

2

6
6
6
6
6
6
6
4

3

7
7
7
7
7
7
7
5

< 0 ð30Þ

where A1 ¼ ðI � T �CÞ�A, Q = PL1, V1 ¼ ðI � T�CÞG 0�n�ln

h i
, V2 = [0p×q Es], and �V 2 ¼ � TV2.

Proof. Considering that

VðkÞ ¼ eTðkÞPeðkÞ ð31Þ
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We have

DVðkÞ ¼ Vðkþ 1Þ � VðkÞ

¼

eðkÞ

gðkÞ

gðkþ 1Þ

2

6
6
6
4

3

7
7
7
5

T

ð

R

V1 � L1V2

�V 2

2

6
6
6
4

3

7
7
7
5
P

R

V1 � L1V2

�V 2

2

6
6
6
4

3

7
7
7
5

T

þ
� P 0

0 0

" #

Þ

eðkÞ

gðkÞ

gðkþ 1Þ

2

6
6
6
4

3

7
7
7
5

ð32Þ

The system is asymptotically stable since γ(k) = 0.

And

G ¼
X1

k¼0

ðDVðkÞ þ eTðkÞeðkÞ � r2gTðkÞgðkÞ

� r2gTðkþ 1Þgðkþ 1ÞÞ

ð33Þ

Therefore

G ¼
X1

k¼0

eðkÞ

gðkÞ

gðkþ 1Þ

2

6
6
6
4

3

7
7
7
5

T

½

R

V1 � L1V2

�V 2

2

6
6
6
4

3

7
7
7
5
P

0

B
B
B
@

1

C
C
C
A
P� 1

P

R

V1 � L1V2

�V 2

2

6
6
6
4

3

7
7
7
5

0

B
B
B
@

1

C
C
C
A
þ
� P þ I 0

0 � r2I

" #

�

eðkÞ

gðkÞ

gðkþ 1Þ

2

6
6
6
4

3

7
7
7
5

ð34Þ

Therefore

X1

k¼0

ðeTðkÞeðkÞ � r2gTðkÞgðkÞ

� r2gTðkþ 1Þgðkþ 1ÞÞ þ Vð1Þ � Vð0Þ < 0

ð35Þ

We have

X1

k¼0

eTðkÞeðkÞ � 2r2gTðkÞgðkÞ < 0 ð36Þ

Proofed.

Drawing upon the proposed observer framework, we are equipped to deduce the observed

data corresponding to the system’s variables, juxtaposed with the directly measured data. For
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the dispatcher, it is imperative to discern the congruence between the observed and measured

data sets during periods of normal operation. This alignment serves as a benchmark for system

integrity.

Conversely, it is equally vital for the dispatcher to detect and characterize any discrepancies

between the two data sets that may emerge under compromised conditions. Such anomalies

are indicative of potential system faults or malicious interventions, and their timely identifica-

tion is crucial for implementing corrective measures.

To facilitate this dual analysis, robust statistical or algorithmic methods must be employed

to systematically compare the observed and measured data.

Identification scheme against fault based on dual source data

In this section, we delve into an in-depth analysis of a fault identification scheme tailored to

effectively counteract faults by leveraging dual-source data. We propose a sophisticated rela-

tion-based detection network that is meticulously engineered to distill the inherent similarity

within the dual-source data. This network is pivotal in unraveling the intricate patterns that

may otherwise be obscured in the multidimensional data space.

• The conventional methodology for quantifying the similarity of dual-source data vectors via

Euclidean distance presents a notable challenge; it presupposes a substantial degree of prior

knowledge on the part of system defenders, which may not always be feasible in dynamic

and complex operational environments. Recognizing this limitation, our research introduces

an innovative approach that circumvents the need for extensive a priori understanding. In

this paper, we present a novel framework comprising an embedding module coupled with a

relation module, both of which are designed to autonomously extract the similarity from

dual-source data. The embedding module is responsible for transforming the raw data into a

lower-dimensional, information-rich representation. This process is achieved through

advanced feature learning techniques that capture the underlying structure and relationships

within the data without relying on manual feature engineering.

• Traditional machine learning methodologies typically necessitate the computation of dis-

tances within the feature space to facilitate identification tasks. This approach, inherently

reliant on the geometry of the feature space, often requires a substantial volume of training

data to achieve satisfactory performance. The demand for large-scale datasets poses signifi-

cant challenges, including increased computational resources, potential overfitting, and the

practical difficulties associated with data acquisition and labeling. In contrast, the research

presented in this paper adopts a more nuanced and efficient strategy. We eschew the conven-

tional paradigm of learning feature distances and instead propose a direct learning frame-

work for discerning the relationships inherent in dual-source data. Our approach is

predicated on the insight that understanding the interconnections between data sources can

be more informative and less resource-intensive than traditional distance-based learning.

As shown in Fig 1, we propose a twin network for detecting faults in distribution networks

In the architecture of our identification network, we integrate a measured data set and an

observed data set, alongside an embedding module and a relation module. The observed data

set serves as a reliable reflection of the system’s current operational state, unadulterated by

potential external manipulations. Conversely, the measured data set is a composite that

includes both potentially compromised and normal data subsets, which necessitates careful

scrutiny to ensure the integrity of the fault detection process.

Our fault detection network employs a comparative analysis between the observed data and

the measured data to ascertain the presence of anomalies. This comparison is crucial as it
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allows us to distinguish between authentic operational data and data that may have been

altered or tampered with.

To elaborate, when the comparative analysis involves data from the compromised subset,

we typically observe a strong similarity in the relationship between the dual-source data. This

strong similarity is indicative of a discrepancy that could suggest a fault or a cyber intrusion.

On the other hand, when the comparison is drawn from the normal data subset, the relation-

ship between the dual-source data exhibits weak similarity, which aligns with the expected

behavior of a system free from faults or external interference.

The distinction between strong and weak similarity in the dual-source data relationship is

pivotal for the accurate identification of faults. It is through this nuanced understanding of

data relationships that our network can effectively discern and flag inconsistencies, thereby

enhancing the reliability and security of the system it monitors.

In our dataset formulation, we represent each data vector as a time series encapsulating the

dynamic behavior of the target variables. This time-dependent structure is critical for captur-

ing the temporal correlations intrinsic to the system under study.

The core of our feature extraction process is an embedding module, ingeniously architected

with fully connected layers and rectified linear units (ReLUs). This module employs a sophisti-

cated nonlinear function, denoted by E, to distill the salient features from the raw sample data.

This automated feature extraction paradigm, facilitated by the fully connected layers, offers a

marked improvement over traditional manual techniques by substantially reducing the depen-

dency on prior knowledge of fault characteristics. The FC layer operates on the principle of

weighted connections, where each neuron in this layer is connected to all neurons in the previ-

ous layer. These connections are weighted, embodying the learned significance of each feature

in the context of fault detection. The neurons in the FC layer combine these inputs linearly

(using their respective weights), followed by the application of a non-linear activation func-

tion. By synthesizing this information, the FC layer can discern patterns indicative of normal

operation or fault conditions within the distribution network. It effectively acts as a decision-

making entity, where the learned weights reflect the importance of each feature in predicting

Fig 1. Schematic diagram of distribution network fault detection process.

https://doi.org/10.1371/journal.pone.0303084.g001
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the network’s status. The incorporation of ReLUs is a strategic choice aimed at enhancing the

generalization capabilities of the embedding module, thereby enabling it to perform robustly

across diverse operational scenarios. Upon processing by the embedding module, the feature

vectors corresponding to the measured data and observed data are denoted by FðdmÞ and

FðdoÞ. These vectors encapsulate the distilled essence of the data, ready for subsequent analy-

sis. In configuring the FC layer, one must consider the number of neurons, which directly cor-

relates to the layer’s capacity to model complex relationships. A higher number of neurons

allows for a more detailed representation but can also lead to overfitting and increased compu-

tational demands. Thus, the design of the FC layer requires a balance, ensuring it is sufficiently

comprehensive to capture essential decision-making patterns while remaining computation-

ally efficient and generalizable to unseen data. In the practical application of fault detection in

distribution networks, it is necessary to fine tune the parameters of the FC layer based on the

current operating scenario of the power grid, so as to maximize the detection of distribution

network faults.

To address the perennial challenge of overfitting within the embedding module, we adopt a

class prototype approach for each category of feature vectors. This innovative strategy involves

the computation of representative prototypes for the feature vectors from both measured and

observed datasets. The measured data feature vector prototype is represented as Pmi , while the

observed data feature vector prototype is denoted by Poi . These prototypes serve as archetypal

points in the feature space, around which the corresponding class’s feature vectors are

expected to cluster. This method not only mitigates the risk of overfitting but also provides a

more intuitive understanding of the feature space structure, which is instrumental for the sub-

sequent stages of fault detection analysis.

Pmi ¼
1

Nmi

XN
m
i

j¼1

FðdmÞ ð37Þ

Poi ¼
1

Noi

XN
o
i

j¼1

FðdoÞ ð38Þ

Within our analytical framework, let Nmi and Noi denote the number of samples for class i
within the measured and observed data feature vectors, respectively. To construct the class fea-

ture vector, denoted as CðPmi ;P
o
i Þ, we employ a methodical approach by concatenating the

class prototypes The relation module, an integral component of our system, leverages a nonlin-

ear relation function R to discern the degree of similarity between these concatenated class

feature vectors. The similarity metric, S is thus formulated as:

S ¼ RðCðPmi ;P
o
i ÞÞ ð39Þ

Mean square error (MSE) is used to train the proposed identification loss Lm.

Lm ¼

PP
ðS � 1Þ

2
; lm ¼ lo

PP
ðS � 0Þ

2
; lm 6¼ lo

8
<

:
ð45Þ

In our analysis, we denote lm and lo as the labels corresponding to the measured and observed

data, respectively. These labels are paramount as they represent the ground truth against

which the integrity of the data is assessed.
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The crux of our fault detection algorithm hinges on the comparison of these labels. In the

event of a discrepancy between the measured data and the observed baseline, indicated by

lm 6¼ lo and S is closed to 0.

Case study

In this section, we present a series of simulations designed to rigorously evaluate the efficacy of

our proposed observer and the associated fault detection network for monitoring system

variables.

Performance of the observer for the compromised system

In the test system, let

A ¼

0:9988 0:0007 0:0006 � 0:0037

0:0014 0:98 � 0:0012 � 0:0206

0:001 0:0037 1:0467 9:5584

0 0 0:0101 1:0234

2

6
6
6
6
6
6
6
4

3

7
7
7
7
7
7
7
5

B ¼

0:0052 0:0012

0:0315 � 0:0755

� 0:0582 0:0454

� 0:0003 0:0002

2

6
6
6
6
6
6
6
4

3

7
7
7
7
7
7
7
5

;C ¼

0:45 0:32 0:12 0:11

0:38 0:42 0:13 0:07

0:27 0:31 0:33 0:09

0:07 0:13 0:43 0:37

2

6
6
6
6
6
6
6
4

3

7
7
7
7
7
7
7
5

where

m1ðkÞ ¼

0; k < 60

0:05ðk � 60Þ; 60 � k < 100

2; k � 100

8
>>><

>>>:

ð41Þ

m2ðkÞ ¼
0; k < 60

1; k � 60

(

ð42Þ

In this section, we commence by delineating the efficacy of our observer’s fault handling

capabilities. We focus on the fault target variable xpP, which serves as a key indicator within our

system’s diagnostic framework.

Employing the methodology delineated in the paper, we acquire the observed data for the

variable xPP. The fidelity of the observer is then assessed through a series of simulations, the out-

comes of which are visually encapsulated in Fig 2. These simulations provide a dual-source

data comparison, juxtaposing observed and actual measurements.

Furthermore, the discrepancies between the observed and measured data are quantitatively

depicted in Fig 3 showcasing the observation error. Our analysis reveals that when the fault

magnitude is static, the observer exhibits a commendable capacity to track the measured data

with high precision. Conversely, in scenarios where the fault magnitude is dynamic, a
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discernible observation error emerges. This error is attributable to the dynamic nature of the

fault, which introduces a variable disturbance akin to a moving target for the observer.

The magnitude and behavior of the observation error are not merely artifacts; rather, they

are instrumental in the operationalization of our fault detection network. The disparity

between the observed and measured data forms a critical metric, serving as a cornerstone for

the network’s algorithms to ascertain the integrity of the system. It is this nuanced interplay

between observed discrepancies and fault detection that underpins the robustness of our pro-

posed diagnostic approach.

Subsequently, we rigorously evaluate the observer’s performance in the context of faults

affecting the output power decision-making process. The focal point of this assessment is the

fault target variable ypC, which is indispensable for ensuring the reliability and accuracy of

power output decisions.

Leveraging the methodology articulated in the paper, we derive the observed data for the

state variable xpC. This process is underpinned by a robust analytical framework designed to

capture the nuances of the observer’s operation under fault conditions.

The results of our simulations, which are pivotal to our investigation, are depicted in Fig 4.

These figures are not merely illustrative but are also analytical tools that provide insight into

the observer’s performance metrics and fault tolerance capabilities.

Fig 2. Dual source data of variable xPp under faults on fault handling capabilities.

https://doi.org/10.1371/journal.pone.0303084.g002

Fig 3. Observation error of variable xPp under faults on fault handling capabilitie.

https://doi.org/10.1371/journal.pone.0303084.g003
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It is imperative to note that the simulation results extend beyond a mere presentation of

data; they encapsulate the observer’s ability to maintain the integrity of the decision-making

process in the face of perturbations. The implications of these findings are profound, inform-

ing the development of more resilient and secure power system infrastructures.

To elucidate the robustness of the proposed observer when confronted with the simulta-

neous compromise of multiple modules, we conduct a detailed analysis of simulation results

under these multifaceted fault conditions. This analysis is crucial for understanding the

observer’s performance in a realistic scenario where multiple variables may be subjected to

adversarial interventions.

Employing the proposed methodology, we obtain the observed data for the compromised

variables. The fidelity of our observer is then rigorously assessed through simulations, the

results of which are presented in Fig 5. These figures are not merely visual aids but serve as

critical evidence of the observer’s diagnostic capabilities.

A careful examination of the simulation outcomes reveals pronounced discrepancies

between the measured data and the observed data. This discrepancy is indicative of the com-

plex interplay between the fault magnitude and other system perturbations, such as noise, dis-

turbances, and delays. Such findings underscore the imperative for a sophisticated fault

detection scheme capable of discerning whether the system’s integrity has been undermined.

Accordingly, the necessity for an effective fault detection mechanism becomes apparent,

one that can reliably ascertain the presence of a compromise within the system. This mecha-

nism is integral to the maintenance of system reliability and security, particularly in the pres-

ence of faults that could otherwise go undetected.

Performance of the observer for the relation-based fault detection scheme

In this subsection, we undertake a comprehensive evaluation of the performance of the pro-

posed fault detection scheme, which is a cornerstone of our research. The architecture of the

embedding module within this scheme incorporates three fully connected layers, each

Fig 4. Observation error of variable xCp under faults on fault handling cost.

https://doi.org/10.1371/journal.pone.0303084.g004
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followed by rectified linear units (ReLUs) to introduce non-linearity and enhance feature

learning capabilities.

For the training of the relation network, we judiciously select a batch size of 20. This choice

balances computational efficiency with the network’s ability to generalize from the training

data. In compiling the measured data set, we draw upon a historical database to amass 500

samples representative of normal system behavior and an additional 500 samples indicative of

compromised system states. This balanced approach ensures that the fault detection scheme is

exposed to an array of conditions reflective of the system’s operational spectrum.

Fig 5. Dual source data of variable xCh under faults on multiple modules.

https://doi.org/10.1371/journal.pone.0303084.g005

Fig 6. Performance of different fault detection method.

https://doi.org/10.1371/journal.pone.0303084.g006
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In parallel, the observer generates a set of 1000 observed data points, employing the meth-

odological framework proposed. These observed data serve as the testbed for our fault detec-

tion scheme, providing a robust dataset against which the scheme’s efficacy is measured.

To ascertain the fault detection scheme’s performance with precision, we employ a suite of

indexes as follows.

1) MA:

MA ¼
TP þ TN

TP þ TN þ FPþ FN
ð43Þ

Fig 7. MA index considering different training set proportion.

https://doi.org/10.1371/journal.pone.0303084.g007
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2) MD:

MD ¼
TP

TPþ FN
ð44Þ

3) MS:

MS ¼
TP

TPþ FP
ð45Þ

Fig 8. MD index considering different training set proportion.

https://doi.org/10.1371/journal.pone.0303084.g008
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4) MI:

MI ¼
TN

TN þ FP
ð46Þ

5) MF:

MFðT Þ ¼
ð1þ T 2

Þ �MD �MS
T 2
�MDþMS

ð47Þ

Fig 9. MS index considering different training set proportion.

https://doi.org/10.1371/journal.pone.0303084.g009
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where TP represents the number of samples correctly predicted as positive class, TN represents

the number of samples correctly predicted as negative class, FP represents the number of nega-

tive class samples incorrectly predicted as positive class, FN represents the number of positive

class samples incorrectly predicted as negative class. MA represents accuracy, MD represents

precision, MS represents recall, MI represents false detection rate, and MF represents a com-

prehensive performance indicator that can comprehensively consider the performance of the

model in terms of both miss detection rate and false detection rate.

Fig 10. MI index considering different training set proportion.

https://doi.org/10.1371/journal.pone.0303084.g010
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To comprehensively evaluate the efficacy of our proposed relation-based fault detection

scheme, we have rigorously compared it against a suite of five alternative methods. These

methods, each with its distinct approach to fault detection, are enumerated as follows:

ME1: Our novel relation-based fault detection scheme, which stands at the forefront of our

research. ME2: A related fault detection scheme utilizing a relation network, yet lacking the

prototype module, to discern the value added by this component [22]. ME3: A fault detection

scheme employing a multilayer perceptron, representing a standard in neural network applica-

tions [23]. ME4: A scheme that applies signal forecasting methods, offering a perspective on

the utility of time-series predictive analysis in fault detection [24]. ME5: A support vector

machine-based fault detection scheme, capitalizing on the strengths of SVMs in pattern recog-

nition [25]. ME6: A fault detection scheme that incorporates a clustering artificial bee colony

Fig 11. MA index under different ratio of positive samples.

https://doi.org/10.1371/journal.pone.0303084.g011
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algorithm, reflecting the innovative use of swarm intelligence in anomaly detection [26]. Our

simulation results, as depicted in Fig 6, clearly demonstrate that the proposed fault detection

scheme (ME1) outperforms its counterparts across all algorithmic evaluation indices. This

superior performance is attributable to the scheme’s strategic focus on exploiting the discrep-

ancies between normal and compromised data. In contrast, the other fault detection schemes

primarily emphasize feature extraction.

The distinctive advantage of the proposed scheme arises from its ability to discern the subtle

variances that distinguish authentic data from manipulated data. This is in stark contrast to

other schemes, which may inadvertently learn commonalities between normal and compro-

mised data, thereby diminishing their detection capabilities.

In pursuit of a comprehensive understanding of the stability and robustness of our pro-

posed fault detection scheme, we have conducted an in-depth analysis of its performance

Fig 12. MD index under different ratio of positive samples.

https://doi.org/10.1371/journal.pone.0303084.g012
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across varying training set sizes. Specifically, we have incrementally adjusted the proportion of

the data used for training by 5% intervals, ranging from 40% to 80% of the total dataset.

The simulations are shown in Figs 7–10. It can be learned that while there is an expected

decline in the performance of the proposed fault detection scheme as the training sample size

decreases, it nonetheless maintains a position within the upper echelon of performance met-

rics. This observation holds true even when compared with alternative schemes, some of

which may occasionally surpass our method at certain training sample sizes. Crucially, these

results confirm that our fault detection scheme consistently delivers an excellent detection

capability within the sample size parameters explored in this study.

The resilience of the proposed scheme, as evidenced by these simulations, underscores its

robustness and affirms its effectiveness in fault detection, even under constraints of limited

data availability. This finding is particularly significant for practical applications where data

Fig 13. MS index under different ratio of positive samples.

https://doi.org/10.1371/journal.pone.0303084.g013
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may be scarce or costly to acquire, further attesting to the versatility and practicality of our

approach.

In light of the practical scenario where compromised data samples may be sparse, we have

undertaken a thorough examination of the proposed fault detection scheme’s reliability and

stability across varying ratios of positive (compromised) to negative (normal) samples. We

have methodically evaluated the scheme at the following ratios: 1:1, 1:2, 1:5, and 1:10, thereby

encompassing a broad spectrum of imbalanced datasets.

The empirical results are shown in Figs 11–14. It can be learned that while there is a dis-

cernible decrement in the scheme’s performance as the proportion of positive samples dimin-

ishes relative to negative samples, the scheme’s overall efficacy remains comparatively

advantageous against other detection methods. This performance degradation is primarily

Fig 14. MI index under different ratio of positive samples.

https://doi.org/10.1371/journal.pone.0303084.g014
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attributed to the network’s constrained ability to adequately learn and distinguish the charac-

teristics of positive samples when they are underrepresented.

Despite this challenge, it is noteworthy that the proposed fault detection scheme continues

to demonstrate a commendable level of fault identification accuracy. This resilience is a testa-

ment to the robust design of our detection network, which has been engineered to cope with

the inherent difficulties posed by sample imbalance. Furthermore, the findings elucidate the

critical need for a detection system that can maintain high performance levels even when faced

with the realistic limitations of data availability, thus reinforcing the practical applicability and

superiority of our proposed scheme in real-world settings.

Conclusion

In this study, we address the critical issue of fault management within the distributed control-

lers of active distribution networks. To this end, we have meticulously developed observers

capable of tracking anomalous data indicative of system faults. These observers have been

intricately designed to accommodate a variety of fault targets, ensuring a comprehensive mon-

itoring framework. Building upon the data procured by these observers, we have introduced

an innovative relation-based fault detection scheme. This scheme leverages the interdependen-

cies between observed data and actual measurements to pinpoint discrepancies that may signal

the presence of faults. The simulation results robustly validate the efficacy of our observers and

the relation-based fault detection scheme.
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