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Abstract

Cricket Frass Fertilizer (CFF) was tested for its efficiency and potential as a fertilizer on the

growth of green beans (Phaseolus vulgaris L.) in central Madagascar from April 2020 to

October 2020. We grew green beans experimentally for 93 days with seven different fertil-

izer treatments: NPK 200 kg/ha (0.47 g of N/plant), GUANOMAD (guano from bat) 300 kg/

ha (0.26 g of N/ plant), CFF 100 kg/ha (0.12 g of N/plant), CFF 200 kg/ha (0.24 g of N/plant),

CFF 300 kg/ha (0.38 g of N/plant), CFF 400 kg/ha (0.52 g of N/plant), and no fertilizer (0 g of

N/plant). Three plant traits were measured: survival proportion, vegetative biomass, and

pod biomass. The survival proportion of plants treated with the highest dose of CFF (400 kg/

ha, 88.1%), NPK (79.8%), and GUANOMAD (81.2%) were similar, but plants treated with

the former yielded significantly higher vegetative (35.5 g/plant) and pod biomass (11 g/

plant). These results suggest that fertilizing green beans with CFF at a 400 kg/ha dose is

sufficient for plant survival and growth, and improves pod production. In Madagascar where

soil quality is poor, dependence on imported chemical fertilizers (NPK) and other organic fer-

tilizer (GUANOMAD) can be reduced. Cricket Frass Fertilizer can be used as an alternative

sustainable fertilizer for beans.

Introduction

One major current global challenge is to ensure food security to sustain a dramatically growing

population while reducing the negative impacts of agriculture on the environment [1, 2]. Low

soil fertility is a major constraint to improving agricultural production, making fertilizer use

critical [3]. However, excessive use of chemical fertilizer to increase yields causes
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unrecoverable environmental footprints [4, 5]. Amongst several issues, chemical fertilizer use

reduces biodiversity [6], pollutes marine and terrestrial ecosystems [4, 7], and leads to soil

acidification and compaction [5]. Hence, sustainable agricultural production requires the

adoption of alternative agricultural practices such as the use of organic fertilizers [8]. The use

of organic soil amendments represents an environmentally friendly and economically viable

way to increase soil fertility and improve crop yield [9, 10], as well as recycle organic waste

products sustainably [11].

The growing practice of farming insects for food and feed [12] offers a new source of

organic fertilizer. Insect manure, or frass, is by definition “a mixture of excrements derived

from farmed insects, the feeding substrate, parts of farmed insects, dead eggs and with a con-

tent of dead farmed insects of not more than 5% in volume and not more than 3% in weight”

(Commission Regulation (EU) 2021/192, [13]). Frass has been shown to be an effective organic

fertilizer with the capacity to supply nutrients to plants, and the potential to replace conven-

tional fertilizers [14, 15]. Many studies advocate the use of insect frass as a soil amendment

that improves soil quality and aids plant growth [12, 16]. These benefits are largely attributed

to the nitrogen-rich properties of insect frass [17–20]. Amending soil with insect frass also

stimulates soil microbial activity, which reduces plant sensitivity to pathogens, and produces

secondary metabolites to protect plants against pathogens [10, 14, 15], all of which enhance

plant growth. Therefore, the use of insect frass as fertilizer represents an opportunity to sup-

port sustainable crop production [21].

Unlike the frass of mealworms (Tenebrio molitor L.) and black soldier flies (Hermetia illu-
cens L.), which have been the object of more numerous studies referring to their fertilizing

potential, few studies have explored the use of cricket frass to amend soils for crops [22–24].

Butnan et al. (2022) showed that combining cricket frass with Eucalyptus biochar improved

the yield of Chinese kale (Brassica oleracea L.). An experiment comparing the growth of spider

plant (Cleome gynandra L.) supplemented with cricket frass, cow manure, and synthetic fertil-

izer showed that frass increased available nitrogen in the soil, and improved vegetative growth

[24]. Ferruzca-Campos et al. (2023) demonstrated that substrate amended with less than 1%

(w/w) cricket frass, that contains 4.035% of total nitrogen significantly improved the growth

and development of tomato plants.

In the highlands of Madagascar, soils are cropped intensively, which has led to a decrease in

fertility and soil organic carbon contents [25, 26]. Appropriate fertilizer management strategies

are required to improve crop production in the system, yet organic resources are the primary

fertilizers accessible to Malagasy farmers [27]. Cricket frass fertilizer (CFF), a new organic fer-

tilizer from local farming of the cricket species Gryllus madagascarensis [28], has become avail-

able in the country. No study has yet assessed the potential role of CFF on crop growth in

Madagascar. Here, we aim to determine the efficiency of CFF as a fertilizer in Madagascar’s

agroclimatological conditions. This marks the first study exploring the effect of CFF on plants

in Madagascar. We compared the performance of CFF against the chemical fertilizer NPK and

the organic fertilizer GUANOMAD (guano derived from bat feces) on the survival, growth,

and pod production of green bean plants. Green beans were chosen because, after tomatoes,

they are the second-most cultivated vegetable in the commune where the experiment was car-

ried out, occupying about 21% of the vegetable cropping area [29].

Materials and methods

Experimental site characteristics

The experiment was conducted in Ampangabe Commune, Ambohidratrimo District, Anala-

manga Region (18.859˚ S, 47.403˚ E) during the dry season (from April to October 2020). The
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timing of the planting followed the recommendation of the local horticulture institute (Centre

Technique Horticole d’Antananarivo, CTHA). Total average annual rainfall was 1850 mm,

with only 15% falling during the dry season [30]. Temperatures ranged from 15˚C to 23˚C

[29]. Soil type was clay (details on soil characteristics are presented in S1 Appendix).

No permit was required to conduct the study as it was done on a private land where only

the owner’s approval was needed.

Fertilizer and crops

This study examined how green bean (Phaseolus vulgaris L.), purchased from a local store,

responds to fertilizer treatments. We used three fertilizers in the study. The chemical fertilizer

NPK 11-22-16 and an organic fertilizer GUANOMAD (N: 4%, P: 13%, K: 2%, GUANOMAD

Madagascar company), can both be bought in local stores in Madagascar. Cricket Frass Fertil-

izer (CFF, Valala Farm Research Lab at MBC, Antananarivo, Madagascar), a mixture of cricket

feces and feed residue, is a byproduct of Gryllus madagascarensis rearing. The frass was not

sifted prior to application. We analyzed the CFF to determine its macro- and micronutrient

content (S2 Appendix).

Treatments and experimental design

In our experiment, we compared the effect of one control (no fertilizer), one dose of NPK (200

kg/ha; following the Centre Technique Horticole d’Antananarivo recommendation for green

beans), one dose of GUANOMAD (300 kg/ha; following the GUANOMAD company recom-

mendation for green beans), and four doses of CFF (CFF 100: 100 kg/ha, CFF 200: 200 kg/ha,

CFF 300: 300 kg/ha, and CFF 400: 400 kg/ha). The total nitrogen, phosphorus and potassium

equivalent per plant for each treatment are given in S3 Appendix. We used four Fisher blocks

of 13.5 m x 4.0 m [31]. Each block had twelve plots (3.0 m x 1.0 m) corresponding to three rep-

licates of control, three replicates of NPK, three replicates of GUANOMAD, and three repli-

cates of one of the CFF doses.

Three weeks before sowing, the soil was plowed (40 cm depth) and crumbled. Fourteen

green bean seeds were sown in each plot, and fertilizers were applied at planting by adding the

appropriate dose in each 15 cm-deep hole. Plants were watered daily. At 93 days after sowing,

two measures of plant survival were considered: survival proportions of all individuals (with or

without pod), and survival proportions of individuals that produced pods, related to the num-

ber of individuals planted. The latter was considered to quantify the treatment effects on the

survival of green bean plants that could produce pods. Vegetative biomass (leaves and stems)

and pod biomass were harvested and their fresh weight was measured. Plants with pods

weighing� 2 g and vegetative biomass� 3 g were excluded from the analysis as these were all

dry at 93 days.

Data analysis

We tested data for normality using the Shapiro-Wilk test. We used the Test of Equal or Given

Proportions to determine the differences in plant survival rates among all the treatments.

Then, we conducted a pairwise proportion test to compare the difference among treatments.

Data on plant biomass were analyzed using the Kruskal-Wallis test. Then, Dunn tests were

used for pairwise comparisons. All data analyses were performed in the R environment [32]

and the level of significance was set at p< 0.05. All data are in S4 Appendix.
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Results

Green bean survival proportions of all plants (with or without pod) and plants that produced

pods differed significantly among treatments (Proportion test, p< 0.001, and p = 0.04 respec-

tively, Fig 1). On average, plants treated with NPK (0.47 g of N/ plant) and GUANOMAD

(0.26 g of N/ plant) had significantly higher survival proportions (79.8% and 81.2%, respec-

tively) compared with plants treated with CFF 100 (0.12 g of N/ plant), CFF 200 (0.24 g of N/

plant), CFF 300 (0.38 g of N/ plant), or controls (0 g of N/ plant). Among all plants, the highest

survival proportion was associated with the CFF 400 (0.52 g of N/ plant) group (88.1%), which

was similar to that of the GUANOMAD group and significantly higher than obtained with

NPK (Proportion test, p = 0.03). There was no significant difference between the survival pro-

portion of plants having produced pods for all treatments except for the control group, which

was significantly lower than obtained with GUANOMAD (Proporion test, p = 0.001).

Plants fertilized with NPK, GUANOMAD, and CFF 400 produced significantly higher veg-

etative biomass (per plant and total, Fig 2a and 2b) than control plants (Kruskal-Wallis test, all

p< 0.01 for vegetative biomass per plant; p = 0.006, p = 0.009, and p = 0.003, respectively for

total vegetative biomass). The highest average vegetative biomass weight per plant (Fig 2a) was

obtained with CFF 400 (35.5 g), which was significantly higher than all the other treatments

(Kruskal-Wallis test, p< 0.001 for all treatments). The highest total vegetative biomass (Fig

2b) was also obtained with CFF 400 (438 g, with a minimum weight of 298 g and a maximum

weight of 684 g), which was similar to the NPK and GUANOMAD groups (Kruskal-Wallis

test, p = 0.13, and p = 0.12, respectively). There was no significant difference between the pod

biomass per plant obtained from control, NPK, GUANOMAD, CFF 200 and CFF 300 (Fig 2c).

Plants fertilized with CFF 400 produced the highest pod biomass per plant (median = 11 g),

which was significantly higher than all the other treatments but the control. Treatments did

not have any significant effect on the total pod biomass of green bean plants (Kruskal-Wallis

Fig 1. Proportion of surviving green bean plants: (a) all plants (b) plants with pod, compared among treatments. Values are averaged (n = 168 for control,

NPK and GUANOMAD; n = 56 for each dose of CFF) with error bars representing maximum and minimum values. Letters indicate significance of

difference of survival proportion means between treatment; same letters indicate no significant difference and different letters indicate significant differences

at p = 0.05.

https://doi.org/10.1371/journal.pone.0303080.g001
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test, p = 0.41) but plants fertilized with CFF 400 produced the highest mean value (92.7 g) and

the highest minimum value (71 g).

Treatments significantly affected green bean pod to vegetative biomass ratio (Kruskal-Wal-

lis test, p = 0.004). The two highest ratios were obtained from CFF 100 and CFF 300 (Fig 3,

median = 1.25 and 1.18, respectively) and were significantly higher than the ratio obtained

from NPK and GUANOMAD. The lowest average ratio was associated with CFF 400 (0.67).

Discussion

We conducted an experiment to quantify the effects of CFF, a new organic fertilizer produced

by cricket rearing, on green bean crop survival, growth, and yield. We tested four doses of CFF

and compared them with the recommended dose of NPK and GUANOMAD for green bean

Fig 2. Vegetative biomass of green bean plants (a) per individuals, (b) total per plot; pod biomass (c) per individuals, (d) total per plot, compared

among treatments. Values for total vegetative and pod biomass are averaged (n = 168 for control, NPK and GUANOMAD; n = 56 for each dose of

CFF) with error bars representing maximum and minimum values. Letters indicate significance of difference of trait means between treatments, with

same letters indicating no significant difference and different letters indicating significant differences at p = 0.05.

https://doi.org/10.1371/journal.pone.0303080.g002
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crops. Demonstrating the potential of CFF to improve green bean production will encourage

the integration of this fertilizer into farming practices.

Plant nutrient acquisition is influenced by morphological and physiological characteristics

that adjust in response to environmental factors such as climate, soil, and fertilizer application

[e.g. 33, 34]. Among the four doses of CFF tested, the highest dose (400 kg/ha) had the most

comparable effect to NPK and GUANOMAD on green bean plants. At a dose of 400 kg/ha of

CFF, each green bean plant received a total nitrogen of 0.52 g, which is similar to NPK’s and

the double of GUANOMAD’s (S3 Appendix). Vegetative and pod biomass production per

plant increased with the addition of CFF at 400 kg/ha, which supported previous findings that

using insect frass fertilizer improved nutrient levels in soil [e.g. 19, 350, 36]. Organic nitrogen

is relatively abundant in most frass ranging between 1.6–7% [37]. This element is essential for

plant growth and development, specifically for biomass production [5, 38]. Our results are in

Fig 3. Ratio of pod to vegetative biomass of green beans plants compared among treatments. Letters indicate significance of difference of the

ratio means between treatments, with same letters indicating no significant difference and different letters indicating significant differences at

p = 0.05.

https://doi.org/10.1371/journal.pone.0303080.g003
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line with previous findings demonstrating that the contribution of nitrogen from frass sup-

plied to the soil boosts the growth of plants such as dragon fruit cacti (Selenicereus undatus D.

R. Hunt) and chards (Beta vulgaris L.) [13, 39]. Although the amount of nitrogen provided by

GUANOMAD was smaller than that provided by CFF (400 kg/ha) and NPK, it still promoted

green beans growth, possibly because it contains microbacterial flora that facilitates nutrient

absorption [40]. The amount of nitrogen provided by the other doses of CFF (100 kg/ha, 200

kg/ha, and 300 kg/ha) might not have been sufficient for our plants to grow as much vegetative

biomass as those treated with NPK and GUANOMAD (Fig 2a and 2b) but just enough to allo-

cate more biomass to vegetative tissues than pods (Fig 3). It is important to note that green

beans, like other legumes species has symbiotic association with bacteria that can fix atmo-

spheric nitrogen [41], and that frass also contains nitrifying bacteria that make nitrogen within

the soil accessible to plants [37]. These might have improved green beans nitrogen access and

contributed to its vegetative biomass production for plants treated with CFF (Fig 2a and 2b).

Frass phytotoxicity is often associated with the addition of high frass concentration [37],

which we did not observe at the highest dose of CFF. This suggests that at a dose of 400 kg/ha,

CFF does not cause deleterious impact on green bean plant growth and biomass production.

A significantly higher proportion of green bean plants treated with CFF at 400 kg/ha sur-

vived than plants grown with NPK, but this figure was similar to that of GUANOMAD (Fig

1a). Organic fertilizers keep plants healthy and suppress some diseases, while chemical fertiliz-

ers can increase the sensitivity of plants to diseases and pests [42, 43]. Additionally, insect frass

contains chitin, which improves soil quality and plant health by stimulating plant defenses

against pathogens [20, 44, 45]. Plants treated with CFF 400 had a higher chance of survival, as

insect frass might have increased the abundance of soil microorganisms and might have stimu-

lated their biocontrol activity, which made the crops resistant to pests and diseases [46, 47].

The positive effects of fertilizers on plant growth are attributed primarily to increased nutri-

ent levels in the soil. These effects are generally well understood for fertilizers such as NPK and

compost [48–52]. Here, we showed that cricket frass is more effective than NPK and GUANO-

MAD in promoting the vegetative and pod biomass per plant of green bean plants at an appli-

cation rate of 400 kg/ha (Fig 2a and 2c), indicating that nutrients for growth in frass are

effective in crops. Frass is characterized with high levels of organic carbon [18, 53, 54]. It has

been shown that frass decomposes and mineralizes rapidly after its incorporation into the soil

[15, 55–57], mainly because of its high carbon content [53]. This might have made nutrients

readily available to the green beans during their early growth stages. Phosphorus is one of the

most essential nutrients for fruit development [e.g., 5, 58], and is required at an adequate level

in the early stages of plant growth [59]. Potassium is another important nutrient that influ-

ences plant growth and development [60]. Studies have shown that it protects plants against

biotic and abiotic stresses and contributes to their survival [e.g. 61, 62]. Though the amount of

phosphorus and potassium supplied by CFF was relatively small compared to NPK (S3 Appen-

dix), it might have been sufficient for the green bean plants to optimize their fruit production

and stress tolerance at a dose of 400 kg/ha. Similar results have been found by other authors

who demonstrated that applying even relatively low rates of organic amendments increased

crop yields by significantly improving soil conditions [35, 63, 64].

This study presents the first example of how cricket frass affects plants in Madagascar.

Compared to the frass of other insects, CFF is still poorly studied, and most of our conclusions

refer to experiments using the frass of other insects on crops. However, different insect species

rely on different feeds and substrates to grow. These factors in turn can significantly affect

frass quality [18] and may thus affect plant growth in different ways. This work highlights the

need to test the effects of cricket frass on the growth of other crops to determine how well
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cricket frass supplies nutrients to plants, and what strategies plants use to acquire these

nutrients.

Conclusions

Optimizing crop development is an integral part of effective farming management practices.

These practices should be tailored to the nutrient requirements of target crop plants. Here, we

demonstrated that cricket frass fertilizer from cricket rearing has potential for use as an

organic fertilizer to promote green bean plant growth and survival. If supplied at an adequate

rate, cricket frass can be a sustainable fertilizer capable of improving crop yields. Its develop-

ment and promotion holds promise to enhance the livelihoods of smallhold farmers in places

like Madagascar where food security is precarious.
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