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Abstract

The Coronavirus Disease 2019(COVID-19) has caused widespread and significant harm

globally. In order to address the urgent demand for a rapid and reliable diagnostic approach

to mitigate transmission, the application of deep learning stands as a viable solution. The

impracticality of many existing models is attributed to excessively large parameters, signifi-

cantly limiting their utility. Additionally, the classification accuracy of the model with few

parameters falls short of desirable levels. Motivated by this observation, the present study

employs the lightweight network MobileNetV3 as the underlying architecture. This paper

incorporates the dense block to capture intricate spatial information in images, as well as

the transition layer designed to reduce the size and channel number of the feature map. Fur-

thermore, this paper employs label smoothing loss to address the inter-class similarity

effects and uses class weighting to tackle the problem of data imbalance. Additionally, this

study applies the pruning technique to eliminate unnecessary structures and further reduce

the number of parameters. As a result, this improved model achieves an impressive 98.71%

accuracy on an openly accessible database, while utilizing only 5.94 million parameters.

Compared to the previous method, this maximum improvement reaches 5.41%. Moreover,

this research successfully reduces the parameter count by up to 24 times, showcasing the

efficacy of our approach. This demonstrates the significant benefits in regions with limited

availability of medical resources.

1 Introduction

In recent years, a widespread COVID-19 crisis has erupted globally, causing massive infections

and deaths worldwide. The impact has extended across various domains, including the econ-

omy, society, and mental health. The continued diffusion of the COVID-19 pandemic has hin-

dered global connectivity [1]. Currently, although the promotion of vaccines and preventive

measures has to some extent slowed down the spread of the virus, there still exists the risk of

new variants emerging and the outbreak of new epidemics. To effectively combat the spread of

COVID-19 in society, accurate diagnosis as early as possible plays a crucial role. The widely

used testing method currently employed is Reverse Transcription Polymerase Chain Reaction
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(RT-PCR), which involves the test and amplification of viral RNA extracted from nasopharyn-

geal swabs or sputum samples. However, RT-PCR has significant limitations. Firstly, the test-

ing process is time-consuming and usually takes several hours or more. Such delays can have

implications for outbreak control and the timely implementation of necessary measures. Addi-

tionally, the accessibility of RT-PCR testing kits is limited, particularly in developing countries

[2, 3]. These restrictions are risky for people with COVID-19. Therefore, medical imaging tests

are performed first to initially detect COVID-19, followed by RT-PCR tests to help doctors

make an accurate final diagnosis [4]. Computed Tomography (CT) and Chest X-ray (CXR)

are two common medical imaging techniques used for COVID-19 detection, each with unique

advantages [5].

CT images excel in their superior penetration, providing high-resolution anatomical struc-

tures, and generating three-dimensional information to support stereoscopic anatomy. In

diagnosing complex conditions such as deep-seated tumors, brain diseases, and abdominal

issues, CT typically offers more accurate information, aiding clinicians in critical diagnostic

and therapeutic decision-making. However, it is important to note that CT scans, compared to

CXRs, require a higher radiation dosage, potentially increasing the risk of radiation exposure

to patients. And, for patients, CT images are far more expensive than CXR images [4]. In con-

trast, Chest X-ray (CXR) exhibits advantages such as low radiation exposure, rapid acquisition,

and cost-effectiveness. CXR is well-suited for screening and tracking pulmonary diseases, espe-

cially in emergency situations where its capability to swiftly capture images aids in the prompt

assessment of lung issues like pneumonia, tuberculosis, and lung cancer. Furthermore, due to

its relatively lower cost, CXR finds widespread application in regions with limited medical

resources. In certain scenarios, such as screening for pneumonia, pulmonary edema, or tuber-

culosis, CXR often proves to be the more appropriate choice [6]. However, manually examin-

ing a large number of CXR images to distinguish COVID-19 patients from others is a difficult

and time-consuming task [7]. Therefore, developing an automated technique for accurate

COVID-19 diagnosis is necessary and Deep Learning(DL) methods have been suggested to

solve this challenge [8].

Convolutional Neural Network (CNN), a subdomain of DL algorithms, has been widely

studied and proven effective in the detection of COVID-19 [8]. Such as, the researchers uti-

lized several pre-trained models to detect three categories, including COVID-19, Viral Pneu-

monia, and Normal cases by CXR images. The researchers indicated that Visual Geometry

Group 19(VGG19) achieved the highest accuracy at 93.48% [9]. However, these models remain

challenging in the field of COVID-19 because of the following two problems. In the early

stages of the COVID-19 pandemic, researchers faced a huge difficulty due to the lack of reli-

able data. And now larger datasets have become accessible, enabling more recent studies to

leverage these extensive datasets to ensure the accuracy of their models [10]. The current

model training processes are conducted on a powerful Graphics Processing Unit (GPU),

bringing about a notable quantity of parameters. It is hard to practice especially for the people

in regions with limited medical resources. All the problems need the development of models

that are more suitable for real-world deployment [11].

To address the previously mentioned issues, this paper proposes an improved lightweight

network called Dense MobileNetV3. This model enhances the ability to capture complex

image information at different layers by incorporating the Dense Block into the lightweight

MobileNetV3 architecture. Firstly, the model is trained using transfer learning and subse-

quently fine-tuned to optimize its performance. Secondly, a pruning operation is employed to

decrease the parameters of the improved method. Thirdly, to evaluate the capabilities of the

improved model, accuracy, sensitivity, specificity, and precision index are assessed by using an

open accessible chest X-ray image database. Finally, this experiment attains an impressive
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accuracy of 98.71% with a parameter count of 5.94 million, which is up to 5.41% more accurate

compared to the previous methods and successfully reduces the parameter count by up to 24

times. The reduction in model parameters leads to a significant decrease in computational

resource utilization and memory requirements. The outcomes demonstrate its competitive-

ness when compared to heavyweight models, highlighting its practicality. Furthermore, the

enhanced approach surpasses certain currently available lightweight networks in terms of

accuracy, underscoring its efficacy. This research aims to address the challenge of achieving

efficient COVID-19 detection on devices with limited computational resources, a matter of

particular significance for remote areas and situations with scarce medical resources.

The primary highlights of this study are summarized and expounded upon as follows:

• A lightweight network Dense MobileNetV3 is developed for the early identification of indi-

viduals with COVID-19, Viral Pneumonia, or Normal cases using chest X-ray images. It

achieves an impressive accuracy of 98.71% with just 5.94 million parameters.

• This paper combines the Dense Blocks to extract and concatenate image features at various

scales in the spatial dimension, resulting in high-level attributes. Additionally, this study mit-

igates the inter-class similarity effect by employing label smoothing loss.

• Building upon the highly acclaimed lig htweight network MobileNet and achieving improve-

ments by incorporating pruning techniques, led to a significant reduction in the parameter

count.

The subsequent parts of the article are structured as the following: Section 2 presents recent

methodologies. Section 3 provides a detailed description of the improved method mentioned

above. Section 4 provides details about the dataset and training. Section 5 presents the experi-

mental results and discussion, and Section 6 concludes with a summary of the article.

2 Related work

Since 2012, deep neural network based on CNN has made significant advancements and

achieved impressive results in the ImageNet competition [12]. And the researchers have

increasingly directed their attention towards leveraging machine learning techniques for medi-

cal image analysis. Among the diverse machine learning methods suggested in the relevant lit-

erature, CNN has demonstrated remarkable efficacy in various applications relevant to

COVID-19 prediction and diagnosis. Specifically, CNN has been utilized for expeditious and

precise diagnosis of COVID-19 infection by CXR images [13].

Ahamed et al. [14] proposed a modified ResNet50V2 architecture is proposed as the detec-

tion model. The model was trained using a dataset consisting of chest CT scans and X-ray

images. Aggregated data sets are preprocessed through sharpening filters before entering them

into the proposed model. Using CXR images, the model achieved 97.242% accuracy on the

three-classification task (COVID-19/Normal/Bacterial pneumonia) and 98.954% accuracy on

the two-classification task (COVID-19/Viral pneumonia). The model used chest CT scan

images to obtain a combined accuracy of 99.012% for three types of cases (COVID-19/normal/

community-acquired pneumonia) and 99.99% for two types of cases (normal/COVID-19).

Such high accuracy allows radiologists to identify and rapidly diagnose COVID-19 using basic

but widely available equipment. It provides valuable reference for the follow-up research.

Gupta et al. [15] developed an effective computer-aided technique to diagnose COVID-19

individuals. The researchers performed fine-tuning on pre-trained deep learning to capture

features. These features were combined by employing a specific integrated stacking method,

resulting in a novel approach named InstaCovNet-19. The experiment findings demonstrated
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that the model achieved 99.08% accuracy in the three-classification task and 99.53% accuracy

in the binary-classification task. Additionally, the article mentioned that Inception-V3

achieved an accuracy of 97.00% with 24 million parameters for the three-classification task.

Wang et al. [16] designed a method named COVID-Net, which was among the pioneering

open-source network architectures developed for detecting COVID-19 by using chest X-ray

images. The authors used interpretative methods to understand how COVID-19 was predicted

and to identify the key factors associated with COVID-19 cases. This approach aimed to assist

doctors in performing better screening and review the decision-making process for COVID-

19 in a responsible and transparent manner. COVID-Net has an accuracy of 93.3% in the

three-classification task with approximately 11.75 million parameters.

Ukwandu et al. [17] developed three lightweight architectures by fine-tuning the Mobile-

NetV2 algorithm for diagnosing COVID-19 patients by using CXR images. These models were

introduced for three classification and two classification tasks. The accuracy for the three clas-

sification tasks reached 94.5%, and the total number of parameters was 3.53 million. The

results demonstrated comparable capability to current methods while greatly boosting the effi-

ciency of implementation.

Hussain et al. [18] introduced CoroDet to detect COVID-19 by using CXR and CT images.

This method reached high accuracy in categorizing COVID-19 cases into different severity lev-

els. The authors also presented the largest dataset prepared for evaluating classification algo-

rithms, which was crucial for the development and validation of such models. However

because of the limitations of the low computing power of hardware facilities, the researchers

used a small amount of data to train the model. As a result, the CoroDet obtained an accuracy

of 94.2% for three classification tasks.

Zebin and Rezvy [19] categorized COVID-19 from public datasets by using the transfer

learning algorithm. They applied multiple pre-trained convolutional structures to capture fea-

tures and achieved a classification accuracy of 90% with VGG16, 94.3% with ResNet50, and

96.8% with EfficientNetB0, respectively. EfficientNetB0 achieved the best result with 5.3 mil-

lion parameters.

Sahoo et al. [20] presented a multi-stage computer-aided framework for classifying normal

and COVID-19 cases in chest X-rays (CXRs). The work addresses irrelevant features from

non-lung areas through custom layer fine-tuning. Moreover, it incorporates an infection seg-

mentation module using fuzzy rank ensemble methods, thereby enhancing model interpret-

ability. Experimental results demonstrate the effectiveness of this segmentation-based

classifier, achieving an accuracy of 98.05%, precision of 97.58%, and sensitivity of 97.96%.

Ghassemi et al. [21] proposed a method built upon pre-trained deep neural networks,

which incorporates Cycle-Generative Adversarial Networks (CycleGAN) for effective data

augmentation on CT image datasets, thereby achieving an impressive accuracy rate of 99.60%.

However, it is noteworthy that while this approach delivers remarkable precision, its practical

application inevitably leads to increased costs associated with CT scans, including both diag-

nostic expenses and patient radiation exposure.

In this field of COVID-19 classification, existing CNN methods have obtained some

encouraging achievements. However, there are still some drawbacks. Firstly, many models

face challenges due to limited datasets, which makes adequate training difficult. Secondly, the

heavyweight models require more computing resources and storage space, limiting their appli-

cation in resource-constrained regions. Thirdly, a large number of model parameters can lead

to overfitting, especially with small datasets. Until now, the availability of samples increased

through public repositories like GitHub and Kaggle. Then researchers aim to find a better

equilibrium between model capability and the count of parameters. This paper proposes the

Dense MobileNetV3, an improved version of the lightweight network MobileNetV3. With the
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dense block, this paper achieves a higher accuracy with minimal parameters than existing

models.

3 Approach

This article proposes a novel model called Dense MobileNetV3 based on MobileNetV3-large.

In this improved model, the Dense Block is added behind the SE (Squeeze-and-Excitation)

structure in the second half of the original network structure. This improvement aims at

enhancing the model’s ability to discern subtle differences by reinforcing feature reuse and

multi-level feature integration, thereby increasing classification accuracy. The transition layer

is immediately placed following the Dense Block structure, serving to downsample and

decrease both the size and the number of channels in the feature map. Table 1 describes the

whole framework of the model presented above. In order to optimize the training process, this

study combines cross entropy loss and label smoothing techniques. This combination mini-

mizes the similarity effect between different classes, enhancing the model’s ability to differenti-

ate diverse cases. And the transfer learning strategy is adopted to train the model, making full

use of the weight of the pre-trained MobileNetV3 model, which significantly speeds up the

model convergence and optimizes the initialization performance. Simultaneously, the channel

pruning technique was leveraged during the training process to automatically identify and

prune insignificant channel parameters, thereby realizing a targeted slimming down of the

model. This procedure aims at removing redundant parameters while successfully yielding

lightweight and compact model architectures with comparable or even superior accuracy.

Three categorical tasks are conducted to assess the performance of the model in distinguishing

Table 1. The whole framework of Dense MobileNetV3.

Input Operation exp size #out SE DB TL NL stride

2242 × 3 conv2d - 16 - - - HS 2

1122 × 16 3 × 3, bneck 16 16 - - - ReLU 1

1122 × 16 3 × 3, bneck 64 24 - - - ReLU 2

562 × 24 3 × 3, bneck 72 24 - - - ReLU 1

562 × 24 5 × 5, bneck 72 40 ✓ - - ReLU 2

282 × 40 5 × 5, bneck 120 40 ✓ - - ReLU 1

282 × 40 5 × 5, bneck 120 40 ✓ - - ReLU 1

282 × 40 3 × 3, bneck 240 80 - - - HS 2

142 × 80 3 × 3, bneck 200 80 - - - HS 1

142 × 80 3 × 3, bneck 184 80 - - - HS 1

142 × 80 3 × 3, bneck 184 80 - - - HS 1

142 × 80 3 × 3, bneck 480 112 ✓ • • HS 1

142 × 112 3 × 3, bneck 672 112 ✓ • • HS 1

142 × 112 5 × 5, bneck 672 160 ✓ • • HS 2

72 × 160 5 × 5, bneck 960 160 ✓ • • HS 1

72 × 160 5 × 5, bneck 960 160 ✓ • • HS 1

72 × 160 1 × 1, conv2d - 960 - - - HS 1

72 × 960 7 × 7, pool - - - - - - 1

12 × 960 1 × 1, conv2d, NBN - 1280 - - - HS 1

12 × 1280 1 × 2, conv2d, NBN - 3 - - - - 1

Abbreviations: SE, squeeze-and-excite; DB, dense block; TL: transition layer; NL, nonlinearity; HS, h-swish; NBN, no batch normalization; s, stride. ✓ means there is

this module at this location. • means the newly added module.

https://doi.org/10.1371/journal.pone.0303049.t001

PLOS ONE A lightweight network for diagnosing COVID-19

PLOS ONE | https://doi.org/10.1371/journal.pone.0303049 June 18, 2024 5 / 21

https://doi.org/10.1371/journal.pone.0303049.t001
https://doi.org/10.1371/journal.pone.0303049


COVID-19, normal, and pneumonia CXR images: COVID-19 for COVID-19 patients, normal

for perfectly healthy individuals, and pneumonia for ordinary pneumonia cases without

COVID-19.

3.1 MobileNet

MobileNet [22] is a convolutional neural network architecture specifically suggested to address

the challenges of model size and computational burden. It offers a lightweight solution that is

suitable for resource-constrained devices while still achieving relatively high accuracy levels.

The core structure of MobileNet is the deep separable convolution, which effectively reduces

the parameters of the network. Fig 1 illustrates the process of depthwise separable convolution,

consisting of two units: the depthwise convolution (2a) and the 1x1 pointwise convolution

(2b). The depthwise convolution uses a separate convolutional filter on each input channel to

implement the spatial filtering function. This operation captures spatial information indepen-

dently for every channel. Subsequently, the pointwise convolution employs a 1x1 convolution

to integrate and mix the filtered channels. By utilizing this depthwise separable convolution

structure, MobileNet achieves a balance between the feature extraction capability and the

parameter reduction. It enables the network to effectively capture important features while

greatly decreasing the model parameter count. This reduction in parameters is crucial for effi-

cient computation on devices with limited resources.

MobileNetV2 introduces the inverted residual block and the linear bottleneck to reduce the

computational effort. The bottleneck layer of the network utilizes extended 1x1 convolutions

to decrease the dimensionality of feature maps. The inverted residual block enhances the non-

linear transformation capability of the model and improves its representation ability. This

allows for more effective feature extraction and representation within the network [23]. Mobi-

leNetV3 [24] incorporates the Squeeze and Excitation (SE) module, as shown in Fig 2. The SE

module is based on channel feature attention and allows for the adaptive selection of

Fig 1. Depthwise separable convolution. (a) Depthwise convolution. (b) Pointwise convolution.

https://doi.org/10.1371/journal.pone.0303049.g001
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significant characteristics by modifying the weights of diverse feature maps in the channel

dimension. This mechanism enhances the network’s capacity to focus on important features

and improves its performance. MobileNetV3 offers two models of different complexity archi-

tectures: MobileNetV3-Small and MobileNetV3-Large. The latter achieves higher accuracy on

classification tasks and reduces latency compared to MobileNetV2. Therefore, in this study,

the MobileNetV3-Large architecture is employed due to its superior classification

performance.

3.2 Dense block

This paper utilizes the DenseNet to extract spatial characteristics of different dimensions.

What is noteworthy is that the densely connected framework further interconnects character-

istics of diverse dimensions, which performs better compared to traditional Convolutional

Neural Networks in expressing the intricate linguistic relationships among varying illnesses

[25].

Compared with shallow networks, the DenseNet has the ability to learn distinguishing and

robust features to improve performance. It also addresses the issue of vanishing gradients by

incorporating the feature reusability within the network. This is achieved by establishing direct

connections from each layer to all following layers, which allows one to learn the spatial fea-

tures. The dense block layer aims to keep a seamless information stream among network lay-

ers. Meanwhile the ath layer Pi obtains the feature maps from every previous layers as input,

and subsequently passes the corresponding feature map to every following layer:

Pi ¼ Qi;Rð½x0; x1; . . . ; xi� 1Þ: ð1Þ

And Qi,R(�) represent a composite of functions that includes BN layer, ReLU, pooling, con-

volution layer and [x0, x1, . . ., xi−1] indicates the composite feature map of layer [0, . . ., i − 1].

R represents the increasing rate, corresponds to the output feature maps generated by each

composite function. In the Dense Block (I, R), which consists of I layer with a growth rate of R,

different layers of composite functions and feature map concatenations are cascaded. Eq 1

shows that as the count of layers rises within the Dense Block, the concatenation operation

Fig 2. Squeeze and Excitation (SE) module. After excitation, different colors mean channels get different weights.

https://doi.org/10.1371/journal.pone.0303049.g002
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leads to a growth in the input size of the following layers. To facilitate downsampling, a transi-

tion layer is introduced after every Dense Block. This transition layer typically consists of a

batch normalization layer, a 1 × 1 convolutional layer, and a 2 × 2 average pooling layer. In the

specific case of DenseNet121, which is used to extract complex spatial features, it comprises 4

dense blocks with transition layers incorporated for downsampling. This architecture achieves

the efficient feature transfer and recycle and reduces the number of parameters and enhances

computational efficiency.

A densely connected pattern is utilized by this structure, which requires fewer parameters

compared to a traditional CNN. By doing this, the network effectively reduces the need for

learning unnecessary details and minimizes the number of feature maps required by each net-

work layer. As a result, parameter efficiency is greatly enhanced. The primary advantage of

these small links among layers, which located near the inputs and outputs, is to facilitate effi-

cient backward propagation of previous features for reevaluating of feature representations.

Therefore, this network structure enables the extraction of more significant characteristics.

Moreover, the characteristics captured from every layer can be further melded and processed

to acquire a more comprehensive descriptor. This fused descriptor can then be utilized in

diverse applications to obtain improved consequences. This method establishes connections

between multiple feature maps and does not incorporate explicit feature reconsideration

between each layer. In contrast to integrating all feature maps, as depicted Fig 3, this research

passes the output of the last layer as input to the next layer. In traditional networks, the con-

nections are typically based on the combination of I(I + 1)/2 connections, rather than just I
connections. Building upon the preceding layers, the feature maps of the lth layer can be com-

puted, which includes [x0, x1, . . ., xi−1].

In the improved method, this study simply combines the transition layer and the dense

block with the channel attention mechanism. This enables us to fully harness the benefits of

Fig 3. Improved bottleneck block. The dark green area on the right is the detailed process of Dense Block.

https://doi.org/10.1371/journal.pone.0303049.g003
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the channel attention unit without significantly increasing the number of parameters. More-

over, the channel attention network is designed to be a lightweight and proficient structure,

ensuring that it does not result in overfitting problems. The transition layer consists of a 1 × 1

convolutional layer and an average pooling operation with a stride of 2. This arrangement con-

tributes to the proportional reduction in feature map size.

3.3 Transfer learning

In transfer learning, a model can leverage features, weights, or knowledge gained from one

task to expedite training and enhance performance on another task. This approach is particu-

larly effective for tasks with limited data or high similarity, as it maximizes the use of data from

the source task. Transfer learning is widely applied in computer vision and deep learning. This

approach is primarily suitable for tasks that lack sufficient samples to train from scratch, espe-

cially for the classification of medical images for uncommon or emerging diseases. For

instance, researchers can use a pre-trained image classification model on the ImageNet dataset

to initiate the tasks with minimal data, such as COVID-19 detection. Through transfer learn-

ing, the model benefits from well-established initial weights, resulting in swift convergence

and superior outcomes on new tasks [26].

In our case, due to the scarcity of COVID-19 images, the proposed method employs pre-

trained weights from the ImageNet dataset and train the model on our datasets to achieve the

target task. Furthermore, our subsequent fine-tuning aims to counteract performance decline

caused by pruning. The objective of fine-tuning is to optimize model performance while mini-

mizing model size.

3.4 Pruning

The principal idea of the pruning algorithm is to minimize the amount of computation and

parameters. Meanwhile, the performance of the network is not affected as far as possible,

which can be achieved by introducing sparsity during the training stage. Sparsity refers to the

existence of a large number of zero or near-zero parameters or connections in the model.

Pruning involves setting some parameters or connections to zero to achieve the sparsity. The

sparsity can be achieved at diverse levels, including the weight standard, kernel standard, chan-

nel standard, or layer standard. The concept of channel standard sparsity strikes an optimal

equilibrium between configurability and facile deployment [27]. See Fig 4.

To attain the channel-level sparsity through pruning, it is imperative to introduce a scaling

factor for each channel, which will subsequently be applied to the outcomes derived from indi-

vidual channels. Consequently, this model performs pruning by trimming the input and out-

put correlations for each channel. By adjusting these scaling factors, this model can control the

importance of each channel. This design allows us to jointly optimize the network’s weights

Fig 4. Pruning procedure. (a)Initial network. (b) Compact network. The compact network after pruning is fine-tuned

to reach similar (or even better) accuracy than when trained normally.

https://doi.org/10.1371/journal.pone.0303049.g004
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and the introduced scaling factors during the training process, thereby sparsity at the channel

level.

In the actual implementation, this research performs joint training of the network’s weights

and these scaling factors. This implies that our optimization objective encompasses both the

predictive performance of the network and the channel sparsity. In order to promote the chan-

nel sparsity, this study applies the sparse regularization to these scaling factors. The sparse reg-

ularization effectively constrains the values of the scaling factors, causing some of them to

method zero and facilitating the pruning of unimportant channels. This pruning technique

enables us to obtain a more lightweight network structure and achieve higher computational

efficiency during the inference phase.

Through this implementation approach, this paper can simultaneously optimize the net-

work’s weights and the sparsity of channels during the training process, making the pruning

procedure more flexible and effective. The pruned network benefits from having reduced

redundant connections and parameters, leading to a more compact and efficient model. More-

over, these pruning strategies maintain the predictive performance of the network on tasks,

ensuring the availability and accuracy of the pruned model. Overall, by introducing channel

scaling factors and applying sparse regularization, this study can achieve effective optimization

of pruning for deep neural networks, offering a better solution for applications deployed on

resource-constrained devices.

3.5 Loss function

In addition, this study integrates label smoothing into the cross-entropy loss to alleviate the

impact of similarity between different classes. The ReLU activation function is introduced in

the final layer to compute probabilities, and the loss value is determined by employing the

maximal likelihood input to the cross-entropy function. Label smoothing [28] is applied to

adjust the initial cross-entropy. Using backpropagation, the prediction cross-entropy map

between model outcomes and targets is calculated. As shown in Eq 2.

Hðx; qÞ ¼
PI

i¼1
� xilogðqiÞ: ð2Þ

The label of xi is assigned a value of 1, representing the true class, while the remaining clas-

ses are assigned a value of 0. The q means the prediction result and qi represents the value of

the i prediction outcome. Specifically, when employing label smoothing, the loss function pri-

marily focuses on the loss associated with the correct label position. This approach disregards

the losses related to incorrect label positions, leading the model to excessively prioritize

improving the possibility of correctly forecasting the label rather than minimizing the likeli-

hood of falsely predicting the label. In this training process, this paper has incorporated label

smoothing to account for both the losses associated with incorrect and correct label positions.

This enables a more comprehensive assessment of the losses in both scenarios, for instance:

x0 ¼ ð1 � oÞx þ odðIÞ: ð3Þ

In Eq 3, the variable x0, denotes the modified sample obtained through the process of label

smoothing. For class I, the values of d(I) are drawn from a uniform distribution, where ω rep-

resents the smoothing factor. Consequently, the cross-entropy loss allows for simultaneous

consideration of both the loss for the correct class and the losses associated with the other

classes.

Furthermore, to minimize the potential impact of data imbalance on model performance,

during the training phase, this study employs the class weight [29] technique to address the

imbalance in the training data, as shown in Table 2. This technique employs higher weights for
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the minority classes to compensate for their relatively insufficient representation in the train-

ing data. Consequently, the loss computation turns into a weighted mean, where every

instance is assigned a weight matching its respective class. Eq 4 was utilized to calculate the

weight of each class.

wi ¼
S

c� xi
: ð4Þ

where wi means the weight of category i, S means the sum of training instances, c means the

count of categories, and xi means the count of instances.

4 Experiments on COVID-19 detection dataset

4.1 Data description

To conduct the experiments, this study utilizes an overt and available dataset, called COVID-

19 Radiography Database. (https://www.kaggle.com/datasets/tawsifurrahman/

covid19-radiography-database/discussion/223744). The development of this dataset is super-

vised by medical professionals, with the aim of providing a comprehensive and reliable

resource for research and exploration in this domain. This dataset comprises CXR images of

subjects classified into three classes: COVID-19, Viral Pneumonia, and Normal. In this study,

these classes consisted of 3,616, 1,345, and 10,192 instances, respectively. The X-ray images are

captured from various views and positions, as depicted in Fig 5. Therefore this paper needs to

Table 2. Specific division of the database.

Category Training Validation Testing Sum

COVID-19 2315 578 723 3616

Normal 6524 1630 2038 10192

Pneumonia 861 215 269 1345

Sum 9700 2423 3030 -

https://doi.org/10.1371/journal.pone.0303049.t002

Fig 5. Some cases of CXR from the COVID-19 Radiography Database. (A) COVID-19 sample, (B) Pneumonia

sample, and (C) Normal sample.

https://doi.org/10.1371/journal.pone.0303049.g005

PLOS ONE A lightweight network for diagnosing COVID-19

PLOS ONE | https://doi.org/10.1371/journal.pone.0303049 June 18, 2024 11 / 21

https://www.kaggle.com/datasets/tawsifurrahman/covid19-radiography-database/discussion/223744
https://www.kaggle.com/datasets/tawsifurrahman/covid19-radiography-database/discussion/223744
https://doi.org/10.1371/journal.pone.0303049.t002
https://doi.org/10.1371/journal.pone.0303049.g005
https://doi.org/10.1371/journal.pone.0303049


scale to a standardized size of 224 × 224 pixels so that they can be used in the MobileNetV3

channel and subsequently split into three different sets: training, validation, and testing, as

illustrated in Table 2. The partition approach involved initially dividing the dataset into train-

ing and testing sets with an 80% to 20% ratio, respectively. Following this, the training dataset

is further separated into training and validation sets employing the equal aforementioned

proportion.

4.2 Training strategy

In order to evaluate the improved model, this paper begins by normalizing the images and sub-

sequently divides them into three parts: training, validation, and testing, as mentioned previ-

ously. Then, the experiment trains the presented model using the training set and determines

the optimal hyper-parameters while also making use of the validation set simultaneously. Ulti-

mately, the researchers assess the capability of the improved model on the testing set employ-

ing a range of performance metrics explained in the subsequent section. Such as accuracy and

loss with epoch, confusion matrix, and so on.

The specific network parameters are set as follows: this paper adjusts the size of all chest X-

ray images to 224 × 224 × 3 as input. This method employs transfer learning to train the

model, aiming to expedite the training process and achieve faster convergence of the model.

This experiment sets the batch size to 32, and after every epoch, the accuracy is computed for

validation. In addition, the model adopts the class weight approach to address the matter of

data imbalance in the training set to reduce the possible impact on model performance.

According to the results of extensive experiments conducted in this study, the final epoch is set

to 80. This study utilizes the Adam optimizer and sets the minimum learning rate to 0.001. An

early stop strategy [30] is used to avoid overfitting. When it identifies that there is no variation

in the validation loss value, the technology stops the training process, reducing the possibility

of the model overfitting. All hyper-parameters settings employed during the training process

are show in Table 3.

5 Results and discussion

In this chapter, this paper conducts a thorough assessment of the improved lightweight model

Dense MobileNetV3 for COVID-19 diagnosis, utilizing broadly accepted performance met-

rics. The training and evaluation are conducted using the publicly available COVID-19 Radi-

ography Database. The outcomes of multiple experiments are elaborated upon below.

5.1 Accuracy and loss with epoch

In the training phase of a classification method, it is common to monitor and track accuracy

and loss metrics over consecutive epochs to assess overfitting and observe the progress of

Table 3. Hyper-parameter used during training.

Parameter Value

Learn rate 0.001

Optimizer Adam

Batch size 32

Epoches 80

Class_weight {0:1.3967, 1:0.4956, 2:3.7557}

0: means the COVID-19 case; 1: means the normal case; 2: means the pneumonia case.

https://doi.org/10.1371/journal.pone.0303049.t003
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forecasts. In this experiments, we observed that as the model’s loss value decreases during the

training process, it indicates a better fit to the training data. This suggests that the model can

more accurately capture patterns and relationships within the training data. Simultaneously,

the high accuracy values indicating superior performance of the model on test data and its abil-

ity to generalize to unseen samples. The outcomes of these indicators can be observed in Fig 6.

The tendencies depicted in the figure demonstrate that with the count of epochs growing, the

accuracy and loss of the validation set at first exhibit noticeable undulations and slowly rise,

resulting in higher accuracy and lower loss with minor undulations. Moreover, the tendencies

reveal that the validation accuracy tends to closely align with the training accuracy across

many epochs, suggesting that this method does not exhibit significant indications of underfit-

ting or overfitting.

5.2 Confusion matrix evaluation

The confusion matrix is a concise representation of the prediction outcomes generated by a

classifier approach, offering insights into areas where the model tends to make mistakes, i.e.,

mislabeling certain samples and incorrect class labels. As depicted in Fig 7, which is the result

of the confusion matrices acquired from the improved model of the 3-class categorization, the

model misclassified 13 COVID-19 cases from the testing sets, assigning them to the Normal,

but Pneumonia is only 3. The mistake rates of these COVID-19 cases are 1.79% and 0.41%. It

is obvious that the mislabeling of samples in the Normal and COVID-19 classes is more com-

mon compared with the Pneumonia category. For example, it is evident that only 0% and

2.60% of pneumonia cases were mislabeled as COVID-19 and Normal, respectively. However,

despite these difficulties, the entirety performance is still good. Such as, it is evident that just

0% and 2.60% of Pneumonia cases were mislabeled as COVID-19 and Normal, severally. Simi-

larly, 0.34% and 0.44% of Normal cases were labeled falsely as Pneumonia and COVID-19, sev-

erally. These outcomes indicate that the improved 3-class approach exhibits a relatively low

error rate in every mentioned class, highlighting its impressive capability to acquire distinctive

features. This is mainly because it can capture spatial features of varying scales, thereby aiding

in the differentiation of highly similar features.

5.3 Ablation experiments

For this subsection, this study implements ablation experiments on the COVID-19 Radiogra-

phy Database to assess the performance of the main elements. This article focuses on the four

indicators including the accuracy, sensitivity, specificity, and precision for the COVID-19 pos-

itive category in this database. For analyzing the contributions of the improved Dense Mobile-

NetV3 approach, Table 4 presents a quantitative comparison between the baseline model

Fig 6. The fluctuation of accuracy and loss over epochs during training and validation.

https://doi.org/10.1371/journal.pone.0303049.g006
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performance and the improved method. The first three rows of the table show the results of

the Dense MobileNetV3 model under different conditions: without both dense block and label

smoothing, without the dense block only, and label smoothing only, separately. The fourth

row presents the results of our improved method, highlighting the effectiveness of the com-

bined functionality of these methods. Notably, the network achieves the least favorable results

when both dense block and label smoothing are absent. Conversely, when only the dense

block is excluded, the network still produces competitive results. Additionally, the inclusion of

dense block improves the accuracy of the improved Dense MobileNetV3 to 1.22%. The pri-

mary reason for this enhancement is the dense block, effectively extracting spatial features at

different levels and providing a more comprehensive and accurate representation of the struc-

tures within the image. This allows for better description and recognition of the image’s struc-

tural elements.

It is evident that the individual modules play a crucial role in boosting the overall perfor-

mance. As seen in Table 4, the improved Dense MobileNetV3 outperforms the other ablation

models, indicating that both components contribute to the enhancement and effectively work

Fig 7. Confusion matrices distribution.

https://doi.org/10.1371/journal.pone.0303049.g007

Table 4. Ablation study metrics.

Accuracy(%) Sensitivity(%) Specificity(%) Precision(%)

Without Dense Block and Label Smoothing 94.07 92.23 93.68 92.25

Without Dense Block 95.64 91.94 98.18 92.62

Without Label Smoothing 96.86 94.74 98.77 95.07

Dense MobileNetV3 98.71 97.78 99.60 98.74

https://doi.org/10.1371/journal.pone.0303049.t004
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well together within the network structure. The strong feature extraction capability of our

improved network is further augmented by the incorporation of label smoothing, resulting in

an additional 1.85% increase in classification accuracy.

5.4 Pruned results analysis

As shown in Table 5, adding the dense block significantly improves the accuracy. However, it

also leads to an increase in parameter count. To address this problem, the approach employs

the pruning algorithm to reduce the parameter count and minimize memory consumption.

This paper explores various pruning algorithms, among which weight pruning [31] can be per-

formed offline after training, without increasing training time. However, the sparsity achieved

through weight pruning is not as pronounced as with other methods, and it requires the use of

dedicated sparse matrix formats during storage, thereby increasing processing costs. Neuron

pruning [32], achieved by eliminating redundant neurons, contributes to a reduction in model

size. However, it demands more intricate pruning strategies; otherwise, there is a risk of losing

crucial information. Filter pruning [33] involves a relatively complex training and pruning

process, requiring careful design of pruning strategies to potentially avoid performance degra-

dation. Group-wise pruning [34], effective in reducing model size in some network architec-

tures, entails a relatively complex pruning process and is not universally applicable to all

network structures. Channel pruning imposes L1 regularization on the scaling factors of batch

normalization layers, making it easy to implement without any changes to the network struc-

ture. Based on a comprehensive analysis of experimental results, Table 5 channel pruning

demonstrates the highest accuracy performance after optimization and features a relatively

simple processing flow, which is just in line perfectly with the requirements of our approach.

Consequently, we have decided to adopt this method. In this paper, channel sparsity is explic-

itly incorporated into the optimization objective during the training process, rendering the

channel pruning process smoother and minimizing accuracy loss.

After the channel pruning method was determined, several pruning ratios were tested to

achieve the best results. This method determines that setting the channel pruning ratio to 40%.

The detailed results are shown in Table 6. Through pruning, the model parameters are signifi-

cantly reduced from 9.6 million to 5.9 million, successfully reducing the storage space and

computational complexity, thus achieving a more lightweight model. Remarkably, despite the

Table 5. Comparison of the effect after using various pruning methods.

Pruning Methods Parameters (Million) Accuracy (%)

Weights 6.82 98.66

Neuron 5.79 97.85

Filter 6.15 98.54

Group-wise 6.37 98.12

Channel 5.94 98.71

https://doi.org/10.1371/journal.pone.0303049.t005

Table 6. Comparison of parameters before and after pruning.

Model Accuracy Parameter(Million) Pruned

MobileNetV3-Large 94.07 4205875 -

Dense MobileNetV3 98.62 9671819 -

40%Pruned 98.71 5948169 38.5%

https://doi.org/10.1371/journal.pone.0303049.t006
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reduction in parameters, the model’s accuracy experienced a marginal improvement from

98.62% to 98.71%. This indicates that pruning does not significantly impact the performance

of the model negatively and even has a positive effect to some extent.

5.5 Robust analysis

To further validate the performance and robustness of our proposed model, this model con-

ducted a five-fold cross-validation experiment on an additional dataset. (https://www.kaggle.

com/datasets/subhankarsen/novel-covid19-chestxray-repository?rvi=1) This supplementary

experiment aimed to assess the performance of model in diverse data contexts. In the cross-

validation experiment, this study randomly selected 500 images from each class of the dataset,

creating five mutually exclusive subsets. In each iteration, this experiment used four subsets

for training and reserved one subset for testing, as shown in Table 7 for specific data

distribution.

This process was repeated five times to ensure that each subset was utilized as a testing set

exactly once. This research computed accuracy and F1 scores for each subset to evaluate the

performance of method on this distinct dataset. As depicted in Table 8, the results demonstrate

that our model excelled on this additional dataset, further confirming its robustness and gener-

alizability. These findings underscore the applicability of our approach in diverse data con-

texts, instilling greater confidence in its practical deployment.

5.6 Contrasting against the previous methods

This section shows a comparative evaluation between the improved model and recently pub-

lished COVID-19 detection models in the literature to assess the performance of our model.

The comparative results are presented in Table 9. Due to the different data sets used by each

method, it is unfair to directly compare the performance of these models. As time went on and

more data samples became available, this problem has been common in multiple former

papers. When the COVID-19 pandemic first emerged, obtaining a substantial number of data

samples presented challenges. However, as time progressed, the availability of examples

increased, and access to public repositories such as GitHub and Kaggle made it easier to

acquire data. These developments greatly facilitated the pace of model improvement.

Table 7. Dataset of five-fold cross-validation.

Class Total number Select Number in this paper train test

COVID-19 752 500 400 100

Normal 1639 500 400 100

Pneumonia 1584 500 400 100

Total 3975 1500 1200 300

https://doi.org/10.1371/journal.pone.0303049.t007

Table 8. Results of five-fold cross-validation.

Data Accuracy(%) F1-score(%)

Fold 1 96.09 96.15

Fold 2 97.93 97.67

Fold 3 95.65 95.58

Fold 4 96.37 96.15

Fold 5 95.22 95.29

https://doi.org/10.1371/journal.pone.0303049.t008
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While acknowledging the variability in dataset sizes, it is obvious that the improved models

demonstrate superior performance compared to most existing models in terms of accuracy, as

indicated by the results shown in Table 9. The three-classification model, in particular, exhibits

significant improvements in accuracy rates when compared to various models. It shows an

improvement of 5.23%, 4.21%, 3.71%, 1.71%, 5.41%, 4.21%, and 1.91% when compared to

VGG19 [9], VGG16 [35], CoroNet [36], Inception-V3 [14], COVID-Net [15], MobileNet-V2

[16], and EfficientNetB0 [18], respectively.

Furthermore, the authors can observe from Table 9 that the parameter counts of other

models mentioned are between two and twenty-three times higher than that of this improved

model. This is a remarkable achievement because the model can acquire a relatively high accu-

racy with fewer computing and memory resources. This is essential for cost-effective model

development. While there are two models with fewer parameters than ours: the EfficientNetB0

had only 0.64 million fewer parameters, but the accuracy decreased by 1.91%. The other is that

the improved MobileNetV2 has 2.41 million fewer parameters, but the accuracy loss is as high

as 4.21%. Seeking to reduce the number of parameters can lead to a significant loss of precision

due to the limitations of lightweight structures in representing complex features. However the

proposed model in this paper leverages the superior performance of the MobileNetV3 struc-

ture and enhances its capability to capture spatial features at different levels by incorporating

the dense block and transition layer. Additionally, the use of the cross-entropy loss function

improves the model’s accuracy. Finally, the pruning algorithm further reduces unnecessary

parameters on top of the lightweight model structure, achieving a high accuracy of 98.71%

with 5.94 million parameters. This demonstrates a successful balance between precision and

parameter count, effectively achieving the desired trade-off. This indicates that the improved

approach achieves improved performance while keeping complexity and parameter usage at a

reasonable level, which is essential for building economically efficient models. In lightweight

networks, balancing performance optimization with the reduction of model parameters is

crucial.

This article further conducts a comparison with existing models by using the F1-score met-

ric, as shown in Fig 8. The comparison reveals a significant improvement in performance for

the proposed model when compared to the existing models, as clearly demonstrated in the

figure.

In the field of medical image classification, deep learning has made significant advance-

ments. However, its opacity and inherent lack of interpretability have long been prominent

concerns. In order to enhance the interpretability of model, Selvaraju et al. [37] employed the

analysis technique of Gradient-weighted Class Activation Mapping (Grad-CAM). Grad-CAM

Table 9. Evaluate accuracy and parameters by comparing the relevant model.

Approach Data size Accuracy (%) Parameters (Million)

COVID-19 Normal Pneumonia

VGG19 [9] 224 504 714 93.48 143.67

VGG16 [28] 445 2880 5179 94.50 138.00

CoroNet [29] 284 310 657 95.00 33.97

InceptionV3 [14] 361 365 362 97.00 24.00

COVID-Net [15] 358 8066 5538 93.30 11.75

MobileNetV2 [16] 1200 1341 1345 94.50 3.53

EfficientNetB0 [17] 202 300 300 96.80 5.30

Dense MobileNetV3 3616 10192 1345 98.71 5.94

https://doi.org/10.1371/journal.pone.0303049.t009
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is a gradient-based interpretability tool that aids in understanding the pivotal decisions made

by deep learning models in image classification. Grad-CAM highlights regions in images that

are directly relevant to the model’s classification decisions, providing a visual means to explain

the model’s outputs. This not only assists medical professionals in comprehending the model’s

decision-making process but also enhances the model’s credibility and utility. In this study,

traditional X-ray images serve as inputs, and the proposed model functions as the detection

strategy. Following the label predictions by the proposed model, Grad-CAM is promptly

applied to the final convolutional layer. Fig 9 illustrates the visualization of heatmaps on X-ray

images using the proposed approach.

Upon analyzing this data, the researchers are prompted to consider model optimization in

greater detail. Scholars should understand that reducing the number of parameters can

improve computational efficiency and reduce storage overhead, which is crucial for deploying

models on resource-limited devices. However, academics must also keep the trade-off between

Fig 8. F1-score comparison.

https://doi.org/10.1371/journal.pone.0303049.g008

Fig 9. Visualization of chest X-ray images using Grad-CAM on Dense MobileNetV3 model.

https://doi.org/10.1371/journal.pone.0303049.g009
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compressing parameters and maintaining model performance. In many real-world applica-

tions, model accuracy is of paramount importance, particularly in fields like medical diagnosis,

in which even a minor reduction in precision can lead to severe consequences. Clearly, the

proposed model achieves a better balance between high accuracy and low parameter count.

In summary, the comparisons between the improved model and the existing models dem-

onstrate the competitiveness of the improved model. This holds particular significance for

developing countries or rural areas with limited access to medical resources. In such regions,

having an abundance of skilled radiologists and affordable diagnostic equipment is often a

privilege. Adopting an efficient and lightweight improved model can offer valuable solutions

and benefits, reducing resource needs while enhancing the accuracy and efficiency of medical

services. Therefore, encouraging the adoption of the improved model in these regions is of

great importance.

6 Conclusion

This research proposes a lightweight convolutional neural network, Dense MobileNetV3 for

for efficient COVID-19 patient diagnosis using chest X-ray images. The improved model is

designed as 3-class classifiers, capable of distinguishing between COVID-19, Pneumonia, and

Normal individuals. Experimental results obtained on a substantial illustrate the excellent

capability of the improved method. The model achieves an impressive overall accuracy rate of

98.71% across this classification task, indicating the effectiveness in accurately identifying

COVID-19 cases. Some models have fewer parameters than ours, but this model obtains

higher accuracy. For example, EfficientNetB0 [18] achieves an accuracy of 96.8% with 5.3 mil-

lion model parameters. The parameter count is 0.64 million lower than Dense MobileNetV3,

but our model exhibits a 1.91% higher accuracy compared to the reference model. We contend

that the superior accuracy attained by the Dense MobileNetV3 justifies the associated compu-

tational cost. This approach achieves high accuracy while requiring a much lower count of

parameters than many heavyweight models. While maintaining a low parameter count of 5.94

million, Dense MobileNetV3 achieves a high accuracy of 98.71%. This parameter count is sig-

nificantly lower than that of VGG19 [9] with 143.67 million parameters, CoroNet [28] with

33.97 million parameters, and COVID-Net [15] with 11.75 million parameters. The promising

results obtained in this study �indicate the potential of the improved lightweight network for

the rapid diagnosis of COVID-19. Moreover, it is well-suited for deployment on equipment

with low-end configuration and power constraints, which is particularly beneficial for areas

with limited medical resources and developing countries. It has the potential to facilitate early

detection and prompt medical interventions, thereby contributing to efforts to control the

spread of the disease.

While significant improvements have been achieved through the enhancements made to

the methodology in this study, it is crucial to acknowledge certain limitations that have not

been addressed. Only one dataset was used in the experiment, and its size, source, quality, and

representativeness may be limited, leading to some potential biases. Furthermore, the valida-

tion of our method was limited to a specific disease and imaging modality application scenario,

rendering it less universally applicable. These limitations will be the primary focus of our sub-

sequent research endeavors.
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