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Abstract

Jackson Pollock’s abstract poured paintings are celebrated for their striking aesthetic quali-
ties. They are also among the most financially valued and imitated artworks, making them
vulnerable to high-profile controversies involving Pollock-like paintings of unknown origin.
Given the increased employment of artificial intelligence applications across society, we
investigate whether established machine learning techniques can be adopted by the art
world to help detect imitation Pollocks. The low number of images compared to typical artifi-
cial intelligence projects presents a potential limitation for art-related applications. To
address this limitation, we develop a machine learning strategy involving a novel image
ingestion method which decomposes the images into sets of multi-scaled tiles. Leveraging
the power of transfer learning, this approach distinguishes between authentic and imitation
poured artworks with an accuracy of 98.9%. The machine also uses the multi-scaled tiles to
generate novel visual aids and interpretational parameters which together facilitate compari-
sons between the machine’s results and traditional investigations of Pollock’s artistic style.

Introduction

In 1952, the Abstract Expressionist Jackson Pollock poured fluid paint onto a vast canvas
rolled out across his studio floor and created his masterpiece, Blue Poles: Number 11, 1952 [1].
The painting represents the culmination of 10 years of developing his ‘pouring’ technique and
the ‘all-over’ style that it generated. In contrast to conventional brush contact with the canvas
surface, the constant stream of paint produced continuous trajectories that wove together into
a uniform pattern that lacked conventional compositional values—no center of focus, no up or
down, and no left or right.

As artistic recognition for his revolutionary style grew and the commercial value of his
work soared, judgments of authenticity became increasingly crucial. A number of damaging
controversies have plagued the Pollock world, fueled by painting prices that exceed $100M
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Competing interests: No authors have competing  and by the growing number of fakes appearing on the art market [2,3]. If a poured painting of
interests. unknown origin is found today, how could we determine with reliability whether it is a master-
piece or a fake? In addition to the staggering financial consequences, rigorous methods are
needed to protect the legacies of our most treasured artists.

Previous Pollock controversies were escalated by incorrect attributions made by well-
respected Pollock experts, highlighting the challenge that the visual complexity of Pollock’s
images presents for the human eye. This challenge forms the central scientific question of our
study. If we replace the human observer with an artificial intelligence (AI) machine, what level
of machine accuracy (MA) could be achieved when classifying the complexity of poured art-
works into Pollock and non-Pollock categories? A MA close to 100% would suggest that artifi-
cial intelligence can distinguish Pollock’s artistic signatures more readily than some of the best
Pollock scholars. Although the capability of AI machines to out-perform humans is not
unusual—indeed, this ability fuels many current applications across society—it presents a
unique dilemma for the art world. Pollock’s work was created for appreciation by humans and
not machines. Perhaps the machine’s superior ability to distinguish between masterpieces and
imitations represents AI’s version of art appreciation?

A high MA would also resolve a debate that has troubled the Pollock world from the
moment he started to create his unusual patterns. Although many art theory essays have cele-
brated Pollock’s unique talent, the fact that Pollock scholars can sometimes fail to spot fakes
fuels the public perception that his work is no more than an inevitable consequence of pouring
paint—and that a lay person could readily match Pollock’s artistic achievements. Although the
AI'machine can’t judge aesthetic worth, a high MA value would provide objective and quanti-
tative proof that Pollock’s work is a unique form of artistic expression.

In recent years, a variety of Al techniques have been applied to a growing number of other
artists. An obvious approach for paintings featuring faces is to use AI-powered facial recogni-
tion methods. Focusing on the Renaissance master Raphael, this strategy identified a 97 per-
cent similarity between the face of the Virgin Mary depicted in his confirmed painting Sistine
Madonna and the face in the disputed work de Brecy Tondo [4]. In contrast to training on the
‘form’ of the painted images (e.g. faces, figures,etc), an alternative strategy is to focus on the
tell-tale painting techniques used by artists to generate the images. An example study exam-
ined more than 80,000 individual brushstrokes by Picasso, Matisse, and Schiele and classified
them with an accuracy of up to 90% [5]. Similarly, a team known as Art Recognition focused
on artistic techniques such as brushwork and use of color, along with object placement within
the canvas and other compositional characteristics. Their recent projects include confirming
the authenticity of a van Gogh self-portrait and determining that an alleged painting by Max
Perchstien is in fact by the infamous forger Wolfgang Beltrach [6]. Devoid of the illustrative
content of traditional art and constructed from splatters rather than careful brushwork, what
would be the optimal AI approach for Pollock’s work?

The authors formed an art-science collaboration called Art Intelligence to quantify MA per-
formance as a way of gauging AI’s potential to ‘understand’ Pollock’s work. To promote the
acceptance of this AI approach within the art world, we focus on well-established rather than
novel machine learning models. Models will be more influential when resolving future Pollock
controversies if they have a robust track record for addressing crucial applications across soci-
ety. For the models considered in our study, these applications include analyzing faces at air-
ports to maintain our national security and scanning medical images to ensure our health
[7.8].

Accordingly, we train our machine to learn the visual characteristics of poured artworks
using an artificial neural network called ResNet [9] and by exploiting an approach called
Transfer Learning. ResNet employs ‘deep’ networks consisting of many layers and nodes

PLOS ONE | https://doi.org/10.1371/journal.pone.0302962 June 17, 2024 2/42


https://doi.org/10.1371/journal.pone.0302962

PLOS ONE

Using machine learning to distinguish between authentic and imitation Jackson Pollock poured paintings

(’neurons’) that process information hierarchically. By employing ResNet’s many hierarchical
layers, the machine can detect a vast array of everyday visual signatures. We complement this
machine architecture by reserving the last few layers of our neural network for discriminating
between artworks by Pollock and those not by Pollock. We do this by showing the network the
largest ever assembled digital collection of Pollock artworks, imitations of Pollock artworks,
and a variety of other abstract artworks. We compare the performance of various versions of
Resnet to other established machine models (including AlexNet, DenseNet, and SqueezeNet)
and more recently developed Vision Transformers (including Pyramid Vision Transformer,
Swin Transformer, and Multi-Axis Vision Transformer). Ultimately, we focus on Resnet50
based on its superior MA and proven track record across a variety of applications [7,9,10].

Whereas the chosen model architecture is deliberately traditional, the novel aspects of our
study focus on the input (image ingestion) and output (interpretational parameters) stages of
the process. In terms of input into the machine, we emphasize that although our collection of
588 works is comprehensive it is nevertheless significantly smaller than data sets typically used
for machine learning. For example, cosmologists apply AI to thousands of images of the night
sky [11]. However, these same limits apply to human inspection of Pollock’s work. We there-
fore anticipate that AI will provide a valuable step forward in bringing state-of-the-art scien-
tific techniques for spotting and quantifying patterns in complex data to the art world. The
machine’s ability to perform these tasks can be expected to improve substantially if novel strat-
egies can lift the restrictions presented by the limited image sets. How can the data input be
boosted in order to achieve a high MA for Pollock’s work? This forms the second scientific
question of our study.

To accommodate the small number of images, our machine learns about the artworks by
dividing each work into an array of tiles. This image ingestion method exploits 2 key character-
istics of Pollock’s all-over style. Firstly, because of the spatial uniformity of the all-over style,
tiles at different locations are expected to have similar visual features to each other. Secondly,
previous investigations examined the occurrence of fractal patterns [12] in the all-over style
[13-34]. We therefore use many tile sizes at each location. Because of the scale invariance of
fractals, these multi-scaled tiles are expected to share visual features. In effect, each of Pollock’s
artworks features multiple ‘sub-Pollocks’ found at different locations and at different size
scales—each displaying Pollock’s tell-tale signature. Our fractal tiling approach therefore aligns
with the fractal character of the images and by doing so boosts the amount of art images that
we can use during the training of our machine. In total, a data set of 97,275 Pollock tiles and
150,242 non-Pollock tiles is employed in our process.

By integrating this novel ingestion method into our current model, our machine distin-
guishes between Pollock poured paintings and artworks created by other artists with a MA of
98.9%. When the machine is presented with an artwork of unknown origin, it generates a Pol-
lock Matching Factor (PMF) to quantify the degree to which the artwork captures the visual
appearance of Pollock’s work using a scale from 0 to 1. Using our current model, we find that
artworks with PMF values that reach or exceed the PMF ‘Threshold’ of 0.56 can be considered
a close match to this visual appearance. This Threshold is set at the PMF that maximizes the
MA for distinguishing between the Pollock and non-Pollock works. The machine gains confi-
dence in the visual match to Pollocks as the PMF increases beyond the Threshold and similarly
gains confidence in a miss-match as the PMF decreases below the Threshold.

Although the ‘black box quality of artificial neural networks highlights their immunity to
human influence, this same quality limits insights into the visual signatures that the machine is
employing. Our third scientific question therefore focuses on developing strategies to under-
stand the machine’s output. In particular, can our AI approach provide a new ‘eye’” on Pollock’s
all-over style and how it developed over a decade of refinement? As with the input strategy, the

PLOS ONE | https://doi.org/10.1371/journal.pone.0302962 June 17, 2024 3/42


https://doi.org/10.1371/journal.pone.0302962

PLOS ONE

Using machine learning to distinguish between authentic and imitation Jackson Pollock poured paintings

innovative step relies on our employment of multi-scaled tiles. We use these tiles to generate
Pollock ‘Maps’ that examine the artistic signatures at different locations across the artwork
and Pollock ‘Zoom-in charts’ that examine the signatures at different size scales. These visual
aids are coupled with 4 parameters that allow us to quantify the key aspects of Pollock’s revolu-
tionary style. These provide an interdisciplinary bridge between our new scientific approach
and the wealth of ideas presented in traditional art theory studies of Pollock’s work. We show
that fractality and spatial uniformity are important signatures used by our machine when iden-
tifying Pollocks. In particular, we show a strong correlation between PMF and the scale invari-
ance of Pollock’s signatures, indicating that fractal detection is prominent in the machine’s
decisions.

Given the prevalence of fractals in nature’s scenery (for example, trees, clouds, mountains,
rivers, and coastlines are all shaped by fractals [12]), our machine provides an objective con-
nection between Pollock’s poured paintings and nature. Frequently referred to as being natural
in appearance, his complex patterns can be seen as a direct distillation of nature’s geometry
onto his canvases, supporting the description of ‘Fractal Expressionism’ [35]. Although our
parameters are developed for art interpretation of Pollocks, analogous approaches could read-
ily be employed in other interdisciplinary studies of complex data aimed at establishing con-
nections between traditional and novel interpretations of a subject. In particular, our novel
tiling approach and its associated interpretive tools are well-suited for Al analysis of fractal pat-
terns. Given the prevalence of fractals in nature, potential future fundamental and applied
investigations include medical imaging of fractals in the body (e.g. tumors, neurons, veins,
bronchial trees, bone fissures) [36], meteorology (e.g. clouds, rain, lightning, wind patterns)
[12], geography (e.g. trees, plants, rivers, coastlines, mountains, mud cracks, rock textures)
[12], and astronomy (e.g. dark matter distributions, star clusters, moon craters) [37-39]. Arti-
ficial physical systems could also benefit from our AI analysis. This includes investigations of
the fractal distributions of transport routes [40].

We discuss our novel input and output approaches relative to other techniques to empha-
size their distinct characteristics. Finally, we emphasize that our technique is not intended to
be applied in isolation when used for attributing a poured work to Pollock. The results will be
most useful for authenticity studies when coupled with other important information such as
materials analysis, provenance, and connoisseurship. Notably, we expect our Al inspection to
complement the visual inspections of Pollock experts in a unique marriage between computer
and human vision. Inevitably, this marriage will be tested by the growing prevalence of AI-gen-
erated art. We show that our current Al technique can detect current AI-generated Pollock
imitations. As techniques develop, it will be fascinating to see if the ability to detect Pollock
imitations continues to outpace the ability to generate them. Perhaps future AI machines will
become so proficient that they can not only replicate Pollocks but develop his style in new
directions based on subtle career developments spotted by the machine. Within this context,
we emphasize that our current study is simply the preliminary step to many future studies of
abstract artworks.

Background

Fig 1 highlights the challenge faced by authenticity studies by showing Pollock’s Blue Poles side
by side with a known imitation. Investigations aimed at distinguishing real from imitation art-
works need to probe beyond the superficial similarities displayed by these artworks. To do so,
investigations typically integrate artistic and scientific approaches. From the sciences, a range
of analysis techniques can be employed to determine the material composition and date of the
paint, the canvas, and the frame. From the arts, provenance studies assess the painting’s history
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Fig 1. 81 x 110cm sections of the real (left) and replica (right) Blue Poles: Number 11, 1952 (210 x 486.8cm, National
Gallery of Australia).

https://doi.org/10.1371/journal.pone.0302962.g001

while connoisseurs conduct visual comparisons with established paintings from the artist’s cat-
alog (in PollocK’s case, the Catalogue Raissonne [41]) to determine if the ‘hand’ of the artist is
present.

For many artists, this combination of research tools yields powerful evidence for attributing
paintings. Unfortunately, Pollock’s history adds substantial confusion to these approaches.
Pollock is known to have bartered some paintings and so authentic paintings might exist for
which the provenance is long lost. Pollock was also the subject of a film at his career peak. This
inspired a wave of imitation poured paintings that date from Pollock’s era and are composed
from similar materials. Because of these factors, visual inspection forms the central corner-
stone of Pollock investigations. However, when faced with the staggering commercial implica-
tions coupled with the pressures of international media attention, subjective judgments have
become increasingly difficult to obtain and defend against potential litigation. This creates an
art world vulnerable to the acceptance of fakes and to the denial of long-lost treasures.

In response, one of this paper’s authors (Taylor) pioneered the use of computer analysis to
supplement the visual experts’ inspection with quantitative and objective pattern detection
techniques [13]. Based on frequent references to the “organic” and “natural” appearance of
Pollock’s all-over style, along with Pollock’s declaration that “my concerns are with the
rhythms of nature” [1], this computer analysis focused on fractals. The analysis quantified a
key visual element of Pollock’s work—the fractal complexity generated by the patterns that
repeat at increasingly fine size scales [12]. Hints of their telltale pattern repetition had already
been noticed in Pollock’s era by art critics, journalists, and Pollock himself: “knit together of a
complicity of identical and similar elements” (Clement Greenberg) [1], “The large in Pollock is
an accumulation of the small “(T"J. Clark) [1], “patterns all roughly similar in character ...
over the surface of the picture” (William Rubin) [1], “Pollock is as strong from a distance as he
is close to” (Alfred Frankenstein) [1], and “my paintings didn’t have any beginning or end”
(Pollock) [1].

Commencing with Taylor’s initial publication in 1999 [13], 13 groups have since used vari-
ous forms of fractal analysis to explore Pollock’s artistic signature [13-34]. In each case, com-
puters were used to investigate similarities in the statistical characteristics of the painted
patterns occurring across different size scales. In particular, the fractal dimensions (D) of Pol-
lock’s poured patterns have been employed to distinguish his artistic signatures from those of
his imitators [17]. Two groups have also used fractal techniques to create computer-generated
imitation Pollocks [26,33]. Subsequent neuroscience experiments highlighted the aesthetic
impact of fractals [42,43]. In particular, demonstrations of the shared visual qualities of
nature’s and Pollock’s fractals inspired the Fractal Expressionism art movement [35].
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The scholarly investigation of Pollock’s fractals informed a high-profile Pollock authentica-
tion investigation in 2005 when the Pollock-Krasner Foundation collaborated with Taylor to
determine the origin of the ‘Matter Collection [2,20]. Fractal analysis was applied to 6 of 32
newly discovered poured paintings. These were found to differ in fractal characteristics [17]
from 14 established Pollocks, consistent with subsequent pigment analysis showing that some
of the paints dated from after Pollock’s death. In another investigation of the ‘Knoedler Collec-
tion’ [3] by the International Foundation for Art Research, fractal analysis again highlighted
fractal differences between one of the paintings and established Pollocks. This was consistent
with the later discovery that the paintings were created by a contemporary artist. Although
fractals have therefore played a useful role in authenticity studies, Taylor emphasized that they
are one of many visual characteristics needed to capture the rich experience of viewing Pol-
lock’s paintings [17]. Identifying a more comprehensive set of Pollock’s visual characteristics
would lend power to the process of separating his masterpieces from their imitations.

Could a computer train itself to identify and learn from a set of pattern characteristics in an
artwork? Although asking a computer to make decisions about $100M paintings might at first
seem to place too much trust in a novel technique, Al is already being employed to perform
critical functions for society. In parallel, AI is experiencing a growing role in generating, classi-
fying, and examining the authenticity of diverse works across the arts (for a recent review, see
[44]). Prominent teams using AI for authenticity studies of paintings include Artrendex and
Art Recognition [6,45]. Table 1 presents some further examples presented in chronological
order [46-52].

In the early 2010s, attempts at art authentication such as those of Qi et al [46] relied on
more traditional computer vision techniques coupled with Fisher Information scores to cate-
gorize artworks. Because their research focused on the brushstrokes of Impressionist and Post-
Impressionist art, their approach might not be expected to transfer well to the task of identify-
ing Pollock’s poured paintings. Nonetheless, in 2015 Shamir employed a similar technique to
discriminate between Pollock forgeries and Pollock originals using a Fisher Information score
after extracting a set of 3000 visual features [47]. Despite the small data set of 26 Pollock
poured works, his machine learning technique achieved a MA of 93%. Interestingly, we note
that Shamir found that the fractal parameters in the set were the dominant distinguishing tools
used by the machine.

By 2015 a crucial shift was underway in the computer vision world in the form of the deep
learning capabilities of artificial neural networks. Convolutional neural networks (CNNs) were
becoming popular and, significantly, the paper detailing Resnet was published at this time [9].
CNNs make use of a limited set of “filters” which are then convolved mathematically across an
image. By reducing the input layer to a small number of filters, CNNs perform well at approxi-
mating the visual characteristics of animals, and out-perform traditional neural networks

Table 1. A selection of AI techniques listed in chronological order.

Reference

Qi et al- 2013 [46]
Shamir- 2015 [47]

Van Noord et al- 2015 [48]
Liu et al—2016

Van Noord et al- 2017 [50]
Dobbs and Ras- 2022 [51]
Schaerf et al- 2023 [52]
Schaerf et al -2023 [52]

https://doi.org/10.1371/journal.pone.0302962.t001

Approach Data Set Measure Result
Wavelet Hidden Markov Tree Impressionist/Post-Impressionist Attribution Accuracy 85-88%
Weighted Nearest Neighbors Jackson Pollock Painting Accuracy 93%
AlexNet (CNN) Rijksmuseum Dataset Mean classification accuracy 78%
Geometric Tight Frame Vincent van Gogh Painting Accuracy 87-89%
Multi-scale CNN Rijksmuseum Dataset Mean class accuracy 82%
ResNet101 (CNN) RIjksmuseum Datasest Mean class accuracy 91%
EfficientNetB5 (CNN) Vincent van Gogh Painting Accuracy 96%
Swin-Tiny (ViT) Vincent van Gogh Painting Accuracy 87-88%
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when it comes to feature extraction [53]. Accordingly, in 2015 van Noord et al applied a CNN
(AlexNet) to the Rijksmuseum data set and demonstrated that CNNs could be effective at art
authentication. Subsequently, van Noord et al expanded their approach and achieved a higher
classification accuracy on the same data set by adopting a multi-scale CNN [50]. Dobbs and
Ras have achieved the highest MA so far on the Rijksmuseum data set by using Resnet101. Fur-
ther improvements utilizing EfficientNetB5 were developed by Scharf et al (2023) who were
able to classify works by van Gogh with a MA of 96%.

Another form of deep learning—Vision Transformers (ViTs)—drives the latest trends in
computer vision. ViTs ‘tokenize” images in order to digest their information. This image toke-
nization is similar to how the transformers in large-language models tokenize words and sen-
tences to digest text. In both cases, transformers decompose the data sets into smaller chunks
and then extract information from the chunks [54]. Last year, Schaerf et al demonstrated the
effectiveness of ViTs for identifying art-works by Vincent van Gogh.

Although Pollock’s abstract artworks have been the focus of high profile authenticity con-
troversies involving staggering financial and artistic consequences, they have not yet benefited
from an AI deep learning analysis. Given ResNet’s established history in art classification and
other applications, we focus our model comparisons on ResNet architectures along with a
number of other CNNs. We also include several ViTs because of their emerging status in AT
applications.

Considering our novel image ingestion approach, we note that our integration of tiling into
the ResNet model is similar in some ways to the tokenizing approach utilized by ViTs. How-
ever, our tiling strategy differs in one key aspect: when our technique decomposes the images
into tiles, we deliberately discard their relative positions while ViTs retain this information.
Our tiling strategy is based on the fractal composition of Pollock’s all-over style in which each
tile serves as an independent Pollock image. As such, our study uses deep learning networks in
a manner consistent with the previous scientific studies indicating that fractal parameters are
useful descriptions of Pollock’s complex patterns. Training our neural network on an array of
multi-scaled tiles is therefore an intriguing solution to boosting image numbers while aligning
our investigations with previous quantitative approaches to Pollock’s artistic signatures. Our
unique tiling approach, and its alignment with fractal patterning, also establishes the novelty
of our interpretative Zoom-in Charts and Maps. For example, whereas other Al approaches
identify the spatial locations of interesting features (e.g., unusual brushstrokes in paintings
[6]), our Maps instead compare the visual signatures of well-defined regions of the canvas at
different locations and size scales.

Methods
Image sets

The images of the 588 artworks used in our study were acquired in collaboration with The Pol-
lock-Krasner Foundation, The Pollock-Krasner Study Center, The International Foundation
for Art Research, and Francis V. O’Connor (chief Pollock connoisseur and co-author of the
Catalogue Raissonne). The collection and analysis method of all images complies with the
terms and conditions for the sources of the data. The S1 Table provides a comprehensive list of
the image sets. The image sets feature 2 overall categories of artwork—those established as
being created by Pollock and those established to be by other artists.

Pollock poured artwork. This category features all 189 Pollock artworks that satisfy our
definition of poured works and that have known images. Pollock used a variety of painting
techniques across his career [1]. Our definition of pouring is broad and is based on artworks
that feature patterns generated by fluid liquid poured onto the artwork’s surface. To ensure
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our technique is robust to variations in image quality and color variations, we use multiple
images of each painting when possible. More specifically, we employ 2 collections: one set fea-
tures color images typically with high image resolution (scanned at 1200 px/inch from a variety
of high quality art books [55-67]) and the other set features grayscale images with lower but
still good image resolution (scanned at 600 px/inch from the Pollock’s Catalogue Raissonne
[41]). Using this approach, 118 of the 189 Pollock artworks feature images from both sets.

Non-Pollock art works. This second category comprises 2 groups of artwork. The first
group features a diverse range of 284 poured works created by other artists. These include art-
works generated specifically for this authenticity project (e.g. 32 adult and 18 children’s paint-
ings created under the controlled conditions of ‘Dripfest” events [17,31], and paintings
generated by mechanical devices such as the Pollockizer [35]), 100 commercially-available
poured artworks, poured artworks by well-known artists (e.g. by Michael Baldwin, Max Ernst,
Sam Francis, Arshile Gorky, Hans Hofmann, Henri Michaux, Norman Rockwell, Niki de
Saint Phalle, etc) and established poured imitations (e.g from the Knoedler Collection, the
Matter Collection, by Mike Bidlo, Ed Harris, and Francis O’Connor). To add robustness, the
non-Pollock category also features a diverse group of 115 abstract ‘non-poured’ abstract works
by famous artists (e.g. by George Braque, Jasper Johns, Wassily Kandinski, Paul Klee, Willem
De Kooning, Joan Miro, Clyfford Still, etc) [68]. Only 1 image of each artwork is used in the
non-Pollock category. The majority of the images are scanned at 1200 px/inch from a variety
of high quality art books, prints, and transparencies. Photographed works (Dripfest works,
One by the Pollockizer, Untitled by the Wind Machine, and Dummy by Richard Taylor) use
high resolution settings (200-400 px/inch). Images of the commercial poured paintings are
downloaded from the internet (72 px/inch).

Image pre-processing

Prior to training, images undergo a refined cropping process that employs a semi-automatic
technique. Selecting the 4 corners of the painting manually, we then determine the minimum
rectangle that encapsulates all of these points. We crop the image to this minimum rectangle.
We tile each cropped image by covering the image with an array of identical squares and we
then crop these to create a set of square sub-canvases. Based on the fractal model, we repeat
this tiling process for various tile sizes, starting from squares with 10cm side lengths (the small-
est tile width is set at 10 cm to avoid image resolution effects) and increasing in 5cm incre-
ments up to the maximum square size allowable for the painting. We center the tiling process
on the image. As an example, for an image of size 265cm x 265cm we start the tiling process
2.5cm in from the left edge and 2.5cm down from the top edge. We continue until we reach
the last tile, which is 2.5cm in from the right edge and 2.5cm up from the bottom edge. Once
completed, we re-size each tile to a standardized 256 x 256 pixels and feed them into the neural
network for classification. To illustrate this process, consider Blue Poles. We tile its

212.1cm X 488.9cm canvas with squares with side lengths ranging from 10cm up to 210cm,
resulting in 2,387 tiles. Notably, our approach refrains from introducing any additional aug-
mentations to the images beyond this pre-processing step.

Data partitioning

Machine learning typically requires a set of images to train the machine (the ‘training set’) and
a second set to iteratively evaluate the machine’s performance (the ‘validation set’). Tradition-
ally, the validation set is used to evaluate machine models featuring different hyperparameters.
In addition, we reserve a ‘hold out’ set of images that ensures that the iterative process of evalu-
ating models with different hyper-parameters is not prone to any unseen biases. In other
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Table 2. Data partitioning of Pollock and non-Pollocks according to the number of artworks, the number of images of these artworks, and the number of tiles in
these images.

Data Partitioning (artworks)

Train Validation Hold Out
Pollock 142 (75.1%) 33 (17.5%) 14 (7.4%)
non-Pollock 304 (76.2%) 72 (18.0%) 23 (5.8%)

Data Partitioning (images of the art works)

Train Validation Hold Out
Pollock 246 (75.7%) 51 (15.7%) 28 (8.6%)
non-Pollock 307(76.4%) 72 (17.9%) 23 (5.7%)

Data Partitioning (Tiles)

Train Validation Hold Out
Pollock 72,609 (74.6%) 12,983 (13.3%) 11,683 (12.0%)
non-Pollock 111,464 (74.2%) 31,173 (20.7%) 7,605 (5.1%)

https://doi.org/10.1371/journal.pone.0302962.t002

words, we ensure that the model will generalize to images that it has never seen. This is espe-
cially important for our circumstances whereby the set of known images of Pollock’s artworks
is not anticipated to grow significantly. The hold out set differs from the validation set in that
it is never used to make decisions for improving or tuning our model. We evaluate the perfor-
mance of the different models using only the validation set. Once we decide on the final
model, we then test it on the hold out set. We refer to the combination of the validation and
hold out sets as the ‘inference set’.

Out of our 189 Pollock poured works, 142 (75.1%) are selected for the training set, 33
(17.5%) for the validation set, and 14 (7.4%) for the holdout set. For the Pollock images, the
holdout set is randomly selected from the 189 paintings with the exception of deliberately
including Blue Poles (as one of his most iconic images) and at least 1 painting from each year
that he created a poured painting (i.e. 1943 and 1946-1955). Out of our 399 non-Pollock
works, 304 (76.2%) are selected for the training set, 72 (18.0%) for the validation set, and 23
(5.8%) for the holdout set.

Importantly, all of the tiles extracted from an image in our training set are used during the
model training process. None of the tiles extracted from an image in our training set are used dur-
ing model validation or when testing the model using the holdout set. The same is true for both
the holdout and validation images. In total, a dataset of 97,275 Pollock tiles and 150,242 non-Pol-
lock tiles are collected. Table 2 summarizes the relative numbers of images dedicated to each role.

Training

The machine uses the tiles described above to learn about the visual features of the artworks.
The machine compares all of the tiles within the established Pollocks to the tiles within works
known to be created by other artists. During this comparison, the machine identifies a collec-
tion of visual features that are useful for distinguishing between the Pollock and non-Pollock
artworks. Based on the features present in a tile, it then assigns a value from 0 and 1 to the tile,
which we call the Pollock Signature. A Pollock Signature of 0 indicates that the tile does not
have the distinguishing visual features of a Pollock work, while a value of 1 indicates that it
does. Values closer to 1 indicate increasing levels of confidence from the machine that the art-
work contains the distinguishing visual features of a Pollock. All tiles are considered equally in
training.

PLOS ONE | https://doi.org/10.1371/journal.pone.0302962 June 17, 2024 9/42


https://doi.org/10.1371/journal.pone.0302962.t002
https://doi.org/10.1371/journal.pone.0302962

PLOS ONE Using machine learning to distinguish between authentic and imitation Jackson Pollock poured paintings

S
e
ey

0.5 «—0.3,0.4...0.7,0.6

7 pY

055 <— 0.6 <—0.6,0.7...0.4,0.7«— . <~—

0.3
0.4

0.55

\ 0.55 «— 0.55 / j

RS
j
5

2

£ 4 7

Fig 2. A flow diagram of the image pre-processing, data partitioning, and machine learning. The image is cropped
and then tiled at multiple size scales (3 of the 22 tile scales are shown). The machine trains on the full set of tiles.
During inference, the machine assigns a Pollock Signature to each of the tiles, which are then grouped by size and an
average Pollock Signature is assigned. Finally, the average Pollock Signature is averaged across tile sizes to calculate the
PMF. The intermediate numbers shown in the diagram are Pollock Signatures of the tiles and the final number is the
PMF.

https://doi.org/10.1371/journal.pone.0302962.g002

The machine then averages the Pollock Signature across all of the tiles (i.e. across different
locations and different sizes) to generate a signature for the whole artwork called the Pollock
Matching Factor (PMF). The PMF value lies on a scale from 0 to 1. A PMF of 1 indicates that
every tile in the work displays a Pollock Signature of 1. Similarly, a PMF of 0 indicates that all
tiles in the work have a Pollock Signature of 0. Increasing values above 0 indicate that more
and more of the artwork’s tiles have a high (~1) Pollock Signature. A data flow diagram of the
full training process is shown in Fig 2.

Data quantification and visualization

The Pollock Dial. Because the PMF values vary from 0 to 1, we can visualize this informa-
tion on a dial to easily compare PMFs of different artworks. The Pollock Dial plots the PMF of
artworks using angular position with the PMF increasing in the clockwise direction. The Dial
focuses on images from the inference set. Using the images on the Pollock Dial, we identify a
PMEF ‘Threshold’—artworks that reach or exceed the PMF ‘Threshold’ can be considered a
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close match to the visual appearance of Pollock’s works. This Threshold is calculated by deter-
mining the PMF that maximizes the MA when distinguishing between the collections of Pol-
lock and non-Pollock works.

The Zoom-in charts and scaling parameters. The Zoom-In Charts examine how the Pol-
lock Signatures vary with tile size. To generate the Charts, the machine groups tiles by their
size and calculates the average Pollock Signature for each tile size. This average value is then
plotted as a function of tile size using a bar chart. The Chart also displays the PMF of the whole
artwork (which corresponds to the average across the tile sizes of all of their average Pollock
Signatures). Bars with Pollock Signatures below the PMF Threshold are colored red while
those above are green.

As discussed in the Introduction, previous research employed computers to perform a frac-
tal analysis of Pollock’s poured paintings. For fractal artworks, the statistical qualities of the
painted patterns repeat at increasingly fine size scales. To be consistent with fractals, we expect
the Pollock Signatures to similarly repeat at different tile sizes. We introduce Scale Invariance
(SI) to quantify the variation in the Pollock Signature with tile size. This is based on the root-
mean-square variation across all tile sizes. Its range is normalized using the function f{y) =1 -
(2*y). Adopting this normalization, SI = 1 corresponds to no variation in Pollock Signature as
we zoom in and SI = 0 corresponds to the maximum possible variation. We also introduce
Magnification (M) to quantify the extent of the zoom-in, with M representing the ratio of the
sizes of the largest and smallest tile widths.

The signature maps and spatial parameters. Whereas the Pollock Zoom-Ins examine
the variation in Pollock Signatures with size scale, the Signature Maps examine how the Pol-
lock Signature varies for different locations across the artwork. We generate a Map for each
painting in the inference set. At each location, the Map averages the Pollock Signature of the
various sized tiles at that location. In other words, at each pixel location we identify all of the
multi-scaled tiles that contain this pixel. The Pollock Signatures of these tiles are then averaged.
This value is plotted at the pixel location using color coding (red for values below the PMF
Threshold and green for values above). During this process, we slide the arrays of tiles across
the image and calculate the average of the Pollock Signatures across the various slide positions.
This sliding technique generates a smooth map by eliminating any discontinuities caused by
crossing the boundaries of tiles with large Signature differences. The completed Map allows us
to identify regions of the painting that deviate away from Pollock’s style. We emphasize that,
although related to the work’s PMF, these Map Signatures use a different averaging technique
to the one used to generate the PMF.

We introduce 2 parameters to quantify spatial variations in the Map. Uniformity (U) quan-
tifies the variation in the Pollock Signature across different locations. This is based on the
root-mean-square variations of the Pollock Signatures in the width and height directions. The
range of the variation in each direction is then normalized using the function f{y) = 1 - (2*y).
Adopting this normalization, U = 1 corresponds to no variation and U = 0 corresponds to the
maximum possible variation. The U value for the painting corresponds to the mean of the U
values for the 2 directions. Coverage (C) employs a pixel count to quantify the relative sizes of
the red and green coverage in the Map, with C = 0 corresponding to all locations being red and
C =1 corresponding to all regions being green.

Fractal analysis: Differential box counting and shift differential box counting. Some
previous forms of fractal analysis of Pollock’s poured works extracted layers with different col-
ors from the painting and then analyzed the pattern scaling properties of each of these layers
separately [17]. Other approaches investigated the scaling properties of the ‘whole’ painting
(ie. the combination of all of the layers in the painting). This is usually done by examining the
luminance variations of the patterns. Because we train the machine on the ‘whole’ pattern, we
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adopt the luminance approach and apply Differential Box Counting (DBC) and Shift Differen-
tial Box Counting (Shift-DBC) algorithms to calculate the works’ fractal dimension D. These
techniques are commonly used in the study of natural and synthetic patterns with fractal-like
characteristics. They allow researchers to quantify and classify the structure of images from
various disciplines, including geology, biology, and computer vision [69].

For the DBC technique, a square crop of the grayscale image of the artwork is converted
into a 3D representation by plotting the pixel brightness in the height direction (normalized to
the painting’s physical dimensions). This 3D space is covered with an array of identical ‘boxes’,
each with a side-length L. At each location in the square crop, we then calculate the number of
boxes that fit into the difference between the minimum and maximum grayscale values in the
height direction. NB is the sum of these box counts across all of the locations. This calculation
is repeated for arrays of boxes with different L values. A scaling plot is then generated which
plots NB vs L on log-log scales. Fractal behavior is characterized by the power law relationship,
NB ~ L™, and D can therefore be extracted from the slope of the linear part of the scaling plot
[69]. To convert this dimension in 3D space to the painting’s physical 2D space, a value of 1 is
subtracted from the D value obtained from the scaling plot.

The Shift-DBC technique is an extension of DBC technique and introduces box shifting.
Instead of placing boxes in a fixed grid, Shift-DBC shifts the box positions, allowing a more
accurate estimation of D. The D value obtained from these 2 methods provides insight into
how the image’s features repeat at different scales to generate the overall fractal pattern. In par-
ticular, because higher D values correspond to steeper slopes in the scaling graph, high-D
images generate larger NB values at smaller scales than corresponding lower-D images. In this
way, D quantifies the relative contributions of the fine and coarse patterns in the fractal image.
It therefore serves to quantify the visual complexity of fractal patterns such as those found in
Pollock’s works. D lies on a scale between 1 and 2 with simple, sparse fractals lying closer to 1
and rich, intricate fractals lying closer to 2.

Model selection and performance

We train our machine using the model architecture ResNet, which is an abbreviation for Resid-
ual Network. This artificial neural network was introduced by researchers at Microsoft
Research in 2015 and soon after won a general image classification challenge [9]. It is recog-
nized as a powerful tool used frequently in computer vision tasks, particularly for recognizing
objects in images. Artificial neural networks such as ResNet consist of many hierarchical layers
analogous to those used by our brain when processing images. By employing ResNet, the
machine can detect a vast array of everyday visual signatures. We complement this model
architecture by reserving the last few layers of our neural network for discriminating specifi-
cally between artworks by Pollock and those not by Pollock. We do this by showing the net-
work our digital collection of Pollock artworks, imitations of Pollock art works, and a variety
of other abstract artworks. In this way, our machine transcends from the equivalent of an art
novice to a Pollock expert.

More specifically, ResNet’s innovation over other neural networks lies in its introduction of
‘skip connections’ that help the network to learn and optimize more effectively [10]. Transfer
Learning (LT) leverages knowledge gained from one task to improve performance for a differ-
ent but related task. Instead of starting from scratch, TL uses a pre-trained model that has
already learned basic features from a larger and more varied data set. We use TL to adapt
ResNet from its task of classifying images featured in the Imagenet data set to our specific Pol-
lock-related task [70]. Imagenet-1K provides images of a variety of objects, ranging from bea-
gles to violins [71]. This pre-training saves time and computational resources, exposes the
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machine to a rich set of visual features, and improves the machine’s ability to generalize
beyond a specific type of image. The initial layers of the pre-trained model are used as a foun-
dation. The later layers are adjusted to fit our Pollock-detection task. For our project, we utilize
fastai [72] and timm [73] model libraries for neural network architectures.

A list of hyperparameters that we employ during model development can be found in the
S2 Table. MA is a crucial parameter for assessing model performance. Another criterion is
minimizing the PMF difference between images of the same painting from different sources.
The following hyper-parameters are also important to consider: learning rate, batch size, and
number of epochs. Learning rate determines how fast a model learns from the data. A higher
rate produces faster learning but runs the risk of overshooting without settling on a good solu-
tion, while a lower rate produces slower learning but benefits from being more precise. The
batch rate is the number of tiles used in each iteration of training. The number of epochs is the
number of times the entire training data set is processed by the model. We choose a learning
rate of 107>, a batch size of 64, and 1 epoch. We note that the high accuracy and performance
is not increased by considering different epochs or batch sizes (see S1 Fig).

In our model selection process, we investigate numerous deep learning model architectures
(shown in Fig 3 and detailed in S3 Table). For each model test, we adjust the PMF Threshold
to maximize the MA. Fig 3 illustrates the mean MA for various CNN model architectures, all of
which use our multi-scaled tiling ingestion method (blue). The highest performing model
within the ResNet50 model architecture is plotted separately (green) because ultimately this
becomes our chosen model. The figure also includes 3 ViT model architectures that use our til-
ing method (orange) and 3 ViT model architectures that are trained only on the full-scale
image (red). We train ViTs in these 2 different ways to better compare and understand the
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Fig 3. Mean MA for the various model architectures considered. The blue bars represent CNN model architectures, including ResNet50. The orange/red bars
represent ViT model architectures. Within each model architecture, the error bars quantify the variability in MA performance between models generated by
choosing different random seeds during training. The green bar represents the highest performing model within the ResNet50 model architecture and
ultimately becomes our chosen model. All models are trained using our multi-scaled tiling method, except for the red group models which are trained on the
full images. While the red bars are trained using a batch size of 4 due to computational limitations, the faded red bar is trained with a batch size of 32.

https://doi.org/10.1371/journal.pone.0302962.9003
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capabilities of our chosen model. We find that the ViTs trained without our tiling approach
consistently underperform compared to the CNNs. The purpose of training ViTs using our til-
ing method is to more directly compare their performances to the CNN architectures. Since
ViTs already ‘tokenize” an image into smaller chunks, their native data ingestion mechanism
might be expected to reduce the impact of applying our tiling approach for these models. How-
ever, incorporating our tiling into ViTs nevertheless improves their MA performance. Taken
together, these results highlight the suitability of using ResNet50 coupled with our tiling inges-
tion method for classifying the all-over style of images in our data set.

For all the CNN model architectures trained in Fig 3 we chose a batch size of 64, 1 epoch,
and an image size of 256 x 256 pixels and 3 color channels. The orange ViT architecture mod-
els use an image size of 224 x 224 x 3 (necessary to match the input architecture), but otherwise
use the same hyperparameters as the CNNs. Additional model parameters are outlined in S2
Table. For training the red ViTs, we use a larger image size (512 x 512 x 3), 1 epoch, and a
reduced ‘batch size’ of 4 because of computational limitations. We note that, because tiny_vit
is a more computationally efficient ViT architecture, we are able to run models with a batch
size of 32 and 2 epochs (after which there is no improvement in MA). This still results in an
inferior performance (faded red top) when compared to ResNet50.

Ultimately, we choose ResNet50 as our main model architecture over the other CNN archi-
tectures due to its consistently high MA and its established track record for a variety of image
classification tasks [7,9,11,74]. We note that ResNet50 exhibits comparable performance to
ResNet101 while requiring significantly fewer computational resources. We observe a notable
improvement in model performance when using ResNet50 compared to ResNet34 with only a
marginal increase in training time. We choose ResNet50 over the ViTs considered due to
ResNet50’s performance in Fig 3 and because its longer history of operation across society
might be more compelling for the current art world.

We note that ResNet50’s performance deteriorates if we exclude our tiling process and sim-
ply train on the whole image: MA drops by 16.7% and 9.4% for batch sizes 4 and 64, respec-
tively. To reach this higher performance, we explore different ‘voting’ schemes in terms of how
the Pollock Signatures of each of the individual tiles would be used when calculating the PMF.
Two example schemes include assigning each tile size a single ‘vote’ and giving each tile (irre-
spective of size) a single vote. The former approach yields a higher MA. Due to the prevalence
of smaller tile sizes, the latter approach would be vulnerable to a dominance of small-scale
characteristics. We also investigate giving different tile sizes a weighted ‘vote’ but we keep with
the simpler equal voting scheme because the weighted approach doesn’t improve
performance.

Finally, in terms of selecting which images are utilized in the validation set, we employ mul-
tiple random combinations to identify an effective validation set. This ensures robustness
across different sets of images. While training on various validation sets yields good perfor-
mance overall, we ultimately select the validation set that delivers the best results for ResNet50.
This comprehensive approach allows us to fine-tune our model selection and achieve optimal
MA when distinguishing between the Pollock and non-Pollock groups.

Model generalization

In order to determine if our technique can generalize to other artists, we perform the following
analysis. Rather than attempting to identify artworks by Pollock, we select another artist cate-
gory from our collection of images and instead determine if our model can identify this cate-
gory. We choose the Dripfest images for this test. These are a set of paintings created by 18
children and 32 adults in controlled settings. An example of each is shown in Fig 4. These
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Fig 4. An example of an adult (top) and child (bottom) Dripfest image (61.5 x 91.5 cm).
https://doi.org/10.1371/journal.pone.0302962.9004

novice painters attempted to imitate Pollock by pouring paint. We apply the same approach as
before, but instead train our model to identify Dripfest paintings. To do this, we randomly
sample a variety of images from our image collection, including authentic works by Pollock.
This ensures a diverse selection of non-Dripfest paintings while maintaining a balanced train-
ing set.

One big difference from classifying Pollock artworks focuses on the number of paintings.
Whereas we had 189 works in the Pollock category, the Dripfest category features 50. We
therefore sub-sampled our data set of non-Dripfest images to achieve a balance of ‘imitation’
and ‘authentic’ paintings. Importantly, whereas approximately 50% of the paintings in our
main study are by Pollock, only 16% of the images in our generalization test are by Pollock.
Table 3 shows the image partitioning in more detail. Despite this much smaller number of
images used in training, our machine performs exceptionally well with this alternative data
configuration.
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Table 3. Data partitioning of Dripfest and non-Dripfest artworks according to the number of artworks.

Data Partitioning (artworks)

Train Validation Hold Out
Dripfest 38 (76.0%) 9 (18%) 3 (6%)
Other 38 (55.1%) 11 (15.9%) 20 (29.0%)

https://doi.org/10.1371/journal.pone.0302962.t1003

Utilizing this new data set, we achieve a MA of 100% by using a Threshold for the Matching
Factor (i.e the equivalent of PMF) of 0.85. This high accuracy is consistent with previous fractal
investigations which successfully differentiated Dripfest paintings from Pollocks [17,31]. As
we will see, our machine uses fractal content predominantly in its decisions. This result dem-
onstrates that our model can be applied to other artists employing the pouring style.

Results
Pollock matching factors and The Pollock Dial

The Pollock Dial is shown in Fig 5. The green dots represent Pollock poured works and the red
dots represent artworks created by the other artists. Representative images of varying PMF val-
ues are shown in the outer circle for comparison. Moving clockwise around the Dial, the titles
of these artworks are: Untitled (Sam Francis), Adult 15 (Dripfest), Untitled (Wind Machine),
Abstraction Orange (Jean-Paul Riopelle), Picasso’s Guernica in the Style of Jackson Pollock
(Michael Baldwin), Water Birds (Pollock), Free Form (Pollock), One (Pollockizer), Untitled
(Henri Michaux), Enchanted Forest (Pollock), and Untitled Mural (Pollock). The PMF Thresh-
old is shown by the dashed radial line. We find that setting the Threshold at 0.56 generates the
highest machine accuracy (MA = 98.9%) for distinguishing between the Pollock and non-Pol-
lock groups. The image of a demonstration painting, Dummy (1504 x 112.8cm, by Richard
Taylor), is shown at the Dial’s center (a full image is shown later in Fig 13). Dummy is selected
from the non-Pollock validation set and serves as a useful demonstration because its mid-
range PMF (0.55, represented by the black arrow in the inner circle) lies close to the
Threshold.

The Pollock artworks with the lowest PMFs on the Dial are 2 of his earliest poured paint-
ings— Water Birds from 1943 (0.56) and Free Form from 1945 (0.60). The majority of works by
Pollock have the highest PMF value of 1. The non-Pollock artworks on the Dial have PMFs
that span the range from 0 to 0.95. The Dial features only 2 images that the machine miss-clas-
sifies as Pollocks (i.e. that meet or exceed the Threshold). One was generated by “The Pollocki-
zer'—a chaotic pendulum developed to generate Pollock imitations [35] (see Discussion). The
other was Untitled by Henri Michaux (see Discussion). Whereas the Dial focuses on images in
the inference set, we might also compare PMFs of paintings that are used in the training set
when helpful. S4 Table provides a list of PMF values for all of the Pollock paintings.

Because the 2 groups of artwork congregate mainly at the 2 extremes of the Dial (non-Pol-
locks at low PMF and Pollocks at high PMFs), many of the data points are superimposed.
Because of this, in Fig 6 we show a histogram of the numbers of artworks, n, at various PMF
values for the 2 groups. In this figure, we also show how the machine accuracy decreases as the
PMF Threshold is moved away from its optimal value of 0.56. Because of the relatively few
paintings with mid-PMF values, the accuracy remains fairly stable for mid-values and then
deteriorates significantly at the very low and high values. In future research, we plan to calcu-
late a machine confidence to express the probability of artworks having Pollock’s signatures
based on PMF value. This will address the discrete character of the Threshold. However, it is
clear from the histogram’s 2 distributions that the machine gradually gains confidence in a
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Fig 5. The Pollock Dial (see text for details).
https://doi.org/10.1371/journal.pone.0302962.9005

visual match to Pollock’s work as the PMF increases beyond the Threshold and then gains very
high confidence close to PMF = 1. Similarly, the machine gradually gains confidence in a visual
miss-match as the PMF decreases below the Threshold and then gains very high confidence
close to PMF = 0.

Image quality confirmation. To increase robustness to variations in image quality and
color variation, we use 2 sets of Pollock images: high quality color images and lower quality
grayscale images (see Methods for more details). All images tested from both sets are classified
correctly, with a mean PMF difference between the 2 sets of only 0.01. This small difference
confirms that the technique is robust to reasonable variations in image quality. We also con-
vert the color images to grayscale and find that the average PMF drops by only 0.02. This small
difference indicates that the Pollock Signatures used by the machine are predominantly influ-
enced by the patterns rather than the colors of the Pollocks’ features.

In Fig 7, we show the deterioration in PMF that occurs as we artificially reduce the image
resolution for the high resolution, color images and lower resolution, grayscale images. We
plot the Resolution Fraction (RF) on the horizontal axis. RF = 1 corresponds to the scanned
resolution whereas, for example, RF = 1/30 corresponds to decreasing the pixel resolution
along each direction (width and height) by a factor of 30. When the colored lines drop below
the horizontal line (indicating the PMF Threshold of 0.56), we refer to this as falling off the
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Fig 6. A histogram of the number of Pollock (green) and non-Pollock (red) images featured in the Pollock Dial. The number of images,
n, in a given PMF range is plotted on the left y axis and the PMF values are plotted on the x axis. The black vertical line represents the
chosen PMF Threshold. The black line is the MA obtained by shifting the threshold to different PMF values. These MA values are plotted
on the right-hand y axis.

https://doi.org/10.1371/journal.pone.0302962.9006

‘resolution cliff.” At this point, the resolution decrease distorts the Pollock Signatures so much
that the machine will incorrectly classify Pollocks as imitations. The orange line falls off the
resolution cliff at a lower RF than the blue line. For both lines, the scanned resolution (RF = 1)
lies well away from the cliff. The top images show close-ups of Pollock’s Blue Poles and
Dummy to demonstrate the drastic resolution reduction needed to fall off the cliff. More gen-
erally, PMF is not correlated with pixel resolution (PR is the pixel density using physical mea-
surement units, i.e. of the artwork rather than its image) when we look across all Pollock and
non-Pollock images (Fig 8).

In Fig 9, we plot the mean PMF for the Pollock and non-Pollock images and show how
these values deteriorate when we artificially change the image contrast (top) and image bright-
ness (bottom). In each case, we restrict the changes to the range of values relevant to human
viewing. Pollock works feature a web of multiple interacting layers of paint that tend to gener-
ate low contrast, low brightness images. It is therefore expected that, for example, artificial
boosts to contrast and brightness will be accompanied by a drop in PMF and that, equivalently,
these might increase the PMF of imitations. Nevertheless, Fig 9 demonstrates that these
changes do not cause the PMF values of the non-Pollocks to cross the Threshold (and therefore
do not impact MA) provided images stay within the reasonable (i.e. natural) levels of bright-
ness and contrast.

The Zoom-in Charts. In Fig 10, we show the Zoom-In Chart for Dummy. Its PMF value
is indicated in the Chart by the right hand arrow pointing at the dashed line. The vertical bar
to the left of the Chart represents the color variations shown in the Chart. Tile sizes with a Pol-
lock Signature below the PMF Threshold are shaded red while those above are shaded green,
with the shade of the color darkening as the Threshold is approached. The Chart therefore
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Dummy at RF = 1 (scanned resolution, left) and RF = 1/30 (cliff resolution, right).

https://doi.org/10.1371/journal.pone.0302962.9007

allows us to identify size scales that deviate away from Pollock’s style based on these color vari-
ations. For Dummy, SI = 0.37 and M = 11.00.

In Fig 11, we superimpose the Zoom-In Chart averaged across all non-Pollock poured
paintings on the Zoom-In Chart averaged across all Pollock poured paintings. The Charts con-
sider tile sizes up to the maximum tile size found in a Pollock painting (270 cm). Whereas the
Pollock tile averages are all green, the non-Pollocks are all red. Furthermore, whereas the Pol-
locks reveal the scale invariance expected for fractals, this is reduced for the non-Pollocks.

To compare Dummy’s Zoom-in Chart to Pollock’s work, in Fig 12 we show the Zoom-In
Chart for Blue Poles, which is quantified by SI = 0.99 and M = 21.00. As expected, the Zoom-in
Chart reveals all tile sizes to be green for Blue Poles—the average Pollock Signatures are consis-
tently close to 1 at all tile sizes.

The signature maps. In Fig 13, we show a grayscale image of Dummy (left panel) and the
same image with the Signature Map overlaid (right panel). The bottom panel focuses on Dum-
my’s Map. The color bar represents the color variations used in the Map. Locations with an
average Pollock Signature below the PMF Threshold are shaded red while those above are
shaded green, with the shade of the color darkening as the Threshold is approached. The Map
therefore allows us to identify regions of the artwork that deviate away from PollocKk’s style
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based on these color variations. The panel above the Map plots the average Pollock Signature
as we move from left to right across the canvas and the panel to the right does the same as we
move from bottom to top. The Map for Dummy is quantified by U = 0.95 and C = 0.29.

To compare Dummy’s Signature Map to Pollock’s work, in Fig 14 we show the equivalent
images for Blue Poles, which is quantified by U= 1.00 and C = 1.00. As expected from his all-
over style, the Signature Map is uniformly green and the Signatures are close to 1 for all widths
and all heights. Significantly, the famous 8 ‘poles’ painted within the art work are sufficiently
splattered that they have high Signatures and do not disrupt the uniformity of the Map.

In Fig 15, we show a Map for Pollock’s Cut-Out (1948) which has an unusual artistic feature
—the shape of a human figure has been removed from the center of the painting. The machine
detects this region successfully, as indicated by the darkened region at the center of the Map.
The drop in Pollock Signature in this central region is also apparent in the left-right and bot-
tom-top plots. Accordingly, U = 0.93 and C = 1.00 are lower than for Blue Poles. Significantly,
the Pollock Signatures in the regions surrounding the cut-out are high and these ensure that
the PMF = 0.92 lies above the PMF Threshold and that the machine correctly classifies the
painting as having the visual style of a Pollock.

Discussion
The all-over style and pollock timeline

We declared 3 scientific goals in the Introduction. The first and second are linked: can we
achieve a high MA for distinguishing Pollocked poured works by integrating a robust, estab-
lished machine model with a novel image ingestion approach based on multi-scaled tiles? Our
resulting high value, MA = 98.9%, demonstrates the power of machine learning for future Pol-
lock authenticity studies when its results are combined with other techniques such as human
vision inspection, provenance investigations, and materials analysis. The high MA also pro-
vides scientific evidence that Pollock’s artistic signature is quantifiably different to those of
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and non-Pollock images (red). The broad colored regions correspond to the standard deviations in the data. The
horizontal line represents the PMF Threshold. In each case, 0 corresponds to the undistorted value on the x axis.

https://doi.org/10.1371/journal.pone.0302962.9009

other artists who adopt his technique of pouring paint. Pollock’s contributions to modern art
therefore go beyond making the pouring technique famous. He should be celebrated for his
specific form of pouring paint. Our third scientific goal probes this specific form by asking the
following question—can we develop novel visual aids and associated interpretive parameters
to move beyond the ‘black box’ character of MA by relating the machine’s Signatures to the
artistic development of Pollock’s all-over style?

In Fig 16, we chart the evolution of the 5 machine parameters (PMF, SI, M, C, and U),
beginning with his first poured work in 1943 through to his final poured work in 1954. S and
M are grouped together as scaling parameters: C and U are grouped together as spatial parame-
ters. In addition to the machine parameters, we also chart changes in Pollock’s productivity (N
is the number of paintings per year) and composition (A is the canvas area and AR is its aspect
ratio). In each case, the black dots represent individual paintings (many of which are superim-
posed) and the red lines represent the average values for each year.

The colored backgrounds represent the phases of his development from an art history per-
spective: ‘preliminary’ (pink), ‘transitional’ (purple), ‘classic’ (green), and “final’ (yellow) [1].
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His ‘preliminary’ works are composed of a few poured trajectories superimposed on a domi-
nant brush-worked background. His transitional works feature a growing contribution of
interacting poured trajectories dominating over the brushwork. His ‘classic’ works are charac-
terized mainly by poured trajectories. His ‘“final’ works mark a fall off from his large, densely
poured masterworks of 1950-52. Intriguingly, there is little variation in PMF with year. Aside

1.0

. O o
IN o ©

Pollock Signature

0.0-

Fig 11. The Zoom-In Chart averaged across all non-Pollock poured paintings superimposed on the Zoom-In Chart averaged across all
Pollock poured paintings.

https://doi.org/10.1371/journal.pone.0302962.9011
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from some very early variations, his distinguishing characteristics remain constant through
the years. This implies that, although the variations between the 4 phases are significant for
charting Pollock’s visual development, they all display Pollock’s ‘hand’. The differences in Pol-
lock’s evolution are subtle when compared to the differences between Pollocks and non-
Pollocks.

The circled value to the right of each panel in Fig 16 quantifies the correlation between the
PMF and each of the parameters, where 0 corresponds to no correlation (i.e. the relationship is
random) and 1 corresponds to the strongest correlation. Interestingly, there is little correlation
between PMF and most parameters (N, A, AR, M). This indicates that Pollock’s Signature
remains strong as these characteristics vary across the paintings. Notably, Pollock’s Signature
has no correlation with the canvas shape and size that he chose to work on. Taken together,
this implies that the presence of the canvas edge has little impact on his Signature. This is con-
sistent with traditional descriptions of his painting process. These picture Pollock as painting
beyond the confines of his canvas, with the studio floor capturing the paint trajectories that
extend beyond the artwork. There is also only a very weak correlation with the number of
paintings he created at a given time. This is intriguing because at this peak in 1950 Pollock cre-
ated some paintings in parallel rather than consecutively. There has been speculation concern-
ing the impact of this switching between works on their appearance. Our result suggests that
his Signature is strong whether it arose from his peak production or from rarer works painted
in isolation.

To examine the correlation with the 4 machine parameters in detail, Fig 17 plots their rela-
tionship with PMF directly. The colored backgrounds are used to highlight the PMF ranges
that are most populated by the artworks, and the dashed horizontal lines denote the mean val-
ues of SI, M, U, and C. A medium strength correlation can be seen between PMF and the spa-
tial characteristics (U, C) of the artworks, consistent with Pollock’s all-over style. The low
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Fig 13. Spatial investigation of Dummy’s Signatures. Grayscale image of Dummy (top left panel) and the same image
with the Signature Map overlaid (right panel). The bottom panel focuses on Dummy’s Map. The panel above the Map
plots the average Pollock Signature as we move from left to right across the canvas and the panel to the right does the
same as we move from bottom to top.

https://doi.org/10.1371/journal.pone.0302962.9013

correlation between PMF and M can be expected from the low correlation with canvas size—
small canvases offer little opportunity for zooming out from the small to large tiles. Strikingly,
there is a very strong correlation between PMF and S, consistent with the fractal character of
Pollock’s work. In addition to examining the correlations of the bulk of Pollock’s work, Fig 17
also provides clarity for why the images of Pollock’s Water Birds (PMF = 0.56) and Free Form
(PMF = 0.6) appear at the center of the Pollock Dial. Although their U, C, and M values appear
close to the mean values, their SI values lie well below. This suggests that the poor fractal scal-
ing of these images distinguishes them from the rest of Pollock’s work. Below, we will examine
the key elements of fractality and uniformity of Pollock’s work in more detail.
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Fig 14. Spatial investigation of Blue Poles’s Signatures. Grayscale image of Blue Poles (top left panel) and the same image
with the Signature Map overlaid (right panel). The bottom panel focuses on Blue Poles’s Map. The panel above the Map
plots the average Pollock Signature as we move from left to right across the canvas and the panel to the right does the same
as we move from bottom to top.

https://doi.org/10.1371/journal.pone.0302962.9014

Pollock’s all-over style

Although Pollock is famous for the spatial uniformity of his all-over style, this quality of his
work hasn’t previously undergone a detailed examination using quantitative image analysis
techniques. The above results support the traditional picture of his all-over style. The mean val-
ues of C and U are both close to 1, indicating that expansive regions of the canvas surface have
very strong Signatures (colored green in the Maps) and, accordingly, there is little variation in
these Signatures across different locations. Our Tests involving changes in canvas orientation
are further consistent with his all-over style. The average PMF values at different orientations
(rotations along with vertical and horizontal flips of the canvas) of the Pollocks in the inference
set do not vary from the average PMF measured in the original orientation.

The Pollock Maps shown in Figs 14 and 15 emphasize their value as interpretational tools.
Blue Poles serves as a powerful demonstration of the spatially-uniform Signature of his all-over
style. In particular, the 8 poles are sufficiently splattered that they do not impact the uniformity
of the Signatures nor the overall PMF. This effect is seen in other examples of his work. For
example, Comet features a long white line stretching from top to bottom, and The Deep fea-
tures a large dark region at its center. These features do not disturb the associated Maps
because of their splattered character. More extreme deviations, such as the cut-out shape in Fig
15, result in a darkening of the map in the impacted region. However, the high Signatures in
the surrounding regions ensure a high PMF. This is seen in other examples of his work. For
example, The Wooden Horse features a wooden object that darkens the impacted region but
doesn’t dip the PMF below the Threshold.
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Fig 15. Spatial investigation of Pollock’s Untitled: Cut-Out (77.3 x 57cm, Ohara Museum of Art, Japan). Grayscale
image of Cut-out (top left panel) and the same image with the Signature Map overlaid (right panel). The bottom panel
focuses on Cut-Out’s Map. The panel above the Map plots the average Pollock Signature as we move from left to right

across the canvas and the panel to the right does the same as we move from bottom to top.

https://doi.org/10.1371/journal.pone.0302962.g015

Returning to the role of the canvas edge, Fig 18 shows radial maps for 3 example paintings
— Water Birds (one of PollocK’s first poured works, appearing close to the Threshold with
PMF = 0.56), Blue Poles (an exemplar of Pollock’s all-over style with PMF = 1) and Henri
Michaux’s Untitled (a rare example of a non-Pollock work lying above the Threshold with
PMF = 0.95). The middle and right columns show radial maps that have been divided into 3
regions (inner, middle, and outer) and the mean Signature averaged across each region is plot-
ted. The middle column is plotted using the absolute colors (i.e. as used in the standard Maps
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Fig 16. A timeline chart of the evolution of the various machine parameters (PMF, SI, M, C, and U) along with
other artwork parameters (N, A, and AR) spanning from 1943 to 1954. See text for details.

https://doi.org/10.1371/journal.pone.0302962.9016

and shown in the bottom bar). The right column shows relative colors to highlight small
changes. For Water Birds, the Signature varies from 0.607 (purple) to 0.632 (yellow), Blue Poles
varies from 0.997 to 0.998, and Untitled varies from 0.897 to 0.986. These values emphasize the
subtle relationship between PMF and ‘all-overness’ Untitled has a higher PMF than Water
Birds, even though it has a larger radial variation in its Signature.

Intriguingly, all 3 paintings display a systematic deterioration in Signature as the canvas
edge is approached. This indicates that even if Pollock continued to paint beyond the artwork’s
intended boundary, the boundary nevertheless had a subtle effect on his pouring technique.
There are clues that Pollock sometimes spotted this deterioration and took measures to hide it
—in particular, for some works he folded parts of the painted canvas behind the work to high-
light the central region. Clearly, this wasn’t necessary for Blue Poles, where our results show
the deterioration is minimal. This deterioration effect is consistent with our decision to use the
poured patterns on Pollock’s studio floor (i.e. the heavily deteriorated pattern formed by the
trajectories that completely missed the canvas) as a non-Pollock pattern in the training process
(see later).
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Fig 17. Plots of SI, M, C, and U against PMF (see text for details).
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Pollock’s fractal scaling

In addition to the strong correlation between PMF and SI shown in Figs 16 and 17, the com-
parison of the Zoom-in Charts in Fig 11 further emphasizes the scale invariance of Pollock’s
work. Pollock’s Signature is consistently scale invariant and the rare works that show varia-
tions in scale can be identified by their fall off in PMF value. We note that the previously pub-
lished fractal model of Pollock’s work pictures 2 distinct pattern generation processes.
Whereas the balancing motions of his body are proposed to generate one set of fractals domi-
nating at size scales above the transitional size of approximately 5cm, the spattering of the fluid
paint is proposed to generate a second set of fractals at smaller scales [17]. Because our
machine process focuses on tile sizes starting at 10cm, it should be sensitive to Pollock Signa-
tures generated by the balancing motions. However, we note that for several Pollocks (these
include Number 22 (1950), Number 24 (1950), Brown and Silver II (1951), and Untitled (1952))
we do see that the Pollock Signatures at the 10cm tile size are smaller than those for the larger
tile sizes, suggesting that perhaps the spattering process might have started to dominate at the
10cm tile size for these paintings.

In addition to considering the degree of scale invariance of the patterns, fractal studies also
look at scaling parameters (such as fractal dimension D) that quantify the rate at which the
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Fig 18. Radial maps for Pollock’s Water Birds (66.4 x 53.8cm, Baltimore Museum of Art, USA) (top row), Pollock’s
Blue Poles (middle row), and Henri Michaux’s Untitled (74.9 x 107.9cm, Edward Thorp Gallery, New York) (bottom
row). The left column shows the artwork, the middle column shows the radial map plotted using the absolute colors,
and the right column shows the radial map plotted using relative colors. The top and bottom bars show the relative and
absolute color ranges, respectively. See text for details.

https://doi.org/10.1371/journal.pone.0302962.9018

patterns shrink with magnification [12]. The fractal model of Pollock’s work introduced dis-
tinct fractal dimensions to quantify the scaling behavior of the 2 size regimes—DD for the
‘drip’ process occurring below 10cm and DL for the ‘Levy’ body motion process occurring
above 10cm. The research found that DL on its own was insufficient for distinguishing Pol-
locks from non-Pollocks [17]. Because our machine focuses on sizes of 10cm and larger, we
would therefore expect to see little correlation between PMF and DL. When we employ DBC
and SDBC fractal analysis techniques to quantify the scaling properties of the luminance scal-
ing properties of the artworks we indeed found little correlation between PMF and their fractal
dimensions (0.05). However, it’s important to note that DBC and SDBC are just 2 possible
approaches to measuring the fractal dimensions of art works, and future research should focus
on a more comprehensive study of the relationship between PMF and these scaling
parameters.

To explore Pollock’s fractal pourings further, we compare them to computer-generated
fractal images. Fig 19 demonstrates the visual similarity between the multi-scaled structure of
Pollock’s Number 32 and that of a fractal pattern generated using a midpoint displacement
method [75]. The Map of the fractal image is also shown in Fig 19 and is constructed using the
multi-scaled tile technique described for the poured paintings in the Methods section. This
Map reveals large regions of green that darken in the black and white regions of the fractal,
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Fig 19. Left: A 63.5 x 63.5cm section of Pollock’s Number 32, 1950 (269 x 457.5cm, Kunstsammlung Nordrhein-
Westfalen, Germany). Middle-left: A 100 x 100cm computer generated fractal image. Middle-right: the Map of the
fractal image. Right: the Map constructed from 10cm tiles (this tile size is shown in the middle left image as a yellow
square).

https://doi.org/10.1371/journal.pone.0302962.g019

suggesting that the machine is identifying Pollock Signatures mainly at the fractal boundaries
between the black and white regions. This effect is confirmed by examining a Map of the frac-
tal image constructed from 10cm tiles. At this scale, it is very clear that the fractal image’s open
regions of white generate the red color associated with low Pollock Signatures and that the
green color associated with high Pollock Signatures is focused in regions where there are high
densities of fractal boundaries. This observation is highly relevant for art theory investigations
of Pollock’s work. Whereas boundary lines are traditionally used in illustrations to differentiate
the subject from the background, Pollock has been heralded as the artist who re-invented the
role of the line for abstract works. In Pollock’s poured works, the line itself is the subject of his
work. Fig 19 demonstrates that the fractal character of the lines is responsible for his Signature.
We examine a total of 63 computer fractals with fractal dimensions D spanning from 1.1 to
1.9 in steps of 0.1. The mean PMFs are plotted against their D values in Fig 20. The high PMFs
(~ 1) observed for large D values fall off gradually but systematically at lower D. This can be
understood by examining the impact of D on the visual appearance of the inserts shown in Fig
20. As described in the Methods section, D quantifies the relative contributions of the fine and
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Fig 20. Plots of PMF versus fractal dimension D for the computer-generated fractals (red) and for Pollocks (blue). The
inserts show example fractal images for D = 1.2, 1.5, and 1.8.

https://doi.org/10.1371/journal.pone.0302962.g020

PLOS ONE | https://doi.org/10.1371/journal.pone.0302962 June 17, 2024 30/42


https://doi.org/10.1371/journal.pone.0302962.g019
https://doi.org/10.1371/journal.pone.0302962.g020
https://doi.org/10.1371/journal.pone.0302962

PLOS ONE

Using machine learning to distinguish between authentic and imitation Jackson Pollock poured paintings

coarse-scale structures in the fractal mix of the image. Larger D values have higher fine scale
contributions than the equivalent low D fractals, resulting in longer and more complex fractal
boundaries between the black and white regions. Considering the 10cm Map shown in Fig 19,
this will result in larger Signatures for the high D patterns. Fig 20 indicates that Pollock’s
poured work is immune to this fall off. The most likely reason for this relates to pattern den-
sity. Whereas the computer fractals are set to have 50:50 coverage of the black and white
regions, the Pollock paintings typically have much higher densities of painted regions, so
cramming even more fractal boundaries into a given region. This maintains their high Signa-
tures down to low D values.

Given the prevalence of fractals in natural scenery, in Fig 21 we present a preliminary com-
parison of Pollock’s One (1950) with 2 common natural images (a thicket and trees). All 3
images display the multi-scaled structure associated with fractal patterns. Intriguingly, the
thicket is quantified by PMF = 0.71, One is quantified by PMF = 1, while the trees are quanti-
fied by PMF = 0.52. One possible explanation relates to differences in the fractal boundary
density. In particular, the trees feature noticeably larger gaps devoid of the fractal boundaries.
However, this result is also a useful reminder that although fractal analysis plays an important
role, the machine is more than a simple fractal detector and many other visual characteristics
will be in play. Although all 3 images are fractal, the natural images will differ in many subtle
ways. A future investigation will perform a systematic study of a comprehensive set of natural
images with the aim of using PMF to explore the connection between Pollock’s and nature’s
fractal patterns.

Finally, we compare Pollock’s images to a set of standard non-fractal designs to confirm
that these are quantified by PMF = 0. These patterns encompass solid colors, bars, random pix-
els, gradients, and the distinctive ‘Pick up sticks’ configuration (which consisted of randomly
oriented black lines against a white background). Examples are shown in Fig 22. Our model
demonstrates remarkable accuracy in classifying each of the test patterns as being a non-Pol-
lock—with one intriguing exception involving a specific orientation (a 5-degree angle from
the horizontal axis) and widths of black and white bars. The vulnerability to a specific line
angle is surprising given that Pollock’s all-over style is celebrated for being insensitive to paint-
ing orientation. Future research will examine trajectory orientation of Pollock’s work in more
detail to determine if there are stand-out orientations of individual features that ‘average out’
when combined into the dense interacting web of the all-over style. Interestingly, we note that
the 8 poles within Blue Poles are much steeper than the 15-degree condition that challenged
our model.

Image classifications and misclassifications: Example cases

The Pollock Dial shows that all but 2 non-Pollocks lie safely below PMF = 0.56, generating our
model’s high MA for detecting the visual miss-match of non-Pollock works. This is impressive
given that our study features a diverse set of 284 poured works created by other artists. This set
spans from images taken from Pollock’s studio floor (as noted earlier, this is categorized as a
non-Pollock in training because it lacks his compositional approach) to the poured creations
of a Monkey.

A number of the non-Pollock poured paintings are by other famous artists. Pollock’s con-
temporary Max Ernst features in the training (Young Man Intrigued by the Flight of a Non-
Euclidean Fly from 1942-47) and inference (The Bewildered Planet from 1942) sets. Works by
Abstract Expressionist contemporaries Hans Hofmann (Fantasia from 1943 and The Wind
from 1944) and Arshile Gorky (One Year The Milkweed from 1944) feature in the training set.
Artists Marcel Barbeau and Jean-Paul Riopelle from the French Canadian movement Les
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Fig 21. Comparisons of a section of Pollock’s One: Number 31, 1950 (269.5 x 530.8cm, MoMA, New York) (middle
image) to photographs of a thicket (top image) and trees (bottom image).

https://doi.org/10.1371/journal.pone.0302962.9021

Automatists, which had a similar artistic mission to the American Abstract Expressionism
movement, feature in the training and inference sets. From the 1960s, Niki de Saint Phaelle’s
art created by shooting at balloons filled with paint (Shooting Picture 1 and 2 from 1961) fea-
tures in the training set, along with Norman Rockwell’s famous parody of Pollock’s work (The
Connoisseur from 1962). Four of Michael Badwin’s 1980s series (Pollock-inspired poured
paintings featuring embedded images) appear in the training set and 2 appear in the Inference
set. Sam Francis’s Untitled from 1985 appears in the inference set. Eight of Prince Jurgen von
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Fig 22. Sample thumbnails of the test patterns. From left to right (single colors, gradient grayscale images, black and white rows (at various angles), colored
rows (at various angles), gradient grayscale images (at various angles), and pickup sticks.

https://doi.org/10.1371/journal.pone.0302962.9022

Anhalt’s et art’ (poured paintings created by flinging paint behind a jet engine) appear in the
training set and 1 appears in the inference set.

Notable ‘imitations’. In terms of well-known imitations, the training set includes 2 paint-
ings created for the Pollock movie by actor Ed Harris, along with 2 paintings by Francis
O’Connor, one of the leading Pollock connoisseurs. Forty-two works by the modern-era imita-
tor Mike Bidlo feature in the training and inference sets. Paintings from 2 high-profile disputes
are also used, as follows. Eight paintings from the Matter Collection (No.’s 2, 4, 7, 9, 10, 14, 17
and 19) [25] feature in the training set and 1 (No. 3) features in the inference set. Two Knoe-
dler Gallery paintings [3] feature in the training set. Whether used in training or inference, the
variety of these poured creations help to deliver the high MA of our machine model.

The inference set also features an image generated by a wind-driven pendulum built to har-
ness fractal wind gusts to generate Pollock-like fractal patterns (Fig 23) [14]. Despite this
intriguing method of capturing nature’s dynamic patterns, our machine is able to classify the
resulting painting correctly as a ‘non-Pollock’ (PMF = 0.11). Finally, we also use paintings
from Dripfests—the experiments aimed at exploring whether children’s poured paintings have
more visual similarities than the equivalent adult paintings to Pollocks [17,31]. This hypothesis
is based on proposed similarities between the body motions of Pollock and the children. Fig 4
shows example artworks by an adult and a child. Our machine is able to classify both the chil-
dren’s and adults’ art works correctly as ‘non-Pollocks’. Furthermore, the PMFs for the chil-
dren (mean PMF = 0.002 + 0.002) and adult (mean PMF = 0.009 +0.007) paintings aren’t
significantly different between the 2 groups.

The Pollockizer. Our model misclassifies One generated by the ‘Pollockizer'—a mechani-
cal device developed to generate Pollock imitations (Fig 24) [35]. This device consists of a con-
tainer of paint that swings on a string, dripping paint onto a horizontal canvas positioned
below. Based on the principle of a chaotic pendulum, the string can be knocked (either
mechanically or via magnets) at close to the resonant frequency of the swinging motion. In
doing so, fractal patterns are generated in the container’s motion and therefore also in the
paint trajectories recorded by the canvas below. Our machine suggests that, by generating a
painting with PMF = 0.67, the Pollockizer is indeed capable of generating Pollock’s artistic
signatures.

Al-generated art. Given the growing prevalence of machine-generated art (e.g. those gen-
erated by DALL-E), a crucial question concerns whether our AI technique can detect AI-gen-
erated Pollock imitations. We test 87 ‘Al Pollocks’ and classify them correctly with 100.00%
accuracy. These consist of 3 groups of Al-generated Pollocks. DALL-E takes a textual descrip-
tion as an input and generates an image that corresponds to that description. We use the tex-
tual description “jackson pollock’ and “jackson pollock imitation” to generate images at
1024x1024 pixels and these are tested for 4 different physical dimensions (25x25cm, 50x50cm,
100x100cm, and 200x200cm). Neural Love is a web-based tool that uses Al to create artistic
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Fig 23. Poured painting generated by the wind machine (PMF = 0.11).
https://doi.org/10.1371/journal.pone.0302962.9023

images, avatars, and realistic portraits. We locate on-line images from Neural Love that are
proposed to be imitation Pollocks. Their image sizes of 512 x 512 pixels are run through our
machine at the same physical dimensions used for the DALL-E paintings. Although an algo-
rithmic approach rather than strictly an Al approach, we also use Pollock Master images. This
is a public github repository that makes Pollock-like images. The images are 5528 x 3572 pixels

Fig 24. The Pollockizer (left) and a section of the poured painting that is classified as sharing the visual signatures of a
Pollock (PMF = 0.67) (right).

https://doi.org/10.1371/journal.pone.0302962.9024
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Fig 25. A comparison of sections of Henri Michaux’s SansTitre 1960-61 (bottom, PMF = 0.74) with Pollock’s
Untitled 1950 (top, PMF = 1.00).

https://doi.org/10.1371/journal.pone.0302962.9025

in resolution and are run through our machine using the same physical dimensions used for
the DALL-E paintings [76].

Henri Michaux. Asshown in the Pollock Dial, our model misclassifies Untitled by Henri
Michaux (PMF = 0.95). Michaux’s poured works belong to the Tachisme art movement, the
French analogue to Pollock’s Abstract Expressionism. Accordingly, we conducted further test-
ing of our model using a data set comprising 9 additional Michaux works [77,78]: 4 works regis-
ter PMF = 0 (indicating a lack of visual resemblance to Pollock’s style), 3 works fall within the
range of PMF values greater than 0.25 but less than the Threshold, and 2 paintings have a PMF
exceeding 0.56, suggesting a higher degree of visual similarity to Pollock’s distinctive style (these
are SansTitre 1960-61 and SansTitre). This varied outcome of Michaux’s work underscores the
complexities involved in distinguishing artistic signatures. The close match of some of his
works to Pollock’s Signatures highlights their parallel artistic missions despite their geographic
separation. Fig 25 compares a 13.2 x 19.4cm section of Michaux’s SansTitre 1960-61 (40.2 x
60cm, Galarie Berthet-Aittouares, Paris) with a 40.5 x 59c¢m section of Pollock’s Untitled 1951
(63.5 x 99cm, Lee Krasner Collection). Both are generated by pouring ink onto paper. The simi-
larity of these 2 artists’ signatures is intriguing and will be the focus of further art research.
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Future models

We did not augment the image set in our current model. In machine learning, image augmen-
tations are a set of techniques used to artificially increase the diversity of a data set by applying
various transformations to the original images. These transformations can include image rota-
tions, flips, scaling, changes in brightness and contrast, and more. The primary goal of image
augmentations is to enhance the model’s ability to generalize patterns from the training data
to unseen examples. By introducing variations in the data set, the model becomes more robust
and less prone to overfitting, which is known as generalization. Image augmentations are par-
ticularly valuable in computer vision tasks such as image classification when having a diverse
and representative training data set can significantly improve model performance.

We undertake brief investigations of some additional models that utilize training augmen-
tation but a more thorough investigation is needed beyond the scope of our current work.
Below, we discuss 2 additional models that we train. Neither model out-performs our current
model in MA nor by minimizing the PMF difference between images of the same painting
taken from the 2 Pollock image groups. However, with the appropriate development, we antic-
ipate that a future model with some augmentations could result in a model that is more gener-
alizable than our current one while potentially maintaining our high MA performance.

Alternate Model 1 (MA: 97.7%). Augmentations: 50% of the images are converted to
grayscale, flipped horizontally, flipped vertically, or rotated in steps of 90 degrees. There are
several advantages associated with these augmentations: 1) Introducing flips, mirrors, and
rotations removes any directional bias from all paintings. This would be helpful if the correct
orientation of a painting is not known. 2) Reducing the color influence forces the model to
focus on the spatial patterns generated by the pouring process. This equalizes different image
sources, some of which are grayscale and others are color. However, these augmentations
introduce the following disadvantages which reduce the MA: 1) The correct orientations of
Pollock paintings are known. This is therefore a real property of his work that we shouldn’t
eliminate. Instead, our current model simply rotates a painting of unknown origin and calcu-
lates each PMF to allow for alternative orientation options. 2) Color can be an important char-
acteristic of Pollock paintings and so reducing the presence of this characteristic diminishes
the model’s ability to distinguish.

Alternate Model 2 (MA: 97.1%). Augmentations: 50% of the images have their brightness
and contrast values randomly adjusted between the values of -0.2 to +0.2 (using the Albumen-
tations Python Library). These augmentations increase generalizability to various photo-
graphic and lighting conditions. The brightness and contrast plots vs PMF become much
more stable than those of the current model (see Fig 26). However, these augmentations have
the disadvantage that low contrast and brightness could be a real feature of Pollock’s works
and this augmentation therefore inappropriately reduces the MA.

In summary, augmentations have the potential to improve future models provided any
challenges to computational resources are overcome. Lacking augmentations, our current
model has a high MA and is robust to image variations through careful selection of image
parameters. In particular, our model should only be run on paintings of unknown origin that
have color images, limited image distortions such as printing artifacts, and limited brightness
and contrast distortions.

Conclusion

We have developed a machine learning strategy that employs a novel image ingestion
approach and that leverages the power of transfer learning. Our approach distinguishes
between authentic and imitation Pollock poured works with an accuracy of 98.9% despite the
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Fig 26. Average PMF plotted against the image contrast (top) and image brightness (bottom) for the Pollock (green)
and non-Pollock images (red). The broad colored regions correspond to the standard deviations in the data. The
horizontal line represents the PMF Threshold. In each case, 0 corresponds to the undistorted value on the x axis.

https://doi.org/10.1371/journal.pone.0302962.9026

limited number of images available for training. Based on this accuracy, we anticipate that our
technique will be useful when combined with more traditional approaches to authenticity
studies, in particular visual inspections by connoisseurs. For example, returning to the real and
imitation Blue Poles shown in Fig 1, the real work delivers PMF = 1 while the imitation delivers
PMF =0.

Our generalization tests show that our machine performs well for artists who use the pour-
ing technique. However, we emphasize that our current model is only applicable to poured
paintings. Our PMF Threshold is termed a ‘necessary but not sufficient condition’ for image
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classification tasks. As an example, the high PMFs achieved by the computer-generated fractals
are useful indicators of the machine’s decision-making process, but they do not challenge the
machine’s usefulness as an authenticity tool—because they are not poured works. Further gen-
eralization studies will be needed to determine the extent to which our machine can be broad-
ened to other artists and other artistic techniques. It is likely that when trained appropriately
our machine will perform well when confronted with the visual complexity generated by other
forms of gestural art. As Al examinations of art become more widespread, it will be important
to understand the limitations of their applicability. For example, techniques based on facial
recognition [79] will not be expected to perform equally well when faced with Pollock’s com-
plexity. Authenticity studies will most likely benefit from the employment of diverse machine
models.

We have also shown that our Al approach can contribute to Pollock studies in ways that move
beyond authenticity studies. To counter the black box nature of our approach, we developed Pol-
lock Maps and Pollock Zoom-in Charts to probe the spatial and scaling signatures of Pollocks.
When coupled with their quantifying parameters, these novel visual aids provide an interdisciplin-
ary bridge between the machine’s output and traditional art theory investigations of Pollock’s
work. In this way, AI has the potential to provide a new ‘eye’ on PollocK’s all-over style.

Using these interpretational methods to look into the black box, our results indicate that
the machine is examining the scale invariance of the poured patterns in its quest to distinguish
between the Pollock masterworks and the imitations. A number of research groups have previ-
ously used various forms of fractal analysis to investigate Pollock’s work, and it has been suc-
cessfully employed in 2 high profile authenticity cases. However, researchers selected their
techniques in these previous cases—introducing an element of subjectivity to the process.
Here, the machine learned the usefulness of fractal analysis in an objective process beyond
human influence. This objective approach will be useful not only for future comparisons of
Pollocks with imitations but also with comparisons of Pollocks with natural images. Pollock
famously declared “I am nature” to the art world and now science has the tools to confirm this
connection between his fractals and those of nature using the machine’s PMF values. Intrigu-
ingly, recent environment psychology research models the eye as a sophisticated fractal detec-
tor [43]. Perhaps Pollock used his fractal eye to spot fractals in nature, the Pollock experts use
their fractal eye to spot fractals in Pollock’s work, and now the machine can do the same in a
more quantifiable manner.

Finally, allowing AI to ‘view’ Pollock’s art represents a major step in art appreciation and
represents the latest step in the technological story set in motion by Taylor’s first use of com-
puter analysis of artworks [13]. Writing about Taylor’s computer analysis at the time,
MOMA’s chief conservator Jim Coddington declared: “In the visual arts we are at the begin-
nings of such a field and make no mistake, it is coming.” [29]. In the intervening years, the
concept of A has changed from science fiction to science fact and its arrival in the world of art
will have many fascinating repercussions.
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