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Abstract

Jackson Pollock’s abstract poured paintings are celebrated for their striking aesthetic quali-

ties. They are also among the most financially valued and imitated artworks, making them

vulnerable to high-profile controversies involving Pollock-like paintings of unknown origin.

Given the increased employment of artificial intelligence applications across society, we

investigate whether established machine learning techniques can be adopted by the art

world to help detect imitation Pollocks. The low number of images compared to typical artifi-

cial intelligence projects presents a potential limitation for art-related applications. To

address this limitation, we develop a machine learning strategy involving a novel image

ingestion method which decomposes the images into sets of multi-scaled tiles. Leveraging

the power of transfer learning, this approach distinguishes between authentic and imitation

poured artworks with an accuracy of 98.9%. The machine also uses the multi-scaled tiles to

generate novel visual aids and interpretational parameters which together facilitate compari-

sons between the machine’s results and traditional investigations of Pollock’s artistic style.

Introduction

In 1952, the Abstract Expressionist Jackson Pollock poured fluid paint onto a vast canvas

rolled out across his studio floor and created his masterpiece, Blue Poles: Number 11, 1952 [1].

The painting represents the culmination of 10 years of developing his ‘pouring’ technique and

the ‘all-over’ style that it generated. In contrast to conventional brush contact with the canvas

surface, the constant stream of paint produced continuous trajectories that wove together into

a uniform pattern that lacked conventional compositional values—no center of focus, no up or

down, and no left or right.

As artistic recognition for his revolutionary style grew and the commercial value of his

work soared, judgments of authenticity became increasingly crucial. A number of damaging

controversies have plagued the Pollock world, fueled by painting prices that exceed $100M
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and by the growing number of fakes appearing on the art market [2,3]. If a poured painting of

unknown origin is found today, how could we determine with reliability whether it is a master-

piece or a fake? In addition to the staggering financial consequences, rigorous methods are

needed to protect the legacies of our most treasured artists.

Previous Pollock controversies were escalated by incorrect attributions made by well-

respected Pollock experts, highlighting the challenge that the visual complexity of Pollock’s

images presents for the human eye. This challenge forms the central scientific question of our

study. If we replace the human observer with an artificial intelligence (AI) machine, what level

of machine accuracy (MA) could be achieved when classifying the complexity of poured art-

works into Pollock and non-Pollock categories? AMA close to 100% would suggest that artifi-

cial intelligence can distinguish Pollock’s artistic signatures more readily than some of the best

Pollock scholars. Although the capability of AImachines to out-perform humans is not

unusual—indeed, this ability fuels many current applications across society—it presents a

unique dilemma for the art world. Pollock’s work was created for appreciation by humans and

not machines. Perhaps the machine’s superior ability to distinguish between masterpieces and

imitations represents AI’s version of art appreciation?

A highMA would also resolve a debate that has troubled the Pollock world from the

moment he started to create his unusual patterns. Although many art theory essays have cele-

brated Pollock’s unique talent, the fact that Pollock scholars can sometimes fail to spot fakes

fuels the public perception that his work is no more than an inevitable consequence of pouring

paint—and that a lay person could readily match Pollock’s artistic achievements. Although the

AImachine can’t judge aesthetic worth, a highMA value would provide objective and quanti-

tative proof that Pollock’s work is a unique form of artistic expression.

In recent years, a variety of AI techniques have been applied to a growing number of other

artists. An obvious approach for paintings featuring faces is to use AI-powered facial recogni-

tion methods. Focusing on the Renaissance master Raphael, this strategy identified a 97 per-

cent similarity between the face of the Virgin Mary depicted in his confirmed painting Sistine
Madonna and the face in the disputed work de Brecy Tondo [4]. In contrast to training on the

‘form’ of the painted images (e.g. faces, figures,etc), an alternative strategy is to focus on the

tell-tale painting techniques used by artists to generate the images. An example study exam-

ined more than 80,000 individual brushstrokes by Picasso, Matisse, and Schiele and classified

them with an accuracy of up to 90% [5]. Similarly, a team known as Art Recognition focused

on artistic techniques such as brushwork and use of color, along with object placement within

the canvas and other compositional characteristics. Their recent projects include confirming

the authenticity of a van Gogh self-portrait and determining that an alleged painting by Max

Perchstien is in fact by the infamous forger Wolfgang Beltrach [6]. Devoid of the illustrative

content of traditional art and constructed from splatters rather than careful brushwork, what

would be the optimal AI approach for Pollock’s work?

The authors formed an art-science collaboration called Art Intelligence to quantifyMA per-

formance as a way of gauging AI’s potential to ‘understand’ Pollock’s work. To promote the

acceptance of this AI approach within the art world, we focus on well-established rather than

novel machine learning models. Models will be more influential when resolving future Pollock

controversies if they have a robust track record for addressing crucial applications across soci-

ety. For the models considered in our study, these applications include analyzing faces at air-

ports to maintain our national security and scanning medical images to ensure our health

[7,8].

Accordingly, we train our machine to learn the visual characteristics of poured artworks

using an artificial neural network called ResNet [9] and by exploiting an approach called

Transfer Learning. ResNet employs ‘deep’ networks consisting of many layers and nodes
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(’neurons’) that process information hierarchically. By employing ResNet’smany hierarchical

layers, the machine can detect a vast array of everyday visual signatures. We complement this

machine architecture by reserving the last few layers of our neural network for discriminating

between artworks by Pollock and those not by Pollock. We do this by showing the network the

largest ever assembled digital collection of Pollock artworks, imitations of Pollock artworks,

and a variety of other abstract artworks. We compare the performance of various versions of

Resnet to other established machine models (including AlexNet, DenseNet, and SqueezeNet)
and more recently developed Vision Transformers (including Pyramid Vision Transformer,
Swin Transformer, andMulti-Axis Vision Transformer). Ultimately, we focus on Resnet50
based on its superiorMA and proven track record across a variety of applications [7,9,10].

Whereas the chosen model architecture is deliberately traditional, the novel aspects of our

study focus on the input (image ingestion) and output (interpretational parameters) stages of

the process. In terms of input into the machine, we emphasize that although our collection of

588 works is comprehensive it is nevertheless significantly smaller than data sets typically used

for machine learning. For example, cosmologists apply AI to thousands of images of the night

sky [11]. However, these same limits apply to human inspection of Pollock’s work. We there-

fore anticipate that AI will provide a valuable step forward in bringing state-of-the-art scien-

tific techniques for spotting and quantifying patterns in complex data to the art world. The

machine’s ability to perform these tasks can be expected to improve substantially if novel strat-

egies can lift the restrictions presented by the limited image sets. How can the data input be

boosted in order to achieve a highMA for Pollock’s work? This forms the second scientific

question of our study.

To accommodate the small number of images, our machine learns about the artworks by

dividing each work into an array of tiles. This image ingestion method exploits 2 key character-

istics of Pollock’s all-over style. Firstly, because of the spatial uniformity of the all-over style,

tiles at different locations are expected to have similar visual features to each other. Secondly,

previous investigations examined the occurrence of fractal patterns [12] in the all-over style

[13–34]. We therefore use many tile sizes at each location. Because of the scale invariance of

fractals, these multi-scaled tiles are expected to share visual features. In effect, each of Pollock’s

artworks features multiple ‘sub-Pollocks’ found at different locations and at different size

scales—each displaying Pollock’s tell-tale signature. Our fractal tiling approach therefore aligns

with the fractal character of the images and by doing so boosts the amount of art images that

we can use during the training of our machine. In total, a data set of 97,275 Pollock tiles and

150,242 non-Pollock tiles is employed in our process.

By integrating this novel ingestion method into our current model, our machine distin-

guishes between Pollock poured paintings and artworks created by other artists with aMA of

98.9%. When the machine is presented with an artwork of unknown origin, it generates a Pol-

lock Matching Factor (PMF) to quantify the degree to which the artwork captures the visual

appearance of Pollock’s work using a scale from 0 to 1. Using our current model, we find that

artworks with PMF values that reach or exceed the PMF ‘Threshold’ of 0.56 can be considered

a close match to this visual appearance. This Threshold is set at the PMF that maximizes the

MA for distinguishing between the Pollock and non-Pollock works. The machine gains confi-

dence in the visual match to Pollocks as the PMF increases beyond the Threshold and similarly

gains confidence in a miss-match as the PMF decreases below the Threshold.

Although the ‘black box’ quality of artificial neural networks highlights their immunity to

human influence, this same quality limits insights into the visual signatures that the machine is

employing. Our third scientific question therefore focuses on developing strategies to under-

stand the machine’s output. In particular, can our AI approach provide a new ‘eye’ on Pollock’s

all-over style and how it developed over a decade of refinement? As with the input strategy, the
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innovative step relies on our employment of multi-scaled tiles. We use these tiles to generate

Pollock ‘Maps’ that examine the artistic signatures at different locations across the artwork

and Pollock ‘Zoom-in charts’ that examine the signatures at different size scales. These visual

aids are coupled with 4 parameters that allow us to quantify the key aspects of Pollock’s revolu-

tionary style. These provide an interdisciplinary bridge between our new scientific approach

and the wealth of ideas presented in traditional art theory studies of Pollock’s work. We show

that fractality and spatial uniformity are important signatures used by our machine when iden-

tifying Pollocks. In particular, we show a strong correlation between PMF and the scale invari-

ance of Pollock’s signatures, indicating that fractal detection is prominent in the machine’s

decisions.

Given the prevalence of fractals in nature’s scenery (for example, trees, clouds, mountains,

rivers, and coastlines are all shaped by fractals [12]), our machine provides an objective con-

nection between Pollock’s poured paintings and nature. Frequently referred to as being natural

in appearance, his complex patterns can be seen as a direct distillation of nature’s geometry

onto his canvases, supporting the description of ‘Fractal Expressionism’ [35]. Although our

parameters are developed for art interpretation of Pollocks, analogous approaches could read-

ily be employed in other interdisciplinary studies of complex data aimed at establishing con-

nections between traditional and novel interpretations of a subject. In particular, our novel

tiling approach and its associated interpretive tools are well-suited for AI analysis of fractal pat-

terns. Given the prevalence of fractals in nature, potential future fundamental and applied

investigations include medical imaging of fractals in the body (e.g. tumors, neurons, veins,

bronchial trees, bone fissures) [36], meteorology (e.g. clouds, rain, lightning, wind patterns)

[12], geography (e.g. trees, plants, rivers, coastlines, mountains, mud cracks, rock textures)

[12], and astronomy (e.g. dark matter distributions, star clusters, moon craters) [37–39]. Arti-

ficial physical systems could also benefit from our AI analysis. This includes investigations of

the fractal distributions of transport routes [40].

We discuss our novel input and output approaches relative to other techniques to empha-

size their distinct characteristics. Finally, we emphasize that our technique is not intended to

be applied in isolation when used for attributing a poured work to Pollock. The results will be

most useful for authenticity studies when coupled with other important information such as

materials analysis, provenance, and connoisseurship. Notably, we expect our AI inspection to

complement the visual inspections of Pollock experts in a unique marriage between computer

and human vision. Inevitably, this marriage will be tested by the growing prevalence of AI-gen-

erated art. We show that our current AI technique can detect current AI-generated Pollock

imitations. As techniques develop, it will be fascinating to see if the ability to detect Pollock

imitations continues to outpace the ability to generate them. Perhaps future AImachines will

become so proficient that they can not only replicate Pollocks but develop his style in new

directions based on subtle career developments spotted by the machine. Within this context,

we emphasize that our current study is simply the preliminary step to many future studies of

abstract artworks.

Background

Fig 1 highlights the challenge faced by authenticity studies by showing Pollock’s Blue Poles side

by side with a known imitation. Investigations aimed at distinguishing real from imitation art-

works need to probe beyond the superficial similarities displayed by these artworks. To do so,

investigations typically integrate artistic and scientific approaches. From the sciences, a range

of analysis techniques can be employed to determine the material composition and date of the

paint, the canvas, and the frame. From the arts, provenance studies assess the painting’s history
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while connoisseurs conduct visual comparisons with established paintings from the artist’s cat-

alog (in Pollock’s case, the Catalogue Raissonne [41]) to determine if the ‘hand’ of the artist is

present.

For many artists, this combination of research tools yields powerful evidence for attributing

paintings. Unfortunately, Pollock’s history adds substantial confusion to these approaches.

Pollock is known to have bartered some paintings and so authentic paintings might exist for

which the provenance is long lost. Pollock was also the subject of a film at his career peak. This

inspired a wave of imitation poured paintings that date from Pollock’s era and are composed

from similar materials. Because of these factors, visual inspection forms the central corner-

stone of Pollock investigations. However, when faced with the staggering commercial implica-

tions coupled with the pressures of international media attention, subjective judgments have

become increasingly difficult to obtain and defend against potential litigation. This creates an

art world vulnerable to the acceptance of fakes and to the denial of long-lost treasures.

In response, one of this paper’s authors (Taylor) pioneered the use of computer analysis to

supplement the visual experts’ inspection with quantitative and objective pattern detection

techniques [13]. Based on frequent references to the “organic” and “natural” appearance of

Pollock’s all-over style, along with Pollock’s declaration that “my concerns are with the

rhythms of nature” [1], this computer analysis focused on fractals. The analysis quantified a

key visual element of Pollock’s work—the fractal complexity generated by the patterns that

repeat at increasingly fine size scales [12]. Hints of their telltale pattern repetition had already

been noticed in Pollock’s era by art critics, journalists, and Pollock himself: “knit together of a

complicity of identical and similar elements” (Clement Greenberg) [1], “The large in Pollock is

an accumulation of the small “(T.J. Clark) [1], “patterns all roughly similar in character . . .

over the surface of the picture” (William Rubin) [1], “Pollock is as strong from a distance as he

is close to” (Alfred Frankenstein) [1], and “my paintings didn’t have any beginning or end”

(Pollock) [1].

Commencing with Taylor’s initial publication in 1999 [13], 13 groups have since used vari-

ous forms of fractal analysis to explore Pollock’s artistic signature [13–34]. In each case, com-

puters were used to investigate similarities in the statistical characteristics of the painted

patterns occurring across different size scales. In particular, the fractal dimensions (D) of Pol-

lock’s poured patterns have been employed to distinguish his artistic signatures from those of

his imitators [17]. Two groups have also used fractal techniques to create computer-generated

imitation Pollocks [26,33]. Subsequent neuroscience experiments highlighted the aesthetic

impact of fractals [42,43]. In particular, demonstrations of the shared visual qualities of

nature’s and Pollock’s fractals inspired the Fractal Expressionism art movement [35].

Fig 1. 81 x 110cm sections of the real (left) and replica (right) Blue Poles: Number 11, 1952 (210 x 486.8cm, National

Gallery of Australia).

https://doi.org/10.1371/journal.pone.0302962.g001
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The scholarly investigation of Pollock’s fractals informed a high-profile Pollock authentica-

tion investigation in 2005 when the Pollock-Krasner Foundation collaborated with Taylor to

determine the origin of the ‘Matter Collection [2,20]. Fractal analysis was applied to 6 of 32

newly discovered poured paintings. These were found to differ in fractal characteristics [17]

from 14 established Pollocks, consistent with subsequent pigment analysis showing that some

of the paints dated from after Pollock’s death. In another investigation of the ‘Knoedler Collec-

tion’ [3] by the International Foundation for Art Research, fractal analysis again highlighted

fractal differences between one of the paintings and established Pollocks. This was consistent

with the later discovery that the paintings were created by a contemporary artist. Although

fractals have therefore played a useful role in authenticity studies, Taylor emphasized that they

are one of many visual characteristics needed to capture the rich experience of viewing Pol-

lock’s paintings [17]. Identifying a more comprehensive set of Pollock’s visual characteristics

would lend power to the process of separating his masterpieces from their imitations.

Could a computer train itself to identify and learn from a set of pattern characteristics in an

artwork? Although asking a computer to make decisions about $100M paintings might at first

seem to place too much trust in a novel technique, AI is already being employed to perform

critical functions for society. In parallel, AI is experiencing a growing role in generating, classi-

fying, and examining the authenticity of diverse works across the arts (for a recent review, see

[44]). Prominent teams using AI for authenticity studies of paintings include Artrendex and

Art Recognition [6,45]. Table 1 presents some further examples presented in chronological

order [46–52].

In the early 2010s, attempts at art authentication such as those of Qi et al [46] relied on

more traditional computer vision techniques coupled with Fisher Information scores to cate-

gorize artworks. Because their research focused on the brushstrokes of Impressionist and Post-

Impressionist art, their approach might not be expected to transfer well to the task of identify-

ing Pollock’s poured paintings. Nonetheless, in 2015 Shamir employed a similar technique to

discriminate between Pollock forgeries and Pollock originals using a Fisher Information score

after extracting a set of 3000 visual features [47]. Despite the small data set of 26 Pollock

poured works, his machine learning technique achieved aMA of 93%. Interestingly, we note

that Shamir found that the fractal parameters in the set were the dominant distinguishing tools

used by the machine.

By 2015 a crucial shift was underway in the computer vision world in the form of the deep

learning capabilities of artificial neural networks. Convolutional neural networks (CNNs) were

becoming popular and, significantly, the paper detailing Resnet was published at this time [9].

CNNsmake use of a limited set of “filters” which are then convolved mathematically across an

image. By reducing the input layer to a small number of filters, CNNs perform well at approxi-

mating the visual characteristics of animals, and out-perform traditional neural networks

Table 1. A selection of AI techniques listed in chronological order.

Reference Approach Data Set Measure Result

Qi et al– 2013 [46] Wavelet Hidden Markov Tree Impressionist/Post-Impressionist Attribution Accuracy 85–88%

Shamir– 2015 [47] Weighted Nearest Neighbors Jackson Pollock Painting Accuracy 93%

Van Noord et al– 2015 [48] AlexNet (CNN) Rijksmuseum Dataset Mean classification accuracy 78%

Liu et al—2016 Geometric Tight Frame Vincent van Gogh Painting Accuracy 87–89%

Van Noord et al– 2017 [50] Multi-scale CNN Rijksmuseum Dataset Mean class accuracy 82%

Dobbs and Ras– 2022 [51] ResNet101 (CNN) RIjksmuseum Datasest Mean class accuracy 91%

Schaerf et al– 2023 [52] EfficientNetB5 (CNN) Vincent van Gogh Painting Accuracy 96%

Schaerf et al -2023 [52] Swin-Tiny (ViT) Vincent van Gogh Painting Accuracy 87–88%

https://doi.org/10.1371/journal.pone.0302962.t001
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when it comes to feature extraction [53]. Accordingly, in 2015 van Noord et al applied a CNN
(AlexNet) to the Rijksmuseum data set and demonstrated that CNNs could be effective at art

authentication. Subsequently, van Noord et al expanded their approach and achieved a higher

classification accuracy on the same data set by adopting a multi-scale CNN [50]. Dobbs and

Ras have achieved the highestMA so far on the Rijksmuseum data set by using Resnet101. Fur-

ther improvements utilizing EfficientNetB5 were developed by Scharf et al (2023) who were

able to classify works by van Gogh with aMA of 96%.

Another form of deep learning—Vision Transformers (ViTs)—drives the latest trends in

computer vision. ViTs ‘tokenize’ images in order to digest their information. This image toke-

nization is similar to how the transformers in large-language models tokenize words and sen-

tences to digest text. In both cases, transformers decompose the data sets into smaller chunks

and then extract information from the chunks [54]. Last year, Schaerf et al demonstrated the

effectiveness of ViTs for identifying art-works by Vincent van Gogh.

Although Pollock’s abstract artworks have been the focus of high profile authenticity con-

troversies involving staggering financial and artistic consequences, they have not yet benefited

from an AI deep learning analysis. Given ResNet’s established history in art classification and

other applications, we focus our model comparisons on ResNet architectures along with a

number of other CNNs. We also include several ViTs because of their emerging status in AI
applications.

Considering our novel image ingestion approach, we note that our integration of tiling into

the ResNetmodel is similar in some ways to the tokenizing approach utilized by ViTs. How-

ever, our tiling strategy differs in one key aspect: when our technique decomposes the images

into tiles, we deliberately discard their relative positions while ViTs retain this information.

Our tiling strategy is based on the fractal composition of Pollock’s all-over style in which each

tile serves as an independent Pollock image. As such, our study uses deep learning networks in

a manner consistent with the previous scientific studies indicating that fractal parameters are

useful descriptions of Pollock’s complex patterns. Training our neural network on an array of

multi-scaled tiles is therefore an intriguing solution to boosting image numbers while aligning

our investigations with previous quantitative approaches to Pollock’s artistic signatures. Our

unique tiling approach, and its alignment with fractal patterning, also establishes the novelty

of our interpretative Zoom-in Charts and Maps. For example, whereas other AI approaches

identify the spatial locations of interesting features (e.g., unusual brushstrokes in paintings

[6]), our Maps instead compare the visual signatures of well-defined regions of the canvas at

different locations and size scales.

Methods

Image sets

The images of the 588 artworks used in our study were acquired in collaboration with The Pol-

lock-Krasner Foundation, The Pollock-Krasner Study Center, The International Foundation

for Art Research, and Francis V. O’Connor (chief Pollock connoisseur and co-author of the

Catalogue Raissonne). The collection and analysis method of all images complies with the

terms and conditions for the sources of the data. The S1 Table provides a comprehensive list of

the image sets. The image sets feature 2 overall categories of artwork—those established as

being created by Pollock and those established to be by other artists.

Pollock poured artwork. This category features all 189 Pollock artworks that satisfy our

definition of poured works and that have known images. Pollock used a variety of painting

techniques across his career [1]. Our definition of pouring is broad and is based on artworks

that feature patterns generated by fluid liquid poured onto the artwork’s surface. To ensure
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our technique is robust to variations in image quality and color variations, we use multiple

images of each painting when possible. More specifically, we employ 2 collections: one set fea-

tures color images typically with high image resolution (scanned at 1200 px/inch from a variety

of high quality art books [55–67]) and the other set features grayscale images with lower but

still good image resolution (scanned at 600 px/inch from the Pollock’s Catalogue Raissonne
[41]). Using this approach, 118 of the 189 Pollock artworks feature images from both sets.

Non-Pollock art works. This second category comprises 2 groups of artwork. The first

group features a diverse range of 284 poured works created by other artists. These include art-

works generated specifically for this authenticity project (e.g. 32 adult and 18 children’s paint-

ings created under the controlled conditions of ‘Dripfest’ events [17,31], and paintings

generated by mechanical devices such as the Pollockizer [35]), 100 commercially-available

poured artworks, poured artworks by well-known artists (e.g. by Michael Baldwin, Max Ernst,

Sam Francis, Arshile Gorky, Hans Hofmann, Henri Michaux, Norman Rockwell, Niki de

Saint Phalle, etc) and established poured imitations (e.g from the Knoedler Collection, the

Matter Collection, by Mike Bidlo, Ed Harris, and Francis O’Connor). To add robustness, the

non-Pollock category also features a diverse group of 115 abstract ‘non-poured’ abstract works

by famous artists (e.g. by George Braque, Jasper Johns, Wassily Kandinski, Paul Klee, Willem

De Kooning, Joan Miro, Clyfford Still, etc) [68]. Only 1 image of each artwork is used in the

non-Pollock category. The majority of the images are scanned at 1200 px/inch from a variety

of high quality art books, prints, and transparencies. Photographed works (Dripfest works,

One by the Pollockizer, Untitled by the Wind Machine, and Dummy by Richard Taylor) use

high resolution settings (200–400 px/inch). Images of the commercial poured paintings are

downloaded from the internet (72 px/inch).

Image pre-processing

Prior to training, images undergo a refined cropping process that employs a semi-automatic

technique. Selecting the 4 corners of the painting manually, we then determine the minimum

rectangle that encapsulates all of these points. We crop the image to this minimum rectangle.

We tile each cropped image by covering the image with an array of identical squares and we

then crop these to create a set of square sub-canvases. Based on the fractal model, we repeat

this tiling process for various tile sizes, starting from squares with 10cm side lengths (the small-

est tile width is set at 10 cm to avoid image resolution effects) and increasing in 5cm incre-

ments up to the maximum square size allowable for the painting. We center the tiling process

on the image. As an example, for an image of size 265cm x 265cm we start the tiling process

2.5cm in from the left edge and 2.5cm down from the top edge. We continue until we reach

the last tile, which is 2.5cm in from the right edge and 2.5cm up from the bottom edge. Once

completed, we re-size each tile to a standardized 256 x 256 pixels and feed them into the neural

network for classification. To illustrate this process, consider Blue Poles. We tile its

212.1cm × 488.9cm canvas with squares with side lengths ranging from 10cm up to 210cm,

resulting in 2,387 tiles. Notably, our approach refrains from introducing any additional aug-

mentations to the images beyond this pre-processing step.

Data partitioning

Machine learning typically requires a set of images to train the machine (the ‘training set’) and

a second set to iteratively evaluate the machine’s performance (the ‘validation set’). Tradition-

ally, the validation set is used to evaluate machine models featuring different hyperparameters.

In addition, we reserve a ‘hold out’ set of images that ensures that the iterative process of evalu-

ating models with different hyper-parameters is not prone to any unseen biases. In other
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words, we ensure that the model will generalize to images that it has never seen. This is espe-

cially important for our circumstances whereby the set of known images of Pollock’s artworks

is not anticipated to grow significantly. The hold out set differs from the validation set in that

it is never used to make decisions for improving or tuning our model. We evaluate the perfor-

mance of the different models using only the validation set. Once we decide on the final

model, we then test it on the hold out set. We refer to the combination of the validation and

hold out sets as the ‘inference set’.

Out of our 189 Pollock poured works, 142 (75.1%) are selected for the training set, 33

(17.5%) for the validation set, and 14 (7.4%) for the holdout set. For the Pollock images, the

holdout set is randomly selected from the 189 paintings with the exception of deliberately

including Blue Poles (as one of his most iconic images) and at least 1 painting from each year

that he created a poured painting (i.e. 1943 and 1946–1955). Out of our 399 non-Pollock

works, 304 (76.2%) are selected for the training set, 72 (18.0%) for the validation set, and 23

(5.8%) for the holdout set.

Importantly, all of the tiles extracted from an image in our training set are used during the

model training process. None of the tiles extracted from an image in our training set are used dur-

ing model validation or when testing the model using the holdout set. The same is true for both

the holdout and validation images. In total, a dataset of 97,275 Pollock tiles and 150,242 non-Pol-

lock tiles are collected. Table 2 summarizes the relative numbers of images dedicated to each role.

Training

The machine uses the tiles described above to learn about the visual features of the artworks.

The machine compares all of the tiles within the established Pollocks to the tiles within works

known to be created by other artists. During this comparison, the machine identifies a collec-

tion of visual features that are useful for distinguishing between the Pollock and non-Pollock

artworks. Based on the features present in a tile, it then assigns a value from 0 and 1 to the tile,

which we call the Pollock Signature. A Pollock Signature of 0 indicates that the tile does not

have the distinguishing visual features of a Pollock work, while a value of 1 indicates that it

does. Values closer to 1 indicate increasing levels of confidence from the machine that the art-

work contains the distinguishing visual features of a Pollock. All tiles are considered equally in

training.

Table 2. Data partitioning of Pollock and non-Pollocks according to the number of artworks, the number of images of these artworks, and the number of tiles in

these images.

Data Partitioning (artworks)

Train Validation Hold Out

Pollock 142 (75.1%) 33 (17.5%) 14 (7.4%)

non-Pollock 304 (76.2%) 72 (18.0%) 23 (5.8%)

Data Partitioning (images of the art works)

Train Validation Hold Out

Pollock 246 (75.7%) 51 (15.7%) 28 (8.6%)

non-Pollock 307(76.4%) 72 (17.9%) 23 (5.7%)

Data Partitioning (Tiles)

Train Validation Hold Out

Pollock 72,609 (74.6%) 12,983 (13.3%) 11,683 (12.0%)

non-Pollock 111,464 (74.2%) 31,173 (20.7%) 7,605 (5.1%)

https://doi.org/10.1371/journal.pone.0302962.t002
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The machine then averages the Pollock Signature across all of the tiles (i.e. across different

locations and different sizes) to generate a signature for the whole artwork called the Pollock

Matching Factor (PMF). The PMF value lies on a scale from 0 to 1. A PMF of 1 indicates that

every tile in the work displays a Pollock Signature of 1. Similarly, a PMF of 0 indicates that all

tiles in the work have a Pollock Signature of 0. Increasing values above 0 indicate that more

and more of the artwork’s tiles have a high (~1) Pollock Signature. A data flow diagram of the

full training process is shown in Fig 2.

Data quantification and visualization

The Pollock Dial. Because the PMF values vary from 0 to 1, we can visualize this informa-

tion on a dial to easily compare PMFs of different artworks. The Pollock Dial plots the PMF of

artworks using angular position with the PMF increasing in the clockwise direction. The Dial

focuses on images from the inference set. Using the images on the Pollock Dial, we identify a

PMF ‘Threshold’—artworks that reach or exceed the PMF ‘Threshold’ can be considered a

Fig 2. A flow diagram of the image pre-processing, data partitioning, and machine learning. The image is cropped

and then tiled at multiple size scales (3 of the 22 tile scales are shown). The machine trains on the full set of tiles.

During inference, the machine assigns a Pollock Signature to each of the tiles, which are then grouped by size and an

average Pollock Signature is assigned. Finally, the average Pollock Signature is averaged across tile sizes to calculate the

PMF. The intermediate numbers shown in the diagram are Pollock Signatures of the tiles and the final number is the

PMF.

https://doi.org/10.1371/journal.pone.0302962.g002
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close match to the visual appearance of Pollock’s works. This Threshold is calculated by deter-

mining the PMF that maximizes theMA when distinguishing between the collections of Pol-

lock and non-Pollock works.

The Zoom-in charts and scaling parameters. The Zoom-In Charts examine how the Pol-

lock Signatures vary with tile size. To generate the Charts, the machine groups tiles by their

size and calculates the average Pollock Signature for each tile size. This average value is then

plotted as a function of tile size using a bar chart. The Chart also displays the PMF of the whole

artwork (which corresponds to the average across the tile sizes of all of their average Pollock

Signatures). Bars with Pollock Signatures below the PMF Threshold are colored red while

those above are green.

As discussed in the Introduction, previous research employed computers to perform a frac-

tal analysis of Pollock’s poured paintings. For fractal artworks, the statistical qualities of the

painted patterns repeat at increasingly fine size scales. To be consistent with fractals, we expect

the Pollock Signatures to similarly repeat at different tile sizes. We introduce Scale Invariance

(SI) to quantify the variation in the Pollock Signature with tile size. This is based on the root-

mean-square variation across all tile sizes. Its range is normalized using the function f(y) = 1 -

(2*y). Adopting this normalization, SI = 1 corresponds to no variation in Pollock Signature as

we zoom in and SI = 0 corresponds to the maximum possible variation. We also introduce

Magnification (M) to quantify the extent of the zoom-in, withM representing the ratio of the

sizes of the largest and smallest tile widths.

The signature maps and spatial parameters. Whereas the Pollock Zoom-Ins examine

the variation in Pollock Signatures with size scale, the Signature Maps examine how the Pol-

lock Signature varies for different locations across the artwork. We generate a Map for each

painting in the inference set. At each location, the Map averages the Pollock Signature of the

various sized tiles at that location. In other words, at each pixel location we identify all of the

multi-scaled tiles that contain this pixel. The Pollock Signatures of these tiles are then averaged.

This value is plotted at the pixel location using color coding (red for values below the PMF
Threshold and green for values above). During this process, we slide the arrays of tiles across

the image and calculate the average of the Pollock Signatures across the various slide positions.

This sliding technique generates a smooth map by eliminating any discontinuities caused by

crossing the boundaries of tiles with large Signature differences. The completed Map allows us

to identify regions of the painting that deviate away from Pollock’s style. We emphasize that,

although related to the work’s PMF, these Map Signatures use a different averaging technique

to the one used to generate the PMF.

We introduce 2 parameters to quantify spatial variations in the Map. Uniformity (U) quan-

tifies the variation in the Pollock Signature across different locations. This is based on the

root-mean-square variations of the Pollock Signatures in the width and height directions. The

range of the variation in each direction is then normalized using the function f(y) = 1 - (2*y).
Adopting this normalization, U = 1 corresponds to no variation and U = 0 corresponds to the

maximum possible variation. The U value for the painting corresponds to the mean of the U
values for the 2 directions. Coverage (C) employs a pixel count to quantify the relative sizes of

the red and green coverage in the Map, with C = 0 corresponding to all locations being red and

C = 1 corresponding to all regions being green.

Fractal analysis: Differential box counting and shift differential box counting. Some

previous forms of fractal analysis of Pollock’s poured works extracted layers with different col-

ors from the painting and then analyzed the pattern scaling properties of each of these layers

separately [17]. Other approaches investigated the scaling properties of the ‘whole’ painting

(ie. the combination of all of the layers in the painting). This is usually done by examining the

luminance variations of the patterns. Because we train the machine on the ‘whole’ pattern, we
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adopt the luminance approach and apply Differential Box Counting (DBC) and Shift Differen-

tial Box Counting (Shift-DBC) algorithms to calculate the works’ fractal dimension D. These

techniques are commonly used in the study of natural and synthetic patterns with fractal-like

characteristics. They allow researchers to quantify and classify the structure of images from

various disciplines, including geology, biology, and computer vision [69].

For the DBC technique, a square crop of the grayscale image of the artwork is converted

into a 3D representation by plotting the pixel brightness in the height direction (normalized to

the painting’s physical dimensions). This 3D space is covered with an array of identical ‘boxes’,

each with a side-length L. At each location in the square crop, we then calculate the number of

boxes that fit into the difference between the minimum and maximum grayscale values in the

height direction. NB is the sum of these box counts across all of the locations. This calculation

is repeated for arrays of boxes with different L values. A scaling plot is then generated which

plots NB vs L on log-log scales. Fractal behavior is characterized by the power law relationship,

NB ~ L−D, and D can therefore be extracted from the slope of the linear part of the scaling plot

[69]. To convert this dimension in 3D space to the painting’s physical 2D space, a value of 1 is

subtracted from the D value obtained from the scaling plot.

The Shift-DBC technique is an extension of DBC technique and introduces box shifting.

Instead of placing boxes in a fixed grid, Shift-DBC shifts the box positions, allowing a more

accurate estimation of D. The D value obtained from these 2 methods provides insight into

how the image’s features repeat at different scales to generate the overall fractal pattern. In par-

ticular, because higher D values correspond to steeper slopes in the scaling graph, high-D
images generate larger NB values at smaller scales than corresponding lower-D images. In this

way, D quantifies the relative contributions of the fine and coarse patterns in the fractal image.

It therefore serves to quantify the visual complexity of fractal patterns such as those found in

Pollock’s works. D lies on a scale between 1 and 2 with simple, sparse fractals lying closer to 1

and rich, intricate fractals lying closer to 2.

Model selection and performance

We train our machine using the model architecture ResNet, which is an abbreviation for Resid-
ual Network. This artificial neural network was introduced by researchers at Microsoft

Research in 2015 and soon after won a general image classification challenge [9]. It is recog-

nized as a powerful tool used frequently in computer vision tasks, particularly for recognizing

objects in images. Artificial neural networks such as ResNet consist of many hierarchical layers

analogous to those used by our brain when processing images. By employing ResNet, the

machine can detect a vast array of everyday visual signatures. We complement this model

architecture by reserving the last few layers of our neural network for discriminating specifi-

cally between artworks by Pollock and those not by Pollock. We do this by showing the net-

work our digital collection of Pollock artworks, imitations of Pollock art works, and a variety

of other abstract artworks. In this way, our machine transcends from the equivalent of an art

novice to a Pollock expert.

More specifically, ResNet’s innovation over other neural networks lies in its introduction of

‘skip connections’ that help the network to learn and optimize more effectively [10]. Transfer

Learning (LT) leverages knowledge gained from one task to improve performance for a differ-

ent but related task. Instead of starting from scratch, TL uses a pre-trained model that has

already learned basic features from a larger and more varied data set. We use TL to adapt

ResNet from its task of classifying images featured in the Imagenet data set to our specific Pol-

lock-related task [70]. Imagenet-1K provides images of a variety of objects, ranging from bea-

gles to violins [71]. This pre-training saves time and computational resources, exposes the
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machine to a rich set of visual features, and improves the machine’s ability to generalize

beyond a specific type of image. The initial layers of the pre-trained model are used as a foun-

dation. The later layers are adjusted to fit our Pollock-detection task. For our project, we utilize

fastai [72] and timm [73] model libraries for neural network architectures.

A list of hyperparameters that we employ during model development can be found in the

S2 Table.MA is a crucial parameter for assessing model performance. Another criterion is

minimizing the PMF difference between images of the same painting from different sources.

The following hyper-parameters are also important to consider: learning rate, batch size, and

number of epochs. Learning rate determines how fast a model learns from the data. A higher

rate produces faster learning but runs the risk of overshooting without settling on a good solu-

tion, while a lower rate produces slower learning but benefits from being more precise. The

batch rate is the number of tiles used in each iteration of training. The number of epochs is the

number of times the entire training data set is processed by the model. We choose a learning

rate of 10−3, a batch size of 64, and 1 epoch. We note that the high accuracy and performance

is not increased by considering different epochs or batch sizes (see S1 Fig).

In our model selection process, we investigate numerous deep learning model architectures

(shown in Fig 3 and detailed in S3 Table). For each model test, we adjust the PMF Threshold

to maximize theMA. Fig 3 illustrates the meanMA for various CNNmodel architectures, all of

which use our multi-scaled tiling ingestion method (blue). The highest performing model

within the ResNet50model architecture is plotted separately (green) because ultimately this

becomes our chosen model. The figure also includes 3 ViTmodel architectures that use our til-

ing method (orange) and 3 ViTmodel architectures that are trained only on the full-scale

image (red). We train ViTs in these 2 different ways to better compare and understand the

Fig 3. Mean MA for the various model architectures considered. The blue bars represent CNNmodel architectures, including ResNet50. The orange/red bars

represent ViTmodel architectures. Within each model architecture, the error bars quantify the variability inMA performance between models generated by

choosing different random seeds during training. The green bar represents the highest performing model within the ResNet50model architecture and

ultimately becomes our chosen model. All models are trained using our multi-scaled tiling method, except for the red group models which are trained on the

full images. While the red bars are trained using a batch size of 4 due to computational limitations, the faded red bar is trained with a batch size of 32.

https://doi.org/10.1371/journal.pone.0302962.g003
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capabilities of our chosen model. We find that the ViTs trained without our tiling approach

consistently underperform compared to the CNNs. The purpose of training ViTs using our til-

ing method is to more directly compare their performances to the CNN architectures. Since

ViTs already ‘tokenize’ an image into smaller chunks, their native data ingestion mechanism

might be expected to reduce the impact of applying our tiling approach for these models. How-

ever, incorporating our tiling into ViTs nevertheless improves theirMA performance. Taken

together, these results highlight the suitability of using ResNet50 coupled with our tiling inges-

tion method for classifying the all-over style of images in our data set.

For all the CNNmodel architectures trained in Fig 3 we chose a batch size of 64, 1 epoch,

and an image size of 256 x 256 pixels and 3 color channels. The orange ViT architecture mod-

els use an image size of 224 x 224 x 3 (necessary to match the input architecture), but otherwise

use the same hyperparameters as the CNNs. Additional model parameters are outlined in S2

Table. For training the red ViTs, we use a larger image size (512 x 512 x 3), 1 epoch, and a

reduced ‘batch size’ of 4 because of computational limitations. We note that, because tiny_vit
is a more computationally efficient ViT architecture, we are able to run models with a batch

size of 32 and 2 epochs (after which there is no improvement inMA). This still results in an

inferior performance (faded red top) when compared to ResNet50.

Ultimately, we choose ResNet50 as our main model architecture over the other CNN archi-

tectures due to its consistently highMA and its established track record for a variety of image

classification tasks [7,9,11,74]. We note that ResNet50 exhibits comparable performance to

ResNet101 while requiring significantly fewer computational resources. We observe a notable

improvement in model performance when using ResNet50 compared to ResNet34 with only a

marginal increase in training time. We choose ResNet50 over the ViTs considered due to

ResNet50’s performance in Fig 3 and because its longer history of operation across society

might be more compelling for the current art world.

We note that ResNet50’s performance deteriorates if we exclude our tiling process and sim-

ply train on the whole image:MA drops by 16.7% and 9.4% for batch sizes 4 and 64, respec-

tively. To reach this higher performance, we explore different ‘voting’ schemes in terms of how

the Pollock Signatures of each of the individual tiles would be used when calculating the PMF.

Two example schemes include assigning each tile size a single ‘vote’ and giving each tile (irre-

spective of size) a single vote. The former approach yields a higherMA. Due to the prevalence

of smaller tile sizes, the latter approach would be vulnerable to a dominance of small-scale

characteristics. We also investigate giving different tile sizes a weighted ‘vote’ but we keep with

the simpler equal voting scheme because the weighted approach doesn’t improve

performance.

Finally, in terms of selecting which images are utilized in the validation set, we employ mul-

tiple random combinations to identify an effective validation set. This ensures robustness

across different sets of images. While training on various validation sets yields good perfor-

mance overall, we ultimately select the validation set that delivers the best results for ResNet50.

This comprehensive approach allows us to fine-tune our model selection and achieve optimal

MA when distinguishing between the Pollock and non-Pollock groups.

Model generalization

In order to determine if our technique can generalize to other artists, we perform the following

analysis. Rather than attempting to identify artworks by Pollock, we select another artist cate-

gory from our collection of images and instead determine if our model can identify this cate-

gory. We choose the Dripfest images for this test. These are a set of paintings created by 18

children and 32 adults in controlled settings. An example of each is shown in Fig 4. These
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novice painters attempted to imitate Pollock by pouring paint. We apply the same approach as

before, but instead train our model to identify Dripfest paintings. To do this, we randomly

sample a variety of images from our image collection, including authentic works by Pollock.

This ensures a diverse selection of non-Dripfest paintings while maintaining a balanced train-

ing set.

One big difference from classifying Pollock artworks focuses on the number of paintings.

Whereas we had 189 works in the Pollock category, the Dripfest category features 50. We

therefore sub-sampled our data set of non-Dripfest images to achieve a balance of ‘imitation’

and ‘authentic’ paintings. Importantly, whereas approximately 50% of the paintings in our

main study are by Pollock, only 16% of the images in our generalization test are by Pollock.

Table 3 shows the image partitioning in more detail. Despite this much smaller number of

images used in training, our machine performs exceptionally well with this alternative data

configuration.

Fig 4. An example of an adult (top) and child (bottom) Dripfest image (61.5 x 91.5 cm).

https://doi.org/10.1371/journal.pone.0302962.g004

PLOS ONE Using machine learning to distinguish between authentic and imitation Jackson Pollock poured paintings

PLOS ONE | https://doi.org/10.1371/journal.pone.0302962 June 17, 2024 15 / 42

https://doi.org/10.1371/journal.pone.0302962.g004
https://doi.org/10.1371/journal.pone.0302962


Utilizing this new data set, we achieve aMA of 100% by using a Threshold for the Matching

Factor (i.e the equivalent of PMF) of 0.85. This high accuracy is consistent with previous fractal

investigations which successfully differentiated Dripfest paintings from Pollocks [17,31]. As

we will see, our machine uses fractal content predominantly in its decisions. This result dem-

onstrates that our model can be applied to other artists employing the pouring style.

Results

Pollock matching factors and The Pollock Dial

The Pollock Dial is shown in Fig 5. The green dots represent Pollock poured works and the red

dots represent artworks created by the other artists. Representative images of varying PMF val-

ues are shown in the outer circle for comparison. Moving clockwise around the Dial, the titles

of these artworks are: Untitled (Sam Francis), Adult 15 (Dripfest), Untitled (Wind Machine),

Abstraction Orange (Jean-Paul Riopelle), Picasso’s Guernica in the Style of Jackson Pollock
(Michael Baldwin),Water Birds (Pollock), Free Form (Pollock), One (Pollockizer), Untitled
(Henri Michaux), Enchanted Forest (Pollock), and Untitled Mural (Pollock). The PMF Thresh-

old is shown by the dashed radial line. We find that setting the Threshold at 0.56 generates the

highest machine accuracy (MA = 98.9%) for distinguishing between the Pollock and non-Pol-

lock groups. The image of a demonstration painting, Dummy (1504 x 112.8cm, by Richard

Taylor), is shown at the Dial’s center (a full image is shown later in Fig 13). Dummy is selected

from the non-Pollock validation set and serves as a useful demonstration because its mid-

range PMF (0.55, represented by the black arrow in the inner circle) lies close to the

Threshold.

The Pollock artworks with the lowest PMFs on the Dial are 2 of his earliest poured paint-

ings—Water Birds from 1943 (0.56) and Free Form from 1945 (0.60). The majority of works by

Pollock have the highest PMF value of 1. The non-Pollock artworks on the Dial have PMFs

that span the range from 0 to 0.95. The Dial features only 2 images that the machine miss-clas-

sifies as Pollocks (i.e. that meet or exceed the Threshold). One was generated by ‘The Pollocki-

zer’—a chaotic pendulum developed to generate Pollock imitations [35] (see Discussion). The

other was Untitled by Henri Michaux (see Discussion). Whereas the Dial focuses on images in

the inference set, we might also compare PMFs of paintings that are used in the training set

when helpful. S4 Table provides a list of PMF values for all of the Pollock paintings.

Because the 2 groups of artwork congregate mainly at the 2 extremes of the Dial (non-Pol-

locks at low PMF and Pollocks at high PMFs), many of the data points are superimposed.

Because of this, in Fig 6 we show a histogram of the numbers of artworks, n, at various PMF
values for the 2 groups. In this figure, we also show how the machine accuracy decreases as the

PMF Threshold is moved away from its optimal value of 0.56. Because of the relatively few

paintings with mid-PMF values, the accuracy remains fairly stable for mid-values and then

deteriorates significantly at the very low and high values. In future research, we plan to calcu-

late a machine confidence to express the probability of artworks having Pollock’s signatures

based on PMF value. This will address the discrete character of the Threshold. However, it is

clear from the histogram’s 2 distributions that the machine gradually gains confidence in a

Table 3. Data partitioning of Dripfest and non-Dripfest artworks according to the number of artworks.

Data Partitioning (artworks)

Train Validation Hold Out

Dripfest 38 (76.0%) 9 (18%) 3 (6%)

Other 38 (55.1%) 11 (15.9%) 20 (29.0%)

https://doi.org/10.1371/journal.pone.0302962.t003
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visual match to Pollock’s work as the PMF increases beyond the Threshold and then gains very

high confidence close to PMF = 1. Similarly, the machine gradually gains confidence in a visual

miss-match as the PMF decreases below the Threshold and then gains very high confidence

close to PMF = 0.

Image quality confirmation. To increase robustness to variations in image quality and

color variation, we use 2 sets of Pollock images: high quality color images and lower quality

grayscale images (see Methods for more details). All images tested from both sets are classified

correctly, with a mean PMF difference between the 2 sets of only 0.01. This small difference

confirms that the technique is robust to reasonable variations in image quality. We also con-

vert the color images to grayscale and find that the average PMF drops by only 0.02. This small

difference indicates that the Pollock Signatures used by the machine are predominantly influ-

enced by the patterns rather than the colors of the Pollocks’ features.

In Fig 7, we show the deterioration in PMF that occurs as we artificially reduce the image

resolution for the high resolution, color images and lower resolution, grayscale images. We

plot the Resolution Fraction (RF) on the horizontal axis. RF = 1 corresponds to the scanned

resolution whereas, for example, RF = 1/30 corresponds to decreasing the pixel resolution

along each direction (width and height) by a factor of 30. When the colored lines drop below

the horizontal line (indicating the PMF Threshold of 0.56), we refer to this as falling off the

Fig 5. The Pollock Dial (see text for details).

https://doi.org/10.1371/journal.pone.0302962.g005

PLOS ONE Using machine learning to distinguish between authentic and imitation Jackson Pollock poured paintings

PLOS ONE | https://doi.org/10.1371/journal.pone.0302962 June 17, 2024 17 / 42

https://doi.org/10.1371/journal.pone.0302962.g005
https://doi.org/10.1371/journal.pone.0302962


‘resolution cliff.’ At this point, the resolution decrease distorts the Pollock Signatures so much

that the machine will incorrectly classify Pollocks as imitations. The orange line falls off the

resolution cliff at a lower RF than the blue line. For both lines, the scanned resolution (RF = 1)

lies well away from the cliff. The top images show close-ups of Pollock’s Blue Poles and

Dummy to demonstrate the drastic resolution reduction needed to fall off the cliff. More gen-

erally, PMF is not correlated with pixel resolution (PR is the pixel density using physical mea-

surement units, i.e. of the artwork rather than its image) when we look across all Pollock and

non-Pollock images (Fig 8).

In Fig 9, we plot the mean PMF for the Pollock and non-Pollock images and show how

these values deteriorate when we artificially change the image contrast (top) and image bright-

ness (bottom). In each case, we restrict the changes to the range of values relevant to human

viewing. Pollock works feature a web of multiple interacting layers of paint that tend to gener-

ate low contrast, low brightness images. It is therefore expected that, for example, artificial

boosts to contrast and brightness will be accompanied by a drop in PMF and that, equivalently,

these might increase the PMF of imitations. Nevertheless, Fig 9 demonstrates that these

changes do not cause the PMF values of the non-Pollocks to cross the Threshold (and therefore

do not impactMA) provided images stay within the reasonable (i.e. natural) levels of bright-

ness and contrast.

The Zoom-in Charts. In Fig 10, we show the Zoom-In Chart for Dummy. Its PMF value

is indicated in the Chart by the right hand arrow pointing at the dashed line. The vertical bar

to the left of the Chart represents the color variations shown in the Chart. Tile sizes with a Pol-

lock Signature below the PMF Threshold are shaded red while those above are shaded green,

with the shade of the color darkening as the Threshold is approached. The Chart therefore

Fig 6. A histogram of the number of Pollock (green) and non-Pollock (red) images featured in the Pollock Dial. The number of images,

n, in a given PMF range is plotted on the left y axis and the PMF values are plotted on the x axis. The black vertical line represents the

chosen PMF Threshold. The black line is theMA obtained by shifting the threshold to different PMF values. TheseMA values are plotted

on the right-hand y axis.

https://doi.org/10.1371/journal.pone.0302962.g006
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allows us to identify size scales that deviate away from Pollock’s style based on these color vari-

ations. For Dummy, SI = 0.37 andM = 11.00.

In Fig 11, we superimpose the Zoom-In Chart averaged across all non-Pollock poured

paintings on the Zoom-In Chart averaged across all Pollock poured paintings. The Charts con-

sider tile sizes up to the maximum tile size found in a Pollock painting (270 cm). Whereas the

Pollock tile averages are all green, the non-Pollocks are all red. Furthermore, whereas the Pol-

locks reveal the scale invariance expected for fractals, this is reduced for the non-Pollocks.

To compare Dummy’s Zoom-in Chart to Pollock’s work, in Fig 12 we show the Zoom-In

Chart for Blue Poles, which is quantified by SI = 0.99 andM = 21.00. As expected, the Zoom-in

Chart reveals all tile sizes to be green for Blue Poles—the average Pollock Signatures are consis-

tently close to 1 at all tile sizes.

The signature maps. In Fig 13, we show a grayscale image of Dummy (left panel) and the

same image with the Signature Map overlaid (right panel). The bottom panel focuses on Dum-
my’s Map. The color bar represents the color variations used in the Map. Locations with an

average Pollock Signature below the PMF Threshold are shaded red while those above are

shaded green, with the shade of the color darkening as the Threshold is approached. The Map

therefore allows us to identify regions of the artwork that deviate away from Pollock’s style

Fig 7. A Plot of PMF versus Resolution Fraction (RF) for the 2 sets of Pollock images: blue (high resolution, color

images) and orange (lower resolution, grayscale images). The top images show close-ups of Pollock’s Blue Poles and

Dummy at RF = 1 (scanned resolution, left) and RF = 1/30 (cliff resolution, right).

https://doi.org/10.1371/journal.pone.0302962.g007
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based on these color variations. The panel above the Map plots the average Pollock Signature

as we move from left to right across the canvas and the panel to the right does the same as we

move from bottom to top. The Map for Dummy is quantified by U = 0.95 and C = 0.29.

To compare Dummy’s Signature Map to Pollock’s work, in Fig 14 we show the equivalent

images for Blue Poles, which is quantified by U = 1.00 and C = 1.00. As expected from his all-

over style, the Signature Map is uniformly green and the Signatures are close to 1 for all widths

and all heights. Significantly, the famous 8 ‘poles’ painted within the art work are sufficiently

splattered that they have high Signatures and do not disrupt the uniformity of the Map.

In Fig 15, we show a Map for Pollock’s Cut-Out (1948) which has an unusual artistic feature

—the shape of a human figure has been removed from the center of the painting. The machine

detects this region successfully, as indicated by the darkened region at the center of the Map.

The drop in Pollock Signature in this central region is also apparent in the left-right and bot-

tom-top plots. Accordingly, U = 0.93 and C = 1.00 are lower than for Blue Poles. Significantly,

the Pollock Signatures in the regions surrounding the cut-out are high and these ensure that

the PMF = 0.92 lies above the PMF Threshold and that the machine correctly classifies the

painting as having the visual style of a Pollock.

Discussion

The all-over style and pollock timeline

We declared 3 scientific goals in the Introduction. The first and second are linked: can we

achieve a highMA for distinguishing Pollocked poured works by integrating a robust, estab-

lished machine model with a novel image ingestion approach based on multi-scaled tiles? Our

resulting high value,MA = 98.9%, demonstrates the power of machine learning for future Pol-

lock authenticity studies when its results are combined with other techniques such as human

vision inspection, provenance investigations, and materials analysis. The highMA also pro-

vides scientific evidence that Pollock’s artistic signature is quantifiably different to those of

Fig 8. A plot of PMF versus RF for the Pollock (green) and non-Pollock (red) images on the Pollock Dial.

https://doi.org/10.1371/journal.pone.0302962.g008
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other artists who adopt his technique of pouring paint. Pollock’s contributions to modern art

therefore go beyond making the pouring technique famous. He should be celebrated for his

specific form of pouring paint. Our third scientific goal probes this specific form by asking the

following question—can we develop novel visual aids and associated interpretive parameters

to move beyond the ‘black box’ character ofMA by relating the machine’s Signatures to the

artistic development of Pollock’s all-over style?

In Fig 16, we chart the evolution of the 5 machine parameters (PMF, SI,M, C, and U),

beginning with his first poured work in 1943 through to his final poured work in 1954. SI and

M are grouped together as scaling parameters: C andU are grouped together as spatial parame-

ters. In addition to the machine parameters, we also chart changes in Pollock’s productivity (N
is the number of paintings per year) and composition (A is the canvas area and AR is its aspect

ratio). In each case, the black dots represent individual paintings (many of which are superim-

posed) and the red lines represent the average values for each year.

The colored backgrounds represent the phases of his development from an art history per-

spective: ‘preliminary’ (pink), ‘transitional’ (purple), ‘classic’ (green), and ‘final’ (yellow) [1].

Fig 9. Average PMF plotted against the image contrast (top) and image brightness (bottom) for the Pollock (green)

and non-Pollock images (red). The broad colored regions correspond to the standard deviations in the data. The

horizontal line represents the PMF Threshold. In each case, 0 corresponds to the undistorted value on the x axis.

https://doi.org/10.1371/journal.pone.0302962.g009
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His ‘preliminary’ works are composed of a few poured trajectories superimposed on a domi-

nant brush-worked background. His transitional works feature a growing contribution of

interacting poured trajectories dominating over the brushwork. His ‘classic’ works are charac-

terized mainly by poured trajectories. His ‘final’ works mark a fall off from his large, densely

poured masterworks of 1950–52. Intriguingly, there is little variation in PMF with year. Aside

Fig 10. Zoom-in Chart for Dummy (see text for details). The images above the Chart show example tile images.

https://doi.org/10.1371/journal.pone.0302962.g010

Fig 11. The Zoom-In Chart averaged across all non-Pollock poured paintings superimposed on the Zoom-In Chart averaged across all

Pollock poured paintings.

https://doi.org/10.1371/journal.pone.0302962.g011
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from some very early variations, his distinguishing characteristics remain constant through

the years. This implies that, although the variations between the 4 phases are significant for

charting Pollock’s visual development, they all display Pollock’s ‘hand’. The differences in Pol-

lock’s evolution are subtle when compared to the differences between Pollocks and non-

Pollocks.

The circled value to the right of each panel in Fig 16 quantifies the correlation between the

PMF and each of the parameters, where 0 corresponds to no correlation (i.e. the relationship is

random) and 1 corresponds to the strongest correlation. Interestingly, there is little correlation

between PMF and most parameters (N, A, AR,M). This indicates that Pollock’s Signature

remains strong as these characteristics vary across the paintings. Notably, Pollock’s Signature

has no correlation with the canvas shape and size that he chose to work on. Taken together,

this implies that the presence of the canvas edge has little impact on his Signature. This is con-

sistent with traditional descriptions of his painting process. These picture Pollock as painting

beyond the confines of his canvas, with the studio floor capturing the paint trajectories that

extend beyond the artwork. There is also only a very weak correlation with the number of

paintings he created at a given time. This is intriguing because at this peak in 1950 Pollock cre-

ated some paintings in parallel rather than consecutively. There has been speculation concern-

ing the impact of this switching between works on their appearance. Our result suggests that

his Signature is strong whether it arose from his peak production or from rarer works painted

in isolation.

To examine the correlation with the 4 machine parameters in detail, Fig 17 plots their rela-

tionship with PMF directly. The colored backgrounds are used to highlight the PMF ranges

that are most populated by the artworks, and the dashed horizontal lines denote the mean val-

ues of SI,M, U, and C. A medium strength correlation can be seen between PMF and the spa-

tial characteristics (U, C) of the artworks, consistent with Pollock’s all-over style. The low

Fig 12. The Zoom-in Chart for Blue Poles (see text for details). The images above the Chart show example tile images.

https://doi.org/10.1371/journal.pone.0302962.g012
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correlation between PMF andM can be expected from the low correlation with canvas size—

small canvases offer little opportunity for zooming out from the small to large tiles. Strikingly,

there is a very strong correlation between PMF and SI, consistent with the fractal character of

Pollock’s work. In addition to examining the correlations of the bulk of Pollock’s work, Fig 17

also provides clarity for why the images of Pollock’sWater Birds (PMF = 0.56) and Free Form
(PMF = 0.6) appear at the center of the Pollock Dial. Although their U, C, andM values appear

close to the mean values, their SI values lie well below. This suggests that the poor fractal scal-

ing of these images distinguishes them from the rest of Pollock’s work. Below, we will examine

the key elements of fractality and uniformity of Pollock’s work in more detail.

Fig 13. Spatial investigation of Dummy’s Signatures. Grayscale image ofDummy (top left panel) and the same image

with the Signature Map overlaid (right panel). The bottom panel focuses onDummy’s Map. The panel above the Map

plots the average Pollock Signature as we move from left to right across the canvas and the panel to the right does the

same as we move from bottom to top.

https://doi.org/10.1371/journal.pone.0302962.g013
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Pollock’s all-over style

Although Pollock is famous for the spatial uniformity of his all-over style, this quality of his

work hasn’t previously undergone a detailed examination using quantitative image analysis

techniques. The above results support the traditional picture of his all-over style. The mean val-

ues of C and U are both close to 1, indicating that expansive regions of the canvas surface have

very strong Signatures (colored green in the Maps) and, accordingly, there is little variation in

these Signatures across different locations. Our Tests involving changes in canvas orientation

are further consistent with his all-over style. The average PMF values at different orientations

(rotations along with vertical and horizontal flips of the canvas) of the Pollocks in the inference

set do not vary from the average PMFmeasured in the original orientation.

The Pollock Maps shown in Figs 14 and 15 emphasize their value as interpretational tools.

Blue Poles serves as a powerful demonstration of the spatially-uniform Signature of his all-over

style. In particular, the 8 poles are sufficiently splattered that they do not impact the uniformity

of the Signatures nor the overall PMF. This effect is seen in other examples of his work. For

example, Comet features a long white line stretching from top to bottom, and The Deep fea-

tures a large dark region at its center. These features do not disturb the associated Maps

because of their splattered character. More extreme deviations, such as the cut-out shape in Fig

15, result in a darkening of the map in the impacted region. However, the high Signatures in

the surrounding regions ensure a high PMF. This is seen in other examples of his work. For

example, TheWooden Horse features a wooden object that darkens the impacted region but

doesn’t dip the PMF below the Threshold.

Fig 14. Spatial investigation of Blue Poles’s Signatures. Grayscale image of Blue Poles (top left panel) and the same image

with the Signature Map overlaid (right panel). The bottom panel focuses on Blue Poles’s Map. The panel above the Map

plots the average Pollock Signature as we move from left to right across the canvas and the panel to the right does the same

as we move from bottom to top.

https://doi.org/10.1371/journal.pone.0302962.g014
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Returning to the role of the canvas edge, Fig 18 shows radial maps for 3 example paintings

—Water Birds (one of Pollock’s first poured works, appearing close to the Threshold with

PMF = 0.56), Blue Poles (an exemplar of Pollock’s all-over style with PMF = 1) and Henri

Michaux’s Untitled (a rare example of a non-Pollock work lying above the Threshold with

PMF = 0.95). The middle and right columns show radial maps that have been divided into 3

regions (inner, middle, and outer) and the mean Signature averaged across each region is plot-

ted. The middle column is plotted using the absolute colors (i.e. as used in the standard Maps

Fig 15. Spatial investigation of Pollock’s Untitled: Cut-Out (77.3 x 57cm, Ohara Museum of Art, Japan). Grayscale

image of Cut-out (top left panel) and the same image with the Signature Map overlaid (right panel). The bottom panel

focuses on Cut-Out’s Map. The panel above the Map plots the average Pollock Signature as we move from left to right

across the canvas and the panel to the right does the same as we move from bottom to top.

https://doi.org/10.1371/journal.pone.0302962.g015
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and shown in the bottom bar). The right column shows relative colors to highlight small

changes. ForWater Birds, the Signature varies from 0.607 (purple) to 0.632 (yellow), Blue Poles
varies from 0.997 to 0.998, and Untitled varies from 0.897 to 0.986. These values emphasize the

subtle relationship between PMF and ‘all-overness’: Untitled has a higher PMF thanWater
Birds, even though it has a larger radial variation in its Signature.

Intriguingly, all 3 paintings display a systematic deterioration in Signature as the canvas

edge is approached. This indicates that even if Pollock continued to paint beyond the artwork’s

intended boundary, the boundary nevertheless had a subtle effect on his pouring technique.

There are clues that Pollock sometimes spotted this deterioration and took measures to hide it

—in particular, for some works he folded parts of the painted canvas behind the work to high-

light the central region. Clearly, this wasn’t necessary for Blue Poles, where our results show

the deterioration is minimal. This deterioration effect is consistent with our decision to use the

poured patterns on Pollock’s studio floor (i.e. the heavily deteriorated pattern formed by the

trajectories that completely missed the canvas) as a non-Pollock pattern in the training process

(see later).

Fig 16. A timeline chart of the evolution of the various machine parameters (PMF, SI, M, C, and U) along with

other artwork parameters (N, A, and AR) spanning from 1943 to 1954. See text for details.

https://doi.org/10.1371/journal.pone.0302962.g016
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Pollock’s fractal scaling

In addition to the strong correlation between PMF and SI shown in Figs 16 and 17, the com-

parison of the Zoom-in Charts in Fig 11 further emphasizes the scale invariance of Pollock’s

work. Pollock’s Signature is consistently scale invariant and the rare works that show varia-

tions in scale can be identified by their fall off in PMF value. We note that the previously pub-

lished fractal model of Pollock’s work pictures 2 distinct pattern generation processes.

Whereas the balancing motions of his body are proposed to generate one set of fractals domi-

nating at size scales above the transitional size of approximately 5cm, the spattering of the fluid

paint is proposed to generate a second set of fractals at smaller scales [17]. Because our

machine process focuses on tile sizes starting at 10cm, it should be sensitive to Pollock Signa-

tures generated by the balancing motions. However, we note that for several Pollocks (these

include Number 22 (1950), Number 24 (1950), Brown and Silver II (1951), and Untitled (1952))

we do see that the Pollock Signatures at the 10cm tile size are smaller than those for the larger

tile sizes, suggesting that perhaps the spattering process might have started to dominate at the

10cm tile size for these paintings.

In addition to considering the degree of scale invariance of the patterns, fractal studies also

look at scaling parameters (such as fractal dimension D) that quantify the rate at which the

Fig 17. Plots of SI, M, C, and U against PMF (see text for details).

https://doi.org/10.1371/journal.pone.0302962.g017
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patterns shrink with magnification [12]. The fractal model of Pollock’s work introduced dis-

tinct fractal dimensions to quantify the scaling behavior of the 2 size regimes—DD for the

‘drip’ process occurring below 10cm and DL for the ‘Levy’ body motion process occurring

above 10cm. The research found that DL on its own was insufficient for distinguishing Pol-

locks from non-Pollocks [17]. Because our machine focuses on sizes of 10cm and larger, we

would therefore expect to see little correlation between PMF and DL. When we employ DBC
and SDBC fractal analysis techniques to quantify the scaling properties of the luminance scal-

ing properties of the artworks we indeed found little correlation between PMF and their fractal

dimensions (0.05). However, it’s important to note that DBC and SDBC are just 2 possible

approaches to measuring the fractal dimensions of art works, and future research should focus

on a more comprehensive study of the relationship between PMF and these scaling

parameters.

To explore Pollock’s fractal pourings further, we compare them to computer-generated

fractal images. Fig 19 demonstrates the visual similarity between the multi-scaled structure of

Pollock’s Number 32 and that of a fractal pattern generated using a midpoint displacement

method [75]. The Map of the fractal image is also shown in Fig 19 and is constructed using the

multi-scaled tile technique described for the poured paintings in the Methods section. This

Map reveals large regions of green that darken in the black and white regions of the fractal,

Fig 18. Radial maps for Pollock’sWater Birds (66.4 x 53.8cm, Baltimore Museum of Art, USA) (top row), Pollock’s

Blue Poles (middle row), and Henri Michaux’sUntitled (74.9 x 107.9cm, Edward Thorp Gallery, New York) (bottom

row). The left column shows the artwork, the middle column shows the radial map plotted using the absolute colors,

and the right column shows the radial map plotted using relative colors. The top and bottom bars show the relative and

absolute color ranges, respectively. See text for details.

https://doi.org/10.1371/journal.pone.0302962.g018
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suggesting that the machine is identifying Pollock Signatures mainly at the fractal boundaries

between the black and white regions. This effect is confirmed by examining a Map of the frac-

tal image constructed from 10cm tiles. At this scale, it is very clear that the fractal image’s open

regions of white generate the red color associated with low Pollock Signatures and that the

green color associated with high Pollock Signatures is focused in regions where there are high

densities of fractal boundaries. This observation is highly relevant for art theory investigations

of Pollock’s work. Whereas boundary lines are traditionally used in illustrations to differentiate

the subject from the background, Pollock has been heralded as the artist who re-invented the

role of the line for abstract works. In Pollock’s poured works, the line itself is the subject of his

work. Fig 19 demonstrates that the fractal character of the lines is responsible for his Signature.

We examine a total of 63 computer fractals with fractal dimensions D spanning from 1.1 to

1.9 in steps of 0.1. The mean PMFs are plotted against their D values in Fig 20. The high PMFs

(~ 1) observed for large D values fall off gradually but systematically at lower D. This can be

understood by examining the impact of D on the visual appearance of the inserts shown in Fig

20. As described in the Methods section, D quantifies the relative contributions of the fine and

Fig 19. Left: A 63.5 x 63.5cm section of Pollock’s Number 32, 1950 (269 x 457.5cm, Kunstsammlung Nordrhein-

Westfalen, Germany). Middle-left: A 100 x 100cm computer generated fractal image. Middle-right: the Map of the

fractal image. Right: the Map constructed from 10cm tiles (this tile size is shown in the middle left image as a yellow

square).

https://doi.org/10.1371/journal.pone.0302962.g019

Fig 20. Plots of PMF versus fractal dimensionD for the computer-generated fractals (red) and for Pollocks (blue). The

inserts show example fractal images for D = 1.2, 1.5, and 1.8.

https://doi.org/10.1371/journal.pone.0302962.g020
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coarse-scale structures in the fractal mix of the image. Larger D values have higher fine scale

contributions than the equivalent low D fractals, resulting in longer and more complex fractal

boundaries between the black and white regions. Considering the 10cm Map shown in Fig 19,

this will result in larger Signatures for the high D patterns. Fig 20 indicates that Pollock’s

poured work is immune to this fall off. The most likely reason for this relates to pattern den-

sity. Whereas the computer fractals are set to have 50:50 coverage of the black and white

regions, the Pollock paintings typically have much higher densities of painted regions, so

cramming even more fractal boundaries into a given region. This maintains their high Signa-

tures down to low D values.

Given the prevalence of fractals in natural scenery, in Fig 21 we present a preliminary com-

parison of Pollock’s One (1950) with 2 common natural images (a thicket and trees). All 3

images display the multi-scaled structure associated with fractal patterns. Intriguingly, the

thicket is quantified by PMF = 0.71, One is quantified by PMF = 1, while the trees are quanti-

fied by PMF = 0.52. One possible explanation relates to differences in the fractal boundary

density. In particular, the trees feature noticeably larger gaps devoid of the fractal boundaries.

However, this result is also a useful reminder that although fractal analysis plays an important

role, the machine is more than a simple fractal detector and many other visual characteristics

will be in play. Although all 3 images are fractal, the natural images will differ in many subtle

ways. A future investigation will perform a systematic study of a comprehensive set of natural

images with the aim of using PMF to explore the connection between Pollock’s and nature’s

fractal patterns.

Finally, we compare Pollock’s images to a set of standard non-fractal designs to confirm

that these are quantified by PMF = 0. These patterns encompass solid colors, bars, random pix-

els, gradients, and the distinctive ‘Pick up sticks’ configuration (which consisted of randomly

oriented black lines against a white background). Examples are shown in Fig 22. Our model

demonstrates remarkable accuracy in classifying each of the test patterns as being a non-Pol-

lock—with one intriguing exception involving a specific orientation (a 5-degree angle from

the horizontal axis) and widths of black and white bars. The vulnerability to a specific line

angle is surprising given that Pollock’s all-over style is celebrated for being insensitive to paint-

ing orientation. Future research will examine trajectory orientation of Pollock’s work in more

detail to determine if there are stand-out orientations of individual features that ‘average out’

when combined into the dense interacting web of the all-over style. Interestingly, we note that

the 8 poles within Blue Poles are much steeper than the 15-degree condition that challenged

our model.

Image classifications and misclassifications: Example cases

The Pollock Dial shows that all but 2 non-Pollocks lie safely below PMF = 0.56, generating our

model’s highMA for detecting the visual miss-match of non-Pollock works. This is impressive

given that our study features a diverse set of 284 poured works created by other artists. This set

spans from images taken from Pollock’s studio floor (as noted earlier, this is categorized as a

non-Pollock in training because it lacks his compositional approach) to the poured creations

of a Monkey.

A number of the non-Pollock poured paintings are by other famous artists. Pollock’s con-

temporary Max Ernst features in the training (Young Man Intrigued by the Flight of a Non-
Euclidean Fly from 1942–47) and inference (The Bewildered Planet from 1942) sets. Works by

Abstract Expressionist contemporaries Hans Hofmann (Fantasia from 1943 and The Wind
from 1944) and Arshile Gorky (One Year The Milkweed from 1944) feature in the training set.

Artists Marcel Barbeau and Jean-Paul Riopelle from the French Canadian movement Les
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Automatists, which had a similar artistic mission to the American Abstract Expressionism

movement, feature in the training and inference sets. From the 1960s, Niki de Saint Phaelle’s

art created by shooting at balloons filled with paint (Shooting Picture 1 and 2 from 1961) fea-

tures in the training set, along with Norman Rockwell’s famous parody of Pollock’s work (The
Connoisseur from 1962). Four of Michael Badwin’s 1980s series (Pollock-inspired poured

paintings featuring embedded images) appear in the training set and 2 appear in the Inference

set. Sam Francis’s Untitled from 1985 appears in the inference set. Eight of Prince Jurgen von

Fig 21. Comparisons of a section of Pollock’s One: Number 31, 1950 (269.5 x 530.8cm, MoMA, New York) (middle

image) to photographs of a thicket (top image) and trees (bottom image).

https://doi.org/10.1371/journal.pone.0302962.g021
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Anhalt’s ‘jet art’ (poured paintings created by flinging paint behind a jet engine) appear in the

training set and 1 appears in the inference set.

Notable ‘imitations’. In terms of well-known imitations, the training set includes 2 paint-

ings created for the Pollock movie by actor Ed Harris, along with 2 paintings by Francis

O’Connor, one of the leading Pollock connoisseurs. Forty-two works by the modern-era imita-

tor Mike Bidlo feature in the training and inference sets. Paintings from 2 high-profile disputes

are also used, as follows. Eight paintings from the Matter Collection (No.’s 2, 4, 7, 9, 10, 14, 17

and 19) [25] feature in the training set and 1 (No. 3) features in the inference set. Two Knoe-

dler Gallery paintings [3] feature in the training set. Whether used in training or inference, the

variety of these poured creations help to deliver the highMA of our machine model.

The inference set also features an image generated by a wind-driven pendulum built to har-

ness fractal wind gusts to generate Pollock-like fractal patterns (Fig 23) [14]. Despite this

intriguing method of capturing nature’s dynamic patterns, our machine is able to classify the

resulting painting correctly as a ‘non-Pollock’ (PMF = 0.11). Finally, we also use paintings

from Dripfests—the experiments aimed at exploring whether children’s poured paintings have

more visual similarities than the equivalent adult paintings to Pollocks [17,31]. This hypothesis

is based on proposed similarities between the body motions of Pollock and the children. Fig 4

shows example artworks by an adult and a child. Our machine is able to classify both the chil-

dren’s and adults’ art works correctly as ‘non-Pollocks’. Furthermore, the PMFs for the chil-

dren (mean PMF = 0.002 ± 0.002) and adult (mean PMF = 0.009 ±0.007) paintings aren’t

significantly different between the 2 groups.

The Pollockizer. Our model misclassifies One generated by the ‘Pollockizer’—a mechani-

cal device developed to generate Pollock imitations (Fig 24) [35]. This device consists of a con-

tainer of paint that swings on a string, dripping paint onto a horizontal canvas positioned

below. Based on the principle of a chaotic pendulum, the string can be knocked (either

mechanically or via magnets) at close to the resonant frequency of the swinging motion. In

doing so, fractal patterns are generated in the container’s motion and therefore also in the

paint trajectories recorded by the canvas below. Our machine suggests that, by generating a

painting with PMF = 0.67, the Pollockizer is indeed capable of generating Pollock’s artistic

signatures.

AI-generated art. Given the growing prevalence of machine-generated art (e.g. those gen-

erated by DALL-E), a crucial question concerns whether our AI technique can detect AI-gen-

erated Pollock imitations. We test 87 ‘AI Pollocks’ and classify them correctly with 100.00%

accuracy. These consist of 3 groups of AI-generated Pollocks. DALL-E takes a textual descrip-

tion as an input and generates an image that corresponds to that description. We use the tex-

tual description “jackson pollock’ and “jackson pollock imitation” to generate images at

1024x1024 pixels and these are tested for 4 different physical dimensions (25x25cm, 50x50cm,

100x100cm, and 200x200cm). Neural Love is a web-based tool that uses AI to create artistic

Fig 22. Sample thumbnails of the test patterns. From left to right (single colors, gradient grayscale images, black and white rows (at various angles), colored

rows (at various angles), gradient grayscale images (at various angles), and pickup sticks.

https://doi.org/10.1371/journal.pone.0302962.g022
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images, avatars, and realistic portraits. We locate on-line images from Neural Love that are

proposed to be imitation Pollocks. Their image sizes of 512 x 512 pixels are run through our

machine at the same physical dimensions used for the DALL-E paintings. Although an algo-

rithmic approach rather than strictly an AI approach, we also use Pollock Master images. This

is a public github repository that makes Pollock-like images. The images are 5528 × 3572 pixels

Fig 23. Poured painting generated by the wind machine (PMF = 0.11).

https://doi.org/10.1371/journal.pone.0302962.g023

Fig 24. The Pollockizer (left) and a section of the poured painting that is classified as sharing the visual signatures of a

Pollock (PMF = 0.67) (right).

https://doi.org/10.1371/journal.pone.0302962.g024
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in resolution and are run through our machine using the same physical dimensions used for

the DALL-E paintings [76].

Henri Michaux. As shown in the Pollock Dial, our model misclassifies Untitled by Henri

Michaux (PMF = 0.95). Michaux’s poured works belong to the Tachisme art movement, the

French analogue to Pollock’s Abstract Expressionism. Accordingly, we conducted further test-

ing of our model using a data set comprising 9 additional Michaux works [77,78]: 4 works regis-

ter PMF = 0 (indicating a lack of visual resemblance to Pollock’s style), 3 works fall within the

range of PMF values greater than 0.25 but less than the Threshold, and 2 paintings have a PMF
exceeding 0.56, suggesting a higher degree of visual similarity to Pollock’s distinctive style (these

are SansTitre 1960–61 and SansTitre). This varied outcome of Michaux’s work underscores the

complexities involved in distinguishing artistic signatures. The close match of some of his

works to Pollock’s Signatures highlights their parallel artistic missions despite their geographic

separation. Fig 25 compares a 13.2 x 19.4cm section of Michaux’s SansTitre 1960–61 (40.2 x

60cm, Galarie Berthet-Aittouares, Paris) with a 40.5 x 59cm section of Pollock’s Untitled 1951
(63.5 x 99cm, Lee Krasner Collection). Both are generated by pouring ink onto paper. The simi-

larity of these 2 artists’ signatures is intriguing and will be the focus of further art research.

Fig 25. A comparison of sections of Henri Michaux’s SansTitre 1960–61 (bottom, PMF = 0.74) with Pollock’s

Untitled 1950 (top, PMF = 1.00).

https://doi.org/10.1371/journal.pone.0302962.g025
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Future models

We did not augment the image set in our current model. In machine learning, image augmen-

tations are a set of techniques used to artificially increase the diversity of a data set by applying

various transformations to the original images. These transformations can include image rota-

tions, flips, scaling, changes in brightness and contrast, and more. The primary goal of image

augmentations is to enhance the model’s ability to generalize patterns from the training data

to unseen examples. By introducing variations in the data set, the model becomes more robust

and less prone to overfitting, which is known as generalization. Image augmentations are par-

ticularly valuable in computer vision tasks such as image classification when having a diverse

and representative training data set can significantly improve model performance.

We undertake brief investigations of some additional models that utilize training augmen-

tation but a more thorough investigation is needed beyond the scope of our current work.

Below, we discuss 2 additional models that we train. Neither model out-performs our current

model inMA nor by minimizing the PMF difference between images of the same painting

taken from the 2 Pollock image groups. However, with the appropriate development, we antic-

ipate that a future model with some augmentations could result in a model that is more gener-

alizable than our current one while potentially maintaining our highMA performance.

Alternate Model 1 (MA: 97.7%). Augmentations: 50% of the images are converted to

grayscale, flipped horizontally, flipped vertically, or rotated in steps of 90 degrees. There are

several advantages associated with these augmentations: 1) Introducing flips, mirrors, and

rotations removes any directional bias from all paintings. This would be helpful if the correct

orientation of a painting is not known. 2) Reducing the color influence forces the model to

focus on the spatial patterns generated by the pouring process. This equalizes different image

sources, some of which are grayscale and others are color. However, these augmentations

introduce the following disadvantages which reduce theMA: 1) The correct orientations of

Pollock paintings are known. This is therefore a real property of his work that we shouldn’t

eliminate. Instead, our current model simply rotates a painting of unknown origin and calcu-

lates each PMF to allow for alternative orientation options. 2) Color can be an important char-

acteristic of Pollock paintings and so reducing the presence of this characteristic diminishes

the model’s ability to distinguish.

Alternate Model 2 (MA: 97.1%). Augmentations: 50% of the images have their brightness

and contrast values randomly adjusted between the values of -0.2 to +0.2 (using the Albumen-

tations Python Library). These augmentations increase generalizability to various photo-

graphic and lighting conditions. The brightness and contrast plots vs PMF become much

more stable than those of the current model (see Fig 26). However, these augmentations have

the disadvantage that low contrast and brightness could be a real feature of Pollock’s works

and this augmentation therefore inappropriately reduces theMA.

In summary, augmentations have the potential to improve future models provided any

challenges to computational resources are overcome. Lacking augmentations, our current

model has a highMA and is robust to image variations through careful selection of image

parameters. In particular, our model should only be run on paintings of unknown origin that

have color images, limited image distortions such as printing artifacts, and limited brightness

and contrast distortions.

Conclusion

We have developed a machine learning strategy that employs a novel image ingestion

approach and that leverages the power of transfer learning. Our approach distinguishes

between authentic and imitation Pollock poured works with an accuracy of 98.9% despite the
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limited number of images available for training. Based on this accuracy, we anticipate that our

technique will be useful when combined with more traditional approaches to authenticity

studies, in particular visual inspections by connoisseurs. For example, returning to the real and

imitation Blue Poles shown in Fig 1, the real work delivers PMF = 1 while the imitation delivers

PMF = 0.

Our generalization tests show that our machine performs well for artists who use the pour-

ing technique. However, we emphasize that our current model is only applicable to poured

paintings. Our PMF Threshold is termed a ‘necessary but not sufficient condition’ for image

Fig 26. Average PMF plotted against the image contrast (top) and image brightness (bottom) for the Pollock (green)

and non-Pollock images (red). The broad colored regions correspond to the standard deviations in the data. The

horizontal line represents the PMF Threshold. In each case, 0 corresponds to the undistorted value on the x axis.

https://doi.org/10.1371/journal.pone.0302962.g026
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classification tasks. As an example, the high PMFs achieved by the computer-generated fractals

are useful indicators of the machine’s decision-making process, but they do not challenge the

machine’s usefulness as an authenticity tool—because they are not poured works. Further gen-

eralization studies will be needed to determine the extent to which our machine can be broad-

ened to other artists and other artistic techniques. It is likely that when trained appropriately

our machine will perform well when confronted with the visual complexity generated by other

forms of gestural art. As AI examinations of art become more widespread, it will be important

to understand the limitations of their applicability. For example, techniques based on facial

recognition [79] will not be expected to perform equally well when faced with Pollock’s com-

plexity. Authenticity studies will most likely benefit from the employment of diverse machine

models.

We have also shown that our AI approach can contribute to Pollock studies in ways that move

beyond authenticity studies. To counter the black box nature of our approach, we developed Pol-

lock Maps and Pollock Zoom-in Charts to probe the spatial and scaling signatures of Pollocks.

When coupled with their quantifying parameters, these novel visual aids provide an interdisciplin-

ary bridge between the machine’s output and traditional art theory investigations of Pollock’s

work. In this way, AI has the potential to provide a new ‘eye’ on Pollock’s all-over style.

Using these interpretational methods to look into the black box, our results indicate that

the machine is examining the scale invariance of the poured patterns in its quest to distinguish

between the Pollock masterworks and the imitations. A number of research groups have previ-

ously used various forms of fractal analysis to investigate Pollock’s work, and it has been suc-

cessfully employed in 2 high profile authenticity cases. However, researchers selected their

techniques in these previous cases—introducing an element of subjectivity to the process.

Here, the machine learned the usefulness of fractal analysis in an objective process beyond

human influence. This objective approach will be useful not only for future comparisons of

Pollocks with imitations but also with comparisons of Pollocks with natural images. Pollock

famously declared “I am nature” to the art world and now science has the tools to confirm this

connection between his fractals and those of nature using the machine’s PMF values. Intrigu-

ingly, recent environment psychology research models the eye as a sophisticated fractal detec-

tor [43]. Perhaps Pollock used his fractal eye to spot fractals in nature, the Pollock experts use

their fractal eye to spot fractals in Pollock’s work, and now the machine can do the same in a

more quantifiable manner.

Finally, allowing AI to ‘view’ Pollock’s art represents a major step in art appreciation and

represents the latest step in the technological story set in motion by Taylor’s first use of com-

puter analysis of artworks [13]. Writing about Taylor’s computer analysis at the time,

MOMA’s chief conservator Jim Coddington declared: “In the visual arts we are at the begin-

nings of such a field and make no mistake, it is coming.” [29]. In the intervening years, the

concept of AI has changed from science fiction to science fact and its arrival in the world of art

will have many fascinating repercussions.
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