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Abstract

In the fight against antimicrobial resistance, host defense peptides (HDPs) are increasingly

referred to as promising molecules for the design of new antimicrobial agents. In terms of

their future clinical use, particularly small, synthetic HDPs offer several advantages, based

on which their application as feed additives has aroused great interest in the poultry sector.

However, given their complex mechanism of action and the limited data about the cellular

effects in production animals, their investigation is of great importance in these species. The

present study aimed to examine the immunomodulatory activity of the synthetic HDP

Pap12-6 (PAP) solely and in inflammatory environments evoked by lipoteichoic acid (LTA)

and polyinosinic-polycytidylic acid (Poly I:C), in a primary chicken hepatocyte–non-paren-

chymal cell co-culture. Based on the investigation of the extracellular lactate dehydrogenase

(LDH) activity, PAP seemed to exert no cytotoxicity on hepatic cells, suggesting its safe

application. Moreover, PAP was able to influence the immune response, reflected by the

decreased production of interleukin (IL)-6, IL-8, and “regulated on activation, normal T cell

expressed and secreted”(RANTES), as well as the reduced IL-6/IL-10 ratio in Poly I:C-

induced inflammation. PAP also diminished the levels of extracellular H2O2 and nuclear fac-

tor erythroid 2-related factor 2 (Nrf2) when applied together with Poly I:C and in both inflam-

matory conditions, respectively. Consequently, PAP appeared to display potent

immunomodulatory activity, preferring to act towards the cellular anti-inflammatory and anti-

oxidant processes. These findings confirm that PAP might be a promising alternative for

designing novel antimicrobial immunomodulatory agents for chickens, thereby contributing

to the reduction of the use of conventional antibiotics.
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Introduction

Over the past decades, the increased consumption of meat has prompted the maximization of

production in the livestock sector [1, 2]. To fulfill this demand, one of the most common

methods was the excessive use of conventional antibiotics (ABs), which can be considered a

major contributor to the spread of antimicrobial resistance (AMR) [1]. Besides being a serious

concern in the field of veterinary medicine due to treatment failures, AMR poses a severe

threat to global public health as well [1]. Therefore, the need to search for novel candidates

with antimicrobial activity has been increasingly highlighted [3]. In this context, host defense

peptides (HDPs)–also known as antimicrobial peptides (AMPs)–are particularly studied and

promising molecules, thereby reducing the use of ABs, and promoting the fight against AMR

[3].

HDPs are small, usually less than 50 amino acid residues containing, cationic peptides [4],

naturally produced in every living organism as crucial components of their innate immune

system [5]. Although they first attracted attention for their broad-spectrum direct antimicro-

bial activity, in recent years, great importance has been attached to their immunomodulatory

effects which, in contrast to the former, are more likely to be observed in in vivo or in vivo-like

conditions as well [6]. Immunomodulation by HDPs can be exerted in a variety of ways, such

as promoting the recruitment of leukocytes, stimulating chemotaxis, inducing the production

of pro- and anti-inflammatory cytokines, supporting the activation or differentiation of

immune cells, and neutralizing endotoxins [7]. Hence, their mode of action is pleiotropic and

shows high complexity [8]; therefore, it may depend on specific biological circumstances [7].

Based on these characteristics, in contrast to the ABs, HDPs offer a multiple and versatile anti-

microbial nature, which makes them suitable for designing new antimicrobial agents [2].

However, due to their peptide nature, there are still some drawbacks that need to be

addressed for future clinical use [9]. Among these disadvantages are the potential toxicity to

the host cells, the high susceptibility to protease enzymes and hence, their questionable phar-

macokinetics, as well as high production costs on a large scale [9–11]. There are various

approaches to counteract these obstacles, one of which is the design and application of small,

synthetic peptides [12]. Compared to naturally occurring HDPs, they offer several advantages,

such as easier and less expensive production, lower immunogenicity, and the possibility to be

tuned according to the desired stability, half-life, or specificity [12]. Based on these, the appli-

cation of small, synthetic HDPs as feed additives aroused great interest in the poultry sector, as

they are suggested to provide various benefits, including immunomodulation, inhibition of

the spread of foodborne pathogens, minimization of carcass contamination, reduction of the

prevalence of AMR [13], or growth-promoting effects [3].

Pap12-6 (PAP) is a 12-meric synthetic HDP, derived from the N-terminal end of the natu-

ral papiliocin found in swallowtail butterfly (Papilio xuthus) larvae [14]. Even though its parent

peptide was described to exert potent antibacterial and anti-inflammatory activity [15, 16], the

length of papiliocin and the resulting above-mentioned drawbacks prompted the researchers

to design shorter derivatives while maintaining or even enhancing its beneficial effects.

Among them, the development of PAP contributed to a significantly shorter peptide with high

host cell selectivity, broad-spectrum antibacterial effect, and efficient anti-inflammatory activ-

ity [14]. From the latter aspect, PAP reduced the production of pro-inflammatory cytokines,

such as interleukin (IL)-6, IL-1α, and tumor necrosis factor (TNF)-α in different cell cultures

exposed to inflammatory stimuli [14, 17]. Moreover, in septic mouse models, it was able to

improve survival, relieve symptoms, decrease the level of pro-inflammatory cytokines in

serum and different organs, prevent the infiltration by neutrophils, and as a consequence, pro-

tect the host from inflammation [14, 17].
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Despite the promising results, only a few studies have been implemented to investigate the

immunomodulatory effects of PAP; therefore, additional research is needed to fully elucidate

its mechanism of action. For example, to the best of the authors’ knowledge, neither PAP nor

any other derivatives of papiliocin were investigated in hepatic cells. However, the liver plays a

key role in regulating inflammatory processes as it is constantly and directly exposed to harm-

less as well as harmful antigenic load and metabolites originating from the gastrointestinal

tract [18]. This requires a highly orchestrated local immune system, coordinated by liver

innate cells, such as monocyte-derived macrophages, resident macrophages (also known as

Kupffer-cells [KCs]), or dendritic cells (DCs), and various antimicrobial components like

inflammatory cytokines and chemokines, acute phase proteins, or the complement system

[19]. Briefly, upon microbial stimulation, the pattern recognition receptors (PRRs)–such as

Toll-like receptors (TLRs)–of KCs and DCs detect the pathogen-associated molecular patterns

(PAMPs) [19]. Subsequently, PRR activation induces downstream signaling that leads to an

inflammatory response [19], characterized by the production of pro-inflammatory cytokines

and chemokines, the recruitment of neutrophils and monocytes, and the formation of reactive

oxygen species (ROS) [20].

Another limitation of the currently available research data about papiliocins is that the dif-

ferent, previously tested derivatives were investigated only in mouse- or human-derived cell

lines. However, as production animals, like chickens, are particularly challenged by pathogens

and the presence of AMR [21], the examination of HDPs at their cellular level is of great

importance. Therefore, the goal of the present study was to investigate the putative immuno-

modulatory effects of PAP in a primary hepatocyte–non-parenchymal cell co-culture of

chicken origin. To evoke inflammation, lipoteichoic acid (LTA), as a TLR2-agonist from the

cell wall of Gram-positive bacteria [22], and polyinosinic-polycytidylic acid (Poly I:C), a

TLR3-agonist synthetic double-stranded RNA (dsRNA) analog [23] were used.

Materials and methods

Isolation of the cells

For the isolation of the cells, a 3-week-old male Ross-308 broiler chicken was used, which was

kept in the animal house of the Department of Physiology and Biochemistry, University of

Veterinary Medicine Budapest, Hungary. Water was provided ad libitum, the chicken was fed

according to the instructions of the breeder, and all efforts were taken to maintain animal

well-being and health. The present experiment was in line with the European Union’s laws,

approved by the Local Animal Welfare Committee, and allowed by the Government Office

(permission number: GK-419/2020; date of approval: 11 May 2020). Unless stated by the

authors otherwise, the compounds and chemicals described below were purchased from

Merck KGaA (Darmstadt, Germany).

Isolation of the cells was carried out according to the protocol of our research group [24].

After decapitation under CO2 narcosis, removing the abdominal feathers, and disinfecting the

skin of the abdominal region, the body cavity was opened. Next, the gastropancreaticoduodenal
vein was cannulated with a 22G-size venous cannula, and a three-step perfusion of the liver

was performed at a flow rate of 30 ml/min, using freshly preheated (40˚C) and oxygenated

(Carbogen, 95% O2; 5% CO2; flow rate of 1 l/min) solutions. To begin with, 150 ml of Hanks’s

Balanced Salt Solution (HBSS) buffer supplemented with ethylene glycol-bis(2-aminoethyl

ether)-N,N,N’,N’-tetraacetic acid (EGTA) was used, followed by flushing with 150 ml EGTA-

free HBSS buffer. The third step was carried out by the application of 100 ml HBSS solution,

containing 100 mg type IV collagenase, 7 mM CaCl2, and 7 mM MgCl2. After removing the

liver and the Glisson’s capsule, cells were suspended in 50 ml bovine serum albumin (BSA,
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2.5%)-containing HBSS buffer, and filtered through a three-layer sterile gauze sheet. As a next

step, the resulting suspension of the cells was incubated for 45 minutes on ice. Thereafter, cen-

trifugation (3 minutes, 100 x g) of the cell suspension was performed three times, collecting

each supernatant separately, and resuspending the resulting sediment in Williams’ Medium E

(supplemented with 5% fetal bovine serum [FBS], 0.22% NaHCO3, 2 mM glutamine, 50 mg/

ml gentamycin, 4 g/l dexamethasone, 20 IU/l insulin and 0.5 g/ml amphotericin B) at every

step, thereby gaining a hepatocyte-containing cell suspension after the third centrifugation.

On the other hand, the supernatants collected were mixed and spun (10 minutes, 350 x g), and

centrifugation (10 minutes, 800 x g) was anew performed with the resulting supernatant.

Thereafter, the pellet was resuspended in Williams’ Medium E, thereby collecting a suspension

rich in non-parenchymal cells. Hepatocytes and macrophages, respectively, were previously

characterized in the two fractions by immunofluorescent staining and flow cytometry [24]. In

the above, former experiment of our research group, chicken-specific, fluorescein isothiocya-

nate (FITC)-coupled anti-albumin was used to detect the isolated and cultured hepatocytes,

whereas macrophages in the non-parenchymal cell-rich fraction were labeled by chicken mac-

rophage-specific phycoerythrin (PE)-conjugated antibodies. The isolation of the cells was con-

ducted the same way in the present study, ensuring the presence of the same types of cells in

the corresponding fractions. To confirm this, the morphology of the isolated cells and that of

confluent cell cultures was checked after Giemsa staining. To assess cellular viability before

seeding, a trypan blue exclusion test was carried out in Bürker’s chambers for both cell suspen-

sions. Prior to seeding, the two fractions were diluted according to the cell count, and the

hepatocyte-containing suspension was blended with the non-parenchymal cell-rich fraction in

a 6 to 1 ratio, receiving a total concentration of 106 cells/ml. Cells were seeded in a volume of

400 μl suspension/well into 24-well cell culture plates (Greiner Bio-One Hungary Kft., Moson-

magyaróvár, Hungary) previously coated with type I rat tail collagen (10 μg / cm2). After 4

hours of incubation at 37˚C and 5% CO2, the cell culture media were changed, and the cells

were incubated again for 24 hours under the same circumstances.

Treatments

Chicken hepatocyte–non-parenchymal cell co-cultures were treated according to Table 1.,

using the previously mentioned supplemented Williams’ Medium E culture media, however,

without the use of FBS. Two different inflammatory conditions were evoked by the addition of

LTA (50 μg/ml) or Poly I:C (50 μg/ml). PAP (Isca Biochemicals Ltd., Exeter, UK) was applied

in three different concentrations (5, 25, and 50 μg/ml) solely and together with LTA and Poly

I:C respectively. Cells receiving only Williams’ Medium E were considered as Control. After

24 hours of treatment, cell culture media samples were taken and frozen at -80˚C until further

measurements. Thereafter, to gain lysate samples, culture plates were washed first with 300 μl/

well of phosphate-buffered saline (PBS) solution, followed by the addition of 50 μl/well of

M-PER™ Mammalian Protein Extraction Reagent (Thermo Fisher Scientific Inc., Waltham,

MA, USA). Thereafter, the cells were scraped from the bottom of the wells and frozen to -80˚C

until further processing.

Measurements

Cellular viability. For the investigation of the cellular viability, the colorimetric Lactate

Dehydrogenase Activity Assay Kit was utilized. In case of membrane damage, the cells release

lactate dehydrogenase (LDH) into the culture media, leading to the production of NADH+,

the amount of which can be specifically detected. According to the manufacturer’s instruc-

tions, 50 μl of culture media samples were applied on a 96-well microplate, followed by the
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addition of 50 μl of NAD+-containing freshly prepared Master Reaction Mix. Absorbance val-

ues were measured with a Multiscan GO 3.2 reader (Thermo Fisher Scientific Inc., Waltham,

MA, USA) at 450 nm, after 2 minutes of incubation at 37˚C, protected from light. Readings

were continued every 5 minutes until the absorbance of the most active sample became higher

than the value of the most concentrated standard.

Inflammatory markers. To investigate the influence of PAP on the immune response, the

levels of IL-6, IL-8, IL-10, interferon (IFN)-γ and regulated upon activation, normal T cell

expressed and secreted (RANTES) were measured in the cell culture media. IL-8 was examined

with chicken-specific ELISA (MyBioSource Inc., San Diego, CA, USA, Cat. Nr.: MBS289628),

using a sandwich technique, following the manufacturer’s instructions. Absorbance values

were measured with a Multiscan GO 3.2 reader, at 450 nm.

The concentrations of IL-6, IL-10, IFN-γ, and RANTES were determined by Luminex

xMAP Technology, using Milliplex Chicken Cytokine/Chemokine Panel 1 –Immunology

Multiplex Assay (Cat. Nr.: GCYT1-16K). A 96-well microplate belonging to the kit was filled

with duplicates of 25 μl culture media samples. Thereafter, each well was loaded with 25 μl of

four sets of colored capture antibody-coated beads, followed by overnight incubation and

washing. As a next step, biotinylated detection antibody and streptavidin phycoerythrin solu-

tions were applied. Thereupon, the plate was treated with 150 ml of drive fluid, and the beads

were resuspended for 5 minutes on a plate shaker. As a last step, reading was executed using a

Luminex MAGPIX1 instrument, and data were assembled by the Luminex xPonent 4.2 pro-

gram. According to the median fluorescence intensity of the beads, standard curves were gen-

erated by Belysa Immunoassay Curve Fitting software for all analytes.

Redox markers. For the examination of the oxidative state, the levels of extracellular (EC)

H2O2 and nuclear factor erythroid 2-related factor 2 (Nrf2) (also known as nuclear factor ery-

throid-derived 2-like 2 [NFE2L2]) were assayed. The EC H2O2 concentrations were deter-

mined using the fluorometric Amplex Red method (Thermo Fisher Scientific, Waltham, MA,

USA), according to the instructions of the manufacturer. A 96-well microplate was loaded

with 50 μl of culture media samples, supplemented with 50 μl of prior-to-use prepared Amplex

Red Working Solution, containing Amplex Red Stock Solution, HRP Stock Solution, and 1X

Reaction Buffer. After incubating for 30 minutes at room temperature (24˚C), protected from

Table 1. Treatment groups applied on primary hepatocyte–non-parenchymal cell co-cultures of chicken origin.

Treatment group PAP LTA Poly I: C

Control — — —

PAP-1 5 μg/ml — —

PAP-2 25 μg/ml — —

PAP-3 50 μg/ml — —

LTA — 50 μg/ml —

LTA+PAP-1 5 μg/ml 50 μg/ml —

LTA+PAP-2 25 μg/ml 50 μg/ml —

LTA+PAP-3 50 μg/ml 50 μg/ml —

PI:C — — 50 μg/ml

PI:C+PAP-1 5 μg/ml — 50 μg/ml

PI:C+PAP-2 25 μg/ml — 50 μg/ml

PI:C+PAP-3 50 μg/ml — 50 μg/ml

PAP-1-3 = different concentrations of Pap12-6 (PAP); LTA = addition of 50 μg/ml lipoteichoic acid (LTA); PI:

C = addition of 50 μg/ml polyinosinic-polycytidylic acid (Poly I:C).

https://doi.org/10.1371/journal.pone.0302913.t001
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light, a Victor X2 2030 fluorometer (Perkin Elmer Inc., Waltham, MA, USA) was used to read

the fluorescence values at 530 nm (excitation) and 590 nm (emission).

Levels of Nrf2 were assayed using a Chicken NFE2L2 (Nuclear Factor, Erythroid Derived 2

Like Protein 2) ELISA Kit (MyBioSource Inc., San Diego, CA, USA, Cat. Nr.: MBS8807992),

following the protocol provided by the manufacturer. Absorbance values were determined

with a Multiscan GO 3.2 reader, at 450 nm.

Total protein concentrations were determined by utilizing the Pierce™ Bicinchoninic Acid

(BCA) Protein Assay (Thermo Fisher Scientific, Waltham, MA, USA, Cat. Nr.:23227), using

BSA as standard. According to the manufacturer’s instructions, 25 μl of cell lysate samples

were added to a 96-well microplate, followed by the administration of 200 μl freshly prepared

Reagent A+B Solution. After shaking for 30 seconds, the plate was incubated for 30 minutes at

37˚C, protected from light. Absorbance values were measured with a Multiscan GO 3.2 reader,

at 562 nm. Total protein values were used to standardize the results of each cellular

measurement.

Statistical analysis

Statistical analysis of data was performed by using R v. 4.0.3 (R Core Team, 2020). Based on

Shapiro-Wilk tests, data from treatment groups showed non-normal distribution; therefore,

the Wilcoxon signed-rank test was utilized for pairwise comparisons. The difference was con-

sidered significant if the resulting p-value was lower than 0.05. Treatment groups solely receiv-

ing PAP, LTA, or Poly I:C were compared to Control, whereas the cells treated with the

combinations of PAP and LTA, as well as PAP and Poly I:C were compared to groups exposed

to only LTA and Poly, respectively. Correlations were examined by MetaboAnalyst 5.0 soft-

ware, using Pearson’s correlation test. According to Mukaka, 2009 [25], correlations were

described as “very high”, “high”, “moderate”, “low” or “negligible”, based on the correlation

coefficients (r) being ±0.90–1.00, ±0.70–0.90, ±0.50–0.70, ±0.30–0.50 and 0.00-±0.30, respec-

tively. Graphs were created by using Prism 9 (GraphPad Software Inc., San Diego, CA, V

9.2.1). Heat map of correlations was prepared by PyCharm v. 2023.3.4. (JetBrains s.r.o, Prague,

Czech Republic).

Results

Cellular viability

With regard to the EC LDH activity, the solely applied highest concentration of PAP (50 μg/

ml) contributed to a significant decrease (p = 0.026). In addition, Poly I:C-evoked inflamma-

tion led to a significant elevation (p = 0.002), which was significantly reduced by PAP at its

concentration of 50 μg/ml (p = 0.002) (Fig 1).

Inflammatory markers

When measuring IL-6 concentrations, Poly I:C was found to exert a significant increasing

effect (p = 0.002), which was significantly reduced by the concomitant application of PAP at its

50 μg/ml concentration (p = 0.004) (Fig 2A).

In the case of IL-10, the level of the cytokine was changed only by the sole Poly I:C expo-

sure, causing a significant increase (p = 0.002) (Fig 2B).

IL-6/IL-10 ratio was found to be heightened in the case of inflammation evoked by Poly I:C

(p = 0.002), which elevation was decreased by the addition of PAP at its concentrations of 25

and 50 μg/ml (p = 0.002 in both cases) (Fig 2C).
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In the case of IL-8 (syn. CXCLi2 in chickens), the levels were found to decrease by the sole

and Poly I:C-combined application of PAP at its 50 μg/ml concentration (p = 0.004 and

p = 0.030, respectively), whereas LTA exerted a significant increasing effect (p = 0.026) (Fig

2D).

Concentrations of RANTES were elevated by both LTA (p = 0.002) and Poly I:C

(p = 0.002), the latter of which was significantly decreased by the highest concentration (50 μg/

ml) of PAP (p = 0.015) (Fig 2E).

Regarding the production of IFN-γ, the only change observed was the significant elevation

caused by Poly I:C (p = 0.002) (Fig 2F).

Redox markers

When measuring EC H2O2 levels, Poly I:C alone contributed to a significant increase

(p = 0.002), which was lessened by the addition of PAP at its 25 and 50 μg/ml concentrations

(p = 0.041 and p = 0.002, respectively) (Fig 3A).

In the case of Nrf2, PAP at 50 μg/ml alone resulted in a significantly decreased level

(p = 0.015). Furthermore, LTA was found to exert a significant elevating effect (p = 0.009),

whereas the change caused by LTA was significantly reduced by PAP treatment at its 25 μg/ml

concentration (p = 0.015). In addition, at its concentrations of 25 and 50 μg/ml, PAP was able

to reduce the Nrf2 level, when applied together with Poly I:C (p = 0.015 and p = 0.002, respec-

tively) (Fig 3B).

Fig 1. Bar graph showing extracellular lactate dehydrogenase (LDH) activity. Chicken hepatocyte–non-parenchymal

cell co-cultures were treated with three different concentrations of Pap12-6 (PAP) solely and in combination with

lipoteichoic acid (LTA) or polyinosinic-polycytidylic acid (Poly I:C). Grey color refers to treatment groups without the

addition of LTA or Poly I:C, whereas blue color refers to treatment with LTA, and yellow color refers to treatment with

Poly I:C. Columns represent means ± SEM (n = 6 / treatment group). PAP-1 = 5 μg/ml PAP, PAP-2 = 25 μg/ml PAP,

PAP-3 = 50 μg/ml PAP, LTA = 50 μg/ml LTA, PI:C = 50 μg/ml Poly I:C. Cells receiving none of the treatments are

considered as Control. Groups PAP-1, PAP-2, PAP-3, LTA and PI:C were compared to Control. Combinations of LTA

and PAP (LTA+PAP-1, LTA+PAP-2 and LTA+PAP-3) were compared to the group LTA. Combinations of Poly I:C and

PAP (PI:C+PAP-1, PI:C+PAP-2 and PI:C+PAP-3) were compared to the group PI:C. Asterisks indicate significant

differences between the above-mentioned treatment groups. *p< 0.05, **p< 0.01.

https://doi.org/10.1371/journal.pone.0302913.g001
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Fig 2. Bar graphs showing the concentrations of different inflammatory markers examined. (A) IL-6 levels. (B) IL-10 levels. (C) IL-6/IL-10

ratio. (D) IL-8 levels. (E) RANTES levels. (F) IFN-γ levels. Chicken hepatocyte–non-parenchymal cell co-cultures were treated with three different

concentrations of Pap12-6 (PAP) solely and in combination with lipoteichoic acid (LTA) or polyinosinic-polycytidylic acid (Poly I:C). Grey color

refers to treatment groups without the addition of LTA or Poly I:C, whereas blue color refers to treatment with LTA, and yellow color refers to

treatment with Poly I:C. Columns represent means ± SEM (n = 6 / treatment group). PAP-1 = 5 μg/ml PAP, PAP-2 = 25 μg/ml PAP, PAP-

3 = 50 μg/ml PAP, LTA = 50 μg/ml LTA, PI:C = 50 μg/ml Poly I:C. Cells receiving none of the treatments are considered as Control. Groups PAP-

1, PAP-2, PAP-3, LTA and PI:C were compared to Control. Combinations of LTA and PAP (LTA+PAP-1, LTA+PAP-2 and LTA+PAP-3) were

compared to the group LTA. Combinations of Poly I:C and PAP (PI:C+PAP-1, PI:C+PAP-2 and PI:C+PAP-3) were compared to the group PI:C.

Asterisks indicate significant differences between the above-mentioned treatment groups.*p< 0.05, **p< 0.01.

https://doi.org/10.1371/journal.pone.0302913.g002
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Correlations

Regarding the correlations, very high positive correlations were found between IFN-γ and IL-

10 (r = 0.961; p<0.001), IFN-γ and IL-6 (r = 0.951; p<0.001), as well as IL-6 and IL-10

(r = 0.950; p<0.001) (Fig 4). High positive correlations were observed between LDH and each

of EC H2O2 (r = 0.882; p<0.001), RANTES (r = 0.761; p<0.001), and IL-6 (r = 0.712;

p<0.001), as well as between IL-8 and Nrf2 (r = 0.701; p<0.001). In addition, moderate but

significant positive correlations were revealed between EC H2O2 and each of IL-6 (r = 0.580,

p<0.001), IL-10 (r = 0.500; p<0.001), IFN-γ (r = 0.563, p<0.001), RANTES (r = 0.686;

p<0.001), and Nrf2 (r = 0.561, p<0.001). Moreover, moderate and significant positive correla-

tions were found between LDH and each of IFN-γ (r = 0.670, p<0.001) and IL-10 (r = 0.616,

p<0.001), as well as between RANTES and each of IL-10 (r = 0.527; p<0.001), IL-6 (r = 0.632;

p<0.001), and IFN-γ (r = 0.662; p<0.001). Detailed results of correlations can be found in Fig

4 and S1 Table.

Discussion

The widespread occurrence of AMR poses a serious risk to the control of infectious diseases in

veterinary and human medicine. In livestock farming, the reduction of the use of ABs, and

meanwhile, the maintenance of animal welfare, health, and production efficiency requires an

urgent search for new antimicrobial agents [26]. In this field, HDPs are considered outstand-

ing candidates as they provide various advantageous features besides their broad-spectrum

antimicrobial activity, such as their potent immunomodulatory effects [27]. Therefore, they

aroused great interest from the poultry sector, and there have already been studies revealing

the beneficial impact of certain HDPs on the chicken immune response in in vitro [28–31] and

in vivo conditions [32–37]. However, the capability of HDPs to modulate immunological pro-

cesses is not universal and greatly affected by certain biological environment, such as the cell

Fig 3. Bar graphs showing the concentrations of different redox markers examined. (A) EC H2O2 levels. (B) Nrf2 levels. Chicken hepatocyte–non-parenchymal

cell co-cultures were treated with three different concentrations of Pap12-6 (PAP) solely and in combination with lipoteichoic acid (LTA) or polyinosinic-

polycytidylic acid (Poly I:C). Grey color refers to treatment groups without the addition of LTA or Poly I:C, whereas blue color refers to treatment with LTA, and

yellow color refers to treatment with Poly I:C. Columns represent means ± SEM (n = 6 / treatment group). PAP-1 = 5 μg/ml PAP, PAP-2 = 25 μg/ml PAP, PAP-

3 = 50 μg/ml PAP, LTA = 50 μg/ml LTA, PI:C = 50 μg/ml Poly I:C. Cells receiving none of the treatments are considered as Control. The treatment groups were

compared to one another using Wilcoxon sign-ranked tests. Groups PAP-1, PAP-2, PAP-3, LTA and PI:C were compared to Control. Combinations of LTA and PAP

(LTA+PAP-1, LTA+PAP-2 and LTA+PAP-3) were compared to the group LTA. Combinations of Poly I:C and PAP (PI:C+PAP-1, PI:C+PAP-2 and PI:C+PAP-3)

were compared to the group PI:C. Asterisks indicate significant differences between the above-mentioned treatment groups. *p< 0.05, **p< 0.01.

https://doi.org/10.1371/journal.pone.0302913.g003
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types, signaling pathways and receptors involved, the current inflammatory stimulus, or the

concentration of the peptide [7]. For this reason, and to better predict the in vivo effects of

HDPs, the examination of their mechanism of action at a cellular level is of great importance

[11].

The present study aimed to investigate the putative immunomodulatory activity of PAP in

a chicken primary hepatocyte–non-parenchymal cell co-culture solely, and in different inflam-

matory conditions evoked by LTA and Poly I:C. Both of the applied TLR-agonists contribute

to the activation of transcription factor nuclear factor-κB (NF-κB), and subsequently, the pro-

duction of pro-inflammatory mediators; however, it is achieved via different downstream

Fig 4. Heat map showing the correlations between different parameters with the respective correlation coefficient (r) values. Blue color refers to positive,

whereas red color refers to negative correlation. LDH = lactate dehydrogenase, IL-6 = interleukin-6, IL-10 = interleukin-10, IL-8 = interleukin 8,

RANTES = regulated on activation, normal T cell expressed and secreted, IFN-γ = interferon-γ, H2O2 = hydrogen peroxide, Nrf2 = nuclear factor erythroid

2-related factor 2.

https://doi.org/10.1371/journal.pone.0302913.g004
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signaling pathways. While LTA-induced triggering of TLR2 recruits myeloid differentiation

primary response 88 protein (MyD88) [38–40], the stimulation of TLR3 by Poly I:C leads to

the recruitment of Toll-interleukin-1 receptor (TIR)-domain-containing adaptor-inducing

interferon-β (TRIF) [41]. The activation of NF-κB is an evolutionary conserved defense mech-

anism against infection; however, its exaggerated stimulation can cause detrimental conse-

quences to production animals, such as the impairment of their reproductive and production

efficiency and the risk of developing chronic inflammatory conditions [42]. NF-κB also has a

crucial role in reacting to oxidative stress which is increasingly suggested to be tightly con-

nected to the inflammatory state [43]. Since the presence and significance of both TLR3 and

TLR2 have been identified in chickens [40], and the regulatory role of NF-κB is also suggested

in them [42], LTA and Poly I:C are potent agents to induce inflammation in poultry cells and

have already been applied by our research group successfully in former studies for this purpose

[30, 31, 44, 45]. In the present study, Poly I:C caused a significant increase in the production of

IL-6, IFN-γ, RANTES, and EC H2O2, and it contributed to a higher IL-6/IL-10 ratio, suggest-

ing the induced inflammatory state. In addition, reflected by the increased levels of RANTES

and IL-8, LTA also evoked inflammation in the cell cultures.

Cellular viability

In order to enable the future use of HDPs, the examination of their possible toxicity towards

eukaryotic cells is of great importance [46]. However, most of the studies assaying their cyto-

toxic effects were conducted on mammalian red blood cells or cancerous cell lines [47], and

far fewer data are available about the impact of HDPs on the viability of poultry cells. In the

present study, the EC LDH activity was determined to assess the integrity changes in the cell

membrane and hence, the cellular viability. According to our results, none of the administered

peptide concentrations displayed cytotoxic effects. Moreover, the highest concentration of

PAP was able to enhance the cellular membrane integrity when applied alone and restore the

membrane damage caused by Poly I:C. Due to the high positive correlations found between

LDH and each of the pro-inflammatory RANTES and IL-6, the membrane damage caused by

Poly I:C is hypothesized to befall primarily through pyroptosis, the mechanism of which

results in transcellular pore formation [45]. This inflammatory cell death, leading to the fast

leakage of LDH and inflammatory mediators, has already been suggested by our research

group to occur after Poly I:C-treatment of the same type of cell culture [45], and demonstrated

by Lian et al., 2012 to be elicited in human neonatal primary keratinocytes [48]. The observed

effects of PAP on cellular viability are in agreement with previous reports, as the peptide was

found to exert no cytotoxic effects in RAW 264.7 mouse macrophage cell line, HaCaT human

keratinocyte cell line [14, 17], and HEK-293 human embryonic kidney cell line [14]. Based on

these findings, the administration of PAP on eukaryotic cells is suggested to be harmless.

Moreover, it could even improve the viability of the hepatic cells in Poly I:C-induced

inflammation.

Inflammatory markers

To investigate the putative effects of PAP on the immune response, the levels of IL-6, IL-8, IL-

10, RANTES, and IFN-γ were determined. In the liver, IL-6 is synthesized mainly by KCs

upon stimulation of TLRs or tissue injury, providing the induction of acute phase response

[49] and hence, early protection against infection [50]. Under physiological circumstances, IL-

6 has a crucial role in maintaining the liver defense mechanisms and homeostasis; however, its

exaggerated activation can contribute to harmful consequences [49, 50]. In our study, PAP

was able to decrease the Poly I:C-induced increase in IL-6 production and the IL-6/IL-10 ratio
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at its highest concentration, thereby alleviating inflammation. It is in line with former findings,

as PAP was able to restore the LPS-induced elevation of IL-6 concentrations in RAW 264.7

mouse macrophage cell lines [14, 17]. Under in vivo conditions, serum IL-6 levels of Escheri-
chia coli-challenged mice were also diminished by the administration of PAP [14, 17]. More-

over, native papiliocin [16] and its other derivatives [17, 51, 52] were also found to exert the

same effect in different cell cultures, suggesting the potent immunomodulatory nature of this

promising group of HDPs. In LPS-induced inflammation, the capability of PAP to alleviate the

production of IL-6 (and other mediators) was found to be achieved by the peptide’s decreasing

effect on the secreted alkaline phosphatase (SEAP) reporter gene located downstream from the

promoter of NF-κB, thereby inhibiting its activation and the subsequent release of pro-inflam-

matory cytokines [14].

IL-10, an anti-inflammatory cytokine originating mainly from macrophages and DCs [53],

acts primarily as a suppressor of the TLR-agonist-induced production of different pro-inflam-

matory cytokines [54]. Therefore, IL-10 plays a key role in protecting the host from excessive

inflammation and immunopathology [53]. In the present study, as a response to Poly I:C-

induced inflammation, elevated production of the cytokine was observed, which was not influ-

enced by the application of PAP. However, considering the IL-6/IL-10 ratio, the two higher

concentrations of PAP exerted a decreasing effect on the elevation caused by Poly I:C. The IL-

6/IL-10 ratio is increasingly referred to as a reliable marker of the inflammatory state [55] and

has been observed to positively correlate with severe outcomes in patients with systemic

inflammatory response [56] and neutrophil counts [57]. Consequently, besides their absolute

concentrations, the relative levels of IL-6 and IL-10 might reflect the overall inflammatory

milieu, showing the shift in the net balance between the pro- and anti-inflammatory cytokines

[58]. Therefore, the decreasing effect of PAP on the ratio suggests the contribution of the HDP

to the host’s anti-inflammatory efforts. In the present study, the strong positive correlations

found between IL-6 and IL-10, as well as between IFN-γ and IL-10, also provide a useful

insight into the immune response, suggesting the induction of IL-10 release driven by the pro-

inflammatory mediators [58]. However, investigating further key elements of the downstream

signaling pathways related to TLR2- and -3 could contribute to a better understanding of the

overall inflammatory events, the lack of which is a limitation of our study.

As a response to different TLR-agonists and pro-inflammatory interleukins, the production

of IL-8 by hepatocytes, macrophages, monocytes, and other immune cells is also stimulated,

resulting in the recruitment of neutrophils, T cells, NK cells, and basophils, thereby stimulating

inflammation [54]. In the present study, the highest concentration of PAP, alone and com-

bined with Poly I:C, elicited a decreasing effect on the production of IL-8, indicating its contri-

bution to alleviating inflammation. Even though there are no data available about the effects of

papiliocins on IL-8, numerous insect-derived cationic HDPs have been observed to display the

same decreasing effect [59–61]. Regarding LTA-induced inflammation, PAP was not able to

restore the elevation of IL-8 release caused by LTA. Although the exact interaction between

HDPs and LTA is an unanswered question yet, recent evidence suggests that certain cationic

HDPs can show considerably high affinity to the anionic LTA molecule [39]. The resulting

strong attachment might entrap the peptide, thereby lowering its local concentration near the

cell membrane and inhibiting its direct effect [39]. On the other hand, this mechanism also

“masks” the LTA’s binding sites necessary for evoking inflammation [39]. As it is suggested

that HDPs that are likely to bind LPS tend to interact also with LTA [22], and PAP has been

reported to show high affinity to LPS [14], it can be assumed that PAP might be entrapped by

LTA in the present study also. As a consequence, the peptide could not reach a concentration

high enough to exert its decreasing effect on the IL-8 levels, as PAP molecules were partly used

up to bind LTA molecules. The same results found in the case of RANTES might also indicate
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a similar entrapment of PAP by LTA. Even so, the investigation of this event would have

required further specific examinations, the lack of which is a limitation of our study.

RANTES, another inflammatory mediator examined in the present study, is produced by

hepatic stellate cells, macrophages, and endothelial cells in the liver, contributing to the

recruitment of peripheral macrophages and activation of tissue macrophages [62]. In addition,

the chemokine promotes the polarization of macrophages to the M1 phenotype [62], which is

responsible for the production of pro-inflammatory cytokines [19, 63], whereas the conversion

to the anti-inflammatory M2 phenotype is inhibited by its action [19, 62, 63]. There has been

increasing evidence suggesting the frequent involvement of RANTES in different liver dis-

eases, describing it as a mediator of hepatic cell injury; however, its particular mechanism of

action is not fully elucidated [62]. In the present study, both LTA- and Poly I:C-induced

inflammatory conditions resulted in elevated levels of RANTES, the latter of which was allevi-

ated by PAP at its highest concentration, suggesting its protective effect on the liver. To the

best of the authors’ knowledge, this chemokine has never been investigated either in connec-

tion with PAP or any other derivatives of papiliocin. However, other HDPs of different origins

were also described to decrease the production of RANTES in inflammatory stimuli, thereby

alleviating inflammation [64–66].

Henceforth, the impact of PAP on the immune response was investigated by determining

the changing in the levels of IFN-γ, a type II interferon synthesized by macrophages, DCs, and

activated lymphocytes [67]. Initially, it was thought to have a key role primarily in the anti-

viral response; however, it is now well-known that IFN-γ is crucial for protecting the host

against a wide range of pathogens and inflammatory stimuli [68]. Nevertheless, its over-activa-

tion can lead to tissue damage, necrotic events, and immunopathology by promoting, among

others, the production of other pro-inflammatory mediators, ROS, and reactive nitrogen spe-

cies (RNS) [68]. In the present study, only Poly I:C-evoked inflammation resulted in an ele-

vated level of IFN-γ, which increase was not significantly influenced by PAP. In contrast,

according to bibliographic data, several other cationic HDPs of insect origin have been

reported to affect the production of IFN-γ [37, 60, 69]. Still, it is of great importance to high-

light that different HDPs display highly varied immunomodulatory activities, also depending

on the specific experimental circumstances [7]. Therefore, the further investigation of PAP’s

influence on the interferon-response involving type I interferons could provide useful insights

to evaluate this result of the present study.

Redox markers

In recent years, an increasing number of studies has revealed the cellular interplay between

inflammatory and oxidative events, describing their mutual influence on each other [42, 70];

therefore, the present study aimed to determine the levels of EC H2O2 and Nrf2. This tightly

regulated connection of the redox and immune state is suggested to befall, among others,

through the interaction between the transcription factors NF-κB and Nrf2 [70]. Being able to

conversely regulate the expression and activation of the two molecules, this crosstalk allows a

highly coordinated immune response [42]. This interplay is suggested to be confirmed by the

present study, as high or moderate positive correlations were found between all the measured

inflammatory markers and at least one of the redox parameters. Regarding the levels of EC

H2O2, the two highest concentrations of PAP were able to restore the elevation caused by Poly

I:C, suggesting the antioxidant nature of the HDP. Even though the impact of papiliocins on

the oxidative state has not been frequently examined, our findings are in agreement with the

observations on the parent peptide papiliocin, which was able to decrease the intracellular
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H2O2 levels caused by oxidative stress in CaCo-2 human colorectal adenocarcinoma cell line

[71].

In the case of Nrf2, LTA-induced inflammation contributed to an elevated level of the tran-

scription factor, whereas in both inflammatory conditions, the addition of PAP resulted in a

decrease. Under physiologic circumstances, Nrf2 is mainly degraded by Kelch-like ECH-asso-

ciated protein 1 (Keap1) in the proteosome [72]. However, upon oxidative stress, Nrf2 escapes

from the complex and translocates into the nucleus, thereby activating the gene expression of

various cytoprotective proteins [72] and suppressing the pro-inflammatory ones [70]. As a

result, Nrf2 is described as a major regulator of the antioxidant defense system [70, 72]. It has

already been described that TLR2-agonists can act as activators of the Nrf2-signaling pathway,

reflecting the cellular efforts to enhance the expression of antioxidant molecules and hence,

support survival [70]. Based on these, the reduced levels after applying PAP in inflammatory

conditions suggest that owing to the beneficial effects of the peptide on the immune response,

the cells were not forced to augment the antioxidant processes anymore. The positive correla-

tion found between EC H2O2 and Nrf2 also confirms this explanation, suggesting that the anti-

oxidant system was activated according to the current oxidative state. Interestingly, when

applied alone, PAP exerted a decreasing effect on Nrf2 concentration, moreover, IL-8 concen-

tration was also decreased by the same treatment. Since it has been recorded that IL-8 can pro-

mote the compensatory elevation of the Nrf2 level [73, 74], and in the present study, the two

parameters highly positively correlated with each other, it can be suggested that the reduced

cytokine level contributed to the mild presence of Nrf2. Nevertheless, additional research is

required to better explain these events. In addition, there are only a few studies available about

the effects of HDPs on the Nrf2-signaling pathway, describing both the activation [75] and

suppression [30] of the transcription factor in hepatic cells; therefore, their exact mechanism

of action still remains unclear.

Taking the results together, PAP was found to influence the production of most of the mea-

sured parameters, indicating its potent immunomodulatory capability in inflammatory condi-

tions; however, when applied alone, the peptide was not characteristically found to result in

changes. These observations suggest that the treatment of PAP under physiological conditions

is unlikely to interfere with immune processes, whereas, in the presence of inflammation, the

HDP is able to exert immunomodulatory activity to protect the host, preferring to act towards

the anti-inflammatory processes. Nonetheless, given the varying impacts of PAP on the inflam-

matory environments evoked by the different TLR-agonists used in this study, further investi-

gation is required to better understand the peptide’s particular mechanism of action.

Conclusion

The goal of the present study was to investigate the effects of PAP on the inflammatory

response and oxidative state of a primary hepatocyte–non-parenchymal cell co-culture of

chicken origin. Based on our results, PAP seemed to exert no cytotoxic effects on chicken

hepatic cells, suggesting its safe application in poultry. Moreover, PAP displayed a robust mod-

ulatory activity on the immune response as it was able to decrease the levels of IL-6, IL-8, and

RANTES, as well as the IL-6/IL-10 ratio. Therefore, the peptide is suggested to provide benefi-

cial effects to the host in Poly I:C-triggered and LTA-induced inflammatory conditions. Fur-

thermore, the examination of the activity of PAP on EC H2O2 and Nrf2 levels showed that the

HDP might act as an antioxidant and promote the elimination of ROS. Based on our results,

PAP possesses a highly potent immunomodulatory property, and it might be a promising can-

didate for replacing ABs, thereby contributing to the reduction of AMR in the future.
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Supporting information

S1 Table. Showing correlation coefficients (r), p values and descriptions of correlations

between the tested parameters. Correlations were described as “very high”, “high”, “moder-

ate”, “low”, or “negligible”, based on the r value being ±0.90–1.00, ±0.70–0.90, ±0.50–0.70,
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