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Abstract

Background

Chronic Kidney Disease (CKD) and Metabolic dysfunction-associated steatohepatitis

(MASH) are metabolic fibroinflammatory diseases. Combining single-cell (scRNAseq) and

spatial transcriptomics (ST) could give unprecedented molecular disease understanding at

single-cell resolution. A more comprehensive analysis of the cell-specific ligand-receptor (L-

R) interactions could provide pivotal information about signaling pathways in CKD and

MASH. To achieve this, we created an integrative analysis framework in CKD and MASH

from two available human cohorts.

Results

The analytical framework identified L-R pairs involved in cellular crosstalk in CKD and

MASH. Interactions between cell types identified using scRNAseq data were validated by

checking the spatial co-presence using the ST data and the co-expression of the communi-

cating targets. Multiple L-R protein pairs identified are known key players in CKD and

MASH, while others are novel potential targets previously observed only in animal models.

Conclusion

Our study highlights the importance of integrating different modalities of transcriptomic data

for a better understanding of the molecular mechanisms. The combination of single-cell res-

olution from scRNAseq data, combined with tissue slide investigations and visualization of

cell-cell interactions obtained through ST, paves the way for the identification of future

potential therapeutic targets and developing effective therapies.
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1. Background

Chronic kidney disease (CKD) and Metabolic dysfunction-associated steatotic liver disease

(MASLD) are associated with obesity, type 2 diabetes, and metabolic syndrome [1, 2]. The pos-

sible association between MASH and CKD remains poorly understood [3, 4]. Both conditions

are fibroinflammatory diseases, which involve a cycle where inflammation triggers fibrosis,

and the resulting fibrosis can, in turn, perpetuate inflammation. A reduction of inflammation

and prevention or slowing down of fibrosis could therefore be considered for MASLD as well

as CKD [5–8]. Identification of common underlying alterations could provide essential infor-

mation about disease development and progression.

MASLD is a condition characterized by hepatic steatosis and the presence of at least one

cardiometabolic risk factor. The pathophysiology of MASLD is multifactorial with inflamma-

tion being a main driver of disease progression. In a subgroup of patients, MASLD can prog-

ress to metabolic dysfunction associated steatohepatitis (MASH), which is characterized by

steatosis, inflammation, and ballooning [9]. MASH can lead to fibrosis development by trig-

gering an excessive production of extracellular matrix, majorly by stellate cells, which is not

adequately balanced by degradation [10].

Acute Kidney Injury (AKI) entails a potentially reversible loss of kidney function that can

occur due to various causes, such as dehydration or infections [11]. Conversely, CKD is a pro-

gressive disease that results in irreversible damage to the kidneys and can lead to kidney fail-

ure. In certain cases, AKI can lead to CKD particularly if the injury is severe or recurrent. The

development of both AKI and CKD is complex. Although severe inflammation, fibrosis, and

lipid accumulation are well-established mechanisms involved in the development of kidney

diseases, numerous other pathophysiological processes may be involved [12].

Various analytical methods have been developed to deduce cell-cell communication from

the gene expression of individual cells using scRNAseq data [13]. These methods can infer the

cellular communication between a signaling source cell (expressing the ligand) and the target

cell (expressing the receptor) [14–16]. For this study, we utilized CellChat [17], a cell-to-cell

communication tool that has emerged as one of the top-performing methods.

While distant cell interactions play a role in disease development, studying the molecular

changes underlying paracrine signaling between adjacent cells may yield more promising

results. This is likely to provide valuable information about the molecular changes underlying

pathological lesions like development of fibrosis. In addition, inferring cell-cell communica-

tion based on L-R interactions solely based on single cells transcriptomics may lead to false

positives due to lack of spatial localization of ligands and receptors in their respective cell types

within a tissue. Spatial transcriptomics allows us to validate and understand these interactions

and the tissue’s cellular composition, enabling the comparison of gene expression between dif-

ferent cell types according to their locations and morphological features [18].

Currently, there are various spatial profiling methods, differing in resolution, number of

genes profiled, area of the tissue captured, and technology used [19, 20]. Visium (from 10x

Genomics) captures the expression of thousands of genes without predetermined gene targets,

allows an unbiased assessment of gene expression changes. One challenge of the technique is

to achieve the single cell resolution, as it depends on a grid of spots, each measuring 55 μm in

diameter, with primers designed to assess the transcriptome profile of all cells (typically up to

10–15 cells) located in each spot. A solution is to use a deconvolution technique based on the

expression within each spot, which dissects the mixed signals from individual cells within a

spot, providing an estimation of the abundance of the cell types in the spot using a scRNAseq

dataset as a reference [21]. This information helps to uncover the spatial organization of differ-

ent cell types and their interactions within the tissue.
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Previous studies have combined scRNAseq and ST data, [22–27] but none have integrated

disease conditions with possible overlapping pathophysiology. Through our analysis, we

uncover changes in gene expression and cell types involved in the two fibroinflammatory con-

ditions CKD and MASLD. Our work has the potential to subsequently facilitate drug discovery

efforts by pinpointing targets and enhancing our understanding of the disease progression.

2. Materials and methods

Data collection for CKD and AKI

The kidney data used in this study is from the Kidney Precision Medicine Project (KPMP) and

a file per sample was obtained from the KPMP cohort (S1 Table) [28, 29]. The single nuclei

dataset consists of 29 samples from 13 healthy individuals, 6 patients with AKI, and 10 patients

with CKD. The single nuclei dataset includes 16 different cell types. The spatial dataset com-

prises 15 10X Visium fresh frozen samples, including 6 with AKI and 9 with CKD (S1 Table).

Data collection for MASLD

The hepatic single nuclei dataset analysis was carried out using a publicly available dataset

[30], that consists of 12 samples: 3 healthy individuals and 9 patients with MASH (7 F1-F2

fibrosis and 2 F3-F4 fibrosis). These 9 patients with MASH were combined in our analysis (S2

Table).

The spatial transcriptomics data from liver samples were obtained from the Copenhagen

Cohort (Coco) of MASLD, which is a prospective cohort study (Clinicaltrials.gov

NCT04340817, H-17029039) that aims to systematically evaluate biomarkers and potential

drug targets in patients with MASLD and MASH performed at the Gastro Unit, Copenhagen

University Hospital Hvidovre. The healthy participants and patients underwent clinical assess-

ment, routine blood tests, a Fibroscan, and a liver biopsy, which was percutaneous or transju-

gular (healthy controls only underwent transjugular biopsies). All biopsies were evaluated by

two expert hepatopathologists based on steatosis, ballooning, inflammation, and fibrosis [31].

The spatial transcriptomics was available for 24 samples, including 6 healthy individuals

and 18 patients with MASLD (9 with F1-F2 fibrosis and 9 with F3-F4 fibrosis). Two samples

(with F4 fibrosis) that did not fulfil the criteria for MASH were excluded from the analyses.

From FFPE liver biopsies, sections of 5 μm thickness were cut and mounted onto positively

charged Visium slides (one sample mounted in each capture area of 6.5 x 6.5 mm) and pro-

cessed for spatial transcriptomics according to the 10X Genomics Visium FFPE Version 1 pro-

tocol. Briefly, samples were deparaffinized, stained with hematoxylin and eosin (H&E) and

imaged using VS200 Slide Scanner (Olympus Life Science) prior to decrosslinking, destaining

and overnight probe hybridization with the 10X Visium Human version 1 probe set. The fol-

lowing day, hybridized probes were released from the tissue, and ligated to spatially barcoded

oligonucleotides on the Visium Gene expression slide. Barcoded ligation products were then

amplified, and a library was constructed from this pre-amplified sample. Libraries from all 24

samples were pooled and sequenced on a NovaSeq 6000 sequencing platform (Illumina), using

a NovaSeq 6000 S2 Reagent Kit v1.5 (Illumina) according to the manufacturer instructions.

Subsequently, fastq files were generated for each sample, reads were aligned to their corre-

sponding probe-sequences (Visium human transcriptome probe set v1, based on GRCh38

2020-A) and mapped back to the Visium spot where a given probe were originally captured,

and finally aligned to the original H&E-stained image of the tissue section, using Space Ranger

version 1.3.0 (10X Genomics). From the Space Ranger output, the Loupe browser file for each

sample was used for initial inspection of data, and the filtered count matrix was used for fur-

ther downstream processing and analysis of data.
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Quality control, integration, and cluster annotation

For consistency in the project, both diseases were filtered using the same thresholds for cells or

spots, depending on the technology employed. These thresholds included a minimum of 500

counts, a minimum of 250 expressed genes, a mitochondrial percentage of less than 20%, and

a log10 ratio of the number of genes over the number of counts of at least 0.80. Basic quality

control metrics can be observed in S1 and S2 Figs. The kidney single nuclei data was already

processed and annotated, consisting of more than 169,000 cells (S3 Fig). In contrast, the liver

single nuclei data underwent a downstream analysis, consisting of normalization, dimension-

ality reduction, and clustering where the Seurat functions were employed [32]. In addition, the

cell clusters were annotated based on well-known markers (S5 Table) and by examining the

differentially expressed gene markers obtained per cluster in the PanglaoDB [33]. It yielded

over 205k cells, which were classified into eight distinct cell types (S4 Fig). Subsequently, the

spatial data was normalized and then integrated using Harmony [34], with default settings,

removing the batch size per sample and per diseases status. The liver dataset yielded almost

26,000 spots, while the kidney dataset integrated over 8,400 spots (S5 Fig).

Deconvolution analysis

To perform the deconvolution process, we used the Bayesian model Cell2location [35]. It takes

the gene expression signature of the cell types in the scRNAseq data to estimate the abundance

of each cell type at each spot. The model was trained with the scRNAseq data for 500 epochs

with a batch size of 2500. Afterwards, the intersection of the genes between the two technolo-

gies were identified and used for the spatial mapping. Finally, the regression model was set up

for deconvolution with hyperparameters priors: expected cells per spot (n = 8) and detection

sensitivity (α = 20). The final model was trained for 20,000 epochs. Quality control plots of the

deconvolution along with comparison can be seen in S6 Fig.

Co-occurrence and compositional clusters

We performed co-occurrence analyses to investigate non-random associations between cell

types within the tissue. To this end, we utilized the ISCHIA method, a computational combi-

natorics framework that assigns a quantitative property to the interaction potential of cell

types by computing their spatial co-occurrence [36]. This method enables us to identify pairs

of cell types that exhibit positive co-occurrence in specific cellular neighborhoods, indicating

that the observed co-occurrence is higher than expected by chance. To obtain specific cellular

neighborhoods, the data was partitioned into clusters of similar cellular composition. To

achieve this, the abundance of cell types per spot matrix was subjected to a k-means clustering,

and the total Within-Cluster Sum of Squares was calculated for a range of one to 15 clusters.

The optimal k value per disease was subsequently selected by the elbow method (S7 Fig). By

examining the cell types across the composition clusters and the number of spots contributing

to each disease status, two composition clusters were selected for each disease. Finally, the co-

occurrence of each cluster was calculated.

Co-expression in the tissue

In this study, various new functions were deployed to visualize the co-expression of multiple

genes in the ST data. These functions utilize a color-coding scheme to represent the co-expres-

sion value, enabling more precise visualization of specific regions of the tissue and facilitating

comparison between different sets of genes. The threshold parameter can be employed to

remove noise and enhance the accuracy of the visualization. The co-expression is based on the
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minimum principle, which stipulates that the expression of the genes is at least the minimum

of them. In addition, the spatial correlation was performed to validate the co-expression of the

ligand and receptor pairs with markers driving the diseases. Hence, the Pearson correlation

between the normalized expression level of these markers per slide was computed considering

all the samples or divided by disease state [37]. The markers chosen from literature were vali-

dated by pathologists.

Cell-cell communication and L-R interactions

CellChat [17], was utilized to study the cell-cell interactions per disease status. Each scRNAseq

processed dataset was divided according to the state of the disease and interactions with a p-

value below 0.05 were considered significant. CellChat was run with default parameters. Addi-

tionally, the CellChat function identifyOverExpressedGenes was applied to conduct a differen-

tial expression analysis of ligands and receptors pairs. The natural log fold-change threshold

was set to 0.1 with an adjusted P value threshold set to 0.05 for both ligand and receptor. Only

ligands and receptors pairs with the same directionality in the regulation were taken. In the

kidney, we calculated Healthy vs AKI, Healthy vs CKD, and AKI vs CKD, while in the liver, we

computed Healthy vs F1-F2, Healthy vs F3-F4, F1-F2 vs F3-F4 and finally Healthy vs all sam-

ples with MASH.

Integration of methodologies

To harness the maximum information of both technologies, a comprehensive analytical work-

flow was developed combining the methods described. Firstly, the cell-cell communication

and L-R interactions were calculated in the single cell data. From those, only the cell types that

are positively co-occurring in spatial transcriptomics were taken. Differential expression analy-

sis was then performed, taking the signaling that was either up or down regulated in the dis-

ease. Finally, L-R pairs that passed all these criteria were mapped onto the slides to explore the

co-expression between them. A visual overview of the different workflows can be seen in Fig 1.

Fig 1. Methods workflow. A. Single cell pipeline. B. Spatial transcriptomics pipeline. C. Combined pipeline for target discovery.

https://doi.org/10.1371/journal.pone.0302853.g001
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3. Results

We studied common cell-cell communication within each tissue across the spectrum of the

disease progression. For the kidney dataset, we compared healthy, AKI, and CKD patients. For

the dataset focusing on MASLD, we compared samples from healthy subjects, subjects with

mild/moderate (F1-F2) fibrosis, and subjects with advanced (F3-F4) fibrosis and well as

healthy versus all subjects with MASH. Lastly, we focused on finding shared cell-cell interac-

tions in both diseases, potentially revealing common therapeutic targets.

a. Kidney spatial deconvolution and scRNAseq identifies major disease

signal in the communication between proximal tubule and immune cells

In kidney, we clustered the spatial dataset based on the deconvolution results, revealing six dif-

ferent compositional clusters (CC) (Fig 2A). CC2 and CC6, were selected for further analysis

based on presence of disease relevant cell types and the presence across disease status (Fig 2B).

CC2, CC3 and CC4 were enriched in proximal tubule (PT), fibroblasts (FIB) and immune cells

(IMM). Among them, CC2 was chosen because of having a higher number of spots in CKD

and AKI, CC6 was selected due to its strong presence in CKD samples and its enrichment in

IMM and FIB, but not PT. To study the spatial co-localization of different cell types, co-occur-

rence was calculated for selected clusters resulting Fig 2C.

Subsequently, we analyzed cell-cell communication to identify L-R interactions on the

scRNAseq data kidney biopsies. Of all the cell-cell communications obtained, only the cell

types positively co-occurring in the two CCs selected were taken for further analysis.

Fig 2. Kidney results. A. Composition clusters of the cell deconvolution results in spatial data. B. Contribution of the spots to each disease status per

composition cluster. C. Cell type co-occurrence within the composition clusters two and six. D. Co-expression in the spatial data of the NRG3-ERBB4
interaction (NRG3, green; ERBB4, blue; both, red). E. Co-expression in the spatial data of the SPP1-ITGB1 interaction (SPP1, green; ITGB1, blue; both,

red). Fibrotic markers and inflammation markers: COL3A1 and TGFB1 (red).

https://doi.org/10.1371/journal.pone.0302853.g002
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Furthermore, we identified up and down regulated L-R pairs (Table 1) by conducting a differ-

ential expression (DE) analysis between the kidney disease status (See cell-cell communication

section in Methods 5).

i. Integrative analysis reveals increased neuregulin 3 (NRG3)- Receptor tyrosine-protein

kinase erbB-4 (ERBB4) signaling and crosstalk between tubular and glomerular cell types

in AKI and CKD. The next step in our analysis was to confirm the L-R interactions identified

in scRNAseq by looking at its co-expression within same areas of the tissue slides from kidney

biopsies.

The L-R interactions showing consistent association with the disease were investigated. The

ligand VEGFA and its receptor VEGFR1 were found to be consistently down regulated in the

disease tissue samples. Conversely, NRG3 with its receptor ERBB4 were up regulated in AKI

and CKD. Interestingly, PT cells expressing NRG3 were communicating with descending thin

limb cells, endothelial cells and the PT themselves expressing ERBB4 showing an upregulation

in CKD compared to both the healthy and AKI states (Table 2).

To investigate whether co-expression of L-R pairs occurs in the same tissue region, we visu-

alized co-expression of the L-R pair within the tissue slide. The co-expression of NRG3 and

ERBB4 could not be validated since the expression of the ligand (NRG3) was detected only in a

few spots (Fig 2D). Since NGR3 was found to have high expression in scRNAseq data (S10

Fig), the reason for its low detection in spatial transcriptomics is due to limitations in the

technology.

ii. The comparison between healthy and CKD revealed metabolic reprogramming asso-

ciated with the interaction of SPP1 and the receptor complex (ITGAV-ITGB1). We

focused our analysis on the L-R pairs differentially regulated between H vs CKD. We validated

Table 1. Number of L-R interaction differentially regulated across the different kidney disease status.

L-R Pairwise DE Number of interactions

Up regulated Down regulated

H vs AKI 85 49

H vs CKD 21 131

AKI vs CKD 12 159

https://doi.org/10.1371/journal.pone.0302853.t001

Table 2. Cell communication between the NRG3-ERBB4 interaction in kidney.

L-R Pairwise DE Source Target Ligand logFC Receptor logFC

H vs AKI EC CNT 0.30 0.10

PT CNT 0.10 0.10

EC DCT 0.30 0.27

EC IC 0.30 0.15

EC POD 0.30 0.25

POD POD 0.34 0.15

H vs CKD PT DTL 0.24 0.20

PT EC 0.24 0.65

PT PT 0.24 0.69

AKI vs CKD PT DTL 0.14 0.66

PT EC 0.14 0.35

PT PT 0.14 0.58

NT: Connecting tubule, DCT: Distal convoluted tubule, DTL: Descending thin limb, EC: Endothelial, IC: Intercalated cells, POD: Podocytes, PT: Proximal tubular cells.

https://doi.org/10.1371/journal.pone.0302853.t002
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the L-R pairs by computing the spatial co-expression patterns within the tissue. Interestingly,

SPP1 and the receptor complex ITGAV−ITGB1, exhibited either up regulation or down regula-

tion depending on the cell types involved in the communication (S6 Table). While the expres-

sion of this complex receptor is upregulated in fibroblasts from CKD samples, it is consistently

downregulated in endothelial cells. The spatial co-expression of SPP1 and ITGAV1-ITGB1 can

be observed by plotting the spatial neighboring co-expression of the L-R pair (Fig 2E). More-

over, the involvement of the L-R pairs in the disease progression can be appreciated by visual-

izing the spatial co-expression of the L-R pair with fibrotic and inflammation markers

(COL3A1 and TGFB1) [38].

b. Liver spatial deconvolution and scRNAseq cell-cell communication

identifies major disease signal in stellate and endothelial cells

In liver samples, two of the CCs identified (CC1 and CC4) (Fig 3A) were selected based on the

number of spots contributing to the liver fibrosis stages (Fig 3B). In the selected CCs, all cell

types are positively co-occurring except for hepatocytes (Fig 3C).

Following the same approach as in kidney, we calculated the cell-cell communication in the

scRNAseq dataset, focusing exclusively on L-R interactions between cell types that exhibited

positive co-occurrence in the spatial analysis. The L-R DE analysis between different fibrosis

stages resulted in Table 3.

i. Down regulation of shared communication is identified in MASH compared to

healthy and in advanced fibrosis compared to mild/moderate fibrosis. Among all pairwise

Fig 3. Liver results. A. Composition clusters of the cell deconvolution results in spatial data. B. Contribution of the spots to each disease status per

composition cluster. C. Co-occurrence of the cell types in composition clusters one and four, same co-occurrence. D. Co-expression in the spatial data

of the PROS1-AXL interaction (PROS1, green; AXL, blue; both, red). E. Co-expression in the spatial data of the PDGFC-PDGFRA interaction (PDGFC,

blue; PDGFRA, blue; both, red. Tissue: H&E stain. Fibrotic markers: LUM, IGFBP7and COL1A1 (red).

https://doi.org/10.1371/journal.pone.0302853.g003
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comparisons analyzed, we focused on those whose expression regulation was consistent across

all comparisons. Three L-R pairs (BMP6-(BMPR1A-BMPR2), BMP6-(BMPR1B-BMPR2) and
PROS1-AXL) were down regulated in advanced fibrosis and potentially involved in the com-

munication between endothelial cells and stellate cells and in the autocrine signaling in mye-

loid cells (Table 4). The expression of BMP6 decreases in endothelial cells, along with the

expression of receptor complexes BMPR1A-BMPR2 and BMPR1B-BMPR2 in stellate cells.

Similarly, the receptor PROS1 and the ligand AXL exhibit the same pattern both in myeloid

cells. Subsequently, interaction between PROS1 and AXL was visually confirmed by evaluating

the co-expression on the slides (Fig 3D). Unfortunately, BMP6 is not part of the FFPE probe.

ii. Comparing the healthy versus the MASH state leads to the identification of up regu-

lation of PDFGC-PDGFRA which overlaps with fibrotic areas. In liver, we focused on the

L-R associated with MASH. The interaction between the ligand PDGFC and the receptor

PDGFRA in the communication between cholangiocytes with stellate cells, and myeloid with

stellate cells, implies that the interaction by this L-R pair, and hence the communication

between these cell types, intensifies in MASH.

In liver, as the disease progresses, areas with fibrosis and dense lymphocytic infiltration

become visible in the H&E histology sections appearing as dark blue regions in the low-magni-

fication tissue images in Fig 3E [39, 40]. It allows us to visually observe if the co-expression of

L-R interactions overlaps with those areas, as well as fibrotic markers in liver [41], namely

LUM, IGFBP7 and COL1A1. In addition, Pearson correlation between L-R and fibrotic mark-

ers was used to quantify the colocalization with fibrotic areas (S9 Fig), seeing an increment in

the NASH samples compared with the healthy samples.

c. Common L-R interactions in CKD and MASH support endothelial cells

expressing INSR playing a critical role in cardio metabolic diseases

In liver, the communication between cholangiocytes, myeloid and stellate cells expressing

NAMPT with endothelial cells expressing INSR was up regulated in MASH subjects compared

to healthy ones. Contrarily, in kidney, the communication between fibroblasts, parietal epithe-

lial and distal tubule cells with endothelial cells expressing NAMPT and INSR, respectively,

was found to be down regulated in the CKD state versus the healthy status. A summary

describing the communication and expression in both tissues can be found in Table 5.

Table 3. Number of differential interactions across the conditions in liver.

L-R Pairwise DE Number of interactions

Up regulated Down regulated

H vs F1-F2 10 19

H vs F3-F4 38 24

F1-F2 vs F3-F4 47 16

H vs MASH 13 16

https://doi.org/10.1371/journal.pone.0302853.t003

Table 4. Common cell communication across all L-R pairwise DE comparisons in liver.

Source Target Interaction

Endothelial Stellate BMP6-(BMPR1A-BMPR2)
Endothelial Stellate BMP6-(BMPR1B-BMPR2)
Myeloid Myeloid PROS1-AXL

https://doi.org/10.1371/journal.pone.0302853.t004
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In both liver and kidney, the immune cells expressing CD44 were down regulated in the dis-

ease. The communication between cholangiocytes expressing SPP1 and CD44-positive T cells

was down regulated in MASH. Likewise, the ascending thin limb cells expressing the SPP1
were down regulated in immune cells expressing CD44 in CKD.

4. Discussion

In recent years, the understanding of the pathophysiology underlying CKD and MASH has

advanced significantly, thanks to the development of high throughput technologies such as

single-cell and spatial omics. In this work we uncovered ligand-receptor complexes that

emerges in MASH and CKD driving communications between cell types that are key player in

the fibro-inflammatory and metabolic processes including stellate and cholangiocytes cells in

the liver and proximal tubular cells in kidney.

In kidney, we identified L-R interactions that exhibited consistent regulation in the expres-

sion in the diseased subject, NRG3-ERBB4 were up regulated in the disease, while VEGFA--
VEGFR1 were downregulated along the progression of the disease. The cell-cell

communication analysis identified NRG3-ERBB4 as key players in the communication

between proximal tubules with descending thin limb cells and with endothelial cells. This sug-

gests that upon reaching the chronic state, PT cells increase the NRG3 expression, intensifying

their communication with the cell types that are also augmenting the expression of ERBB4.

Consistent with the findings in the literature, PT plays a key role in CKD and an increased

activity in the PT can lead to an increased risk of CKD development [42, 43].

Although the literature does not provide direct evidence of the association of NRG3 and

renal fibrosis or disease progression, numerous publications have reported the involvement of

ERBB in various renal diseases [44]. ERBB4 is a member of the epidermal growth factor recep-

tor family, a group of genes that has been shown to exhibit increased activity in AKI and CKD

[45, 46]. Notably, ERBB4-IR, a novel long non-coding RNA located on chromosome 1 in the

mouse genome [47], has been implicated in mediating renal fibrosis [48, 49]. Moreover, there

is evidence that ERBB4-IR plays a role in CKD [47, 50] and diabetic nephropathy [51, 52].

While these studies support the importance of ERBB4 in renal diseases in mice, limited human

results are available to support these findings [53]. Our data suggests that expression of ERBB4
is increased in human CKD and plays a role in the pathogenesis by increased paracrine signal-

ing between proximal tubules, descending thin limb cells and endothelial cells. The expression

of NRG3 and ERBB4 genes was not consistently detected in the spatial transcriptomics dataset

due to the low expression of the ligand NRG3 within the tissue which contrasts with its expres-

sion observed in the single nuclei dataset.

Table 5. Cell communication between the NAMPT-INSR interaction comparing healthy versus disease samples in both tissues.

Tissue Source Target Ligand logFC Receptor logFC

Liver cholangiocytes EC 24.1 95.2

myeloid EC 25.4 95.2

stellate EC 39.6 95.2

Kidney FIB EC -0.8 -0.39

PEC EC -1.1 -0.39

DTL EC -0.55 -0.39

Source: cell type expressing the ligand, Target: cell type expressing the receptor, FIB: fibroblasts, EC: endothelial, PEC: parietal epithelial, DTL: descending thin limb

cells.

https://doi.org/10.1371/journal.pone.0302853.t005
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In the comparison of healthy versus CKD samples, we identified 150+ interactions

highlighting the complexity of the mechanisms underlying the disease (Table 1). Particularly,

the SPP1-(ITGAV-ITGB1) interaction exhibits distinct patterns: the receptor is consistently

expressed by fibroblasts in upregulated communications and by endothelial cells in downregu-

lated communications in disease setting. This specificity in cell types associated with commu-

nication changes offers exciting prospects for precise and effective target discovery in the

context of the disease.

The L-R pair SPP1-(ITGAV-ITGB1) is clearly co-expressed and overlaps with fibrotic and

inflammation markers, COL3A1 and TGFB1. However, when the expression pattern of a L-R

pair varies between cell types (up or down regulated), interpretation of the biological role is

complicated and challenges to see the overlapping with the markers selected. The involvement

of this interaction, SPP1-(ITGAV-ITGB1), has been extensively studied in the literature. SPP1
is known to impact not only AKI and CKD [54–56] but also several cardiovascular diseases

[57–59]. Likewise, ITGA9 and ITGB1, genes belonging to the integrin family are also recog-

nized for their role in CKD [60–62]. However, their role in disease progression remains

unclear, primarily due to the involvement of multiple cell types and processes. In this study,

we have improved the understanding of how the SPP1 ligand interacts with complex integrins

to mediate fibrosis in fibroblasts and immune cell types where they are up regulated while in

endothelial cells and distal or connecting tubule, they are down regulated. This metabolic

reprogramming may be attributed to various post-transcriptional and post-translational events

within the realm of regulatory biology that occurs during disease process which is out of scope

in this current study. Hence, further studies with other types of omics profiling beyond mRNA

analysis are required for a deeper understanding of the diverse cell-type specific complex regu-

latory biology.

In liver, we observed co-occurrence of all cell-types except hepatocytes in the chosen com-

positional cluster. Hepatocytes represent the most abundant cell type in liver and represent

70–80% of the liver [63]. Even if there is no statistically significant enrichment between hepa-

tocytes and other cell-types, we assume hepatocytes are physically in contact with all the other

cells in the liver. However, in this analysis, we focused on non-hepatocytes such as hepatic stel-

late cells, which are known for being key drivers of liver fibrosis [64].

Three L-R pairs interactions were found consistently down regulated in the disease, two of

them between endothelial cells expressing the ligand BMP6, and stellate cells expressing either

the complex receptor BMPR1A-BMPR2 or BMPR1B-BMPR2 [65], and the other interaction

between the myeloid cells with themselves expressing the ligand PROS1 and the receptor AXL.

These results suggest a decreased communication between the cell types with the progression

of the disease. Unfortunately, BMP6 is not captured by the probes of 10X Genomics Visium

FFPE and therefore, the co-expression of the interaction in the ST dataset cannot be evaluated,

needing further studies to validate the results.

Our work identifies BMP6 as a key ligand in liver fibrosis in humans. Interestingly, BMP6
has been previously identified as a target in murine models where the enhancement of its

expression inhibits hepatic fibrosis in liver disease [66].

Finally, our findings highlight a potential autocrine signaling of myeloid cells between the

ligand PROS1 and the receptor AXL that diminishes with the progression of the disease. The

neighboring expression of PROS1 and AXL were observed across all tissue sections. These

findings are in good agreement with previous studies which explored the role of AXL in liver

injury and fibrosis [67–71].

Remarkably, our study revealed that the PDGFC-PDGFRA interaction served as one of

the L-R pairs responsible for the communication between cholangiocytes and stellate cells, as

well as myeloid with stellate cells. Notably, the expression of this interaction was found to be
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up regulated in MASH compared to healthy samples. Hence, we observed not only co-

expression between the interaction but also a significant overlap with fibrotic areas within

the tissue and the co-expression of fibrotic markers. Additionally, the correlation between

the ligand and receptor with these markers revealed strong spatial correlation. The co-locali-

zation of PDGFC- PDGFRA interaction with fibrotic areas and markers was notably more

pronounced in slides obtained from MASH patients with fibrosis stage 3 and 4 scores, com-

pared to healthy samples or those with fibrosis stage 1 and 2 scores. This distinction is also

observed in the spatial correlation calculated by condition status, where an increase in the

Pearson correlation coefficient is seen comparing MASH samples versus healthy subjects.

Consequently, our findings provide novel evidence suggesting that an increased interaction

of PDGFC and PDGFRA between stellate cells with cholangiocytes, as well as myeloid cells, is

associated with liver disease progression and enhanced fibrotic damage. The PDGFC gene, a

member of the platelet-derived growth factor family and its association with liver diseases

has been broadly studied [72]. Remarkably, the association of PDGFC expression has been

linked not only to the progression of fibrosis, but also to chronic inflammation, increment of

collagen production, hepatocarcinogenesis, steatosis, hepatocellular carcinoma [73–79].

Moreover, the expression of PDGFC in hepatic stellate cells, as observed in our study, has

been previously reported [80].

Interestingly, common interactions were also found in both diseases with shared cell

types involved. While NAMPT-INSR was up regulated in liver, it was down regulated in kid-

ney. However, the cell type expressing the receptor in both cases were the endothelial cells.

Previous studies have corroborated the decreased INSR expression in kidney diseases [81,

82], while others have validated the increase of the receptor in liver diseases, highlighting the

involvement of stellate cells in the process [83]. In addition, research has pinpointed the

association between NAMPT in obesity and diabetes [84–87], as well as its function in

MASH [88, 89], which highlights one more time the complex mechanisms within these met-

abolic diseases.

Another L-R pair (SPP1-CD44) was downregulated in CKD and MASH. The receptor,

CD44, was found on T-cells in the liver and on immune cells in the kidney, suggesting a corre-

lation between the two diseases. SPP1 has already been identified as a relevant ligand playing a

significant role in kidney disease in our study. Additionally, our results indicate that SPP1 has

a key role in liver disease, where it communicates with T cells expressing CD44.

Our findings are in line with the complexity of these two multifactorial diseases character-

ized by multiple ligand-receptor pairs whose changes in abundance and physiological effect

are dependent on the cell type expressing them. Our analysis provides a better disease under-

standing by identifying dysregulated L-R pairs and changes in the communication between

different cell types during disease progression and holds significant potential for improving

target identification and validation.

Lastly, this study has certain limitations. Quality control of both scRNAseq and ST datasets

are crucial since the cell-cell communication and L-R pairs obtained from the scRNAseq data-

set and validated within the spatial information. While the kidney dataset presents a pairwise

arrangement, where both datasets are from the same cohort, the scRNAseq and ST datasets in

liver come from entirely distinct studies. Hence potential batch effects and variations in experi-

mental conditions need to be considered while analyzing the deconvolution outcome and

interpreting the overall results.

Finally, further studies such as in situ hybridization or functional studies experiments may

be necessary to confirm the functional roles of identified genes with their interactions and

identify potential therapeutic targets.
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5. Conclusion

Integration of single-cell and spatial transcriptomics provides advantages that can help over-

come limitations of individual technologies. The findings of our study contribute to a deeper

comprehension of the molecular mechanisms behind complex diseases.

In this study, we developed a novel approach to utilize all the information provided by the

deconvolution analysis, improving the accuracy of the results, and providing more detailed

insights into target discovery and validation. Our framework identifies differentially expressed

genes and elucidates potential ligand-receptor pairs and associated cell types involved in com-

munication, offering a more nuanced understanding of CKD and MASH.

Our analytical framework identified mechanisms and cell-cell signaling as evidenced in the

literature, while others may be potentially considered as novel discoveries. It is also noteworthy

that few of the literature validated ligand-receptor interactions are from studies in mice, while

our study utilizes human data. This approach provides a strong human-centric and transla-

tional relevance around candidate drug target (potential ligand-receptor interaction) behavior

and their cell-cell communication pattern during disease process.

Overall, this study paves a way for gaining a better understanding of complex diseases and

identifying potentially new therapeutic targets via integrating scRNAseq and ST modalities.
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