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1 Escuela de Ciencias Fı́sicas y Matemáticas, Facultad de Ciencias Exactas y Naturales, Pontificia
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Abstract

To analyze and study the behaviour of the shallow water waves, the perturbed Boussinesq

equation has acquired fundamental importance. The principal objective of this paper is to

manifest the exact traveling wave solution of the perturbed Boussinesq equation by two well

known techniques named as, two variables G0

G ;
1

G

� �
expansion method and generalized pro-

jective Riccati equations method. A diverse array of soliton solutions, encompassing peri-

odic, bright solitons, singular solitons and bright singular solitons are obtained by the

applications of proposed techniques. The constraint conditions for newly constructed solu-

tions are also specified. To enhance comprehension, the numerical illustrations of con-

structed solutions have been represented using surface plots, 2D plots and density plots.

The results delineated in this paper transcend existing analysis, offering a novel, well-struc-

tured, and modern perspective. The solutions obtained not only enrich understanding of

shallow water wave models but also exhibit efficacy in providing detailed descriptions of

their dynamics.

1 Introduction

The world around us contains nonlinear phenomena and to describe these phenomena, non-

linear partial differential equations play a vital role. It is not possible to deny the importance of

nonlinear partial differential equations (NLPDEs). NLPDEs have been widely used to explain

and investigate the physical phenomena occurring in the world. Their applications have pro-

vided fruitful results in all fields of natural and social sciences including engineering and bio-

logical sciences [1].

In recent years, researchers have paid much attention to finding the traveling wave solu-

tions of NLPDEs. Solitary waves and solitons are the type of traveling waves that were first

discovered by J. Scott Russell in 1834. Solitons have some unique properties e.g. solitons

come into existence when nonlinear and dispersive effects are canceled in a medium. Soliton

acts like a single wave with one crust. It retains its shape while traveling at a constant speed.
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Many researchers have worked hard for finding soliton solutions of many nonlinear evolu-

tion equations. The NLEEs are used to describe complex problems in various fields such as,

plasma physics, mechanics of water waves, nonlinear optical fibers, control theory, describ-

ing oceanic and atmospheric influences, fluid mechanics, mathematical chemistry, biology,

signal processing and many more [1, 2]. The methods of finding exact solutions of NLEEs

using traveling wave transformations are a popular topic of research. Many useful methods

have been employed for extracting solitary wave solutions, such as; improved tan �ðxÞ

2

� �
expan-

sion method [3], first integral method [4], modified auxiliary equation method [5], general-

ized exponential rational function (GERF) method [6], an inverse-G
0

G expansion method [7],

the Lie classical method and unified method [8], the modified generalized Riccati equation

mapping approach [9], the modified generalized exponential rational function method and

the extended function method [10], new modified generalized Riccati equation mapping

approach [11] and others.

The fundamental aim of this research article is to investigate perturbed Boussinesq equa-

tion (PBE) as it holds significant importance in fluid dynamics, particularly in the context of

water waves. This model yields soliton solutions, shock waves, and singular solutions. These

solutions are very useful in studying different wave behavior under diverse conditions. The

perturbed quantities occurring in the model allow the reader to study more complex wave

behaviors, including solitons and other solutions. The perturbed Boussinesq equation, which

is used to describe the propagation of waves in shallow water is being investigated in this arti-

cle. This equation incorporates various effects such as refraction, diffraction, shoaling, and

weak nonlinearity in fluid dynamics. It is integrable equation and possesses soliton

solutions.

Boussinesq equation in various formats has been analyzed by many scholars through differ-

ent techniques such, as the extended hyperbolic function method [12], modified auxiliary

equation techniques [13], G0
G

� �
method [2] and approximate symmetry method [14].

The two variables G0
G ;

1

G

� �
expansion method and generalized projective Riccati equations

method are reliable and efficient approaches for obtaining new and novel solutions in the

form of hyperbolic, trigonometric and rational functions. The extracted hyperbolic function

solutions can further lead to bright soliton, dark soliton, Kink and anti-Kink solutions, singu-

lar solitons. The trigonometric solutions can be referred to as periodic solutions. All analytical

methods have some limitations. The analytical techniques that are applied in this article also

have some limitations. The proposed approaches extracted dark solitons, periodic waves and

bright solitons. The approaches are strong and play an efficient role in finding solutions to

variety of NLPDEs. The proposed techniques are widely employed in nonlinear dynamics and

soliton theory, to create solitonic shapes. These techniques provide the full spectrum of soliton

solutions.

The analytical methods that have been used in this article have significance importance in

solving nonlinear partial differential equations. These methods have been used by many schol-

ars to solve nonlinear equations, such as Konno-Oono equation [15], biological population

model and KdV-Zakharov-Kznestsov equation [16] solved by two variables G0
G ;

1

G

� �
expansion

method. Whereas, generalized projective Riccati equations method is used to solve Klien-

Fock-Gordon equation [17] and Lakshmanan Porsezian Daniel model [18].

This paper is divided into six sections: governing model is described in Section 2, Section 3

is about detailed explanation of above mentioned methods, Section 4 gives mathematical anal-

ysis of perturbed Boussinesq equation, Section 5 provides graphical illustrations and Section 6

concludes the whole paper.

PLOS ONE Analysis of perturbed Boussinesq equation via novel integrating schemes

PLOS ONE | https://doi.org/10.1371/journal.pone.0302784 May 17, 2024 2 / 19

https://doi.org/10.1371/journal.pone.0302784


2 Governing model (perturbed Boussinesq equation (PBE))

description

Boussinesq equation is the fundamental equation that is modeled for stability of waves by

interaction of surface waves over shallow water waves. Boussinesq describes that this wave

maintains its shape by balancing between precipitous effect of nonlinearity and smooth effect

of dispersion.

The Boussinesq equation is given as

Stt � Sxx � aS2
xx þ oSxxxx ¼ 0; ð1Þ

where S(x, t) is a function of x and t representing surface elevation, α and ω are treated as con-

stant parameters.

When ω> 0, then we end up with, a linearly stable, and the numerical computable equation

Eq (1) known as Good Boussinesq (GB) equation. The solitary waves described by the GB

equation solely occur for a finite range of velocities and can merge into one solitary wave [19].

If the sign associated to ωSxxxx is changed i.e ω< 0, Eq (1) becomes the well-known bad

Boussinesq equation. It is used to describe a two-dimensional flow of shallow water over a flat

bottom, assuming that the water waves have small amplitudes. Bad Boussinesq-type has its

importance from both mathematical and physical points of view, but the research results on its

initial boundary value problems are scarce. A part of the reason for the paucity of the results is

due to the properties of the linear part of Eq (1) that are so bad that the traditional mathemati-

cal methods cease to be effective [20].

With the advancement in the Boussinesq equation, many new forms of Boussinesq equa-

tions are developed and are used frequently by researchers. In this respect, the perturbed Bous-

sinesq equation (PBE) comes out, as

Stt � k2Sxx þ jS2n
xx þ hSxxxx ¼ oSxx þ rSxxxx; ð2Þ

where, ρ indicates stabilization term and ω represents coefficient of dissipation [21]. PBE is a

popular nonlinear evolution equation and it has been widely implemented in coastal, harbor,

water and oceanic engineering. It helps in forecasting waves in coastal areas, breaking of

waves, interaction of waves, shoreline circulation in intense and normal weather conditions

[2]. Moreover it is used to model tsunami waves, oscillations of tidal waves and also to model

the characteristics of shallow water waves which occur at beaches, lakes and in rivers.

PBE model has attracted the attention of many researchers. In [22] the perturbed Boussi-

nesq equation is investigated using generalized Kudryashov method and sine-Gordon expan-

sion method. A study is also conducted on new perturbed conformable Boussinesq-like

equations to deduce soliton solutions [23]. In [13], new approximate symmetry method is

applied on (2+1)-dimensional perturbed Boussinesq equation and new soliton solutions have

been derived.

3 Description of methods

This section contains the detailed description of two proposed analytical methods.

3.1 Method 1: Two variables G0
G ;

1

G

� �
expansion method

To have a full grasp of two variables G0
G ;

1

G

� �
expansion method following preliminary points

are important to keep in mind:
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Point 1. The linear ordinary differential equation of 2nd order is considered, as

G00ðZÞ þ lGðZÞ ¼ m: ð3Þ

Fix E ¼ G0
G and F ¼ 1

G. Moreover, E and F obey the following ODEs

E0 ¼ � E2 þ mF � l; F0 ¼ � EF; ð4Þ

where λ and μ are treated as constants.

Point 2. When λ< 0, the general solution of Eq (3) is obtained, as

GðZÞ ¼ B1 sinhðZ
ffiffiffiffiffiffiffi
� l
p

Þ þ B2 coshðZ
ffiffiffiffiffiffiffi
� l
p

Þ þ
m

l
; ð5Þ

where B1 and B2 indicate arbitrary constants. Consequently, F is taken as

F2 ¼
� l

l
2
s1 þ m

2
ðE2 � 2mF þ lÞ; ð6Þ

where s1 ¼ B2
1
� B2

2
.

Point 3. When λ> 0, then the general solution of Eq (3) is obtained, as

GðZÞ ¼ B1sinðZ
ffiffiffi
l
p
Þ þ B2 cosðZ

ffiffiffi
l
p
Þ þ

m

l
; ð7Þ

where F is considered as

F2 ¼
l

l
2
s2 � m

2
ðE2 � 2mF þ lÞ; ð8Þ

where s2 ¼ B2
1
þ B2

2
.

Point 4. When λ = 0, then solution of Eq (3) is obtained, as

GðZÞ ¼
m

2
Z2 þ B1Zþ B2; ð9Þ

the value of F has the form

F2 ¼
1

B2
1
� 2mB2

ðE2 � 2mFÞ: ð10Þ

The NLEE is considered, as

RðS; St; Sx; Sxx; :::Þ ¼ 0; ð11Þ

where R represents a polynomial in S(x, t) and its partial derivatives. Following are the impor-

tant steps of two variable G0
G ;

1

G

� �
expansion method.

Fist step. The following traveling wave transformation is used

Sðx; tÞ ¼ pðZÞ; Z ¼ x � vt; ð12Þ

where v represents a constant velocity. After applying this transformation, Eq (11) is converted

to an ODE as

Qðp0; p00; p000 . . .Þ ¼ 0; ð13Þ

where Q shows a polynomial of p(η) and its all derivatives with respect to η.
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Second step. It is assumed that the Eq (13) has solution of the following form

pðZÞ ¼
XM

r¼0

crE
r þ
XM

r¼1

drE
r� 1F; ð14Þ

where cr(r = 0, 1, 2, . . ., M) and dr(r = 1, 2, . . ., M) are constants, which are determined later.

Third step. In order to determine the integer M in Eq (14), the homogenous balancing is

employed, through that the highest-order derivative and the nonlinear term occurring in the

equation are compared.

Fourth step. By plugging Eq (14) into Eq (13) along with Eqs (4) and (6), the left-hand side

of Eq (13) is transferred into a polynomial in E and F, in which the degree of F is not greater

than 1. Setting each coefficients of gained polynomial to zero. The homogenous system of alge-

braic equations is obtained. Upon solving the system, the values of cr, dr, v, μ, B1, B2 and λ for

the case of λ< 0 are determined.

Fifth step. Following the same procedure as explained in Fourth step., inserting Eq (14) into

Eq (13) besides with Eqs (4) and (8) for the case λ> 0 and for the case λ = 0 inserting Eq (14)

into Eq (13) with Eqs (4) and (10)), the values of arbitrary constants cr, dr, v, μ, B1, B2 and λ are

extracted. After substituting the values of arbitrary constants in Eq (14), the exact solutions of

Eq (13) have been obtained which are expressed by trigonometric functions, hyperbolic func-

tions or rational functions for λ> 0, λ< 0 or λ = 0, respectively.

3.2 Method 2: Generalized projective Riccati equations method

First step. According to Method 2, the general solution of Eq (13) has the form

pðZÞ ¼ a0 þ
XM

r¼1

Ar� 1ðZÞ½arAðZÞ þ brBðZÞ�; ð15Þ

where a0, ar and br are constants which are determined later. The functions A(η) and B(η) sat-

isfy the following ordinary differential equations

A0ðZÞ ¼ �AðZÞBðZÞ;

B0ðZÞ ¼ H þ �B2ðZÞ � dAðZÞ; ð16Þ

where

B2ðZÞ ¼ � � H � 2dAðZÞ þ
d

2
þ i
H

A2ðZÞ

� �

; � ¼ �1; ð17Þ

valid for values of i = ±1 where H and δ are nonzero constants.

When δ = 0 and H = 0 then solution of Eq (15) has the following form

pðZÞ ¼
XM

r¼0

arB
rðZÞ; ð18Þ

B(η) satisfies the ordinary differential equation

B0ðZÞ ¼ B2ðZÞ: ð19Þ

Second step. In order to determine the integer M in Eq (15), the homogenous balancing is

employed, through that the highest-order derivative and the nonlinear term of the equation

are compared.
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Third step. When H 6¼ 0, Eq (15) is inserted along with Eqs (16) and (17) into Eq (13) and

for the case when H = 0 and δ = 0, Eq (18) is inserted along with Eq (19) into Eq (13). A system

of algebraic equations is obtained by setting every coefficient of Ar(η)Bq(η)(r = 0, 1, . . ., q = 0,

1) to zero. The system can be solved to obtain the values of a0, ar, br, v, δ and Y.

Fourth step. Different cases for the solution of Eq (16) are given, as follows [19]:

Case 1: For � = −1, i = −1, H> 0,

A1ðZÞ ¼
Hsechð

ffiffiffiffi
H
p

ZÞ

dsechðHZÞ þ 1
; B1ðZÞ ¼

ffiffiffiffi
H
p

tanhðHZÞ
dsechð

ffiffiffiffi
H
p

ZÞ þ 1
: ð20Þ

For � = −1, i = 1, H> 0,

A2ðZÞ ¼
H csch ð

ffiffiffiffi
H
p

ZÞ

d csch ð
ffiffiffiffi
H
p

ZÞ þ 1
; B2ðZÞ ¼

ffiffiffiffi
H
p

coth ð
ffiffiffiffi
H
p

ZÞ

dcschð
ffiffiffiffi
H
p

ZÞ þ 1
: ð21Þ

Case 2: For � = 1, i = −1, H> 0,

A3ðZÞ ¼
H sec ð

ffiffiffiffi
Y
p

ZÞ

d sec ð
ffiffiffiffi
H
p

ZÞ þ 1
; B3ðZÞ ¼

ffiffiffiffi
H
p

tan ð
ffiffiffiffi
H
p

ZÞ

d sec ð
ffiffiffiffi
H
p

ZÞ þ 1
: ð22Þ

For � = 1, i = 1, H> 0,

A4ðZÞ ¼
H csc ð

ffiffiffiffi
H
p

ZÞ

d csc ð
ffiffiffiffi
H
p

ZÞ þ 1
; B4ðZÞ ¼ �

ffiffiffiffi
H
p

cot ð
ffiffiffiffi
H
p

ZÞ

d csc ð
ffiffiffiffi
H
p

ZÞ þ 1
: ð23Þ

Case 3: For H = δ = 0,

A5ðZÞ ¼
G
Z
; B5ðZÞ ¼

1

�Z
; ð24Þ

where G 6¼ 0.

Fifth step. Lastly, exact solutions of Eq (11) are obtained by plugging the values a0, aj, bj,
where j = (1, 2, 3. . ., M) Y, δ and v along with Eqs (20)–(24) into Eq (15).

4 Extraction of solutions for the proposed model

This section provides the exact solutions of perturbed Boussinesq equation by applying the

two variable expansion G0
G ;

1

G

� �
-method and the generalized projective Riccati equations

method. The obtained solutions may be effective in providing detail description of shallow

water waves models. In order to apply these methods, the following traveling wave transforma-

tion is considered.

Sðx; tÞ ¼ pðZÞ where Z ¼ x � vt: ð25Þ

In this paper, Eq (2) is solved for n = 1. The perturbed Boussinesq equation is converted into

following ordinary differential equation by employing the wave transformation (25), as

v2p00 � k2p00 þ jðp2Þ
00
þ hp0000 ¼ op00 þ rp0000: ð26Þ

Upon integrating Eq (26) twice and taking the constants of integration to be zero, Eq (26)

takes the form

ðv2 � k2 � oÞpþ jp2 þ ðh � rÞp00 ¼ 0: ð27Þ

Application of both methods on Eq (27) is discussed in the following subsections.
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4.1 Application of method 1 for PBE

This subsection is devoted for the application of two variable expansion G0
G ;

1

G

� �
-method on

PBE. Homogenous balancing principle gives M = 2. Substituting M = 2 in Eq (14), the follow-

ing form of solution is obtained.

pðZÞ ¼ c0 þ c1Eþ c2E2 þ d1F þ d2EF: ð28Þ

Putting Eq (28) into Eq (27) and utilizing Method 1, the following solution sets for two cases

of λ have been derived.

4.1.1 Case 1: λ< 0. Hyperbolic solutions will be obtained in this case. The following solu-

tion sets are extracted by applying Method 1.

1st solution set

c0 ¼ �
2lðh � rÞ

j
; c1 ¼ 0; d1 ¼

3mðh � rÞ
j

; d2 ¼ �
3ðh � rÞ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

l
2
s1 þ m

2

q

ffiffiffiffiffiffiffi
� l
p

j
;

c2 ¼ �
3ðh � rÞ

j
:

2nd solution set

c0 ¼ �
2lðh � rÞ

j
; c1 ¼ 0; d1 ¼ 0; d2 ¼ 0; c2 ¼ �

6ðh � rÞ
j

; m ¼ 0:

3rd solution set

c0 ¼ �
2lðh � rÞ

j
; c1 ¼ 0; d1 ¼ 0; d2 ¼ �

3
ffiffiffiffiffiffiffiffiffiffiffi
� ls1

p
ðh � rÞ
j

; c2 ¼ �
3ðh � rÞ

j
; m ¼ 0:

The hyperbolic solutions extracted by 1st solution set are obtained, as

S1ðx; tÞ ¼
3mðh � rÞ

j B1 sinh
ffiffiffiffiffiffiffi
� l
p

Z
� �

þ B2 cosh
ffiffiffiffiffiffiffi
� l
p

Z
� �

þ
m

l

� � �
2lðh � rÞ

j

�
3ðh � rÞðB2

ffiffiffiffiffiffiffi
� l
p

sinh ð
ffiffiffiffiffiffiffi
� l
p

ZÞ þ B1

ffiffiffiffiffiffiffi
� l
p

cosh ð
ffiffiffiffiffiffiffi
� l
p

ZÞÞ
2

jðB1 sinh
ffiffiffiffiffiffiffi
� l
p

Z
� �

þ B2 cosh
ffiffiffiffiffiffiffi
� l
p

Z
� �

þ
m

l
Þ

2

�
3ðh � rÞ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

ðB2
1
� B2

2
Þl

2
þ m2

q

ðB2

ffiffiffiffiffiffiffi
� l
p

sinh ð
ffiffiffiffiffiffiffi
� l
p

ZÞ þ B1

ffiffiffiffiffiffiffi
� l
p

cosh ð
ffiffiffiffiffiffiffi
� l
p

ZÞÞ

j
ffiffiffiffiffiffiffi
� l
p

B1 sinh
ffiffiffiffiffiffiffi
� l
p

Z
� �

þ B2 cosh
ffiffiffiffiffiffiffi
� l
p

Z
� �

þ
m

l

� �

2

:

ð29Þ

Particularly, by taking B1 = 0 and B2 = 1, Eq (29) yields the following solutions, as

S1ðx; tÞ ¼ �
2lðh � rÞ

j
þ

3mðh � rÞ

j
m

l
þ cosh

ffiffiffiffiffiffiffi
� l
p

Z
� �� �þ

3lðh � rÞ sinh2
ð
ffiffiffiffiffiffiffi
� l
p

ZÞ

j
m

l
þ cosh

ffiffiffiffiffiffiffi
� l
p

Z
� �� �2

�
3ðh � rÞ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
m2 � l

2
p

sinh ð
ffiffiffiffiffiffiffi
� l
p

ZÞ

j
m

l
þ cosh

ffiffiffiffiffiffiffi
� l
p

Z
� �� �2

:

ð30Þ

PLOS ONE Analysis of perturbed Boussinesq equation via novel integrating schemes

PLOS ONE | https://doi.org/10.1371/journal.pone.0302784 May 17, 2024 7 / 19

https://doi.org/10.1371/journal.pone.0302784


Again by setting B1 = 1 and B2 = 0, Eq (29) gives the solutions, as

S1ðx; tÞ ¼ �
2lðh � rÞ

j
�

3ðh � rÞ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
l

2
þ m2

p
coshð

ffiffiffiffiffiffiffi
� l
p

ZÞ

j
m

l
þ sinh

ffiffiffiffiffiffiffi
� l
p

Z
� �� �2

þ
3lðh � rÞcosh2

ð
ffiffiffiffiffiffiffi
� l
p

ZÞ

j
m

l
þ sinh

ffiffiffiffiffiffiffi
� l
p

Z
� �� �2

þ
3mðh � rÞ

j
m

l
þ sinh

ffiffiffiffiffiffiffi
� l
p

Z
� �� � :

ð31Þ

The hyperbolic solutions extracted by 2nd solution set are obtained, as

S2ðx; tÞ ¼ �
2lðh � rÞ

j
�

6ðh � rÞðB2

ffiffiffiffiffiffiffi
� l
p

sinhð
ffiffiffiffiffiffiffi
� l
p

ZÞ þ B1

ffiffiffiffiffiffiffi
� l
p

coshð
ffiffiffiffiffiffiffi
� l
p

ZÞÞ
2

j B1sinh
ffiffiffiffiffiffiffi
� l
p

Z
� �

þ B2cosh
ffiffiffiffiffiffiffi
� l
p

Z
� �

þ
m

l

� �2 : ð32Þ

Taking B1 = 0 and B2 = 1, Eq (32) produces the following hyperbolic solutions, as

S2ðx; tÞ ¼
6lðh � rÞsinh2

ð
ffiffiffiffiffiffiffi
� l
p

ZÞ

j
m

l
þ cosh

ffiffiffiffiffiffiffi
� l
p

Z
� �� �2

�
2lðh � rÞ

j
: ð33Þ

Again taking B2 = 0 and B1 = 1, Eq (32) produces the following hyperbolic solutions, as

S2ðx; tÞ ¼
6lðh � rÞcosh2

ð
ffiffiffiffiffiffiffi
� l
p

ZÞ

j
m

l
þ sinh

ffiffiffiffiffiffiffi
� l
p

Z
� �� �2

�
2lðh � rÞ

j
: ð34Þ

The hyperbolic solutions extracted by 3rd solution set are obtained, as

S3ðx; tÞ ¼ �
3ðh � rÞðB2

ffiffiffiffiffiffiffi
� l
p

sinhð
ffiffiffiffiffiffiffi
� l
p

ZÞ þ B1

ffiffiffiffiffiffiffi
� l
p

coshð
ffiffiffiffiffiffiffi
� l
p

ZÞÞ
2

jðB1sinh
ffiffiffiffiffiffiffi
� l
p

Z
� �

þ B2cosh
ffiffiffiffiffiffiffi
� l
p

Z
� �

þ
m

l
Þ

2
�

2lðh � rÞ
j

�
3
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
B2

1
� B2

2

p ffiffiffiffiffiffiffi
� l
p

ðh � rÞðB2

ffiffiffiffiffiffiffi
� l
p

sinhð
ffiffiffiffiffiffiffi
� l
p

ZÞ þ B1

ffiffiffiffiffiffiffi
� l
p

coshð
ffiffiffiffiffiffiffi
� l
p

ZÞÞ

j B1sinh
ffiffiffiffiffiffiffi
� l
p

Z
� �

þ B2cosh
ffiffiffiffiffiffiffi
� l
p

Z
� �

þ
m

l

� �2
:

ð35Þ

Setting B1 = 1 and B2 = 0, Eq (35) gives the solutions, as

S3ðx; tÞ ¼
3lðh � rÞcosh2

ð
ffiffiffiffiffiffiffi
� l
p

ZÞ

j
m

l
þ sinh

ffiffiffiffiffiffiffi
� l
p

Z
� �� �2

þ
3lðh � rÞcoshð

ffiffiffiffiffiffiffi
� l
p

ZÞ

j
m

l
þ sinh

ffiffiffiffiffiffiffi
� l
p

Z
� �� �2

�
2lðh � rÞ

j
: ð36Þ

Taking B2 = 1 and B1 = 0, Eq (35) gives the solutions, as

S3ðx; tÞ ¼
3lðh � rÞsinh2

ð
ffiffiffiffiffiffiffi
� l
p

ZÞ

j
m

l
þ cosh

ffiffiffiffiffiffiffi
� l
p

Z
� �� �2

þ
3ilðh � rÞsinhð

ffiffiffiffiffiffiffi
� l
p

ZÞ

j
m

l
þ cosh

ffiffiffiffiffiffiffi
� l
p

Z
� �� �2

�
2lðh � rÞ

j
: ð37Þ

4.1.2 Case 2: λ> 0. Trigonometric solutions will be obtained in this case. The following

solution sets are extracted by applying Method 1.
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1st solution set

c0 ¼ �
2lðh � rÞ

j
; c1 ¼ 0; d1 ¼

3mðh � rÞ
j

; d2 ¼ �
3ðh � rÞ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

l
2
s2 � m

2

q

j
ffiffiffi
l
p ;

c2 ¼ �
3ðh � rÞ

j
:

2nd solution set

c0 ¼ �
2lðh � rÞ

j
; c1 ¼ 0; d1 ¼ 0; d2 ¼

3
ffiffiffi
l
p ffiffiffiffiffi

s2

p
ðh � rÞ
j

; c2 ¼ �
3ðh � rÞ

j
; m ¼ 0:

3rd solution set

c0 ¼ �
6lðh � rÞ

j
; c1 ¼ 0; d1 ¼ 0; d2 ¼ 0; c2 ¼ �

6ðh � rÞ
j

; m ¼ 0:

The trigonometric solutions extracted by 1st solution set are obtained, as

S4ðx; tÞ ¼ �
3ðh � rÞ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

ðB2
1
þ B2

2
Þl

2
� m2

q

ðB1

ffiffiffi
l
p

cos ð
ffiffiffi
l
p

ZÞ � B2

ffiffiffi
l
p

sin ð
ffiffiffi
l
p

ZÞÞ

j
ffiffiffi
l
p
ðB1sin

ffiffiffi
l
p

Z
� �

þ B2 cos
ffiffiffi
l
p

Z
� �

þ
m

l
Þ

2

�
3ðh � rÞðB1

ffiffiffi
l
p

cos ð
ffiffiffi
l
p

ZÞ � B2

ffiffiffi
l
p

sin ð
ffiffiffi
l
p

ZÞÞ
2

jðB1 sin
ffiffiffi
l
p

Z
� �

þ B2 cos
ffiffiffi
l
p

Z
� �

þ
m

l
Þ

2
�

2lðh � rÞ
j

þ
3mðh � rÞ

j B1sin
ffiffiffi
l
p

Z
� �

þ B2 cos
ffiffiffi
l
p

Z
� �

þ
m

l

� � :

ð38Þ

Taking B1 = 1 and B2 = 0, Eq (38) produces the following periodic solutions, as

S4ðx; tÞ ¼ �
3ðh � rÞ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
l

2
� m2

p
cos ð

ffiffiffi
l
p

ZÞ

j
m

l
þ sin

ffiffiffi
l
p

Z
� �� �2

þ
3mðh � rÞ

j
m

l
þ sin

ffiffiffi
l
p

Z
� �� �

�
3lðh � rÞ cos2 ð

ffiffiffi
l
p

ZÞ

j
m

l
þ sin

ffiffiffi
l
p

Z
� �� �2

�
2lðh � rÞ

j
:

ð39Þ

Again taking B2 = 1 and B1 = 0, Eq (38) produces the following periodic solutions, as

S4ðx; tÞ ¼
3ðh � rÞ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
l

2
� m2

p
sin ð

ffiffiffi
l
p

ZÞ

j
m

l
þ cos

ffiffiffi
l
p

Z
� �� �2

þ
3mðh � rÞ

j
m

l
þ cos

ffiffiffi
l
p

Z
� �� �

�
3lðh � rÞ sin2 ð

ffiffiffi
l
p

ZÞ

j
m

l
þ cos

ffiffiffi
l
p

Z
� �� �2

�
2lðh � rÞ

j
:

ð40Þ
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The trigonometric solutions extracted by 2nd solution set are obtained, as

S5ðx; tÞ ¼ �
2lðh � rÞ

j
�

3ðh � rÞðB1

ffiffiffi
l
p

cos ð
ffiffiffi
l
p

ZÞ � B2

ffiffiffi
l
p

sin ð
ffiffiffi
l
p

ZÞÞ
2

jðB1 sin
ffiffiffi
l
p

Z
� �

þ B2 cos
ffiffiffi
l
p

Z
� �

þ
m

l
Þ

2

þ
3
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
B2

1
þ B2

2

p ffiffiffi
l
p
ðh � rÞðB1

ffiffiffi
l
p

cos ð
ffiffiffi
l
p

ZÞ � B2

ffiffiffi
l
p

sin ð
ffiffiffi
l
p

ZÞÞ

j B1 sin
ffiffiffi
l
p

Z
� �

þ B2 cos
ffiffiffi
l
p

Z
� �

þ
m

l

� �2
:

ð41Þ

Setting B1 = 1 and B2 = 0, Eq (41) yields the following solutions, as

S5ðx; tÞ ¼ �
3lðh � rÞ cos2 ð

ffiffiffi
l
p

ZÞ

j
m

l
þ sin

ffiffiffi
l
p

Z
� �� �2

þ
3lðh � rÞ cos ð

ffiffiffi
l
p

ZÞ

j
m

l
þ sin

ffiffiffi
l
p

Z
� �� �2

�
2lðh � rÞ

j
: ð42Þ

Taking B2 = 1 and B1 = 0, Eq (41) gives the following solutions, as

S5ðx; tÞ ¼ �
3lðh � rÞ sin2 ð

ffiffiffi
l
p

ZÞ

j
m

l
þ cos

ffiffiffi
l
p

Z
� �� �2

�
3lðh � rÞ sin ð

ffiffiffi
l
p

ZÞ

j
m

l
þ cos

ffiffiffi
l
p

Z
� �� �2

�
2lðh � rÞ

j ð43Þ

The trigonometric solutions extracted by 3rd solution set are obtained, as

S6ðx; tÞ ¼ �
6ðh � rÞðB1

ffiffiffi
l
p

cos ð
ffiffiffi
l
p

ZÞ � B2

ffiffiffi
l
p

sin ð
ffiffiffi
l
p

ZÞÞ
2

j B1 sin
ffiffiffi
l
p

Z
� �

þ B2 cos
ffiffiffi
l
p

Z
� �

þ
m

l

� �2 �
6lðh � rÞ

j
: ð44Þ

Inserting B1 = 1 and B2 = 0, Eq (44) yields the following periodic solutions, as

S6ðx; tÞ ¼ �
6lðh � rÞ cos2 ð

ffiffiffi
l
p

ZÞ

j
m

l
þ sin

ffiffiffi
l
p

Z
� �� �2

�
6lðh � rÞ

j
: ð45Þ

Again by inserting B2 = 1 and B1 = 0, Eq (44) yields the following periodic solutions, as

S6ðx; tÞ ¼ �
6lðh � rÞ sin2 ð

ffiffiffi
l
p

ZÞ

j
m

l
þ cos

ffiffiffi
l
p

Z
� �� �2

�
6lðh � rÞ

j
: ð46Þ

Remark 1: The case when λ = 0 can be performed in a similar pattern. For the sake of simplic-

ity this case is omitted in this paper.

4.2 Application of method 2 for PBE

This subsection is devoted for the application of generalized projective Riccati equations

method on PBE. Homogenous balancing principle gives M = 2. Substituting M = 2 in Eq (15),

the following form of solution is obtained.

pðZÞ ¼ a0 þ a1Aþ a2A2 þ b1Bþ b2AB: ð47Þ

Putting Eq.(4.23) into Eq.(4.3) and utilizing Method 2, the following solution sets for two cases

of � have been retrieved.

4.2.1 When � = −1. Ô Solution sets for this case are as follows:
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1st set

a1 ¼
3dðh � rÞ

j
; a0 ¼ 0; a2 ¼ �

3ðh � rÞðd2
þ iÞ

Hj
; b1 ¼ 0; b2 ¼

3ðr � hÞ
ffiffiffiffiffiffiffiffiffiffiffiffi
d

2
þ i

p

ffiffiffiffi
H
p

j
:

2nd set

a1 ¼
3dðh � rÞ

j
; a0 ¼

Hðr � hÞ
j

; a2 ¼ �
3ðh � rÞðd2

þ iÞ
Hj

; b1 ¼ 0;

b2 ¼
3ðr � hÞ

ffiffiffiffiffiffiffiffiffiffiffiffi
d

2
þ i

p

ffiffiffiffi
H
p

j
:

The extracted hyperbolic solutions corresponding to 1st set are determined as follows:

For i = −1,

S7ðx; tÞ ¼
3dHðh � rÞ sech ð

ffiffiffiffi
H
p

ZÞ

jðd sech ð
ffiffiffiffi
H
p

ZÞ þ 1Þ
�

3ðd
2
� 1ÞHðh � rÞ sech2

ð
ffiffiffiffi
H
p

ZÞ

jðd sech ð
ffiffiffiffi
H
p

ZÞ þ 1Þ
2

þ
3
ffiffiffiffiffiffiffiffiffiffiffiffiffi
d

2
� 1

p
Hðr � hÞ tanh ð

ffiffiffiffi
H
p

ZÞ sech ð
ffiffiffiffi
H
p

ZÞ

jðdÞ sech ð
ffiffiffiffi
H
p

ZÞ þ 1Þ
2

:

ð48Þ

For i = 1,

S8ðx; tÞ ¼
3dHðh � rÞ csch ð

ffiffiffiffi
H
p

ZÞ

jðd csch ð
ffiffiffiffi
H
p

ZÞ þ 1Þ
�

3ðd
2
þ 1ÞHðh � rÞ csch2

ð
ffiffiffiffi
H
p

ZÞ

jðd csch ð
ffiffiffiffi
H
p

ZÞ þ 1Þ
2

3
ffiffiffiffiffiffiffiffiffiffiffiffiffi
d

2
þ 1

p
Hðr � hÞ coth ð

ffiffiffiffi
H
p

ZÞ csch ð
ffiffiffiffi
H
p

ZÞ

jðd csch ð
ffiffiffiffi
H
p

ZÞ þ 1Þ
2

:

ð49Þ

The extracted hyperbolic solutions corresponding to 2nd set are given as follows:

For i = −1,

S9ðx; tÞ ¼
Hðr � hÞ

j
þ

3dHðh � rÞ sech ð
ffiffiffiffi
H
p

ZÞ

jðd sech ð
ffiffiffiffi
H
p

ZÞ þ 1Þ
�

3ðd
2
� 1ÞHðh � rÞ sech2

ð
ffiffiffiffi
H
p

ZÞ

jðd sech ð
ffiffiffiffi
H
p

ZÞ þ 1Þ
2

þ
3
ffiffiffiffiffiffiffiffiffiffiffiffiffi
d

2
� 1

p
Hðr � hÞ tanh ð

ffiffiffiffi
H
p

ZÞ sech ð
ffiffiffiffi
H
p

ZÞ

jðd sech ð
ffiffiffiffi
H
p

ZÞ þ 1Þ
2

:

ð50Þ

For i = 1,

S10ðx; tÞ ¼
Hðr � hÞ

j
þ

3dHðh � rÞ csch ð
ffiffiffiffi
H
p

ZÞ

jðd csch ð
ffiffiffiffi
H
p

ZÞ þ 1Þ
�

3ðd
2
þ 1ÞHðh � rÞ csch2

ð
ffiffiffiffi
H
p

ZÞ

jðd csch ð
ffiffiffiffi
H
p

ZÞ þ 1Þ
2

þ
3
ffiffiffiffiffiffiffiffiffiffiffiffiffi
d

2
þ 1

p
Hðr � hÞ coth ð

ffiffiffiffi
H
p

ZÞ csch ð
ffiffiffiffi
H
p

ZÞ

jðd csch ð
ffiffiffiffi
H
p

ZÞ þ 1Þ
2

:

ð51Þ

4.2.2 When � = 1. The following solution sets are obtained for this case.

1st set

a1 ¼
3dðr � hÞ

j
; a0 ¼ 0; a2 ¼

3ðd
2
þ iÞðh � rÞ
Hj

; b1 ¼ 0; b2 ¼ �
3i

ffiffiffiffiffiffiffiffiffiffiffiffi
d

2
þ i

p
ðh � rÞ
ffiffiffiffi
H
p

j
:
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2nd set

a1 ¼
3dðr � hÞ

j
; a0 ¼

Hðh � rÞ
j

; a2 ¼
3ðh � rÞðd2

þ iÞ
Hj

; b1 ¼ 0;

b2 ¼ �
3iðh � rÞ

ffiffiffiffiffiffiffiffiffiffiffiffi
d

2
þ i

p

ffiffiffiffi
H
p

j
:

The extracted trigonometric solutions corresponding to 1st set are given as follows:

For i = −1,

S11ðx; tÞ ¼
3dHðr � hÞsecð

ffiffiffiffi
H
p

ZÞ

jðdsecð
ffiffiffiffi
H
p

ZÞ þ 1Þ
þ

3ðd
2
� 1ÞHðh � rÞsec2ð

ffiffiffiffi
H
p

ZÞ

jðdsecð
ffiffiffiffi
H
p

ZÞ þ 1Þ
2

3i
ffiffiffiffiffiffiffiffiffiffiffiffiffi
d

2
� 1

p
Hðh � rÞtanð

ffiffiffiffi
H
p

ZÞsecð
ffiffiffiffi
H
p

ZÞ

jðdsecð
ffiffiffiffi
H
p

ZÞ þ 1Þ
2

:

ð52Þ

The extracted trigonometric solutions corresponding to 2nd set are given as follows:

Fig 1. Surface plot of jS2(x, t)j for λ = −1, ρ = −2.3, j = 2.7, h = 1.78, v = 4, μ = 0, B1 = 0, B2 = 1.

https://doi.org/10.1371/journal.pone.0302784.g001

Fig 2. 2D line plot of jS2(x, t)j for λ = −1, ρ = −2.3, j = 2.7, h = 1.78, v = 4, μ = 0, B1 = 0, B2 = 1.

https://doi.org/10.1371/journal.pone.0302784.g002
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For i = −1,

S12ðx; tÞ ¼
Hðh � rÞ

j
þ

3dHðr � hÞsecð
ffiffiffiffi
H
p

ZÞ

jðdsecð
ffiffiffiffi
H
p

ZÞ þ 1Þ
þ

3ðd
2
� 1ÞHðh � rÞsec2ð

ffiffiffiffi
H
p

ZÞ

jðdsecð
ffiffiffiffi
H
p

ZÞ þ 1Þ
2

�
3i

ffiffiffiffiffiffiffiffiffiffiffiffiffi
d

2
� 1

p
Hðh � rÞtanð

ffiffiffiffi
H
p

ZÞsecð
ffiffiffiffi
H
p

ZÞ

jðdsecð
ffiffiffiffi
H
p

ZÞ þ 1Þ
2

:

ð53Þ

Fig 3. Density plot of jS2(x, t)j for λ = −1, ρ = −2.3, j = 2.7, h = 1.78, v = 4, μ = 0, B1 = 0, B2 = 1.

https://doi.org/10.1371/journal.pone.0302784.g003

Fig 4. Surface plot of jS6(x, t)j for λ = 1.5, ρ = −0.45, j = −2.7, h = −3.1, v = 4, μ = 0, B1 = 0, B2 = 1.

https://doi.org/10.1371/journal.pone.0302784.g004
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Remark 2: It is important to mention here that the similar nature of trigonometric solutions

can be obtained by taking � = 1 and i = 1. Moreover, by taking � = 0, the rational solutions can

be obtained. For the sake of simplicity, these cases have been omitted in this paper.

5 Graphical illustration

Graphical illustrations of few of the extracted solutions are provided in this section. The solu-

tions that are obtained above indicate wave structures of different forms. These different wave

Fig 6. Density plot of jS6(x, t)j for λ = 1.5, ρ = −0.45, j = −2.7, h = −3.1, v = 4, μ = 0, B1 = 0, B2 = 1.

https://doi.org/10.1371/journal.pone.0302784.g006

Fig 5. 2D line plot of jS6(x, t)j for λ = 1.5, ρ = −0.45, j = −2.7, h = −3.1, v = 4, μ = 0, B1 = 0, B2 = 1.

https://doi.org/10.1371/journal.pone.0302784.g005
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structures can be proven useful in nonlinear evolution models. Therefore, to understand these

varying wave structures, graphical illustrations are considered to be very effective. The exact

solutions are presented by the aid of 2D, 3D, and density plots. The surface, line and density

plots of S2(x, t) are displayed in Figs 1–3, respectively. The surface, line and density plots of

S6(x, t) are displayed in Figs 4–6, respectively. The surface, line and density plots of S7(x, t) are

displayed in Figs 7–9, respectively. The surface, line and density plots of S4(x, t) are displayed

in Figs 10–12, respectively.

6 Conclusion

The perturbed Boussinesq equation has been studied in this article using two distinct methods:

the two variables G0
G ;

1

G

� �
expansion method and the generalized projective Riccati equations

method. These methodologies have demonstrated their efficacy not only in the context of the

perturbed Boussinesq equation but also across various other nonlinear partial differential

equations. Few limitations and restrictions are associated with every analytical technique.

Fig 7. Graphs of jS7(x, t)j for δ = 3.5, ρ = −4.3, j = 3.1, h = −2.5, v = 2, H = 3.3.

https://doi.org/10.1371/journal.pone.0302784.g007

Fig 8. 2D line plot of jS7(x, t)j for δ = 3.5, ρ = −4.3, j = 3.1, h = −2.5, v = 2, H = 3.3.

https://doi.org/10.1371/journal.pone.0302784.g008
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Techniques applied in this research too obey some limitations. By following the given restric-

tions on the proposed techniques we are successfully extract bright solitons, dark soliton, peri-

odic solutions, singular solitons and combo solitons solution for the governing model. The

applied approaches are very efficient in obtaining new soliton solutions for variety of NLPDEs.

These methods retrieved diverse form of solutions, containing trigonometric, rational and

hyperbolic expressions. On comparing our finding with [23–25], it has been found that the

Fig 10. Graphs of jS4(x, t)j for μ = 0, ρ = 1, j = 2, h = 2, v = 1, λ = 1.

https://doi.org/10.1371/journal.pone.0302784.g010

Fig 9. Density plot of jS7(x, t)j for δ = 3.5, ρ = −4.3, j = 3.1, h = −2.5, v = 2, H = 3.3.

https://doi.org/10.1371/journal.pone.0302784.g009
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results obtained in this paper using suggested methods are new and have not been reported

earlier in literature. To enhance the understanding of the physical properties of these solutions

we have explained the existence of these bright solitons, singular solitons, bright singular soli-

tons, and periodic soliton solutions, through graphical representations employing appropri-

ately chosen arbitrary parameters. Moreover, density plots have been meticulously provided to

facilitate a deeper comprehension of the obtained solutions. It is noteworthy that the results

presented in this study are novel, offering fresh insights into the dynamics of shallow water,

Fig 11. 2D line plot of jS4(x, t)j for μ = 0, ρ = 1, j = 2, h = 2, v = 1, λ = 1.

https://doi.org/10.1371/journal.pone.0302784.g011

Fig 12. Density plot of jS4(x, t)j for μ = 0, ρ = 1, j = 2, h = 2, v = 1, λ = 1.

https://doi.org/10.1371/journal.pone.0302784.g012
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coastal, and oceanic waves. They stand as robust tools that can significantly augment the study

and understanding of these complex phenomena.
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