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Abstract

Neuropsychological research aims to unravel how diverse individuals’ brains exhibit similar

functionality when exposed to the same stimuli. The evocation of consistent responses

when different subjects watch the same emotionally evocative stimulus has been observed

through modalities like fMRI, EEG, physiological signals and facial expressions. We refer to

the quantification of these shared consistent signals across subjects at each time instant

across the temporal dimension as Consistent Response Measurement (CRM). CRM is

widely explored through fMRI, occasionally with EEG, physiological signals and facial

expressions using metrics like Inter-Subject Correlation (ISC). However, fMRI tools are

expensive and constrained, while EEG and physiological signals are prone to facial artifacts

and environmental conditions (such as temperature, humidity, and health condition of sub-

jects). In this research, facial expression videos are used as a cost-effective and flexible

alternative for CRM, minimally affected by external conditions. By employing computer

vision-based automated facial keypoint tracking, a new metric similar to ISC, called the

Average t-statistic, is introduced. Unlike existing facial expression-based methodologies

that measure CRM of secondary indicators like inferred emotions, keypoint, and ICA-based

features, the Average t-statistic is closely associated with the direct measurement of consis-

tent facial muscle movement using the Facial Action Coding System (FACS). This is evi-

denced in DISFA dataset where the time-series of Average t-statistic has a high correlation

(R2 = 0.78) with a metric called AU consistency, which directly measures facial muscle

movement through FACS coding of video frames. The simplicity of recording facial expres-

sions with the automated Average t-statistic expands the applications of CRM such as mea-

suring engagement in online learning, customer interactions, etc., and diagnosing outliers in

healthcare conditions like stroke, autism, depression, etc. To promote further research, we

have made the code repository publicly available.
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Introduction

A fundamental inquiry in the field of neuroscience revolves around how the brains of different

individuals function in a similar manner. To illustrate this, Hasson et al. [1] conducted a study

wherein different subjects watched a popular movie while undergoing brain imaging. Their

research uncovered significant synchronization of brain activity among these individuals

when they were exposed to emotionally engaging scenes. Hasson et al. [2] demonstrated that

certain films possess the ability to exert substantial control over both brain activity and eye

movements, leading to synchronized temporal responses among viewers. Similar consistent

response has been observed in other modalities such as EEG [3, 4], and physiological signals

such as HRV/ECG [5–7], skin conduction [6–9] when different subjects are exposed to the

same emotionally evocative stimulus. We refer to the quantification of this shared consistent

response (fMRI/EEG, physiological indicators, facial expressions, etc.) across different subjects

exposed to the same (emotionally evocative) stimulus as Consistent Response Measurement

(CRM).

CRM is widely explored with fMRI neuroimaging data. Hasson et al. [2] introduced a novel

method for evaluating the influence of films on viewers’ brain activity using functional mag-

netic resonance imaging (fMRI) and inter-subject correlation analysis (ISC). ISC offers a quan-

titative approach for assessing the degree of similarity in brain activations across individuals.

Hasson et al. [10] further applied ISC analysis to autism and found that the stimuli evoke

highly shared responses in typical individuals (high ISC), while the response was more variable

across individuals with autism (low ISC). ISC analysis has also been explored to differentiate

ADHD [11] and depressed subjects [12] from healthy individuals. fMRI-based ISC analysis

has been applied to numerous other studies, for studying different brain dynamics, different

stimulating environments and so forth [13–22]. Some other metrics based on fMRI includes

Inter-subject Functional Correlation (ISFC) [23] and Inter Subject Temporal Synchronization

Analysis (IS-TSA) [24] to study CRM in the brain’s Default Mode Network (DMN). While

ISC focuses on intra-regional correlations across brains exposed to the same stimulus, ISFC

also considers inter-regional correlations. IS-TSA reveals lower DMN synchronization com-

pared to early sensory task-positive regions during attention-demanding stimuli.

CRM has also been explored for EEG data. Dmochowski et al. [3] utilized EEG data with

ISC analysis and found that correlated components of EEG occur with emotionally arousing

moments of the films. Further, Dmochowski et al. [25] noted that inter-subject correlation

(ISC) in EEG responses possesses predictive capabilities, enabling the identification of stimuli

that individuals find favorable. Additionally, other studies [4, 26] leveraged EEG data and pro-

posed CRM metrics, such as the “impression index” to assess the impressiveness of a video

scene, and the “global synchronization index” to monitor the emotional arousal of a popula-

tion during video watching. Some of the studies have also utilized physiological signals such as

Heart Rate Variability (HRV), Galvanic Skin Response (GSR), ECG (Electrocardiogram), and

Cardiovascular signals for CRM analysis using ISC metric [5–9]. Consequently, these studies

indicate that CRM opens up interesting applications such as finding evocative parts of a

movie/film and the impact of film on viewers’ mind [2, 4], identifying an outlier from typical

individuals such as autism [10], depression [12], ADHD [11], Alzheimer’s, Parkinson’s, and

Schizophrenia etc. [27].

Although neuroimaging tools like fMRI are popular for CRM studies, they have drawbacks

[4]. First, fMRI setups differ from real-life settings as participants are confined in scanners,

which might not evoke genuine emotions. Second, fMRI accommodates only one viewer,

while film experiences can vary in group settings. Third, fMRI is costly and lacks portability,

making it less preferred compared to EEG and physiological methods [28–30]. EEG is often
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employed as a lower-cost method, offering better temporal resolution (at the cost of limited

spatial resolution), and can be carried out in an open environment. However, contamination

of EEG signals by extra-cerebral artifacts, facial muscle movements, and eyeblink is a well-rec-

ognized problem [31–38]. Further, other physiological signals such as HRV, GSR, ECG, etc.

offer greater flexibility for CRM compared to neuroimaging techniques, however, they are sus-

ceptible to various factors, including environmental conditions such as temperature and

humidity and the health conditions of the subjects [39].

On the other hand, facial expression-based CRM are more flexible since recording facial

expression videos only requires a high-resolution camera. In contrast to fMRI, it provides an

open recording environment for single or multiple viewers, remains unaffected by external

artifacts like eye or facial muscle movements, unlike EEG, and is less affected by environmental

conditions than physiological signals. Several studies have leveraged facial expressions to mea-

sure CRM. For instance, Mauss et al. [8] recorded facial expressions and physiological signals

when different subjects watched an emotional video. They utilized expressions to estimate per-

ceived and experienced amusement/sadness intensities and explored temporal correlations of

these intensities with physiological signals. Mangus et al. [40] utilized face-tracking based fea-

tures (e.g. inferred emotions) and fMRI data of the same subjects, revealing high ISC in face-

tracking features for disposition-inconsistent stimuli and in fMRI signals for disposition-con-

sistent stimuli. Other studies also utilized facial expression-based CRM and the ISC metric to

investigate differences in temporal synchronization of facial features during solo versus dyad

video-watching [41], the ability of facial thermal images to capture emotion-related changes

induced by stimuli [42], and whether the synchrony of inferred emotions predicts temporal

engagement of audience during theatrical performances [43].

However, the facial expression method in Mauss et al. [8] relied on manually coded emo-

tion ratings which is labor-intensive. Additionally, in the studies [40–43], automated methods

primarily focused on evaluating the consistency of secondary indicators. These indicators

included deep learning/commercial software-based estimated emotions, facial keypoint-based

distance features, or facial thermal images-based ICA components. The emphasis was on mea-

suring the consistency of these indicators rather than determining whether the facial expres-

sions were actually elicited consistently across subjects. The use of CRM, which can indicate

whether expressions were consistently elicited, can offer a more reliable insight into the syn-

chronization of subjects in video watching. Just as synchronized neuronal responses can indi-

cate the viewers’ level of engagement, with deviations suggesting lower engagement [3], we

hypothesize that consistent facial expressions can be a viable metric for quantifying engage-

ment. Moreover, given the ease of recording facial expressions, it may efficiently measure

engagement across applications such as online learning for students, customer interactions in

business, movie watching, patient engagement in healthcare, and so forth.

The present study advances and refines prior methodologies for assessing CRM through

facial expressions. It introduces a new metric, termed the Average t-statistic which is auto-

mated and closely associated with measuring the consistency of facial expressions utilizing the

Facial Action Coding System (FACS) [44, 45]. This metric relies on the statistical modeling of

facial keypoints, which can be automatically tracked using computer vision or deep learning

models. To validate its effectiveness in indicating the consistency of expressions, we introduce

a metric called AU consistency which involves manual FACS coding of each video frame to

quantify CRM of facial muscle movements at each time point. Subsequently, we demonstrate

that although the Average t-statistic is not directly reliant on FACS coding, it exhibits a robust

R2 value of 0.78 with AU consistency in the DISFA dataset.

The subsequent section provides a detailed definition of the metrics that utilize facial

expression videos to quantify CRM. Further, we discuss the experimentation and evaluation
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on the DISFA dataset, and finally, we summarize our work’s limitations and outline potential

future directions.

CRM using facial expressions

To explore the consistent elicitation of facial expressions, we employ the publicly accessible

DISFA dataset [46, 47]. This dataset consists of 27 subjects who viewed the same emotionally

evocative video lasting approximately 4 minutes and 1 second, during which their facial

expressions were recorded at a rate of 20 frames per second (fps). Our initial step involves the

establishment of the AU consistencymetric, designed to gauge CRM by leveraging FACS cod-

ing for 12 Action Units (AUs) at each frame of the subjects in the DISFA dataset (Fig 1 and

Table 1). Following that, we introduce our keypoint-based metrics and statistical models to

quantify CRM at each time point. The following sections provide a detailed explanation of the

proposed facial expression-based metrics for CRM.

Fig 1. Appearance changes of the 12 AUs coded in DISFA. This subject was not a part of the DISFA dataset and was included solely for illustrating

these AUs as described in FACS [44, 45]. (The subject pictured has provided written informed consent (as outlined in the PLOS consent form) to

publish their image alongside the manuscript.).

https://doi.org/10.1371/journal.pone.0302705.g001

Table 1. Description of the 12 AUs coded in DISFA.

AU Name Appearance Change

1 Inner Brow Raiser InnerBrows are pulled upwards

2 Outer Brow Raiser OuterBrows are pulled upwards

4 Brow Lowerer Both brows are pulled downwards- sometimes only the InnerBrows, or including the

central or OuterBrows

5 Upper Lid Raiser Upper eyelid is raised

6 Cheek Raiser Skin from cheeks and temples are pulled towards the eyes

9 Nose Wrinkler Moves skin around nose towards nasal root causing wrinkles

12 Lip Corner Puller Lifts the lip corners obliquely upwards

15 Lip Corner

Depressor

Pulls lip corner down

17 Chin Raiser Pushes the lower lip and chin upward

20 Lip Stretcher Pulls lip corners horizontally outwards

25 Lips Part Upper and lower lip are separated

26 Jaw Drop Jaw moves down

https://doi.org/10.1371/journal.pone.0302705.t001
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CRM using FACS coding

Fine-grained movement of facial expressions can be directly labeled through visual inspection

by trained experts. One of the most widely accepted systems for such measurement is the

Facial Action Coding System (FACS) [45] developed by Ekman and Friesen. FACS is a com-

prehensive facial coding system to taxonomize different facial muscle movements based on

their appearance. The taxonomized movements are called Action Units (AUs). An Action

Unit (AU) constitutes the activation of a single facial muscle or a specific group of muscles that

always move together as a unit. Any facial expression can be encoded as a combination of a

single or a group of AUs. Since AUs give a direct measurement of facial movements without

any secondary resort in between, we use AUs directly to efficiently find consistent expressions.

We define our AU consistencymetric that utilizes the FACS coding as follows:

AU consistency metric (κAU). Consider facial video recordings of n subjects watching the

same emotionally evocative video. The AU consistencymetric utilizes the AU labeling of all the

frames of the facial video recordings of the subjects. Let μ(i, k, τ) represent the AU labeling for

the kth AU in the facial video of ith subject at time instant τ. μ(i, k, τ) = 1 if facial video of sub-

ject i has AU k present at time τ. The AU consistency for AU k at time τ is defined as

kAUðk; tÞ ¼ 1

n

Pn
i¼1
mði; k; tÞ � 100. The overall AU consistency at time τ is defined as

kAUðtÞ ¼ maxk kAUðk; tÞ.
In summary, a higher AU consistency indicates that a significant number of subjects exhibit

the same AU and therefore the same facial muscle movement at a given time point, whereas a

lower value indicates fewer subjects displaying the same facial muscle movement. Note that

AU consistencymeasures the degree of consistent facial expressions rather than quantifying the

number of facial components exhibiting consistency. For instance, if AU consistency reaches

100 percent, it signifies one AU is consistently present across all subjects, regardless of whether

it involves just one eyebrow or the entire face. In both cases, the degree of consistency remains

the same.

CRM using facial keypoint tracking

For an automated facial expressions analysis in a video sequence, we identify and track specific

keypoints located at various landmarks on the face, including the eyes, eyebrows, nose, lips,

and jawline (Fig 2). The labeling of these keypoints can be done either manually or through

computer vision-based algorithms [48]. We rely on the facial keypoints in the publicly avail-

able DISFA dataset [46, 47], which consists of 66 keypoints (Fig 2) at each of the 4845 video

frames of any subject. These keypoints are tracked using the Active Appearance Model (AAM)

[49]. We observed that these 66 keypoints are reasonably stable, and accurate, making them

suitable to our analysis. Recent advancements in keypoint-tracking technology, incorporate

additional facial features such as edge contours [50] or optical flow from video data [51],

which may lead to more stable tracking. Once these techniques are incorporated in higher res-

olution tracking algorithms [52, 53] and give stable and consistent tracking, the number of

keypoints may be expanded to 106 or more, thereby enabling the capture of more intricate

facial expressions and features, including wrinkles, cheekbone height, and dimples.

To ensure uniformity across different subjects and mitigate geometric variations caused by

factors such as head motion, variations in face sizes, and relative facial part positions, we pre-

process these keypoints [54]. Subsequently, we convert these keypoints into Keypoint Move-

ment (KPM) vectors, representing the movement of keypoints from a neutral frame.

Additionally, we establish metrics using statistical modeling on the KPM vectors to quantify

CRM as the degree of consistent keypoint movement at each time point. We will first provide

a detailed explanation of the geometric corrections:
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Fig 2. Demonstrating 66 facial keypoints on an in-house subject, akin to those tracked on DISFA subjects. Out of those, six

keypoints (yellow-colored) are used for registration using affine transformation. (The subject pictured has provided written

informed consent (as outlined in the PLOS consent form) to publish their image alongside the manuscript.).

https://doi.org/10.1371/journal.pone.0302705.g002
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Geometric corrections. The process of eliminating variations in facial geometry involves

three crucial steps: first, frontalization is carried out, and then registration is performed using

affine and similarity transformations, as detailed below:

To isolate facial muscle movements and eliminate the impact of head movement, we

employ the algorithm proposed by Vonikakis et al. [55]. This algorithm transforms facial key-

points to resemble a front-facing image.

Following this, an affine registration process [56] is employed to align the keypoints with a

standard reference, reducing variations related to face size and position. We specifically choose

six fixed facial keypoints to estimate geometric parameters within a facial image. These param-

eters are then used to register the remaining keypoints in the image using an affine transfor-

mation with six parameters. In the case of DISFA, the selected six keypoints are: 0, 16, 39, 42,

27, and 33 (Fig 2).

Lastly, we apply similarity registration [56] to address intra-face variations, such as the dis-

tance between eyebrow corners, nose length, eye dimensions, and more. We perform this reg-

istration face part-wise using specific fixed keypoints. For instance, keypoints 42 and 45 are

used for the left eyebrow and left eye, 36 and 39 for the right eyebrow and right eye, 27 for the

nose, and, 0 and 16 for the jawline. Each of these similarity transformations involves four

parameters. Lips, however, lack fixed keypoints and are consequently not subjected to similar-

ity registration.

Keypoint Movement (KPM) vector. A Keypoint Movement (KPM) is a vector that char-

acterizes motion in facial keypoint positions relative to a neutral face. To generate a KPM vec-

tor, we compute the difference between the x and y coordinates of the preprocessed facial

keypoints across any frame with a neutral frame of the same subject. The KPM of a subject at

time τ is represented as a vector XðtÞ 2 R132
.

Statistical modeling of KPM. At each timepoint τ, the KPM vector X(τ) is assumed to be

a multivariate random variable. The KPMs of different subjects are considered to be indepen-

dent and identically distributed (iid) samples from the same underlying time-dependent distri-

bution. We perform hypothesis testing under different statistical models to evaluate whether

the facial keypoints exhibit significant movement from the neutral position. The null hypothe-

sis being tested is that the mean KPM vector at τ is equal to the zero vector (a neutral face key-

point position). The results of these hypothesis tests are then transformed into t-scores. At any

given τ, these t-scores are further mapped to a specific function definition (Average, Maxi-

mum, etc.), which serves as a single metric value for quantifying the degree of consistent key-

point movements. Like AU consistency, these metrics measure the degree of consistent

keypoint movements, rather than quantify how many keypoints are consistent, i.e., a high met-

ric value implies that keypoints are consistent (irrespective of whether few are consistent or all

are consistent). In the following sections, we provide a detailed explanation of each of the sta-

tistical models and the metrics proposed under them:-

1. Independent Univariate Gaussian Model—In the independent univariate Gaussian

model, we assume that each random variable Xi(τ) (where i ranges from 1 to 132) in the

KPM vector X(τ) follows a normal distribution with a mean of μi(τ) and a variance of s2
i ðtÞ

(XiðtÞ � N ðmiðtÞ; s2
i ðtÞÞ). Under the null hypothesisH0(τ)i for component i there is no

discernable consistent movement of the keypoints in any direction H0(τ)i: μi(τ) = 0. To test

the null hypothesis, we employ a two-tailed Student’s t-test. The t-score for each component

i is calculated as tiðtÞ ¼
�XiðtÞ� miðtÞ

siðtÞffiffi
n
p

(where �XiðtÞ is sample mean and si(τ) is sample standard

deviation). This process results in a 132-dimensional T(τ) vector of t-statistic values for a

given timepoint τ. The magnitude of these t-scores indicates the significance of the
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hypothesis test, while the sign only indicates the direction of movement, i.e., whether the

corresponding x or y coordinate of the keypoint moves in a positive or negative direction.

We are primarily interested in the magnitude of the t-scores to gauge the strength of consis-

tent keypoint movements within a population. We propose two metrics based on the mag-

nitude of the t-scores:

a) Average t-statistic (ktavg ): The average t-statistic is calculated as the mean of the magni-

tudes of t-scores of all the keypoints at a specific timepoint τ. Formally, ktavg ðtÞ ¼

1

k

Pk
i¼1
jTiðtÞj (|.| denotes absolute value). This metric gives a good indication of CRM if a

large number of keypoints are consistent.

b) Maximum t-statistic (ktmax): TheMaximum t-statistic is defined as the maximum magni-

tude among all the keypoint t-scores. Formally, ktmaxðtÞ ¼
1

k max
i21;...k

jTiðtÞj (|.| denotes absolute

value). In situations where only a few keypoints exhibit consistent movement (e.g., only

eyebrows), and others do not, the average t-statistic value may be extremely low, indicating

wrongly that there are no consistent keypoint movements. Therefore, theMaximum t-sta-
tistic will capture the degree of consistency in this case by picking up only the maximum

value.

2. Independent Bivariate Model—In the independent bivariate model, the movement along

the x and y directions of any keypoint is considered as a bi-variate normal distribution. Let

ri(τ) = (X2i−1(τ), X2i(τ)) represent the movement vector of the ith keypoint at time τ with

respect to the neutral face. In this model, riðtÞ � N ðmiðtÞ;SiðtÞ), where miðtÞ 2 R
2 is a vec-

tor of means and SiðtÞ 2 R
2�2

is a covariance matrix. The null hypothesis is given by

H0(τ)i: μi(τ) = (0, 0), which examines whether the keypoints exhibit any significant move-

ment from their neutral position.

To evaluate this hypothesis, we employ a Hotelling T-square test, which is a generalization

of the Student’s t-test to multivariate hypothesis testing [57]. This test calculates a Hotelling

t2-score as follows: t2i ðtÞ ¼ ð�riðtÞ � miðtÞÞ
T
îðtÞ

� 1

r ð�riðtÞ � miðtÞÞ. Here, �riðtÞ ¼

ð�X2i� 1ðtÞ;
�X2iðtÞÞ represents a vector containing the sample means,

Ŝi ðtÞr¼̂iðtÞ

n , and ŜiðtÞ is

the sample covariance matrix.

By applying this test to all 66 keypoints at a specific timepoint t, we obtain 66-dimensional

vector T2(τ) of t2-scores, each reflecting the significance of movement for the correspond-

ing keypoint. To quantify CRM under this model using consistent keypoint movements, we

propose two metrics that are similar to metrics proposed under the independent univariate

model:

a) Average t2-statistic (kt2avg ): The average t2-statistic is calculated as the mean of all t2-statis-

tics at timepoint t. Formally, kt2avg ðtÞ ¼
1

k

Pk
i¼1
T2
i ðtÞ.

b) Maximum t2-statistic (kt2max): TheMaximum t2-statistic represents the highest among all

the t2-statistics at timepoint t. Formally, kt2maxðtÞ ¼
1

k max
i21;:::k

T2
i ðtÞ. In scenarios where only a

few keypoints exhibit consistent movement, the maximum t2-statistic makes a better assess-

ment than the average t2-statistic.

3. Multivariate Gaussian with Dimensionality Reduction (kPCAk)—In this model, we assume

that the random variables X(τ) follow a multivariate gaussian distribution, represented as

XðtÞ � N ðmðtÞ;SðtÞÞ, where mðtÞ 2 R132
and SðtÞ 2 R132�132

. To test the null hypothesis

H0(τ):μ(τ) = (0, 0, . . ...132 times), the Hotelling T-square test may be employed to compute

the t2-statistic using a similar formulation as defined in the independent bivariate model.
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This single t2-statistic represents the CRM metric (κMVG(τ)) under this model at time τ.
However, the computation of Hotelling’s t2-score requires that the number of samples (sub-

jects) significantly exceeds the number of dimensions in the vector X(τ), or else ŜðtÞ

becomes a singular matrix. Therefore, in the case of data from fewer subjects, κMVG(τ) may

not be computable.

To address this dimensionality issue, we apply Principal Component Analysis (PCA) to

reduce the dimensions in the given dataset. Let the complete dataset be denoted as

Y 2 R132�m, wherem is the total number of samples. The PCA decomposition yields an

approximation, Y� PQ, where P 2 R132�k and Q 2 Rk�m (k<< 132). Now, the low-

dimensional matrix Q 2 Rk�m represents the data, and the random variable at time τ can be

represented as a vector QðtÞ 2 Rk. Assuming, Q(τ) follows a multivariate Gaussian distri-

bution represented as QðtÞ � N ðmðtÞ;SðtÞÞ where mðtÞ 2 Rk and S 2 Rk�k, we test the

null hypothesis H0(τ):μ(τ) = (0, 0, . . .k times) using a Hotelling T-square test [57]. The

Hotelling t2-statistic computed underH0(τ) represents the CRM metric at time τ known as

t2-statistic with PCA or kPCAkðtÞ (k is the number of PCA components). In the DISFA data-

set, we retained the top five components (k = 5), which can explain 90 percent of the vari-

ance and compute the KPCA5
.

Experiments

In this section, we illustrate the application of AU consistency (κAU) using the DISFA dataset to

evaluate CRM, by assessing the consistency of expressions in the temporal dimension. We

demonstrate how AU consistency facilitates the comparison of consistency levels across various

emotion segments in the DISFA stimulus. Additionally, considering that AU consistency
involves manual FACS coding, we engage in a discussion about potential automated keypoint-

based metrics that could serve as viable alternatives.

DISFA stimulus

The stimulus is 4m 1s in length and consists of nine segments targetting five emotions- Happy,

Surprise, Fear, Disgust, and Sadness. If multiple segments target the same emotion, we index

them starting from one, e.g., Happy1 and Happy2 (Table 2). The segments are separated by 2-

3 seconds and we call this Inter-Segment Gap (ISG).

Table 2. Start and end frame number of different target emotion segments.

Start Frame No. End Frame No. Target Emotion

65 283 Happy1

343 755 Happy2

817 1,165 Surprise1

1,227 1,354 Fear

1,414 1,874 Disgust1

1,935 2,455 Disgust2

2,515 3,200 Sadness1

3,261 3,934 Sadness2

3,995 4,832 Surprise2

https://doi.org/10.1371/journal.pone.0302705.t002
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CRM analysis using AU consistency
We examine the AU consistency in DISFA across the video timeline, as illustrated in Fig 3. This

analysis provides insight into the consistency of elicited facial expressions at each of the 4845

time points. Notably, segments like Happy1 and Happy2 demonstrate a high level of AU con-
sistency (25.93-96.30%), while Sadness1 and Sadness2 result in expressions with low levels of

AU consistency (11.11-37.04%). In the case of Happy1, the AU consistency gradually builds and

peaks towards the end of the segment. Additionally, the high AU consistency persists in the

Inter-Segment Gap (ISG), suggesting a significant delay before the facial expression returns to

a neutral state. This may be verified for subjects in DISFA, see the illustration in Fig 4. The fig-

ure reveals that the subject displays facial expressions even in the ISG, and it doesn’t settle into

a completely neutral expression. Consequently, we extend the boundaries of the emotion seg-

ment into their subsequent ISG for further analysis.

To facilitate the comparison of various emotion segments, we’ve categorized the 4845 time

points into four groups (Inconsistent, Low Consistent,Mild Consistent,High Consistent)
through an analysis of the Cumulative Distribution Function (CDF) of the AU consistency’s
values (refer to Fig 5). The CDF exhibits an approximately linear trend for AU consistency in

Fig 3. AU consistency along the video timeline in DISFA. Colored bars represent the different emotion segments and the interval represents the Inter-

Segment Gap (ISG).

https://doi.org/10.1371/journal.pone.0302705.g003

Fig 4. Expression of a subject at the start, peak consistent frame, and end of an emotion segment when watching the DISFA stimulus. This subject

was not a part of DISFA dataset and included solely for illustrative purposes, highlighting the non-neutral expressions observed within the Inter-

Segment Gap (ISG) of some DISFA subjects. (The subject pictured has provided written informed consent (as outlined in the PLOS consent form) to

publish their image alongside the manuscript.).

https://doi.org/10.1371/journal.pone.0302705.g004
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the range of [0-70.37%) and a distinct linear trend for AU consistency in the range of [70.37-

100%]. The latter represents approximately 10 percent of the time points, which we classify as

theHigh Consistent category. The remaining graph is evenly divided into three segments,

assigned to Inconsistent, Low Consistent, andMild Consistent categories, respectively. Refer to

Table 3 for the AU consistency range corresponding to each class.

Table 4 reveals the distribution of the four consistency classes within each emotion seg-

ment. In Happy1, for instance, 74 percent of frames belong to theHigh Consistent class, the

highest percent across all segments. Similarly, Surprise1 and Disgust2 has the highest percent

(77) of frames in theMild Consistent class. Disgust1, on the other hand, exhibits the highest

percent (45) of frames in the Low Consistent class, while Sadness2 exhibits the highest percent

(100) of frames in the Inconsistent class.

These findings suggest that not all emotions elicit consistent facial expressions to the same

extent, and the Happy emotion may elicit the highest degree of consistency. However, we

observe that within emotion, the amount of consistency varies for different segments. For

instance, Happy1 and Happy2 differ significantly in theHigh Consistent class. This may be

possible due to the stimulus choice and design within a segment.

Fig 5. Cumulative Distribution Function (CDF) of the AU consistency. For any given bar, the percentage above indicates the proportion of

time points (t = 1,2,. . .4845) where the AU consistency is less than or equal to the value associated with that bar on the x-axis.

https://doi.org/10.1371/journal.pone.0302705.g005

Table 3. Consistency classes based on AU consistency.

AU consistency range(%) Sample percentile range(%) Class

[0,25.93) [0,30) Inconsistent

[25.93,44.44) [30,60) Low Consistent

[44.44,70.37) [60,90) Mild Consistent

[70.37,100] [90, 100] High Consistent

https://doi.org/10.1371/journal.pone.0302705.t003
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The analysis above demonstrates that AU consistency can be a suitable metric for gauging

the level of CRM during the viewing of emotionally evocative videos. Furthermore, it offers a

means to evaluate the effectiveness of various emotion segments within a stimulus video. This

metric relies on FACS coding, a method that involves the precise quantification of subtle facial

muscle movements by certified FACS coders. Consequently, we hypothesize that AU consis-
tency stands as a highly reliable metric for quantifying CRM using facial expression videos.

Measuring CRM using facial keypoints

FACS coding, while effective, can be costly and time-consuming, making it impractical in real-

time situations. A more feasible approach involves creating metrics that rely on the automated

tracking of facial expressions using facial keypoints based on computer vision or deep learning

algorithms. This renders an automated system that offers the advantage of real-time measure-

ments of consistent response.

To determine the most reliable alternative to the AU consistencymetric among the pro-

posed keypoint-based metrics, we conducted a linear regression analysis. This analysis exam-

ines the relationship between the AU consistencymetric and five keypoint-based metrics

across the video timeline. The resulting best-fit line is illustrated in red in Fig 6. Coefficient of

determination R2 is computed, to assess the goodness of fit for each best-fit line.

The maximum R2(=0.78) is obtained by the metric Average t-statistic. Fig 7 further demon-

strates the similarity in trends between the AU consistencymetric and the Average t-statistic
metric along the video timeline in the DISFA dataset.

Consistency class distribution. We investigated whether the distribution of keypoint-

based metrics across four consistency classes (High Consistent,Mild Consistent, Low Consis-
tent, and Inconsistent) aligns with the distribution of AU consistency. To achieve this, we gener-

ated a table for each keypoint-based metric similar to the structure of Table 4 created for the

AU consistencymetric. We first identified the range of each keypoint-based metric for specific

sample percentile intervals associated with the four classes, as outlined in Table 3 (ranges: [0,

30), [30, 60), [60, 90), and [90, 100]). For instance, let’s consider ktavg . The respective ranges for

ktavg at these percentile intervals are [0,1.19), [1.19,2.22), [2.22,3.09), and [3.09,4.72]. Using

these ranges, we constructed a table analogous to Table 4 for the ktavg metric. We repeated this

process for other keypoint-based metrics and consolidated all the distributions in one table

(Table 6).

For any metric, each row sums up to 100 or dividing the row by 100 transforms it into a

probability distribution. Kullback-Leibler (KL) Divergence serves as a measure to quantify the

Table 4. Distribution of the four consistency classes present in different emotion segments.

Emotion Inconsistent Low Consistent Mild Consistent High Consistent

Happy1 6 14 6 74

Happy2 0 14 60 27

Surprise1 0 17 77 6

Fear 0 20 69 11

Disgust1 1 45 49 5

Disgust2 1 22 77 0

Sadness1 89 11 0 0

Sadness2 100 0 0 0

Surprise2 33 31 19 16

https://doi.org/10.1371/journal.pone.0302705.t004
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Fig 6. Regression lines depicting the correlation between AU consistency and different keypoint-based metrics, using their 4845 data points across

the video timeline.

https://doi.org/10.1371/journal.pone.0302705.g006

Fig 7. AU consistency and Average t-statistic along the video timeline (y values normalized for both metrics between [0, 1]). Colored bars represent

the emotion segments extended to their subsequent ISGs.

https://doi.org/10.1371/journal.pone.0302705.g007
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difference between two probability distributions. To identify which keypoint-based metric dis-

tribution in the table most closely resembles that of κAU distribution, we employed the average

Kullback-Leibler (KL) Divergence per row. For instance, we took the Happy1 row for κAU dis-

tribution and the Happy1 row for ktavg and compute the KL-divergence. This process was

repeated for all rows in the (kAU; ktavg ) pair, and the average KL-divergence was reported

(Table 5). This procedure was iterated for all keypoint-based metrics, and results illustrate that

ktavg exhibited the least average KL-divergence, thereby demonstrating the closest resemblance

to the κAU metric.

In summary, the distribution analysis of the four classes shows that Average t-statistic repre-

sent the AU consistencymore closely than the other keypoint-based metrics. Moroever, under

the assumptions of a linear regression model, the Average t-statistic demonstrated the highest

R2(=0.78) with the AU consistencymetric. Therefore, we recommend using the Average t-sta-
tistic as a reliable method for identifying consistent responses based on facial keypoints.

Conclusion

We demonstrate the effective use of facial expression videos to quantify Consistent Response

Measurement (CRM) when multiple individuals watch the same emotionally evocative videos.

Unlike existing methods that assess the consistency of secondary indicators such as emotions,

keypoint, and ICA-based features, our CRM, based on the AU consistencymetric utilizes the

Action Unit (AU) information based on the FACS to quantify the CRM. The Average t-statistic
metric, is associated with the direct measurement of consistent facial muscle movements using

automated keypoint tracking algorithms. There is a strong correlation (R2 = 0.78) between the

Average t-statistic based on keypoint tracking and the AU consistencymetric that relies on

FACS coding of video frames.

Our CRM metrics are cost-effective and more adaptable compared to conventional neuro-

imaging methods involving expensive fMRI/EEG data. It is also less sensitive than physiologi-

cal signals such as HRV, GSR, and ECG. This automated Average t-statisticmetric and its

associated statistical model can be applied to quantify observer engagement in videos, identify

outlier subjects, and offer insights into various applications. Given the simplicity of recording

facial expressions, the metric can be employed to discover emotionally evocative segments in

movies, assess the impact of films on viewers’ minds, measure engagement in online learning,

evaluate customer interactions in business, assess patient engagement in healthcare, and so

forth. Further, it may identify outliers in populations to indicate conditions like stroke,

ADHD, Alzheimer’s, Parkinson’s, and Schizophrenia, as well as mental disorders such as

autism and depression. Our metric may also assist in video-EEG paradigms, for instance, by

quantifying facial expression abnormalities to estimate instants of epileptic seizures and cogni-

tive impairment, such as dementia.

Table 5. KL-divergence (row-wise averaged) between κAU distribution table and each of the five keypoint-based

metrics (ktavg
;ktmax

; kt2avg
;kt2max

; kPCA5
).

Keypoint-based metric Avg. KL-divergence (per row)

Average t-statistic (ktavg ) 0.92

Maximum t-statistic (ktmax ) 0.98

Average t2-statistic (kt2avg ) 0.93

Maximum t2-statistic (kt2max ) 0.98

t2-statistic with PCA (kPCA5
) 0.96

PLOS ONE Consistent movement of facial keypoints in video-watching

PLOS ONE | https://doi.org/10.1371/journal.pone.0302705 May 17, 2024 14 / 19

https://doi.org/10.1371/journal.pone.0302705


CRM extends its applicability beyond the confines of video-watching stimuli, showcasing

its versatility to quantify consistent facial expressions across diverse sensory modalities. For

example, it has been utilized to assess synchronized neural responses of subjects when exposed

to affective audios and narrated stories [58, 59], affective images [60], olfaction [61], sweet, bit-

ter or salty gustation [62] and so forth. One notable application of CRM may involve quantify-

ing event-related facial expressions (ERFEs), akin to the analysis of event-related potentials

(ERPs) in EEG studies [63]. By comparing ERFEs and ERPs, researchers can determine the lag

between neural processing and the onset, apex duration, or offset of consistent facial expres-

sions. We hypothesize that variations in these lag can provide valuable indicators of neural

processing delays, which may be used to further study and compare characteristics of different

population groups, such as healthy, autism, ADHD, or stroke populations. Thus, CRM

emerges as a comprehensive tool, capable of quantifying consistent responses across a spec-

trum of stimuli types and sensory experiences, enriching our understanding of emotional pro-

cessing and its implications.

Certain factors, such as precise alignment of stimulus presentation and recorded video, are

crucial for achieving consistent facial expressions in CRM. Moreover, response time variations

to the same stimulus among subjects necessitate careful demographic selection. For example, a

homogeneous group, like same-age, same-gender healthy individuals, is preferable to identify

evocative segments of a video clip. However, characterizing differences in facial expressions

among different population groups, such as normal healthy, ADHD, autism, or stroke patients,

may necessitate studying heterogeneous groups of the population. Finally, to enhance the met-

ric’s robustness, we may simultaneously record facial expressions and neuroimaging data, pro-

viding insights into both facial responses and direct brain activity while subjects are exposed to

a variety of stimuli. The proverb “The face is a picture of the mind” can be literally tested rigor-

ously by correlating the facial keypoint movements with the brain activity obtained using neu-

roimaging data.

Appendix

Table 6 shows the distribution of AU consistency and the keypont-based metrics in the four

consistency classes—Inconsistent, Low Consistent,Mild Consistent andHigh Consistent in dif-

ferent emotions.

Table 6. Distribution of the CRM metrics in the four consistency classes per emotion. Each entry contains values in the order (kAU ;ktavg
; ktmax

;kt2avg
; kt2max

;kPCA5
).

Emotion Inconsistent Low Consistent Mild Consistent High Consistent

Happy1 (6, 0, 0, 0, 0, 0) (14, 17, 10, 18, 14, 8) (6, 13, 44, 18, 44, 43) (74, 70, 45, 64, 42, 49)

Happy2 (0, 0, 0, 0, 0, 0) (14, 13, 11, 11, 13, 4) (60, 56, 70, 59, 63, 74) (27, 30, 19, 31, 24, 22)

Surprise1 (0, 0, 0, 0, 0, 0) (17, 21, 50, 26, 46, 46) (77, 75, 45, 69, 50, 48) (6, 4, 5, 5, 4, 6)

Fear (0, 0, 1, 0, 0, 0) (20, 47, 68, 52, 62, 61) (69, 53, 31, 48, 38, 39) (11, 0, 0, 0, 0, 0)

Disgust1 (1, 0, 0, 0, 0, 0) (45, 20, 24, 21, 22, 25) (49, 55, 36, 51, 39, 44) (5, 25, 40, 28, 39, 31)

Disgust2 (1, 0, 0, 0, 0, 0) (22, 67, 36, 64, 42, 36) (77, 33, 58, 36, 52, 54) (0, 0, 6, 0, 6, 10)

Sadness1 (89, 67, 68, 68, 66, 68) (11, 33, 29, 32, 32, 32) (0, 0, 3, 0, 2, 0) (0, 0, 0, 0, 0, 0)

Sadness2 (100, 74, 79, 74, 75, 78) (0, 26, 21, 26, 25, 22) (0, 0, 0, 0, 0, 0) (0, 0, 0, 0, 0, 0)

Surprise2 (33, 49, 44, 48, 49, 44) (31, 19, 33, 19, 25, 38) (19, 32, 22, 32, 26, 18) (16, 0, 0, 0, 0, 0)

https://doi.org/10.1371/journal.pone.0302705.t006
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9. Czepiel A, Fink LK, Fink LT, Wald-Fuhrmann M, Tröndle M, Merrill J. Synchrony in the periphery: inter-

subject correlation of physiological responses during live music concerts. Scientific reports. 2021; 11

(1):22457. https://doi.org/10.1038/s41598-021-00492-3 PMID: 34789746

PLOS ONE Consistent movement of facial keypoints in video-watching

PLOS ONE | https://doi.org/10.1371/journal.pone.0302705 May 17, 2024 16 / 19

https://doi.org/10.1126/science.1089506
http://www.ncbi.nlm.nih.gov/pubmed/15016991
https://doi.org/10.3167/proj.2008.020102
https://doi.org/10.3389/fnhum.2012.00112
http://www.ncbi.nlm.nih.gov/pubmed/22623915
https://doi.org/10.1080/2326263X.2015.1099091
https://doi.org/10.1080/2326263X.2015.1099091
https://doi.org/10.1371/journal.pone.0247625
http://www.ncbi.nlm.nih.gov/pubmed/33626088
https://doi.org/10.1111/psyp.12261
http://www.ncbi.nlm.nih.gov/pubmed/25039415
https://doi.org/10.1371/journal.pone.0125804
http://www.ncbi.nlm.nih.gov/pubmed/26018597
https://doi.org/10.1037/1528-3542.5.2.175
https://doi.org/10.1037/1528-3542.5.2.175
http://www.ncbi.nlm.nih.gov/pubmed/15982083
https://doi.org/10.1038/s41598-021-00492-3
http://www.ncbi.nlm.nih.gov/pubmed/34789746
https://doi.org/10.1371/journal.pone.0302705


10. Hasson U, Avidan G, Gelbard H, Vallines I, Harel M, Minshew N, et al. Shared and idiosyncratic cortical

activation patterns in autism revealed under continuous real-life viewing conditions. Autism Research.

2009; 2(4):220–231. https://doi.org/10.1002/aur.89 PMID: 19708061
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