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Abstract

The development of automated tools using advanced technologies like deep learning holds

great promise for improving the accuracy of lung nodule classification in computed tomogra-

phy (CT) imaging, ultimately reducing lung cancer mortality rates. However, lung nodules

can be difficult to detect and classify, from CT images since different imaging modalities

may provide varying levels of detail and clarity. Besides, the existing convolutional neural

network may struggle to detect nodules that are small or located in difficult-to-detect regions

of the lung. Therefore, the attention pyramid pooling network (APPN) is proposed to identify

and classify lung nodules. First, a strong feature extractor, named vgg16, is used to obtain

features from CT images. Then, the attention primary pyramid module is proposed by com-

bining the attention mechanism and pyramid pooling module, which allows for the fusion of

features at different scales and focuses on the most important features for nodule classifica-

tion. Finally, we use the gated spatial memory technique to decode the general features,

which is able to extract more accurate features for classifying lung nodules. The experimen-

tal results on the LIDC-IDRI dataset show that the APPN can achieve highly accurate and

effective for classifying lung nodules, with sensitivity of 87.59%, specificity of 90.46%, accu-

racy of 88.47%, positive predictive value of 95.41%, negative predictive value of 76.29%

and area under receiver operating characteristic curve of 0.914.

1 Introduction

Lung cancer is a very serious disease and is responsible for a large number of cancer-related

deaths worldwide [1–4]. Although there have been significant advances in the treatment of

lung cancer in recent years, including the development of multi-modality treatments such as

surgery, chemotherapy, and radiation therapy, the prognosis for patients with lung cancer

remains poor [5]. It is often difficult to detect lung cancer in its early stages, which can lead to

poor outcomes for patients. As a result, the 5-year survival rate for lung cancer remains rela-

tively low at 18% [6]. Advanced recognition of lung cancer, using computed tomography (CT)

imaging and other diagnostic techniques, can help to identify lung nodules at an early stage

and determine whether they are likely to be benign or malignant [7]. This information can
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help clinicians to make informed decisions about treatment options and improve the chances

of successful outcomes [8].

The diagnosis of lung cancer based on CT scans has traditionally relied on the interpreta-

tion of radiologists, which is subjective and can be influenced by factors such as fatigue, emo-

tion, and experience [9, 10]. This can lead to variability in the interpretation of CT images and

potentially affect the accuracy of lung nodule diagnosis. As the section thickness of CT scans

decreases, the ability to distinguish between pulmonary lesions and adjacent normal vascular

structures becomes more difficult, particularly for radiologists who rely on their visual inter-

pretation skills to differentiate these structures [11, 12]. Generally, it is difficult for even experi-

enced radiologists to distinguish some benign and malignant nodules with similar visual

features [13, 14]. This can lead to a greater chance of false-positive or false-negative diagnoses,

as well as a lower overall accuracy of lung nodule classification [15]. Specifically, the automatic

classification of malignancy suspiciousness on CT studies can facilitate radiologists to assess

early risk factors which is essential in lung cancer research, thereby providing useful cues for

subsequent therapeutic planning and holding promise for improving individualized patient

management [6, 16, 17]. As a result, there is a need for more objective and quantitative meth-

ods for lung nodule classification that could be an important step towards improving patient

outcomes and reducing mortality rates [18].

With the increase in computational power, particularly aided by the advent of powerful

Graphics Processing Units (GPUs), convolutional neural networks (CNNs) that is a type of

deep learning model and is designed to automatically extract features from input data have

shown promising results in the classification of pulmonary nodules [19–21]. In the context of

pulmonary nodule classification, a CNN is typically trained on large annotated datasets of CT

scans of the lung, and learns to identify features that are indicative of nodules [22–24]. Once

trained, the network can be used to detect nodules in new, unseen CT scans, with varying lev-

els of success [25–27]. For example, The Nam et al. underscores the potential of DL-based

approaches in enhancing the efficiency and accuracy of medical image analysis [28]. By

leveraging deep learning techniques, their algorithm achieved remarkable results in both clas-

sifying X-ray images based on nodule presence and accurately detecting nodules within the

images. Chen et al. [29] utilized multiple CNNs to distinguish between potentially benign,

uncertain, and probable malignant lung nodules. [29] method combined the outputs of multi-

ple neural networks to improve the accuracy and reliability of pulmonary nodule classification.

Based on their work, [30] proposed a method combining vgg16 and Faster R-CNN for lung

nodule detection. Shen et al. [31] proposed a classification method called MCNN, which does

not require segmentation of lung nodules. Instead of segmenting individual nodules, MCNN

takes as input regions of interest (ROIs) in different sizes and concatenates their response neu-

ron activations in the output layer of the network.

Studies have shown that CNN-based approaches can achieve high levels of sensitivity and

specificity in the classification of pulmonary nodules [32, 33]. While CNN-based methodolo-

gies have demonstrated significant promise in the categorization of pulmonary nodules, the

detection and classification of lung nodules still pose challenges. First, Different imaging

modalities may provide varying levels of detail and clarity. Second, CNNs may encounter chal-

lenges when attempting to identify nodules inside lung regions that have a high level of noise

or artifacts. Additionally, the detection of small nodules or those situated in hard-to-discern

areas of the lung may provide further difficulties for CNNs.

In this paper, we proposed attention pyramid pooling network (APPN) appears to be a

comprehensive and effective approach to classify lung nodules. The use of a deep neural net-

work, such as vgg16, as an encoder to extract features can help to identify subtle characteristics

of the nodules that might not be apparent to the human. The attention primary pyramid
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module is an important feature of the proposed APPN, as it allows for the fusion of features at

different scales and focuses on the most important features for lung nodule classification.

Finally, the use of a novel decoder with multiple up-sample operations can help to refine the

classification results. These are impressive results on LIDC-IDRI dataset, indicating that the

proposed APPN method is highly accurate and effective for classifying lung nodules. The high

sensitivity value of 87.59% suggests that the method is able to correctly identify most malignant

nodules, while the specificity value of 90.46% indicates that it is also good at distinguishing

between benign and malignant nodules. The positive predictive value (PPV) value of 95.41%

and negative predictive value (NPV) value of 76.29% further reinforce the accuracy of the

method in making correct predictions. These results suggest that the APPN could be a valuable

tool for classifying lung nodules in clinical settings, potentially helping to facilitate early diag-

nosis and improve patient outcomes.

2 Materials and methods

2.1 Attention pyramid pooling network

The APPN follows three steps that will be described below. First, the vgg16 is taken as encoder

to extract features of the lung nodules. Then, we propose attention primary pyramid module

to fuse features with multiple scales, in which the attention mechanism is used to strengthen

the important features. Finally, a novel decoder with multiple up-sample operation is used to

classify lung nodules. The proposed methodology is shown in Fig 1.

2.1.1 Encoder. The vgg16 [34, 35] architecture is a 16-layer deep neural network that con-

sists of several convolutional layers, max pooling layers, and fully connected layers. Here is a

detail description of each block and its structure, as shown in Table 1.

The first few layers of vgg16 are composed of convolutional layers with small 3×3 filters, fol-

lowed by a max pooling layer which reduces the spatial dimensions of the output. The last few

layers are comprised of fully connected layers that perform a classification task. The final layer

of the model is a softmax layer that outputs the predicted probabilities for each class. The

vgg16 has a relatively simple architecture compared to some more recent models [36], but it

has been shown to be effective for a wide range of computer vision tasks, including image clas-

sification, object detection, and segmentation.

2.1.2 Attention pyramid pooling module. The pyramid pooling module (PPM) [37–39]

is a deep learning architecture used for semantic segmentation tasks in computer vision. The

Fig 1. The framework of attention pyramid pooling network.

https://doi.org/10.1371/journal.pone.0302641.g001
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PPM is designed to capture multi-scale contextual information from different regions of an

image by dividing the input image into a series of regions or pyramids and pooling features

from each region at different scales. However, the PPM is designed to extract the features for

object in nature image [37, 40], which is easy to ignore the detail feature. Therefore, we pro-

pose attention pyramid pooling module (APPM) by fusing the attention mechanism into the

PPM allowing to extract more accurate feature of lung nodule, as shown in Fig 2.

Specially, the input image is fed into a series of convolutional layers to extract features from

the image. These layers are typically pre-trained on a large dataset such as ImageNet. Second,

four pyramid pooling modules is used to capture multi-scale information from the input

image. Each module consists of a set of pooling layers with different pyramid levels (1×1, 2×2,

3×3, and 6×6) to capture different levels of detail in the image. Third, the attention mechanism

is embedded to strengthen the important features obtained by different pyramid pooling.

Finally, the outputs of these modules are concatenated as the input of decoder.

In proposed APPM, the attention mechanism works by computing a weight for each input

element that represents its importance to the task. These weights are then used to compute a

Table 1. The structure of vgg16.

Layer_name Kernel Number

Conv1 3×3 64

3×3 64

Conv2_x 3×3 128

3×3 128

Conv3_x 3×3 256

3×3 256

3×3 256

Conv4_x 3×3 512

3×3 512

3×3 512

Conv5_x 3×3 512

3×3 512

3×3 512

https://doi.org/10.1371/journal.pone.0302641.t001

Fig 2. The structure of attention pyramid pooling module.

https://doi.org/10.1371/journal.pone.0302641.g002
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weighted sum of the input sequence, where the weights act as a probability distribution over

the input elements. The resulting weighted sum is then used as input to the next processing

step in the network. As a result, the attention mechanism can help model to focus on certain

parts of the input sequence during processing. And it allows the APPM to assign different

weights to different parts of the input sequence and selectively process the information that is

most relevant to the task.

Overall, the APPM can capture multi-scale information that is the most relevant parts of

the lung nodules, which helps to improve the accuracy of lung nodules classification tasks.

2.1.3 Decoder. In decoder, we use gated spatial memory (GSM) technique [41] to decode

the general features, which aims to classify the lung nodules. The Structure of GSM is shown

in Fig 3. The input of GSM is feature maps generated by APPM.

The appearances of lung nodules always vary greatly in CT images, making the accurate

mask prediction challenging. In GSM, a state feature map, such as Sn and S(n+1), is designed to

record the important spatial structure and semantic information. The Gn is the gate layer that

is used to update and regulate state feature map. The high gate values in gate layer would

strengthen the important feature and the low gate values indicate that the feature is unneces-

sary. In this way, the state feature map can be used to replenish the lacking information in the

feature map of Cn.

Finally, the global average pooling is used to aggregate features and the softmax is used to

produce the classification scores. Global average pooling has several advantages: (1) the global

average pooling reduces the number of parameters in the model, since it requires no learnable

parameters. (2) it is less prone to overfitting than max pooling, which tends to preserve spatial

information that can be specific to the training set.

2.2 Training CNN models

The cross-entropy loss function is utilized to learn the proposed network in order to optimize

network parameters for lung nodule classification. The proposed method is implemented

using the PyTorch deep learning platform. The influence of learning rate is analyzed through

different experiments, and the batch size is also examined in the experiment section. A

Fig 3. The structure of gated spatial memory.

https://doi.org/10.1371/journal.pone.0302641.g003
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dropout rate of 0.3 is used during training. All training is conducted on the PyTorch platform,

and a NVIDIA GeForce 1080TI graphics processing unit is used to accelerate the training.

These details can provide useful information for replicating the proposed method, and the use

of open-source tools such as PyTorch can increase the accessibility and reproducibility of the

work.

2.3 Performance evaluation and statistical analysis

After training the APPN models, the performance is evaluated using the testing dataset,

including accuracy, sensitivity, PPV, NPV and area under curve (AUC). The accuracy metric

represents the number of correctly classified instances divided by the total number of

instances. It gives an overall measure of how well the model is performing. The sensitivity is a

metric used to evaluate the performance of a binary classification model, particularly in medi-

cal and diagnostic settings. It measures the proportion of positive instances that are correctly

identified by the model. The PPV represents the proportion of true positive instances among

the instances predicted as positive by the model. The NPV, on the other hand, represents the

proportion of true negative instances among the instances predicted as negative by the model.

The formulas for accuracy, sensitivity, PPV and NPV are as follows.

Accuracy ¼
TP þ FN

TP þ TN þ FPþ FN
� 100% ð1Þ

Sensitivity ¼
TP

TP þ FN
� 100% ð2Þ

PPV ¼
TP

TP þ FP
� 100% ð3Þ

NPV ¼
TN

TN þ FN
� 100% ð4Þ

True positive (TP) represents true positive (the number of malignant nodules that are pre-

dicted as malignant nodules). True negative (TN) represents true negative (the number of

benign nodules that are predicted as benign nodules). False positive (FP) represents false posi-

tive (the number of benign nodules that are predicted as malignant nodules). False negative

(FN) represents false negative (the number of malignant nodules that are predicted as benign

nodules).

3 Experimental results

3.1 Dataset preprocessing and splitting

The LIDC-IDRI dataset is a large publicly available dataset of lung CT, it has a total of 1018

cases and each case includes several CT images containing annotated lesions from lung cancer

patients. The CT scans in the dataset are available in the DICOM format. The annotation files

in the LIDC-IDRI dataset contain information about the location and size of the lesions, as

well as their malignancy rating. These labels are extracted using third-party parsing tools

(https://github.com/mikejhuang/ LungNoduleDetectionClassification) to fit the needs of the

classification task. We denote the dataset that consists of all CT images and labels as lung_all.

Meanwhile, to further verify the generalization of the proposed method, we divide the lung_all

into lung_1V5 and lung_2V4 datasets according to the malignancy rating. The number of CT

scans of lung_all, lung_1V5 and lung_2V4 is shown in Table 2.
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3.2 Parameter analysis

This section describes a study on optimizing the performance of a deep neural network using

different hyperparameters, namely, the learning rate, batch size, and optimizer. The study eval-

uates the performance of the proposed approach with various learning rates of 1e-4, 1e-5, 1e-6,

and 1e-7 on lung_all, as shown in Fig 4. The results show that the maximum accuracy (0.8847)

is achieved at a learning rate of 1e-5. The impact of batch size on the performance of the net-

work is also investigated, and a range of batch sizes is tested. The results demonstrate that a

batch size of 128 obtains the best performance (0.8873) compared to other batch sizes tested.

Lastly, the study evaluates the impact of optimizer on the network performance and find that

the Adam optimizer achieves the highest accuracy (0.8691). Based on these findings, the opti-

mal hyperparameters for the proposed approach on lung_all are determined to be a learning

rate of 1e-5, a batch size of 128, and Adam optimizer. Besides, the final subfigure shows the

score tendency of APPN with the increase of epochs. It can be seen that the malignant and

benign nodules can be separated gradually when the training epochs increase. These findings

highlight the importance of selecting appropriate hyperparameters for deep neural networks

when optimizing their performance.

3.3 Performance evaluation with deep learning

In this section, we report the performance of APPN on lung_all, such as confusion matrix, sen-

sitivity, specificity, accuracy, PPV, NPV and AUC.

The confusion matrix provides valuable information about the performance of the pro-

posed method, allowing researchers and practitioners to evaluate the accuracy and effective-

ness of the model in classifying lung nodules. The results of confusion matrix are presented in

Fig 5. We can see that the APPN performs well on both the training and testing datasets, cor-

rectly classifying a significant number of malignant and benign nodules. The confusion matrix

shows that 3571 malignant lung nodules and 2045 benign lung nodules are correctly classified

by the proposed method on training dataset. And there are 1165 malignant and 531 benign

correctly classified by APPN on testing dataset. However, there are some misclassifications on

testing dataset, with 165 benign nodules being incorrectly classified as malignant and 56 malig-

nant nodules being misclassified as benign. The numbers from the confusion matrix provide

insights into the APPN, helping to evaluate its performance on both the seen (training) and

unseen (testing) data.

Table 3 shows the experimental results of APPN on lung_all. The results indicate the satis-

fied performance of the APPN on the lung_all dataset, both on the training and testing

Table 2. The description of the datasets.

Training Testing

lung_all Overall 5632 1917

Benign 2041 696

Malignant 3591 1221

lung_1V5 Overall 2816 953

Benign 933 313

Malignant 1883 640

lung_2V4 Overall 2816 964

Benign 1108 383

Malignant 1708 581

https://doi.org/10.1371/journal.pone.0302641.t002
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datasets. On the training dataset, the APPN demonstrates exceptional performance with high

sensitivity, specificity, and accuracy, indicating its ability to correctly identify both malignant

and benign lung nodules. Specially, on the training dataset, the APPN achieves 99.94%,

99.32% and 99.72% in sensitivity, specificity and accuracy, respectively. On the testing dataset,

while the model maintains good specificity and accuracy, there is a noticeable decrease in sen-

sitivity. This suggests that the model may be somewhat less effective in identifying true posi-

tives on new data. For the testing dataset, the Table 3 shows that the sensitivity, specificity, and

accuracy obtained by APPN is 87.59%, 90.46%, 88.47%, respectively. The APPN achieves a

PPV of 99.61% and an NPV of 99.90% on the training dataset and a PPV of 95.41% and an

NPV of 76.29% on the testing dataset. The PPV on the testing dataset is relatively high

(95.41%), indicating that when the model predicts a nodule as malignant, it is correct in a sig-

nificant majority of cases. It’s essential to consider the specific requirements of the medical

Fig 4. The parameter analysis of learning rate (A), Batch size (B) and optimizer (C) on lung_all. (D) The output scores of training data with the training

iterations.

https://doi.org/10.1371/journal.pone.0302641.g004

PLOS ONE APPN for classifing pulmonary nodules

PLOS ONE | https://doi.org/10.1371/journal.pone.0302641 May 16, 2024 8 / 17

https://doi.org/10.1371/journal.pone.0302641.g004
https://doi.org/10.1371/journal.pone.0302641


application and the implications of false positives and false negatives. Adjustments to the

model or further analysis may be necessary depending on the clinical context.

Furthermore, the Fig 6 shows the evaluation of the APPN using the AUC performance met-

ric and the receiver operating characteristic curve (ROC) on lung_all. The APPN achieves an

AUC of 0.914 on the testing set. An AUC value close to 1 indicates good discriminatory power

of the model. Additionally, the mean time taken for classifying CT images in the testing dataset

is around 0.1 seconds. This suggests that the APPN is computationally efficient, demonstrating

the ability to handle large datasets in a relatively short amount of time. This efficiency is cru-

cial, especially in medical applications where quick and accurate diagnosis is essential.

In following experimental setup, we replace vgg16 encoder with ResNet18 and ResNet34

for APPN to extract general features from CT images. The results are then compared with the

performance in lung nodule classification. The experimental results reported in Table 4 indi-

cates that APPN with vgg16 achieves the best accuracy (88.47%) compared to ResNet18 and

ResNet34 encoder. This suggests that, for the specific task of lung nodule classification, vgg16

Fig 5. The confusion matrix of the APPN on lung_all.

https://doi.org/10.1371/journal.pone.0302641.g005

Table 3. Experimental results of the APPN on lung_all.

Training set Testing set

Sensitivity (%) 99.94 87.59

Specificity (%) 99.32 90.46

Accuracy (%) 99.72 88.47

PPV (%) 99.61 95.41

NPV (%) 99.90 76.29

https://doi.org/10.1371/journal.pone.0302641.t003
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may be more effective in extracting relevant features from the input data. Besides, ResNet18

and ResNet34 exhibits unsatisfactory accuracy in lung nodule classification. Based on the

above analysis, vgg16 is selected as the encoder in the APPN. The reason for this choice is that

vgg16 performs better for the lung nodule classification task.

Fig 6. The ROC of the APPN on testing set.

https://doi.org/10.1371/journal.pone.0302641.g006

Table 4. The performance comparison of vgg16, ResNet18 and ResNet34.

ResNet18 ResNet34 vgg16

Sensitivity (%) 75.13 73.26 87.59

Specificity (%) 86.27 84.06 90.46

Accuracy (%) 77.20 75.07 88.47

PPV (%) 95.99 95.82 95.41

NPV (%) 44.25 38.65 76.29

https://doi.org/10.1371/journal.pone.0302641.t004
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In Table 5, the performance of APPN on the LIDC-IDRI is reported alongside other classi-

fication methods. The results indicate that APPN achieves the best performance among the

compared methods. Benefits from the attention module and PPM, the APPN shows the signifi-

cant improvements compared to the baseline Autoencoder. The accuracy of APPN is

improved by 8.18% compared with the Autoencoder. And the AUC of APPN achieves 0.914

and increases by 5.4% than Autoencoder. Additionally, the APPN shows consider improve-

ment than the second best method which only achieves 87.79 in accuracy. These experimental

results validate the effectiveness and superiority of the APPN in lung nodules classification.

3.4 Generalization evaluation of the APPN on the lung_1V5 and lung_2V4

In the LIDC-IDRI dataset, the nodules are labelled according to their malignancy levels by

four radiologists. The level 1 and 2 represent benign nodules while levels 4 and 5 are malignant

nodules. To further verify the generalization of the APPN, the experiments on lung_1V5 and

lung_2V4 are conducted from parameter analysis and performance analysis. The malignancy

rating with 1 and 5 levels consists of lung_1V5. The malignancy rating with 2 and 4 levels con-

sists of lung_2V4. The number of CT scans of lung_1V5 and lung_2V4 is shown in Table 2.

3.4.1 Experimental results on lung_1V5. The lung_1V5 is build based on malignancy

rating with 1 and 5 levels. This dataset has relatively small training sample compared with lun-

g_all. Therefore, it is more difficult to achieve satisfied performance on lung_1V5. And the

training dataset of lung_1V5 includes 933 benign and 1883 malignant lunge nodules. The test-

ing dataset of lung_1V5 includes 313 benign and 640 malignant lunge nodules.

We first conduct the parameters analysis experiments on lung_1V5. The experimental

results are reported by Fig 7. It is clearly that the APPN can achieve the best accuracy (0.9003)

when learning rate is 1e-5. And the 0.8856 accuracy is obtained with 32 batch size. The APPN

trained with Adam optimizer achieves the best accuracy (0.8751), which significantly outper-

forms the accuracy obtained by Adagrad, Adadelta optimizer.

Table 5. Performance of the proposed method with different methods.

Method Accuracy (%) AUC Ref

Autoencoder 80.29 0.86 [6]

Massive-feat 83.21 0.89

DGMM-RBCNN 87.79 - [10]

Hybrid CNN 82.2 0.877 [42]

Resnet152 86 0.84 [43]

Senet154 87 0.84 [44]

APPN 88.47 0.914 This work

https://doi.org/10.1371/journal.pone.0302641.t005

Fig 7. Parameter analysis of learning rate (A), batch size (B) and optimizer (C) on lung_1V5.

https://doi.org/10.1371/journal.pone.0302641.g007
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Furthermore, the sensitivity, specificity, sensitivity, PPV, NPV are used to evaluate the per-

formance of the APPN. From the information provided in Table 6, it seems that the APPN on

the lung_1V5 dataset outperforms the APPN on the lung_all dataset in terms of sensitivity,

specificity, PPV, NPV, and overall accuracy. Specifically, it can be seen that the 90.03% accu-

racy could be obtained by the APPN on testing datasets, respectively, which is higher than

accuracy of the APPN trained with the lung_all. Besides, the APPN reaches a better perfor-

mance of specificity of 95.8%, PPV of 98.44%, NPV of 72.84%. A high training sensitivity,

specificity, accuracy PPV and NPV suggests that the model has learned well from the training

data. In summary, the experimental results that the proposed APPN method performs well,

especially when testing on the lung_1V5 dataset compared to the lung_all dataset. This sug-

gests that the model is capable of achieving excellent classification performance for identifying

lung nodules.

3.4.2 Experimental results on lung_2V4. The lung_2V4 presents a challenge since some

nodules may be difficult to detect or differentiate from other features in the lungs. Besides, the

lung_2V4 only contains 2816 training samples, including 1108 benign and 1708 malignant

lunge nodules, which is relatively small compared to lung_all. The testing dataset of lung_2V4

includes 383 benign and 581 malignant lunge nodules. Overall, this make it an interesting

benchmark for evaluating the performance of lung nodule classification algorithms.

First, we conduct experiments to analyze parameter influence of APPN on the lung_2V4, as

shown in Fig 8. It can be seen that the APPN is able to achieve the highest accuracy 0.8537 at a

learning rate of 1e-5. The experiment also shows that a batch size of 16 resulted in an accuracy

of 0.8216. Additionally, the APPN algorithm trained with the Adam optimizer achieves the

highest accuracy of 0.8423, surpassing other optimizer used in the experiment.

The information from Table 7 indicates that the APPN is tested on the lung_2V4 dataset,

which contains CT images with confusing lung nodules. Since the lung_2V4 contained the CT

image with confusion lung nodules, the APPN shows relatively low accuracy on the testing

dataset of the lung_2V4. The sensitivity metric indicates the proportion of actual positive cases

correctly identified by the model. In this case, it’s 83.72%, suggesting that the APPN success-

fully classifies a significant portion of the true positive cases, but there is room for

Table 6. Experimental results of the APPN on the lung_1V5.

Testing set

Sensitivity (%) 88.11

Specificity (%) 95.80

Accuracy (%) 90.03

PPV (%) 98.44

NPV (%) 72.84

https://doi.org/10.1371/journal.pone.0302641.t006

Fig 8. Parameters analysis of learning rate (A), batch size (B) and optimizer (C) on lung_2V4.

https://doi.org/10.1371/journal.pone.0302641.g008
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improvement. The specificity measures the proportion of actual negative cases correctly iden-

tified by the model, and it’s 85.85%. The overall accuracy of 84.44% reflects the proportion of

correct predictions (both true positives and true negatives) out of the total instances. The PPV

and NPV obtained by APPN only achieves 92.08%, and 72.85% on the testing dataset. The

results suggest that the APPN algorithm performs reasonably. It is worth noting that the

lung_2V4 dataset is known to be challenging due to the presence of confusing nodules, and

therefore achieving high accuracy on this dataset is not a trivial task. These performance met-

rics suggest that the APPN algorithm is able to achieve relatively high accuracy in classifying

lung nodules, but with some room for improvement in terms of sensitivity and accuracy.

4 Discussion

The proposed method, APPN, which is designed based on vgg16 and PPM, with the aim of

achieving high accuracy in the classification of lung nodules. Besides, the attention mechanism

is adapted to improve the ability capturing the fine feature of lung nodules. Overall, APPN is

designed to enhance the ability of the model to extract general features from the lung nodules

while also capturing the contextual features in multiple scales, ultimately leading to improved

performance in the classification task.

First, we report the parameter analysis of the APPN on lung_all in section 3.2. From the

experimental results, it seems that the performance of the APPN algorithm is sensitive to the

choice of learning rate and batch size. Specifically, the APPN algorithm achieves the better

accuracy of 0.8847 when using learning rate of 1e-5. It is interesting to note that our method

with a batch size of 128 achieves the best performance and surpasses the other batch size values

significantly. This result suggests that using a batch size of 128 may be optimal for our particu-

lar problem and model architecture. However, it is important to note that the optimal batch

size may vary depending on various factors such as the size of the dataset, the complexity of

the model, and the available computational resources. These results experiments suggest that

careful tuning of these hyperparameters can result in significant improvement in classification

performance. Additionally, the APPN algorithm trained with Adam achieves a better accuracy

(0.8691). This result suggests that the choice of optimizer can also have a significant impact on

the performance of the algorithm.

Second, the massive experiments on lung_all are conducted in Second 3.3 for evaluating

the performance of the APPN. These performance metrics provide additional information on

the precision and accuracy of the proposed method in classifying lung nodules. The high PPV

indicates that the proposed method has a low rate of false positives, while the high NPV indi-

cates that the proposed method has a low rate of false negatives. These metrics, along with the

previously mentioned metrics (sensitivity, specificity, and accuracy), give a comprehensive

evaluation of the performance of the proposed method. Overall, these results suggest that the

APPN shows good performance in classifying lung nodules, achieving strong results on the

training dataset and relatively accurate results on the testing dataset. However, it should be

Table 7. Experimental results of the APPN on the lung_2V4.

Testing set

Sensitivity (%) 83.72

Specificity (%) 85.85

Accuracy (%) 84.44

PPV (%) 92.08

NPV (%) 72.85

https://doi.org/10.1371/journal.pone.0302641.t007
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noted that misclassifications are still present in the testing set, indicating that there is room for

improvement in the proposed method. These findings will be helpful in optimizing the pro-

posed method in future iterations, allowing for better classification of lung nodules.

Third, in order to verify the generalization of APPN, we conduct experiments on lung_1V5

and lung_2V4 in Section 3.4. Since these datasets have less training samples than lung_all, they

are more difficult to achieve satisfied performance. Specially, a number of confusion lung nod-

ules are contained in lung_2V4 and thus it is an interesting benchmark for evaluating the per-

formance of lung nodule classification algorithms. However, the APPN obtains the good result

mainly because the multiple scales contextual features may contribute to obtain the shape and

the texture of multiple different dimensions. In APPN, attention mechanism is introduced to

obtain the features of small features, so the feature extractor compared with convolutional

operation has strong ability. The APPN has a better effect on accuracy of 90.03% on lung_1V5

and accuracy of 84.44% lung_2V4, indicating the proposed model has great application pros-

pects in the early diagnosis of pulmonary nodules.

5 Conclusion

In conclusion, one novel deep neural networks, named APPN, is proposed to classify malig-

nant and benign lung nodules based on CT images. The LIDC-IDRI dataset, which is a pub-

licly available dataset of lung CT scans, is used for the development and evaluation of APPN

for the classification of pulmonary nodules. The experimental results suggest that the APPN

achieves better performance with 88.73% accuracy on the LIDC-IDRI. Besides, the reported

accuracy of 90.03% and 84.44% on the lung_1V5 and lung_2V4 suggests that the APPN is

effective in accurately predicting the presence of pulmonary nodules in the LIDC-IDRI, which

can be expected to improve accuracy of the other database. The APPN can be generalized to

the design of high-performance for other medical imaging tasks in the future.
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