
RESEARCH ARTICLE

Accelerating electrostatic particle-in-cell

simulation: A novel FPGA-based approach for

efficient plasma investigations

Abedalmuhdi AlmomanyID
1,2*, Muhammed Sutcu3, Babul Salam K. S. M. Kader Ibrahim1

1 Department of Electrical & Computer Engineering, Gulf University for Science & Technology, Hawally,

Kuwait, 2 Department of Engineering Management, Gulf University for Science & Technology, Hawally,

Kuwait, 3 Department of Computer Engineering, Hijjawi Faculty for Engineering Technology, Yarmouk

University, Irbid, Jordan

* Momany.a@gust.edu.kw

Abstract

Particle-in-cell (PIC) simulation serves as a widely employed method for investigating

plasma, a prevalent state of matter in the universe. This simulation approach is instrumental

in exploring characteristics such as particle acceleration by turbulence and fluid, as well as

delving into the properties of plasma at both the kinetic scale and macroscopic processes.

However, the simulation itself imposes a significant computational burden. This research

proposes a novel implementation approach to address the computationally intensive phase

of the electrostatic PIC simulation, specifically the Particle-to-Interpolation phase. This is

achieved by utilizing a high-speed Field Programmable Gate Array (FPGA) computation

platform. The suggested approach incorporates various optimization techniques and dimin-

ishes memory access latency by leveraging the flexibility and performance attributes of the

Intel FPGA device. The results obtained from our study highlight the effectiveness of the

proposed design, showcasing the capability to execute hundreds of functional operations in

each clock cycle. This stands in contrast to the limited operations performed in a general-

purpose single-core computation platform (CPU). The suggested hardware approach is

also scalable and can be deployed on more advanced FPGAs with higher capabilities,

resulting in a significant improvement in performance.

Introduction

Plasma stands as the predominant state of matter in the universe, constituting over 99% of the

visible cosmos [1]. It represents the fourth state of matter, characterized as an ionized gas

encompassing both negatively charged electrons and positively charged ions, whose positions

are influenced by magnetic and electrical fields. The particles within plasma interact not only

with each other but also with the surrounding electromagnetic fields in space. Understanding

these intricate interactions and their evolution is crucial, necessitating thorough modeling and

simulation [2]. Simulation of plasma involves the characterization and description of its state.

Various models can be employed in these simulations, including single-particle [3], kinetic,

PLOS ONE

PLOS ONE | https://doi.org/10.1371/journal.pone.0302578 June 3, 2024 1 / 16

a1111111111

a1111111111

a1111111111

a1111111111

a1111111111

OPEN ACCESS

Citation: Almomany A, Sutcu M, Ibrahim BSKSMK

(2024) Accelerating electrostatic particle-in-cell

simulation: A novel FPGA-based approach for

efficient plasma investigations. PLoS ONE 19(6):

e0302578. https://doi.org/10.1371/journal.

pone.0302578

Editor: Alexandre Bonatto, UFCSPA: Universidade

Federal de Ciencias da Saude de Porto Alegre,

BRAZIL

Received: January 27, 2024

Accepted: April 2, 2024

Published: June 3, 2024

Copyright: © 2024 Almomany et al. This is an open

access article distributed under the terms of the

Creative Commons Attribution License, which

permits unrestricted use, distribution, and

reproduction in any medium, provided the original

author and source are credited.

Data Availability Statement: All relevant data are

within the paper and its supporting information

files.

Funding: The author(s) received no specific

funding for this work.

Competing interests: The authors have declared

that no competing interests exist.

https://orcid.org/0000-0002-5922-6106
https://doi.org/10.1371/journal.pone.0302578
http://crossmark.crossref.org/dialog/?doi=10.1371/journal.pone.0302578&domain=pdf&date_stamp=2024-06-03
http://crossmark.crossref.org/dialog/?doi=10.1371/journal.pone.0302578&domain=pdf&date_stamp=2024-06-03
http://crossmark.crossref.org/dialog/?doi=10.1371/journal.pone.0302578&domain=pdf&date_stamp=2024-06-03
http://crossmark.crossref.org/dialog/?doi=10.1371/journal.pone.0302578&domain=pdf&date_stamp=2024-06-03
http://crossmark.crossref.org/dialog/?doi=10.1371/journal.pone.0302578&domain=pdf&date_stamp=2024-06-03
http://crossmark.crossref.org/dialog/?doi=10.1371/journal.pone.0302578&domain=pdf&date_stamp=2024-06-03
https://doi.org/10.1371/journal.pone.0302578
https://doi.org/10.1371/journal.pone.0302578
http://creativecommons.org/licenses/by/4.0/


fluid, hybrid kinetic-fluid, gyrokinetic, and a system of many particles [4]. Investigating pro-

cesses at the kinetic scale is essential for identifying plasma properties such as particle accelera-

tion induced by turbulence and fields [5]. Fluid models prove valuable in studying

macroscopic processes and properties of dense and cold (collisional) plasma, where Maxwell’s

equations must be solved. Kinetic treatment, on the other hand, is employed to explore micro-

scopic processes like particle acceleration, magnetic reconnection, and turbulence, addressing

kinetic scale effects and their contributions to the macroscopic picture [6].

The Particle-In-Cell (PIC) method emerges as a particularly intuitive and straightforward

approach for plasma simulation [7]. In essence, PIC simulation simplifies the common N-

body problem, where all particles interact with each other due to Coulomb collision. PIC simu-

lations are often applied to sparse-density plasmas, where particle collisions can be disre-

garded, resulting in collision-less simulations. In PIC simulations, particles are influenced by a

collective electromagnetic field generated by both the particles themselves and any externally

applied boundary conditions [8]. This approach significantly reduces the computational com-

plexity from O(N2) to O(NlogN), with N being the number of particles. PIC simulation proves

to be one of the most suitable and promising techniques for studying macroscopic effects,

enabling the exploration of phenomena beyond the scope of fluid models, such as particle

acceleration and distribution through interactions with self-consistently generated electromag-

netic or electrostatic fields [2, 9]. Through PIC simulations, we can analyze the physical prop-

erties of the system kinetically, obtaining information on position, velocity, and electric fields

at each grid point. This allows for a comprehensive investigation into the microscopic proper-

ties of the system, considering the abundance of particles [10, 11].

The proposed simulation employs a grid size of 32x32 cells, with ΔX representing the dis-

tance between neighboring cells along the X-dimension and ΔY along the Y-dimension. Both

ΔX and ΔY are maintained at small values, less than the Debye length characteristics of plasma,

ensuring a more accurate modeling of particle interactions. Both ΔX and ΔY are normalized to

one for consistency [12]. The underlying assumption is that particles are randomly distributed

within the grid area. Fig 1 illustrates the primary loop of the PIC simulation, highlighting its

key functionalities.

Following the uniform distribution of particles in the 2D grid space, the Grid Interpolation

Phase is initiated. In this simulation code, the proposed function confines the impact of each

particle’s electric charge to the four surrounding grid points. Following that, the computation

of the Electric-Field component vector, denoted as E, takes place for each grid point in the

Grid Space Field Calculation Phase. The resultant field vector, covering the four grid points

within a cell, induces acceleration for each particle within that specific cell. As part of the

boundary conditions, the simulation considers a magnetic field that is non-uniform yet time-

invariant. Particles within the simulation exhibit the flexibility to move freely within the desig-

nated region or exit through either the top or bottom. Furthermore, each iteration in the simu-

lation corresponds to a predetermined and fixed simulation time step. Executing various

plasma simulation models, including Particle-in-Cell (PIC) simulations, demands a vast num-

ber of computations. Consequently, high-speed computation platforms like FPGAs, GPUs,

and multi-core systems emerge as appealing options to conduct these simulations within a rea-

sonable timeframe.

FPGA technology computing platform

Spatially reconfigurable computing technology based on Field Programmable Gate Arrays

(FPGAs) has proven successful in addressing challenges across various application domains,

including signal and image processing, pattern recognition, real-time guidance and control,

PLOS ONE A novel FPGA-based approach for efficient plasma investigations

PLOS ONE | https://doi.org/10.1371/journal.pone.0302578 June 3, 2024 2 / 16

https://doi.org/10.1371/journal.pone.0302578


deep packet inspection networking, machine learning, cyber-security, and cyber-physical sys-

tems [13]. Modern SRAM-based FPGAs are integrated circuits that offer user-configurable

capabilities in the field, allowing them to be reprogrammed as needed after fabrication to fulfill

specific functions. These FPGAs consist of numerous interconnected small building blocks,

forming an on-chip finely-grained-hierarchical switching and routing fabric. These building

blocks encompass Adaptive Logic Modules (ALMs), high-speed digital and streaming I/O

ports, Digital Signal Processing (DSP), and high-density embedded SRAM Memory blocks,

along with elements like Phase-Lock-Loops (PLLs) for internal clock multiplication and skew

management [1]. Typically, the internal low-level structure of FPGAs closely aligns with the

structure of the application, as the building blocks themselves are not overly complex. In

SRAM-based FPGAs, each ALM includes at least one Lookup Table (LUT), selectively feeding

into one or more flip flops within the ALM. This design enables efficient implementation of

high-speed sequential synchronous designs, with combinational logic segments assigned to the

LUTs and associated flip flops serving as the base memory element. Modern FPGAs further

enhance performance by leveraging functional and data parallel methods [14–18]. These meth-

ods enable simultaneous execution of problem space and/or data space on different FPGA por-

tions, supported by separately addressable on-chip embedded SRAM memory blocks and

hierarchical segmentation within the internal interconnect fabric. This parallelism, encom-

passing both temporal and functional/data aspects, is less sensitive to small data size effects but

necessitates explicit user-defined synchronization [19–23].

Energy consumption has long been a critical consideration in mobile computing devices

and is increasingly limiting scientific high-performance computing applications [1, 13, 24, 25].

FPGAs have emerged as a solution to reduce overall energy and power consumption for spe-

cific applications. This reduction is evident when FPGAs serve as accelerators, offloading com-

plex tasks from the CPU, whether used independently or in conjunction with other platforms

[26, 27]. A research paper comparing platforms for random number generator

Fig 1. PIC simulation phases.

https://doi.org/10.1371/journal.pone.0302578.g001

PLOS ONE A novel FPGA-based approach for efficient plasma investigations

PLOS ONE | https://doi.org/10.1371/journal.pone.0302578 June 3, 2024 3 / 16

https://doi.org/10.1371/journal.pone.0302578.g001
https://doi.org/10.1371/journal.pone.0302578


implementation found that FPGAs provide the highest performance per Joule, surpassing

CPUs, GPUs, and Massively Parallel Processor Arrays [12, 28]. The FPGA board under investi-

gation is the Intel DE5a-Net board featuring the Arria 10 architecture. This board is equipped

with 427,200 Adaptive Logic Modules (ALMs), 1518 DSP blocks, and 2713 RAM blocks. It is

imperative that the synthesizable code remains within the confines of the available resources

on the board.

Numerous investigations have evaluated different computation platforms concerning

computational speed and energy consumption across diverse applications. In the field of

image vision applications [29], the Jesson TX2 GPU surpasses the ARM CPU and ZCU102

FPGA in terms of power consumption per frame for straightforward and easily parallelizable

vision kernels. However, for more intricate kernels, the FPGA exhibits superior performance,

achieving an improvement factor of up to 23 times. Within the field of robotics, a previous

investigation [30] delved into accelerating gradients in rigid body dynamics across different

computation platforms. The findings underscored the efficacy of employing FPGA and GPU

computing platforms, showcasing an enhancement factor of up to 3 when contrasted with the

state-of-the-art CPU computation platform. The FPGA computing platform has demonstrated

remarkable speed in implementing basic linear algebra subroutines (BLAS) for matrix-to-

matrix multiplication [31]. The Xilinx zcu102 FPGA achieved a speedup factor of up to 22

times compared to conventional CPUs and 6 times compared to the utilized GPU platform.

OpenCL framework

A significant challenge in achieving widespread acceptance of reconfigurable computing lies

in expressing intricate designs at a high level of abstraction and efficiently implementing them

within FPGA fabric. An effective approach to addressing this challenge has been the introduc-

tion of the OpenCL standard. OpenCL, an open standard for encoding applications, is

designed for use with CPUs, GPUs, DSPs, and FPGAs. It builds upon the C99 standard and

provides application programming interfaces for data and control transfer between a host and

one or more accelerator devices [1, 12]. On FPGAs, OpenCL introduces temporal parallelism

through its task parallel model, enabling the decomposition of loop-level parallelism into

highly pipelined structures within the FPGA fabric. Additionally, OpenCL supports func-

tional/data parallelism on FPGAs through the NDrange model, allowing the replication of

computation portions and the use of pipeline structures. Both major FPGA vendors, Xilinx

and Intel FPGA, have embraced the OpenCL standard as a high-level synthesis method. The

OpenCL programming model comprises two main sections. The first is a host program, typi-

cally written in C/C++, executed on a connected CPU to coordinate the activity of accelerators

like GPU, FPGA, or DSP. The second is the device code program, written in OpenCL and exe-

cutable on available devices [15, 16].

In the OpenCL framework, a host connects to one or more devices, each having varied

computational structures. Each device consists of one or more compute units, and each com-

pute unit is composed of one or more processing elements. Threads run on compute units,

and host programs include kernels—functions executed by one or multiple threads. Kernel

implementation and functionality depend on factors such as dependency and shared data

between threads [13]. Parameters like the number of compute units, threads per block, vectori-

zation degree, and other parameters are set by the programmer to achieve optimal perfor-

mance. The Intel FPGA SDK for OpenCL facilitates the implementation of parallel algorithms

on FPGA with a high level of hardware abstraction. It generates the FPGA bitmap for execu-

tion on the FPGA device. FPGAs typically create pipelining architectures where input data

passes through multiple stages. However, the compilation process is time-consuming, ranging

PLOS ONE A novel FPGA-based approach for efficient plasma investigations

PLOS ONE | https://doi.org/10.1371/journal.pone.0302578 June 3, 2024 4 / 16

https://doi.org/10.1371/journal.pone.0302578


from several hours to days, making a just-in-time programming model impractical. Conse-

quently, all FPGA kernels are generated offline.

Related work

The execution of a PIC simulation typically involves a substantial array of computational func-

tions, and this complexity tends to increase with the growing number of particles. In the past,

older simulations relying on less efficient CPUs struggled to handle a large particle count, pri-

marily due to constraints in memory availability [32]. However, modern systems equipped

with multiple CPUs provide an avenue for adapting intricate applications to function across

multiple machines [33–35]. In the early 90s, a GCPIC concurrent approach was introduced to

leverage and distribute PIC simulations across a multi-processor architecture [36]. Neverthe-

less, applying this algorithm posed numerous challenges, particularly in terms of potential

unbalanced loading. The method’s overall performance heavily relied on the most heavily

loaded system, presenting a significant drawback. To address the issue of workload balancing,

a more recent approach based on dynamic load balancing was introduced [37]. This involved

redistributing particles if any processor exceeded the proposed ideal workload by a fixed per-

centage. However, it’s important to note that data transfer time remains a primary concern

despite these advancements. In the context of a 2D-PIC simulation, a strategy was explored

wherein the global address was divided among multiple threads using Unified Parallel C

(UPC) to achieve enhanced load balancing [38]. This approach successfully contributed to per-

formance improvement, reducing the overall execution time by approximately 25%.

Given the favorable characteristics of GPUs, particularly their numerous processing ele-

ments, they present an appealing choice for extensive computations in PIC simulations. Vari-

ous implementations of PIC simulation exist, each tailored to the differences in GPU

architecture. A study conducted by Decyk and Singh presented two conceivable approaches,

both designed in accordance with the existing architecture. A notable challenge in these imple-

mentations is the need to reorder all particles at every time step, constituting 60% of the total

execution time. It is essential for adjacent threads to access adjacent memory locations, and

particles updating the same grid point should be stored contiguously [39]. The initial GPU

implementation adopted a collision-free algorithm, dividing the grid size into tiles, each man-

aged by one thread. Threads could potentially handle more than one tile, and additional guard

cells or grids were introduced to each tile to ensure the independence of all tile calculations.

During the calculation of the total charge density at each grid point, each thread processed dif-

ferent particles and wrote to distinct memory locations, enabling parallel execution of all

threads. With the continuous evolution of GPU architecture, an alternative implementation

involves a collision-solving algorithm specifically designed for Fermi-based GPUs architecture

[40]. Fermi GPUs are equipped with larger cache memory and support the use of atomicadd
on floating point numbers, a desirable feature in PIC implementation. This approach allows

for the allocation of multiple threads to each tile, utilizing the atomicadd function in charge

density calculations. Enlarging the tile size has the benefit of decreasing the number of particles

moving between tiles and thereby reducing the time required for particle sorting. Moreover,

memory sharing among threads helps minimize the amount of shared memory needed. Never-

theless, there is still a notable overhead due to the essential requirement of reordering particles

at every iteration. Efficiency in memory access through the coalescing of data significantly

reduces the execution time of the simulation. In a correlated investigation, particles were sys-

tematically arranged into a linear array, ensuring that all particles associated with vertex V are

stored contiguously [41]. Threads in this arrangement perform read/write memory operations

in a coalesced manner. This approach necessitates the binning of all particles, wherein they are

PLOS ONE A novel FPGA-based approach for efficient plasma investigations

PLOS ONE | https://doi.org/10.1371/journal.pone.0302578 June 3, 2024 5 / 16

https://doi.org/10.1371/journal.pone.0302578


divided into groups, and each group or bin encompasses a multitude of particles, organized in

a sorted fashion. Leveraging CUDA, each bin is processed by one thread block, ensuring that

the number of threads aligns with the number of bins. A drawback of this method lies in the

constraints of maintaining a uniform bin size. Sewell further implemented the 2D-PIC simula-

tion on the GPU platform [42]. To extract more advantages from the GPU architecture, parti-

cles are sorted in both particles-to-grid and grid-to-particle interpolations. The primary

objective is to coalesce memory accesses and facilitate the more convenient use of the Single

Instruction Multiple Data (SIMD) programming model. As a result, the simulation achieved a

remarkable 38-fold acceleration compared to running on a single-core general-purpose pro-

cessing system [43].

In recent times, numerous studies have delved into the implementation of plasma simula-

tion using Particle-in-Cell (PIC) approaches. These simulations were executed on state-of-the-

art massively parallel GPUs from NVIDIA and AMD, resulting in substantial improvements

correlated with the number of particles [44]. An optimized PIC code, known as SIMPIC, was

developed based on specific hypotheses to implement the proposed PIC on contemporary

GPUs. The outcomes of this endeavor underscore the code’s efficiency, showcasing a notewor-

thy 50% reduction in CPU execution time [45]. Another investigation explored the effective

integration of hybrid CPU/GPU platforms for the implementation of large-scale 3D PIC simu-

lations [46]. The framework PUMIPic [47] was developed to distribute the overall PIC simula-

tion workload across multiple GPUs arranged in a mesh structure. This framework exhibits

the capability to handle simulations with a large number of particles in a more time-efficient

manner. WarpX is a developed code library that can be used to study plasma using the PIC

approach with the ability to run on multi-core and GPUs computation platforms [48]. It incor-

porates recent algorithmic enhancements, including boosted frame techniques and refined

Maxwell solvers. An additional investigation focused on adapting the PIC code for execution

on multi-GPU systems, exemplified by sputniPIC [49]. The findings illustrate the efficacy of

this library-based approach in significantly enhancing computation speeds while accommo-

dating large-scale three-dimensional PIC simulations. In a separate study [50], researchers

introduced hPIC2, a new library designed for studying plasma interactions via PIC simulations

on High-Performance Computing (HPC) systems. The study demonstrates the library’s capa-

bility to achieve scalable performance across various computing platforms, particularly evident

when simulating large-scale PIC scenarios.

In a prior investigation [12], I utilized the OpenCL framework to enhance the run-time per-

formance and mitigate the overall energy consumption of the proposed 2D-PIC simulation.

The primary objective of that research was to alleviate the considerable round-trip latency

associated with updating global memory access for grid points, coupled with the prerequisite

for completing this operation before proceeding with computations. The outcomes of the

study demonstrated an approximate 2.5-fold enhancement in performance and an 8-fold

improvement in energy consumption over the lifespan of the simulation, when compared to

the reference single-core CPU implementation.

The presented research introduces an innovative architecture designed to minimize the

execution time of the most time-consuming phase in PIC simulation. In essence, the contribu-

tions of this study can be outlined as follows:

a. Introduction of a novel architecture specifically tailored for extensive computations in

2D-PIC simulations, addressing the challenges posed by substantial memory latency and

synchronization requirements during the charge accumulation process.

b. Optimization of the proposed design to ensure compatibility with various FPGA devices,

with the enhancement factor contingent upon the capabilities of the specific FPGA.

PLOS ONE A novel FPGA-based approach for efficient plasma investigations

PLOS ONE | https://doi.org/10.1371/journal.pone.0302578 June 3, 2024 6 / 16

https://doi.org/10.1371/journal.pone.0302578


c. Development of an efficient pipeline architecture capable of executing numerous operations

in a single clock cycle, thereby significantly boosting computational efficiency.

Results and discussion

Managing synchronization is a significant challenge that can emerge in various extensive

computational application settings, potentially leading to a notable decrease in overall perfor-

mance. Specifically addressing the Particles to Grid interpolation, wherein multiple particles

concurrently contribute a fraction of the total charge to adjacent grid points, introduces a sus-

ceptibility to race conditions. This is due to the potential dependency on the order in which

particles contribute their charges, possibly resulting in simultaneous additions to the same

grid point. To address this concern, various strategies have been proposed [12, 44, 45]. The

proposed strategy introduces a hardware-based solution to tackle the challenge posed by a sub-

stantial reduction in performance due to the need for synchronization in performing grid-

based computations. Instead of conducting a comprehensive sorting of all particles at each

simulation step, which consumes a considerable portion of the overall computation time [44],

particles are allocated to distinct memory buffers based on their positions using the suggested

hardware architecture, as illustrated in Fig 2. This approach eliminates the necessity for com-

plete particles sorting [1, 2] during each step of the Particle-in-Cell (PIC) simulation, resulting

in significant timesaving. Given that PIC simulations often entail thousands of steps to attain a

steady-state level [51] or meet specific conditions, this reduction in processing time is particu-

larly beneficial.

The execution of the proposed design unfolds in three primary phases. The initial phase

involves data preparation and the transfer particles information from the host memory to the

global memory of the FPGA device. In the subsequent phase, the data is copied in blocks to

customized local memory buffers, followed by the execution of various computations using

the proposed functional units. Finally, the intermediate results are written back to the global

memory. Particles located within the identical row of the 2D-Grid are allocated to the same

shared memory buffer. However, a challenge emerges regarding boundary conditions between

consecutive rows of the 2D grid space in this arrangement. To address this concern, a resolu-

tion involves reorganizing the memory buffers to prioritize the storage of odd buffers before

even buffers, as illustrated in Fig 3. This adjustment tailors the sequence of particle charge

interpolation onto the grid. The concept of accelerating computations is derived from estab-

lishing a robust pipeline architecture that facilitates the overlapping execution of instructions.

The introduction of the odd-even buffer order is implemented to mitigate dependency issues

arising between computations involving neighboring grid cells.

Following the phase of organizing memory, the data undergoes transfer from the host PC

to the FPGA global memory. Subsequently, the data is written to the FPGA local memory,

where, during each clock cycle, a block of data containing information about non-adjacent

particles is copied to the FPGA local memory. In the subsequent clock cycle, a variety of com-

putations, involving additions, subtractions, and comparator hardware circuits, are executed

concurrently. This is facilitated by the pre-constructed architecture implemented on the FPGA

after an extensive compilations process, resulting in the creation of an efficient hardware

design. Ultimately, in the third clock cycle, the corresponding results are written back to

another FPGA global memory buffer. The entire process is fully pipelined, aiming to achieve

the utmost level of performance optimization, as depicted in Fig 4(A) and 4(B).

To summarize the entire process, initially, particles are uniformly distributed across grid

cells, with each particle assigned to a specific buffer based on its x-position. The number of

PLOS ONE A novel FPGA-based approach for efficient plasma investigations

PLOS ONE | https://doi.org/10.1371/journal.pone.0302578 June 3, 2024 7 / 16

https://doi.org/10.1371/journal.pone.0302578


created buffers corresponds to the number of grid rows, exemplified by 64 buffers for a 64x128

grid dimension. The proposed hardware design is intentionally devised to read from nonadja-

cent even-numbered buffers, followed by nonadjacent odd-numbered buffers in each loop

iteration. This design addresses boundary condition issues between adjacent particles, signifi-

cantly reducing the time required for particle sorting and efficiently allocating each particle to

one of the created buffers.

In the subsequent phase, the electrical potential is computed according to the description in

Fig 1. However, during the final phase, involving particle movement, particles may transition

from their current grid row to one of the adjacent rows, essentially moving between buffers. In

this proposed approach, once the new particle location is determined, it can be reassigned to

either the same or a different buffer based on its x-location. Buffer contents undergo updates

in every time step of the simulation, facilitated by the constructed hardware design, which

incorporates all the necessary functional units for implementing the proposed algorithm.

The proposed hardware implementation adopts the Task-parallel model approach [13–16],

wherein multiple loop iterations are overlapped during execution. This model is particularly

Fig 2. Particles distribution into separate memory buffers.

https://doi.org/10.1371/journal.pone.0302578.g002

PLOS ONE A novel FPGA-based approach for efficient plasma investigations

PLOS ONE | https://doi.org/10.1371/journal.pone.0302578 June 3, 2024 8 / 16

https://doi.org/10.1371/journal.pone.0302578.g002
https://doi.org/10.1371/journal.pone.0302578


advantageous when there is substantial data sharing, minimizing the significant time associ-

ated with data transfer requirements between memory buffers of multiple threads. To address

challenges posed by the high cost resulting from potential data dependencies between succes-

sive computations, the proposed design incorporates various mechanisms. The utilization of

local memory significantly reduces memory access time, and the integration of shift registers

increases the distance between dependent computations, enhancing the potential for a robust

pipelined architecture.

Fig 3. Odd-even memory buffers arrangement.

https://doi.org/10.1371/journal.pone.0302578.g003

Fig 4. The pipelined execution architecture created using the Intel FPGA synthesizer. (CC: Clock Cycle, R: Read-phase, W: Write-phase, Ex: Execute-

phase).

https://doi.org/10.1371/journal.pone.0302578.g004

PLOS ONE A novel FPGA-based approach for efficient plasma investigations

PLOS ONE | https://doi.org/10.1371/journal.pone.0302578 June 3, 2024 9 / 16

https://doi.org/10.1371/journal.pone.0302578.g003
https://doi.org/10.1371/journal.pone.0302578.g004
https://doi.org/10.1371/journal.pone.0302578


The Intel FPGA compiler generates multiple files that facilitate dependency identification,

pinpoint performance bottlenecks, and provide suggestions for overall design improvement.

In the task-parallel mode, the loop unrolling technique is crucial for creating the hardware

architecture and increasing the workload per clock cycle. As depicted in Fig 4(A) and 4(B).

The proposed design efficiently processes blocks of data instead of individual elements. The

innovative concept of establishing multiple and distinct memory banks enables multiple reads/

writes from memory buffers. The pragma ivdep is employed to signify the potential for reading

and writing multiple data in various iterations without encountering dependency issues, a situ-

ation the proposed design is primarily designed to avoid.

An essential parameter in crafting a robust pipeline design is the initiation interval (II), rep-

resenting the time between two successive operations. Ideally, the II is equivalent to one clock

cycle. However, data dependencies and extended global memory access times can elevate the II
to thousands of clock cycles, as illustrated in Fig 5. Nevertheless, the integration of local mem-

ory, shift-registers, and the division of global memory into multiple banks narrows the II,
bringing it closer to the ideal value of one clock cycle, as demonstrated in Fig 6. Loop unrolling

also enables the handling of a substantial number of computations by establishing sufficient

functional units within the proposed design.

Loop unrolling technique is employed to fully harness and maximize the FPGA device’s

capabilities as shown in Fig 7. Both phases are entirely pipelined, ensuring that several read/

write/computation operations are conducted in each phase, as shown also in Fig 4. The pro-

posed design incorporates all necessary functional units for these operations.

Regarding the acceleration achieved by the proposed architecture, its efficacy is predomi-

nantly contingent on the clock-cycle time, the workload executed per clock cycle (or the loop-

unrolling factor), and the initiation interval. Ideally, an effective pipeline design strives for an

II close to one clock cycle. However, augmenting the workload per clock cycle may extend the

clock-cycle time. Multiple experiments are conducted using the Intel FPGA compiler to opti-

mize the workload per clock cycle and attain a reasonable clock-cycle time.

To address the substantial cost associated with data dependencies, these dependencies are

reconfigured to occur between local memory buffers. The utilization of shift registers is then

Fig 5. The initial design report with high (II) because of memory dependencies.

https://doi.org/10.1371/journal.pone.0302578.g005

Fig 6. The optimized design report after using several optimizations techniques.

https://doi.org/10.1371/journal.pone.0302578.g006

PLOS ONE A novel FPGA-based approach for efficient plasma investigations

PLOS ONE | https://doi.org/10.1371/journal.pone.0302578 June 3, 2024 10 / 16

https://doi.org/10.1371/journal.pone.0302578.g005
https://doi.org/10.1371/journal.pone.0302578.g006
https://doi.org/10.1371/journal.pone.0302578


implemented to minimize dependencies and enhance the II value. Incorporating multiple

memory banks further mitigates dependencies, thereby enhancing the potential to increase the

workload per clock cycle. The entire dataset is moved from the host’s global memory to the

FPGA device’s global memory, with 32 particle structures being copied every clock cycle.

Given a total of 4 million particles, this necessitates approximately 219 clock cycles for comple-

tion. Subsequently, the data is transferred to the local memory at a rate of thirty-two particles

per clock cycle. The charge interpolation process for all non-overlapping particles takes place

in the ensuing clock cycle, followed by the writing of results back to the global memory. This

entire procedure is fully pipelined, with charges accumulation for a total of thirty-two particles

being processed in each clock cycle. For each particle, there are two absolute value functions,

15 add/subtract functions, and 3 multiplications, summing up to 20 arithmetic operations per

particle and a grand total of 640 arithmetic operations in each clock cycle. Despite the rela-

tively large clock-cycle time, where the actual working frequency is 265.7 MHz, when com-

pared to recent CPUs (and being 10 times slower), on the other side a substantial number of

operations can be executed. The potential improvement can be up to 60 times, considering

each operation, on average, requires one clock cycle.

For a fair comparison, we conduct an approximate estimation of the processing time (in

nanoseconds) required for a single particle on the designated FPGA in this study, as well as on

similar or different computation platforms employing dissimilar approaches. Although the

FPGA chosen here may not represent the most recent and top-tier capabilities in FPGA com-

putation, the proposed methodology can be extended to be implemented on higher FPGA

capabilities. In the envisioned approach tailored for the De5 board, an average of eight parti-

cles is processed per clock cycle, translating to a requirement of approximately 0.48 ns per par-

ticle at the 265 MHz board frequency. To assess the efficiency of our proposed approach, we

benchmark our results against a study [52] that introduced a parallel 2D PIC simulation on

various GPU platforms (GTX-580, GTX Titan Black, and GTX Titan X). The comparison is

based on the total time required to process each particle during a comparable phase of the PIC

simulation. The study in question evaluated four algorithms, including a traditional serial

approach and a non-sorting algorithm, along with two sorting-based algorithms using differ-

ent particle-loop and cell-based memory allocation methods. The fourth algorithm leveraged

memory coalescing on the GPU for enhanced performance. Examination of Table 1. reveals

that the performance achieved by our proposed algorithm closely aligns with the peak perfor-

mance attained by the GTX Titan GPU (0.41 ns/particle). It’s noteworthy to highlight that in

Fig 7. Loop unrolling optimization technique utilized in the proposed implementation.

https://doi.org/10.1371/journal.pone.0302578.g007

Table 1. The execution times (nano seconds) per particle are measured for four different algorithms [47], (A: first algorithm, B: second algorithm, C: third algo-

rithm: and D: fourth algorithm) using the DE5 FFPGA, GTX 580 GPU, GTX Titan Black and GTX Titan X.

DE5 (This Study) GTX 580 GPU GTX Titan Black GTX Titan X

A B C D A B C D A B C D

0.47 11.24 13.27 1.72 0.51 5.12 1.24 1.19 0.41 3.38 1.53 0.53 0.42

https://doi.org/10.1371/journal.pone.0302578.t001

PLOS ONE A novel FPGA-based approach for efficient plasma investigations

PLOS ONE | https://doi.org/10.1371/journal.pone.0302578 June 3, 2024 11 / 16

https://doi.org/10.1371/journal.pone.0302578.g007
https://doi.org/10.1371/journal.pone.0302578.t001
https://doi.org/10.1371/journal.pone.0302578


the [52] research study, all GPU acceleration cards employed demonstrated a performance

improvement ranging from 80 to 140 times compared to the conventional single-core CPU

(Intel Xeon E5620) computation platform.

An additional advantage of utilizing the FPGA card lies in its energy efficiency, with an esti-

mated average dynamic power consumption of 9W for the DE5 board, whereas certain GPU

architectures may exceed 100W in power consumption, as per our power analyzer tool esti-

mates. For the purpose of comparing energy consumption, the Thermal Design Power (TDP)

serves as a benchmark. The GTX Titan GPU has a TDP of 250W, while the GTX 580 GPU’s

TDP is slightly lower at 244W [53]. TDP can provide a proper estimate of the average power

consumption under moderate workloads when a processor operates at its base clock [54]. Per-

forming a straightforward calculation in terms of joules consumed per particle shows that in

the targeted DE5 FPGA processing, approximately 4.27 nano joules (nJ) are required per parti-

cle, compared to about 102.5 nJ per particle when utilizing the GTX Titan GPU. This implies

that the adoption of the proposed FPGA computing platform could significantly improve the

power consumption factor by more than 24 times. The approximate joules consumed per par-

ticle for the utilized FPGA computing platform and several other GPU computing platforms

[52] are summarized in Table 2.

Conclusion

This research has successfully addressed the formidable computational challenges associated

with Particle-in-Cell (PIC) simulations in the investigation of plasma—a crucial state of matter

in the universe. The proposed novel implementation approach, focusing specifically on the

Particle-to-Interpolation phase, leverages the high-speed capabilities of a Field Programmable

Gate Array (FPGA) computation platform. By incorporating various optimization techniques

and capitalizing on the flexibility and performance attributes of the Intel FPGA device, our

approach significantly diminishes memory access latency, enhancing the efficiency of the PIC

simulation. The obtained results underscore the effectiveness of our design, demonstrating the

remarkable capability to execute hundreds of functional operations in each clock cycle. This

starkly contrasts with the limitations of operations performed on a general-purpose single-

core computation platform (CPU). The research study further underscores the significance of

employing the FPGA computing platform to enhance the energy consumption factor by

reducing it significantly. This groundbreaking research not only introduces a practical solution

to the computational bottleneck in PIC simulations but also opens avenues for further

advancements in the exploration of plasma characteristics. The optimized FPGA-based

approach showcased in this study holds great promise for accelerating research in plasma

physics and related fields, providing a valuable contribution to the scientific community’s

understanding of complex plasma phenomena.

Supporting information

S1 Fig.

(JPG)

Table 2. Approximate energy consumed per particles in nano Joules (nJ) for various computation platforms and algorithms (A: first algorithm, B: second algo-

rithm, C: third algorithm: and D: fourth algorithm).

DE5 (This Study) GTX 580 GPU GTX Titan Black GTX Titan X

A B C D A B C D A B C D

4.2 2742.6 3237.9 419.7 127.5 1280.0 310.0 297.5 102.5 845.0 382.5 132.5 105.0

https://doi.org/10.1371/journal.pone.0302578.t002

PLOS ONE A novel FPGA-based approach for efficient plasma investigations

PLOS ONE | https://doi.org/10.1371/journal.pone.0302578 June 3, 2024 12 / 16

http://www.plosone.org/article/fetchSingleRepresentation.action?uri=info:doi/10.1371/journal.pone.0302578.s001
https://doi.org/10.1371/journal.pone.0302578.t002
https://doi.org/10.1371/journal.pone.0302578


S2 Fig.

(JPG)

Author Contributions

Conceptualization: Abedalmuhdi Almomany.

Data curation: Abedalmuhdi Almomany.

Formal analysis: Abedalmuhdi Almomany.

Funding acquisition: Abedalmuhdi Almomany.

Investigation: Abedalmuhdi Almomany, Muhammed Sutcu, Babul Salam K. S. M. Kader

Ibrahim.

Methodology: Abedalmuhdi Almomany.

Project administration: Abedalmuhdi Almomany.

Resources: Abedalmuhdi Almomany, Muhammed Sutcu.

Software: Abedalmuhdi Almomany.

Supervision: Abedalmuhdi Almomany.

Validation: Abedalmuhdi Almomany.

Visualization: Abedalmuhdi Almomany.

Writing – original draft: Abedalmuhdi Almomany, Babul Salam K. S. M. Kader Ibrahim.

Writing – review & editing: Muhammed Sutcu, Babul Salam K. S. M. Kader Ibrahim.

References
1. Almomany A. (2017). Efficient OpenCL-based particle-in-cell simulation of auroral plasma phenomena

within a commodity spatially reconfigurable computing environment. University of Alabama in Hunts-

ville, 2017.

2. Almomany A., Sewell S., Wells B. E., & Nishikawa K.-I. (2017). A study of V-shaped potential formation

using two-dimensional particle-in-cell simulations. Physics of Plasmas, 24(5). https://doi.org/10.1063/

1.4982811.

3. Miloch W. J. (2015). Simulations of several finite-sized objects in plasma. Procedia Computer Science,

51, 1282–1291. https://doi.org/10.1016/j.procs.2015.05.313.

4. Ledvina S. A., Ma Y.-J., & Kallio E. (2008). Modeling and simulating flowing plasmas and related phe-

nomena. Space Science Reviews, 139(1–4), 143–189. https://doi.org/10.1007/s11214-008-9384-6.

5. Servidio S., Valentini F., Perrone D., Greco A., Califano F., Matthaeus W. H., et al. (2015). A kinetic

model of plasma turbulence. Journal of Plasma Physics, 81(1), 325810107. https://doi.org/10.1017/

S0022377814000841

6. Nishikawa K., Duţan I., Köhn C., & Mizuno Y. (2021). PIC methods in astrophysics: simulations of rela-

tivistic jets and kinetic physics in astrophysical systems. Living Reviews in Computational Astrophysics,

7(1). https://doi.org/10.1007/s41115-021-00012-0 PMID: 34722863

7. Ding W. J., Lim J. Z. J., Do H. T. B., Xiong X., Mahfoud Z., Png C. E., et al. (2020). Particle simulation of

plasmons. Nanophotonics, 9(10), 3303–3313. https://doi.org/10.1515/nanoph-2020-0067.

8. Na D.-Y., Omelchenko Y. A., Moon H., Borges B.-H. V., & Teixeira F. L. (2017). Axisymmetric charge-

conservative electromagnetic particle simulation algorithm on unstructured grids: Application to micro-

wave vacuum electronic devices. Journal of Computational Physics, 346, 295–317. https://doi.org/10.

1016/j.jcp.2017.06.016.

9. Pohl M., Hoshino M., & Niemiec J. (2020). PIC simulation methods for cosmic radiation and plasma

instabilities. Progress in Particle and Nuclear Physics, 111(103751), 103751. https://doi.org/10.1016/j.

ppnp.2019.103751.

PLOS ONE A novel FPGA-based approach for efficient plasma investigations

PLOS ONE | https://doi.org/10.1371/journal.pone.0302578 June 3, 2024 13 / 16

http://www.plosone.org/article/fetchSingleRepresentation.action?uri=info:doi/10.1371/journal.pone.0302578.s002
https://doi.org/10.1063/1.4982811
https://doi.org/10.1063/1.4982811
https://doi.org/10.1016/j.procs.2015.05.313
https://doi.org/10.1007/s11214-008-9384-6
https://doi.org/10.1017/S0022377814000841
https://doi.org/10.1017/S0022377814000841
https://doi.org/10.1007/s41115-021-00012-0
http://www.ncbi.nlm.nih.gov/pubmed/34722863
https://doi.org/10.1515/nanoph-2020-0067
https://doi.org/10.1016/j.jcp.2017.06.016
https://doi.org/10.1016/j.jcp.2017.06.016
https://doi.org/10.1016/j.ppnp.2019.103751
https://doi.org/10.1016/j.ppnp.2019.103751
https://doi.org/10.1371/journal.pone.0302578


10. Fidler C., Tram T., Rampf C., Crittenden R., Koyama K., & Wands D. (2017). Relativistic initial condi-

tions for N-body simulations. Journal of Cosmology and Astroparticle Physics, 2017(06), 043–043.

https://doi.org/10.1088/1475-7516/2017/06/043.

11. Bowers K. J., Dror R. O., & Shaw D. E. (2007). Zonal methods for the parallel execution of range-limited

N-body simulations. Journal of Computational Physics, 221(1), 303–329. https://doi.org/10.1016/j.jcp.

2006.06.014.

12. Almomany A., Wells B. E., & Nishikawa K.-I. Efficient particle-grid space interpolation of an FPGA-

accelerated particle-in-cell plasma simulation. 2017 IEEE 25th Annual International Symposium on

Field-Programmable Custom Computing Machines (FCCM). https://doi.org/10.1109/fccm.2017.63

13. Almomany A., Al-Omari A., Jarrah A., Tawalbeh M., & Alqudah A. (2020). An OpenCL-based parallel

acceleration of aSobel edge detection algorithm Using IntelFPGA technology. South African Computer

Journal, 32(1). https://doi.org/10.18489/sacj.v32i1.749.

14. Almomany A., Jarrah A., & Al Assaf A. (2022). FCM clustering approach optimization using parallel

high-speed Intel FPGA technology. Journal of Electrical and Computer Engineering, 2022, 1–11.

https://doi.org/10.1155/2022/8260283.

15. Almomany A., Ayyad W. R., & Jarrah A. (2022). Optimized implementation of an improved KNN classifi-

cation algorithm using Intel FPGA platform: Covid-19 case study. Journal of King Saud University—

Computer and Information Sciences, 34(6), 3815–3827. https://doi.org/10.1016/j.jksuci.2022.04.006.

16. Almomany A., Jarrah A., & Al Assaf A. (2023). Accelerating FCM algorithm using high-speed FPGA

reconfigurable computing architecture. Journal of Electrical Engineering and Technology, 18(4), 3209–

3217. https://doi.org/10.1007/s42835-023-01432-z.

17. Almomany A., Al-Omari A. M., Jarrah A., & Tawalbeh M. (2021). Discovering regulatory motifs of

genetic networks using the indexing-tree based algorithm: a parallel implementation. Engineering Com-

putations, 38(1), 354–370. https://doi.org/10.1108/ec-02-2020-0108.

18. Gulbahar I. T., Sutcu M., Almomany A., & Ibrahim B. S. K. K. (2023). Optimizing electric vehicle charg-

ing station location on highways: A decision model for meeting intercity travel demand. Sustainability,

15(24), 16716. https://doi.org/10.3390/su152416716.

19. Almomany Abedalmuhdi, Alquraan Afnan, and Balachandran Lakshmy. "GCC vs. ICC comparison

using PARSEC Benchmarks." IJITEE 4.7 (2014).

20. Jarrah A., Almomany A., Alsobeh A. M. R., & Alqudah E. (2021). High-performance implementation of

wideband coherent Signal-Subspace (CSS)-based DOA algorithm on FPGA. Journal of Circuits Sys-

tems and Computers, 30(11), 2150196. https://doi.org/10.1142/s0218126621501966.

21. Jarrah A., Haymoor Z. S., Al-Masri H. M. K., & Almomany A. (2022). High-performance implementation

of power components on FPGA platform. Journal of Electrical Engineering and Technology, 17(3),

1555–1571. https://doi.org/10.1007/s42835-022-01005-6.

22. Jarrah A., Bataineh A. S. A., & Almomany A. (2022). The optimisation of travelling salesman problem

based on parallel ant colony algorithm. International Journal of Computer Applications in Technology,

69(4), 309. https://doi.org/10.1504/ijcat.2022.129382.

23. Jarrah A., Almomany A., & Alkhafaji A. (2022). A new approach of combining optical mapping algorithm

with adaptive Kalman filter to achieve fast and early detection of cardiac arrests: A parallel implementa-

tion. Traitement Du Signal, 39(5), 1489–1500. https://doi.org/10.18280/ts.390505.

24. Yıldız B., & Sütçü M. (2023). A variant SDDP approach for periodic-review approximately optimal pric-

ing of a slow-moving a item in a duopoly under price protection with end-of-life return and retail fixed

markdown policy. Expert Systems with Applications, 212(118801), 118801. https://doi.org/10.1016/j.

eswa.2022.118801.

25. Sütçü M. (2023). Parameter uncertainties in evaluating climate policies with dynamic integrated cli-

mate-economy model. Environment Systems & Decisions. https://doi.org/10.1007/s10669-023-09914-

1.

26. Tessier R., Pocek K., & DeHon A. (2015). Reconfigurable Computing Architectures. Proceedings of the

IEEE. Institute of Electrical and Electronics Engineers, 103(3), 332–354. https://doi.org/10.1109/jproc.

2014.2386883.

27. Pezzarossa L., Schoeberl M., & Sparso J. (2016). Reconfiguration in FPGA-based multi-core platforms

for hard real-time applications. 2016 11th International Symposium on Reconfigurable Communication-

Centric Systems-on-Chip (ReCoSoC). https://doi.org/10.1109/ReCoSoC.2016.7533895

28. Thomas D. B., Howes L., & Luk W. (2009). A comparison of CPUs, GPUs, FPGAs, and massively paral-

lel processor arrays for random number generation. Proceedings of the ACM/SIGDA International Sym-

posium on Field Programmable Gate Arrays. https://doi.org/10.1145/1508128.1508139

PLOS ONE A novel FPGA-based approach for efficient plasma investigations

PLOS ONE | https://doi.org/10.1371/journal.pone.0302578 June 3, 2024 14 / 16

https://doi.org/10.1088/1475-7516/2017/06/043
https://doi.org/10.1016/j.jcp.2006.06.014
https://doi.org/10.1016/j.jcp.2006.06.014
https://doi.org/10.1109/fccm.2017.63
https://doi.org/10.18489/sacj.v32i1.749
https://doi.org/10.1155/2022/8260283
https://doi.org/10.1016/j.jksuci.2022.04.006
https://doi.org/10.1007/s42835-023-01432-z
https://doi.org/10.1108/ec-02-2020-0108
https://doi.org/10.3390/su152416716
https://doi.org/10.1142/s0218126621501966
https://doi.org/10.1007/s42835-022-01005-6
https://doi.org/10.1504/ijcat.2022.129382
https://doi.org/10.18280/ts.390505
https://doi.org/10.1016/j.eswa.2022.118801
https://doi.org/10.1016/j.eswa.2022.118801
https://doi.org/10.1007/s10669-023-09914-1
https://doi.org/10.1007/s10669-023-09914-1
https://doi.org/10.1109/jproc.2014.2386883
https://doi.org/10.1109/jproc.2014.2386883
https://doi.org/10.1109/ReCoSoC.2016.7533895
https://doi.org/10.1145/1508128.1508139
https://doi.org/10.1371/journal.pone.0302578


29. Qasaimeh M., Denolf K., Lo J., Vissers K., Zambreno J., & Jones P. H. (2019). Comparing energy effi-

ciency of CPU, GPU and FPGA implementations for vision kernels. 2019 IEEE International Confer-

ence on Embedded Software and Systems (ICESS), 1–8.

30. Plancher B., Neuman S. M., Bourgeat T., Kuindersma S., Devadas S., & Reddi V. J. (2021). Accelerat-

ing Robot Dynamics Gradients on a CPU, GPU, and FPGA. IEEE Robotics and Automation Letters, 6

(2), 2335–2342. https://doi.org/10.1109/lra.2021.3057845.

31. Xiong C., & Xu N. (2020). Performance Comparison of BLAS on CPU, GPU and FPGA. 2020 IEEE 9th

Joint International Information Technology and Artificial Intelligence Conference (ITAIC), 9, 193–197.

32. Lubeck O. M., & Faber V. (1988). Modeling the performance of hypercubes: A case study using the par-

ticle-in-cell application. Parallel Computing, 9(1), 37–52. https://doi.org/10.1016/0167-8191(88)90017-

8.

33. Diederichs S., Benedetti C., Huebl A., Lehe R., Myers A., Sinn A., et al. (2021). HiPACE++: a portable,

3D quasi-static Particle-in-Cell code. https://doi.org/10.48550/ARXIV.2109.10277.

34. Bird R., Tan N., Luedtke S. V., Harrell S. L., Taufer M., & Albright B. (2022). VPIC 2.0: Next generation

particle-in-cell simulations. IEEE Transactions on Parallel and Distributed Systems: A Publication of the

IEEE Computer Society, 33(4), 952–963. https://doi.org/10.1109/tpds.2021.3084795.

35. Xiong Q., Huang S., Yuan Z., Sharma B., Kuang L., Jiang K., et al. (2024). GPIC: A set of high-efficiency

CUDA Fortran code using gpu for particle-in-cell simulation in space physics. Computer Physics Com-

munications, 295(108994), 108994. https://doi.org/10.1016/j.cpc.2023.108994.

36. Liewer P. C., & Decyk V. K. (1989). A general concurrent algorithm for plasma particle-in-cell simulation

codes. Journal of Computational Physics, 85(2), 302–322. https://doi.org/10.1016/0021-9991(89)

90153-8.

37. Ferraro R. D., Liewer P. C., & Decyk V. K. (1993). Dynamic load balancing for a 2D concurrent plasma

PIC code. Journal of Computational Physics, 109(2), 329–341. https://doi.org/10.1006/jcph.1993.

1221.

38. Stitt G., Grattan B., Villarreal J., & Vahid F. (2003). Using on-chip configurable logic to reduce embed-

ded system software energy. Proceedings. 10th Annual IEEE Symposium on Field-Programmable Cus-

tom Computing Machines. https://doi.org/10.1109/FPGA.2002.1106669

39. Decyk V. K., & Singh T. V. (2011). Adaptable Particle-in-Cell algorithms for graphical processing units.

Computer Physics Communications, 182(3), 641–648. https://doi.org/10.1016/j.cpc.2010.11.009.

40. Decyk V. K., & Singh T. V. (2014). Particle-in-Cell algorithms for emerging computer architectures.

Computer Physics Communications, 185(3), 708–719. https://doi.org/10.1016/j.cpc.2013.10.013.

41. Stantchev G., Dorland W., & Gumerov N. (2008). Fast parallel Particle-To-Grid interpolation for plasma

PIC simulations on the GPU. Journal of Parallel and Distributed Computing, 68(10), 1339–1349.

https://doi.org/10.1016/j.jpdc.2008.05.009.

42. Ledvina S. A., Ma Y.-J., & Kallio E. (2009). Modeling and simulating flowing plasmas and related phe-

nomena. In Space Sciences Series of ISSI (pp. 143–189). Springer New York. https://doi.org/10.1007/

978-0-387-87825-6_5

43. Sewell S. (2014). Efficient particle-in-cell simulation of auroral plasma phenomena using a CUDA

enabled graphics processing unit,” University of Alabama in Huntsville, HUNTSVILLE, ALABAMA,

USA.

44. Juhasz Z., Ďurian J., Derzsi A., Matejčı́k Š., Donkó Z., & Hartmann P. (2021). Efficient GPU implemen-

tation of the Particle-in-Cell/Monte-Carlo collisions method for 1D simulation of low-pressure capaci-

tively coupled plasmas. Computer Physics Communications, 263(107913), 107913. https://doi.org/10.

1016/j.cpc.2021.107913.

45. Vasileska I., Bogdanovic L., & Kos L. (2021). Particle-in-cell code for GPU systems. 2021 44th Interna-

tional Convention on Information, Communication and Electronic Technology (MIPRO), https://doi.org/

10.23919/MIPRO52101.2021.9596959

46. Wang P., & Zhu X. (2021). Hybrid CPU- and GPU-based implementation for particle-in-cell simulation

on multicore and multi-GPU systems. 2021 Photonics & Electromagnetics Research Symposium

(PIERS), https://doi.org/10.1109/PIERS53385.2021.9694911

47. Diamond G., Smith C. W., Zhang C., Yoon E., & Shephard M. S. (2021). PUMIPic: A mesh-based

approach to unstructured mesh Particle-In-Cell on GPUs. Journal of Parallel and Distributed Comput-

ing, 157, 1–12. https://doi.org/10.1016/j.jpdc.2021.06.004.

48. Myers A., Almgren A., Amorim L. D., Bell J., Fedeli L., Ge L., et al. (2021). Porting WarpX to GPU-accel-

erated platforms. Parallel Computing, 108(102833), 102833. https://doi.org/10.1016/j.parco.2021.

102833.

PLOS ONE A novel FPGA-based approach for efficient plasma investigations

PLOS ONE | https://doi.org/10.1371/journal.pone.0302578 June 3, 2024 15 / 16

https://doi.org/10.1109/lra.2021.3057845
https://doi.org/10.1016/0167-8191(88)90017-8
https://doi.org/10.1016/0167-8191(88)90017-8
https://doi.org/10.48550/ARXIV.2109.10277
https://doi.org/10.1109/tpds.2021.3084795
https://doi.org/10.1016/j.cpc.2023.108994
https://doi.org/10.1016/0021-9991(89)90153-8
https://doi.org/10.1016/0021-9991(89)90153-8
https://doi.org/10.1006/jcph.1993.1221
https://doi.org/10.1006/jcph.1993.1221
https://doi.org/10.1109/FPGA.2002.1106669
https://doi.org/10.1016/j.cpc.2010.11.009
https://doi.org/10.1016/j.cpc.2013.10.013
https://doi.org/10.1016/j.jpdc.2008.05.009
https://doi.org/10.1007/978-0-387-87825-6%5F5
https://doi.org/10.1007/978-0-387-87825-6%5F5
https://doi.org/10.1016/j.cpc.2021.107913
https://doi.org/10.1016/j.cpc.2021.107913
https://doi.org/10.23919/MIPRO52101.2021.9596959
https://doi.org/10.23919/MIPRO52101.2021.9596959
https://doi.org/10.1109/PIERS53385.2021.9694911
https://doi.org/10.1016/j.jpdc.2021.06.004
https://doi.org/10.1016/j.parco.2021.102833
https://doi.org/10.1016/j.parco.2021.102833
https://doi.org/10.1371/journal.pone.0302578


49. Chien S. W. D., Nylund J., Bengtsson G., Peng I. B., Podobas A., & Markidis S. (2020). SputniPIC: An

implicit particle-in-cell code for multi-GPU systems. 2020 IEEE 32nd International Symposium on Com-

puter Architecture and High Performance Computing (SBAC-PAD), 149–156.

50. Meredith L. T., Rezazadeh M., Huq M. F., Drobny J., Srinivasaragavan V. V., Sahni O., et al. (2023).

hPIC2: A hardware-accelerated, hybrid particle-in-cell code for dynamic plasma-material interactions.

Computer Physics Communications, 283(108569), 108569. https://doi.org/10.1016/j.cpc.2022.

108569.

51. Charoy T., Boeuf J. P., Bourdon A., Carlsson J. A., Chabert P., Cuenot B., et al. (2019). 2D axial-azi-

muthal particle-in-cell benchmark for low-temperature partially magnetized plasmas. Plasma Sources

Science & Technology, 28(10), 105010. https://doi.org/10.1088/1361-6595/ab46c5.

52. Hur M. Y., Kim J. S., Song I. C., Verboncoeur J. P., & Lee H. J. (2019). Model description of a two-

dimensional electrostatic particle-in-cell simulation parallelized with a graphics processing unit for

plasma discharges. Plasma Research Express, 1(1), 015016. https://doi.org/10.1088/2516-1067/

ab0918.

53. Rui R., Li H., & Tu Y.-C. (2015). Join algorithms on GPUs: A revisit after seven years. 2015 IEEE Inter-

national Conference on Big Data (Big Data).

54. Sun Y., Agostini N. B., Dong S., & Kaeli D. (2019). Summarizing CPU and GPU design trends with prod-

uct data. https://doi.org/10.48550/ARXIV.1911.11313.

PLOS ONE A novel FPGA-based approach for efficient plasma investigations

PLOS ONE | https://doi.org/10.1371/journal.pone.0302578 June 3, 2024 16 / 16

https://doi.org/10.1016/j.cpc.2022.108569
https://doi.org/10.1016/j.cpc.2022.108569
https://doi.org/10.1088/1361-6595/ab46c5
https://doi.org/10.1088/2516-1067/ab0918
https://doi.org/10.1088/2516-1067/ab0918
https://doi.org/10.48550/ARXIV.1911.11313
https://doi.org/10.1371/journal.pone.0302578

