PLOS ONE

Check for
updates

G OPEN ACCESS

Citation: Aimomany A, Sutcu M, Ibrahim BSKSMK
(2024) Accelerating electrostatic particle-in-cell
simulation: A novel FPGA-based approach for
efficient plasma investigations. PLoS ONE 19(6):
€0302578. https://doi.org/10.1371/journal.
pone.0302578

Editor: Alexandre Bonatto, UFCSPA: Universidade
Federal de Ciencias da Saude de Porto Alegre,
BRAZIL

Received: January 27, 2024
Accepted: April 2, 2024
Published: June 3, 2024

Copyright: © 2024 Aimomany et al. This is an open
access article distributed under the terms of the
Creative Commons Attribution License, which
permits unrestricted use, distribution, and
reproduction in any medium, provided the original
author and source are credited.

Data Availability Statement: All relevant data are
within the paper and its supporting information
files.

Funding: The author(s) received no specific
funding for this work.

Competing interests: The authors have declared
that no competing interests exist.

RESEARCH ARTICLE

Accelerating electrostatic particle-in-cell
simulation: A novel FPGA-based approach for
efficient plasma investigations

Abedalmuhdi Almomany'2*, Muhammed Sutcu?, Babul Salam K. S. M. Kader Ibrahim'

1 Department of Electrical & Computer Engineering, Gulf University for Science & Technology, Hawally,
Kuwait, 2 Department of Engineering Management, Gulf University for Science & Technology, Hawally,
Kuwait, 3 Department of Computer Engineering, Hijjawi Faculty for Engineering Technology, Yarmouk
University, Irbid, Jordan

* Momany.a@gust.edu.kw

Abstract

Particle-in-cell (PIC) simulation serves as a widely employed method for investigating
plasma, a prevalent state of matter in the universe. This simulation approach is instrumental
in exploring characteristics such as particle acceleration by turbulence and fluid, as well as
delving into the properties of plasma at both the kinetic scale and macroscopic processes.
However, the simulation itself imposes a significant computational burden. This research
proposes a novel implementation approach to address the computationally intensive phase
of the electrostatic PIC simulation, specifically the Particle-to-Interpolation phase. This is
achieved by utilizing a high-speed Field Programmable Gate Array (FPGA) computation
platform. The suggested approach incorporates various optimization techniques and dimin-
ishes memory access latency by leveraging the flexibility and performance attributes of the
Intel FPGA device. The results obtained from our study highlight the effectiveness of the
proposed design, showcasing the capability to execute hundreds of functional operations in
each clock cycle. This stands in contrast to the limited operations performed in a general-
purpose single-core computation platform (CPU). The suggested hardware approach is
also scalable and can be deployed on more advanced FPGAs with higher capabilities,
resulting in a significant improvement in performance.

Introduction

Plasma stands as the predominant state of matter in the universe, constituting over 99% of the
visible cosmos [1]. It represents the fourth state of matter, characterized as an ionized gas
encompassing both negatively charged electrons and positively charged ions, whose positions
are influenced by magnetic and electrical fields. The particles within plasma interact not only
with each other but also with the surrounding electromagnetic fields in space. Understanding
these intricate interactions and their evolution is crucial, necessitating thorough modeling and
simulation [2]. Simulation of plasma involves the characterization and description of its state.
Various models can be employed in these simulations, including single-particle [3], kinetic,

PLOS ONE | https://doi.org/10.1371/journal.pone.0302578 June 3, 2024

1/16

https://orcid.org/0000-0002-5922-6106
https://doi.org/10.1371/journal.pone.0302578
http://crossmark.crossref.org/dialog/?doi=10.1371/journal.pone.0302578&domain=pdf&date_stamp=2024-06-03
http://crossmark.crossref.org/dialog/?doi=10.1371/journal.pone.0302578&domain=pdf&date_stamp=2024-06-03
http://crossmark.crossref.org/dialog/?doi=10.1371/journal.pone.0302578&domain=pdf&date_stamp=2024-06-03
http://crossmark.crossref.org/dialog/?doi=10.1371/journal.pone.0302578&domain=pdf&date_stamp=2024-06-03
http://crossmark.crossref.org/dialog/?doi=10.1371/journal.pone.0302578&domain=pdf&date_stamp=2024-06-03
http://crossmark.crossref.org/dialog/?doi=10.1371/journal.pone.0302578&domain=pdf&date_stamp=2024-06-03
https://doi.org/10.1371/journal.pone.0302578
https://doi.org/10.1371/journal.pone.0302578
http://creativecommons.org/licenses/by/4.0/

PLOS ONE

A novel FPGA-based approach for efficient plasma investigations

fluid, hybrid kinetic-fluid, gyrokinetic, and a system of many particles [4]. Investigating pro-
cesses at the kinetic scale is essential for identifying plasma properties such as particle accelera-
tion induced by turbulence and fields [5]. Fluid models prove valuable in studying
macroscopic processes and properties of dense and cold (collisional) plasma, where Maxwell’s
equations must be solved. Kinetic treatment, on the other hand, is employed to explore micro-
scopic processes like particle acceleration, magnetic reconnection, and turbulence, addressing
kinetic scale effects and their contributions to the macroscopic picture [6].

The Particle-In-Cell (PIC) method emerges as a particularly intuitive and straightforward
approach for plasma simulation [7]. In essence, PIC simulation simplifies the common N-
body problem, where all particles interact with each other due to Coulomb collision. PIC simu-
lations are often applied to sparse-density plasmas, where particle collisions can be disre-
garded, resulting in collision-less simulations. In PIC simulations, particles are influenced by a
collective electromagnetic field generated by both the particles themselves and any externally
applied boundary conditions [8]. This approach significantly reduces the computational com-
plexity from O(N?) to O(NlogN), with N being the number of particles. PIC simulation proves
to be one of the most suitable and promising techniques for studying macroscopic effects,
enabling the exploration of phenomena beyond the scope of fluid models, such as particle
acceleration and distribution through interactions with self-consistently generated electromag-
netic or electrostatic fields [2, 9]. Through PIC simulations, we can analyze the physical prop-
erties of the system kinetically, obtaining information on position, velocity, and electric fields
at each grid point. This allows for a comprehensive investigation into the microscopic proper-
ties of the system, considering the abundance of particles [10, 11].

The proposed simulation employs a grid size of 32x32 cells, with AX representing the dis-
tance between neighboring cells along the X-dimension and AY along the Y-dimension. Both
AX and AY are maintained at small values, less than the Debye length characteristics of plasma,
ensuring a more accurate modeling of particle interactions. Both AX and AY are normalized to
one for consistency [12]. The underlying assumption is that particles are randomly distributed
within the grid area. Fig 1 illustrates the primary loop of the PIC simulation, highlighting its
key functionalities.

Following the uniform distribution of particles in the 2D grid space, the Grid Interpolation
Phase is initiated. In this simulation code, the proposed function confines the impact of each
particle’s electric charge to the four surrounding grid points. Following that, the computation
of the Electric-Field component vector, denoted as E, takes place for each grid point in the
Grid Space Field Calculation Phase. The resultant field vector, covering the four grid points
within a cell, induces acceleration for each particle within that specific cell. As part of the
boundary conditions, the simulation considers a magnetic field that is non-uniform yet time-
invariant. Particles within the simulation exhibit the flexibility to move freely within the desig-
nated region or exit through either the top or bottom. Furthermore, each iteration in the simu-
lation corresponds to a predetermined and fixed simulation time step. Executing various
plasma simulation models, including Particle-in-Cell (PIC) simulations, demands a vast num-
ber of computations. Consequently, high-speed computation platforms like FPGAs, GPUs,
and multi-core systems emerge as appealing options to conduct these simulations within a rea-
sonable timeframe.

FPGA technology computing platform

Spatially reconfigurable computing technology based on Field Programmable Gate Arrays
(FPGAs) has proven successful in addressing challenges across various application domains,
including signal and image processing, pattern recognition, real-time guidance and control,

PLOS ONE | https://doi.org/10.1371/journal.pone.0302578 June 3, 2024 2/16

https://doi.org/10.1371/journal.pone.0302578

PLOS ONE A novel FPGA-based approach for efficient plasma investigations

[Initial Particles Distrbution to the 2D Grid Space -Initial Phase J

L
L 4

4 ™\

Particles to Grid Interpolation Phase
(Charges distrbution to Grid cells)

{ ™

Particle Movement Phase
procedure DENSITY(p.PAI\'\,N.\‘NP)

for i=0 to Ny-1do =
Lorentz Force for j=0 to Ny-1do
Pij= 0;
Total Force (Fy) = Fe+ Fy ; - end for
Fe: electrostatic field force, Fy: magnetic field force end for
E v M ey) fory=0to N,-1 do
; i=(int) Ply]y: Charge
av 9 i > J= (int) Pyl distribution
m = ,; (b +v X B) ,q = —e,+e Pij = Pij Haa(Plyly) according to the
.) Pijr1 = Pijr s Pyl y): .. absolute
= HE(PlY]) distance, a more
Pir1j = PivtTlaaF Yl closer grid<cell
Pir1jnl = Pirr gt (Plylyy): has a higher
end for charge portion
_ end procedure)
Electrical Potential(®) Determination Phase
Poisson's eauation 100 =
2 dp 9o _p
Vet
Electrical Field Calculation g | Sy, N] <
(Finite Diffrence Method) BT Ve NPT R
- 2]]
E=-Vb=_" &, + &
i (')'-'J“ - ()-‘1/(y

Fig 1. PIC simulation phases.
https://doi.org/10.1371/journal.pone.0302578.9001

deep packet inspection networking, machine learning, cyber-security, and cyber-physical sys-
tems [13]. Modern SRAM-based FPGAs are integrated circuits that offer user-configurable
capabilities in the field, allowing them to be reprogrammed as needed after fabrication to fulfill
specific functions. These FPGAs consist of numerous interconnected small building blocks,
forming an on-chip finely-grained-hierarchical switching and routing fabric. These building
blocks encompass Adaptive Logic Modules (ALMs), high-speed digital and streaming I/O
ports, Digital Signal Processing (DSP), and high-density embedded SRAM Memory blocks,
along with elements like Phase-Lock-Loops (PLLs) for internal clock multiplication and skew
management [1]. Typically, the internal low-level structure of FPGAs closely aligns with the
structure of the application, as the building blocks themselves are not overly complex. In
SRAM-based FPGAs, each ALM includes at least one Lookup Table (LUT), selectively feeding
into one or more flip flops within the ALM. This design enables efficient implementation of
high-speed sequential synchronous designs, with combinational logic segments assigned to the
LUTs and associated flip flops serving as the base memory element. Modern FPGAs further
enhance performance by leveraging functional and data parallel methods [14-18]. These meth-
ods enable simultaneous execution of problem space and/or data space on different FPGA por-
tions, supported by separately addressable on-chip embedded SRAM memory blocks and
hierarchical segmentation within the internal interconnect fabric. This parallelism, encom-
passing both temporal and functional/data aspects, is less sensitive to small data size effects but
necessitates explicit user-defined synchronization [19-23].

Energy consumption has long been a critical consideration in mobile computing devices
and is increasingly limiting scientific high-performance computing applications [1, 13, 24, 25].
FPGAs have emerged as a solution to reduce overall energy and power consumption for spe-
cific applications. This reduction is evident when FPGAs serve as accelerators, offloading com-
plex tasks from the CPU, whether used independently or in conjunction with other platforms
[26, 27]. A research paper comparing platforms for random number generator

PLOS ONE | https://doi.org/10.1371/journal.pone.0302578 June 3, 2024 3/16

https://doi.org/10.1371/journal.pone.0302578.g001
https://doi.org/10.1371/journal.pone.0302578

PLOS ONE

A novel FPGA-based approach for efficient plasma investigations

implementation found that FPGAs provide the highest performance per Joule, surpassing
CPUs, GPUs, and Massively Parallel Processor Arrays [12, 28]. The FPGA board under investi-
gation is the Intel DE5a-Net board featuring the Arria 10 architecture. This board is equipped
with 427,200 Adaptive Logic Modules (ALMs), 1518 DSP blocks, and 2713 RAM blocks. It is
imperative that the synthesizable code remains within the confines of the available resources
on the board.

Numerous investigations have evaluated different computation platforms concerning
computational speed and energy consumption across diverse applications. In the field of
image vision applications [29], the Jesson TX2 GPU surpasses the ARM CPU and ZCU102
FPGA in terms of power consumption per frame for straightforward and easily parallelizable
vision kernels. However, for more intricate kernels, the FPGA exhibits superior performance,
achieving an improvement factor of up to 23 times. Within the field of robotics, a previous
investigation [30] delved into accelerating gradients in rigid body dynamics across different
computation platforms. The findings underscored the efficacy of employing FPGA and GPU
computing platforms, showcasing an enhancement factor of up to 3 when contrasted with the
state-of-the-art CPU computation platform. The FPGA computing platform has demonstrated
remarkable speed in implementing basic linear algebra subroutines (BLAS) for matrix-to-
matrix multiplication [31]. The Xilinx zcul02 FPGA achieved a speedup factor of up to 22
times compared to conventional CPUs and 6 times compared to the utilized GPU platform.

OpenCL framework

A significant challenge in achieving widespread acceptance of reconfigurable computing lies
in expressing intricate designs at a high level of abstraction and efficiently implementing them
within FPGA fabric. An effective approach to addressing this challenge has been the introduc-
tion of the OpenCL standard. OpenCL, an open standard for encoding applications, is
designed for use with CPUs, GPUs, DSPs, and FPGAs. It builds upon the C99 standard and
provides application programming interfaces for data and control transfer between a host and
one or more accelerator devices [1, 12]. On FPGAs, OpenCL introduces temporal parallelism
through its task parallel model, enabling the decomposition of loop-level parallelism into
highly pipelined structures within the FPGA fabric. Additionally, OpenCL supports func-
tional/data parallelism on FPGAs through the NDrange model, allowing the replication of
computation portions and the use of pipeline structures. Both major FPGA vendors, Xilinx
and Intel FPGA, have embraced the OpenCL standard as a high-level synthesis method. The
OpenCL programming model comprises two main sections. The first is a host program, typi-
cally written in C/C++, executed on a connected CPU to coordinate the activity of accelerators
like GPU, FPGA, or DSP. The second is the device code program, written in OpenCL and exe-
cutable on available devices [15, 16].

In the OpenCL framework, a host connects to one or more devices, each having varied
computational structures. Each device consists of one or more compute units, and each com-
pute unit is composed of one or more processing elements. Threads run on compute units,
and host programs include kernels—functions executed by one or multiple threads. Kernel
implementation and functionality depend on factors such as dependency and shared data
between threads [13]. Parameters like the number of compute units, threads per block, vectori-
zation degree, and other parameters are set by the programmer to achieve optimal perfor-
mance. The Intel FPGA SDK for OpenCL facilitates the implementation of parallel algorithms
on FPGA with a high level of hardware abstraction. It generates the FPGA bitmap for execu-
tion on the FPGA device. FPGAs typically create pipelining architectures where input data
passes through multiple stages. However, the compilation process is time-consuming, ranging

PLOS ONE | https://doi.org/10.1371/journal.pone.0302578 June 3, 2024 4/16

https://doi.org/10.1371/journal.pone.0302578

PLOS ONE

A novel FPGA-based approach for efficient plasma investigations

from several hours to days, making a just-in-time programming model impractical. Conse-
quently, all FPGA kernels are generated offline.

Related work

The execution of a PIC simulation typically involves a substantial array of computational func-
tions, and this complexity tends to increase with the growing number of particles. In the past,
older simulations relying on less efficient CPUs struggled to handle a large particle count, pri-
marily due to constraints in memory availability [32]. However, modern systems equipped
with multiple CPUs provide an avenue for adapting intricate applications to function across
multiple machines [33-35]. In the early 90s, a GCPIC concurrent approach was introduced to
leverage and distribute PIC simulations across a multi-processor architecture [36]. Neverthe-
less, applying this algorithm posed numerous challenges, particularly in terms of potential
unbalanced loading. The method’s overall performance heavily relied on the most heavily
loaded system, presenting a significant drawback. To address the issue of workload balancing,
a more recent approach based on dynamic load balancing was introduced [37]. This involved
redistributing particles if any processor exceeded the proposed ideal workload by a fixed per-
centage. However, it’s important to note that data transfer time remains a primary concern
despite these advancements. In the context of a 2D-PIC simulation, a strategy was explored
wherein the global address was divided among multiple threads using Unified Parallel C
(UPC) to achieve enhanced load balancing [38]. This approach successfully contributed to per-
formance improvement, reducing the overall execution time by approximately 25%.

Given the favorable characteristics of GPUs, particularly their numerous processing ele-
ments, they present an appealing choice for extensive computations in PIC simulations. Vari-
ous implementations of PIC simulation exist, each tailored to the differences in GPU
architecture. A study conducted by Decyk and Singh presented two conceivable approaches,
both designed in accordance with the existing architecture. A notable challenge in these imple-
mentations is the need to reorder all particles at every time step, constituting 60% of the total
execution time. It is essential for adjacent threads to access adjacent memory locations, and
particles updating the same grid point should be stored contiguously [39]. The initial GPU
implementation adopted a collision-free algorithm, dividing the grid size into tiles, each man-
aged by one thread. Threads could potentially handle more than one tile, and additional guard
cells or grids were introduced to each tile to ensure the independence of all tile calculations.
During the calculation of the total charge density at each grid point, each thread processed dif-
ferent particles and wrote to distinct memory locations, enabling parallel execution of all
threads. With the continuous evolution of GPU architecture, an alternative implementation
involves a collision-solving algorithm specifically designed for Fermi-based GPUs architecture
[40]. Fermi GPUs are equipped with larger cache memory and support the use of atomicadd
on floating point numbers, a desirable feature in PIC implementation. This approach allows
for the allocation of multiple threads to each tile, utilizing the atomicadd function in charge
density calculations. Enlarging the tile size has the benefit of decreasing the number of particles
moving between tiles and thereby reducing the time required for particle sorting. Moreover,
memory sharing among threads helps minimize the amount of shared memory needed. Never-
theless, there is still a notable overhead due to the essential requirement of reordering particles
at every iteration. Efficiency in memory access through the coalescing of data significantly
reduces the execution time of the simulation. In a correlated investigation, particles were sys-
tematically arranged into a linear array, ensuring that all particles associated with vertex V are
stored contiguously [41]. Threads in this arrangement perform read/write memory operations
in a coalesced manner. This approach necessitates the binning of all particles, wherein they are

PLOS ONE | https://doi.org/10.1371/journal.pone.0302578 June 3, 2024 5/16

https://doi.org/10.1371/journal.pone.0302578

PLOS ONE

A novel FPGA-based approach for efficient plasma investigations

divided into groups, and each group or bin encompasses a multitude of particles, organized in
a sorted fashion. Leveraging CUDA, each bin is processed by one thread block, ensuring that
the number of threads aligns with the number of bins. A drawback of this method lies in the
constraints of maintaining a uniform bin size. Sewell further implemented the 2D-PIC simula-
tion on the GPU platform [42]. To extract more advantages from the GPU architecture, parti-
cles are sorted in both particles-to-grid and grid-to-particle interpolations. The primary
objective is to coalesce memory accesses and facilitate the more convenient use of the Single
Instruction Multiple Data (SIMD) programming model. As a result, the simulation achieved a
remarkable 38-fold acceleration compared to running on a single-core general-purpose pro-
cessing system [43].

In recent times, numerous studies have delved into the implementation of plasma simula-
tion using Particle-in-Cell (PIC) approaches. These simulations were executed on state-of-the-
art massively parallel GPUs from NVIDIA and AMD, resulting in substantial improvements
correlated with the number of particles [44]. An optimized PIC code, known as SIMPIC, was
developed based on specific hypotheses to implement the proposed PIC on contemporary
GPUs. The outcomes of this endeavor underscore the code’s efficiency, showcasing a notewor-
thy 50% reduction in CPU execution time [45]. Another investigation explored the effective
integration of hybrid CPU/GPU platforms for the implementation of large-scale 3D PIC simu-
lations [46]. The framework PUMIPic [47] was developed to distribute the overall PIC simula-
tion workload across multiple GPUs arranged in a mesh structure. This framework exhibits
the capability to handle simulations with a large number of particles in a more time-efficient
manner. WarpX is a developed code library that can be used to study plasma using the PIC
approach with the ability to run on multi-core and GPUs computation platforms [48]. It incor-
porates recent algorithmic enhancements, including boosted frame techniques and refined
Maxwell solvers. An additional investigation focused on adapting the PIC code for execution
on multi-GPU systems, exemplified by sputniPIC [49]. The findings illustrate the efficacy of
this library-based approach in significantly enhancing computation speeds while accommo-
dating large-scale three-dimensional PIC simulations. In a separate study [50], researchers
introduced hPIC2, a new library designed for studying plasma interactions via PIC simulations
on High-Performance Computing (HPC) systems. The study demonstrates the library’s capa-
bility to achieve scalable performance across various computing platforms, particularly evident
when simulating large-scale PIC scenarios.

In a prior investigation [12], I utilized the OpenCL framework to enhance the run-time per-
formance and mitigate the overall energy consumption of the proposed 2D-PIC simulation.
The primary objective of that research was to alleviate the considerable round-trip latency
associated with updating global memory access for grid points, coupled with the prerequisite
for completing this operation before proceeding with computations. The outcomes of the
study demonstrated an approximate 2.5-fold enhancement in performance and an 8-fold
improvement in energy consumption over the lifespan of the simulation, when compared to
the reference single-core CPU implementation.

The presented research introduces an innovative architecture designed to minimize the
execution time of the most time-consuming phase in PIC simulation. In essence, the contribu-
tions of this study can be outlined as follows:

a. Introduction of a novel architecture specifically tailored for extensive computations in
2D-PIC simulations, addressing the challenges posed by substantial memory latency and
synchronization requirements during the charge accumulation process.

b. Optimization of the proposed design to ensure compatibility with various FPGA devices,
with the enhancement factor contingent upon the capabilities of the specific FPGA.

PLOS ONE | https://doi.org/10.1371/journal.pone.0302578 June 3, 2024 6/16

https://doi.org/10.1371/journal.pone.0302578

PLOS ONE

A novel FPGA-based approach for efficient plasma investigations

c. Development of an efficient pipeline architecture capable of executing numerous operations
in a single clock cycle, thereby significantly boosting computational efficiency.

Results and discussion

Managing synchronization is a significant challenge that can emerge in various extensive
computational application settings, potentially leading to a notable decrease in overall perfor-
mance. Specifically addressing the Particles to Grid interpolation, wherein multiple particles
concurrently contribute a fraction of the total charge to adjacent grid points, introduces a sus-
ceptibility to race conditions. This is due to the potential dependency on the order in which
particles contribute their charges, possibly resulting in simultaneous additions to the same
grid point. To address this concern, various strategies have been proposed [12, 44, 45]. The
proposed strategy introduces a hardware-based solution to tackle the challenge posed by a sub-
stantial reduction in performance due to the need for synchronization in performing grid-
based computations. Instead of conducting a comprehensive sorting of all particles at each
simulation step, which consumes a considerable portion of the overall computation time [44],
particles are allocated to distinct memory buffers based on their positions using the suggested
hardware architecture, as illustrated in Fig 2. This approach eliminates the necessity for com-
plete particles sorting [1, 2] during each step of the Particle-in-Cell (PIC) simulation, resulting
in significant timesaving. Given that PIC simulations often entail thousands of steps to attain a
steady-state level [51] or meet specific conditions, this reduction in processing time is particu-
larly beneficial.

The execution of the proposed design unfolds in three primary phases. The initial phase
involves data preparation and the transfer particles information from the host memory to the
global memory of the FPGA device. In the subsequent phase, the data is copied in blocks to
customized local memory buffers, followed by the execution of various computations using
the proposed functional units. Finally, the intermediate results are written back to the global
memory. Particles located within the identical row of the 2D-Grid are allocated to the same
shared memory buffer. However, a challenge emerges regarding boundary conditions between
consecutive rows of the 2D grid space in this arrangement. To address this concern, a resolu-
tion involves reorganizing the memory bulffers to prioritize the storage of odd buffers before
even buffers, as illustrated in Fig 3. This adjustment tailors the sequence of particle charge
interpolation onto the grid. The concept of accelerating computations is derived from estab-
lishing a robust pipeline architecture that facilitates the overlapping execution of instructions.
The introduction of the odd-even buffer order is implemented to mitigate dependency issues
arising between computations involving neighboring grid cells.

Following the phase of organizing memory, the data undergoes transfer from the host PC
to the FPGA global memory. Subsequently, the data is written to the FPGA local memory,
where, during each clock cycle, a block of data containing information about non-adjacent
particles is copied to the FPGA local memory. In the subsequent clock cycle, a variety of com-
putations, involving additions, subtractions, and comparator hardware circuits, are executed
concurrently. This is facilitated by the pre-constructed architecture implemented on the FPGA
after an extensive compilations process, resulting in the creation of an efficient hardware
design. Ultimately, in the third clock cycle, the corresponding results are written back to
another FPGA global memory buffer. The entire process is fully pipelined, aiming to achieve
the utmost level of performance optimization, as depicted in Fig 4(A) and 4(B).

To summarize the entire process, initially, particles are uniformly distributed across grid
cells, with each particle assigned to a specific buffer based on its x-position. The number of

PLOS ONE | https://doi.org/10.1371/journal.pone.0302578 June 3, 2024 7/16

https://doi.org/10.1371/journal.pone.0302578

PLOS ONE

A novel FPGA-based approach for efficient plasma investigations

o
®e
e o
o
e o @ Par?ilees
Positions Decoder
o0 ||:> Classifier
%
e o
o
o
l 9

Memory Blocks

| o]

M1

[M30 J

M31

Fig 2. Particles distribution into separate memory buffers.

https://doi.org/10.1371/journal.pone.0302578.9002

created buffers corresponds to the number of grid rows, exemplified by 64 buffers for a 64x128
grid dimension. The proposed hardware design is intentionally devised to read from nonadja-
cent even-numbered bulffers, followed by nonadjacent odd-numbered buffers in each loop
iteration. This design addresses boundary condition issues between adjacent particles, signifi-
cantly reducing the time required for particle sorting and efficiently allocating each particle to
one of the created buffers.

In the subsequent phase, the electrical potential is computed according to the description in
Fig 1. However, during the final phase, involving particle movement, particles may transition
from their current grid row to one of the adjacent rows, essentially moving between buffers. In
this proposed approach, once the new particle location is determined, it can be reassigned to
either the same or a different buffer based on its x-location. Buffer contents undergo updates
in every time step of the simulation, facilitated by the constructed hardware design, which
incorporates all the necessary functional units for implementing the proposed algorithm.

The proposed hardware implementation adopts the Task-parallel model approach [13-16],
wherein multiple loop iterations are overlapped during execution. This model is particularly

PLOS ONE | https://doi.org/10.1371/journal.pone.0302578 June 3, 2024

8/16

https://doi.org/10.1371/journal.pone.0302578.g002
https://doi.org/10.1371/journal.pone.0302578

A novel FPGA-based approach for efficient plasma investigations

PLOS ONE
[Mo] Mo
M1 :
- M30
|
- Re-Arrange M1
|
[M30] "
n
M31 M31

New Memory Buffer

< >

Fig 3. Odd-even memory buffers arrangement.

https://doi.org/10.1371/journal.pone.0302578.g003

advantageous when there is substantial data sharing, minimizing the significant time associ-
ated with data transfer requirements between memory buffers of multiple threads. To address
challenges posed by the high cost resulting from potential data dependencies between succes-
sive computations, the proposed design incorporates various mechanisms. The utilization of
local memory significantly reduces memory access time, and the integration of shift registers
increases the distance between dependent computations, enhancing the potential for a robust

pipelined architecture.

cgt cg2 cgs
i 6 cc1 CC-2 CcC-3 CcC-4 CC-5 CC-6 cC-7 CcC-8

Sttt —

— ()
L

Loop NM times'

Global Memory

T$—

Fig 4. The pipelined execution architecture created using the Intel FPGA synthesizer. (CC: Clock Cycle, R: Read-phase, W: Write-phase, Ex: Execute-
phase).
https://doi.org/10.1371/journal.pone.0302578.g004

PLOS ONE | https://doi.org/10.1371/journal.pone.0302578 June 3, 2024 9/16

https://doi.org/10.1371/journal.pone.0302578.g003
https://doi.org/10.1371/journal.pone.0302578.g004
https://doi.org/10.1371/journal.pone.0302578

PLOS ONE

A novel FPGA-based approach for efficient plasma investigations

Pipelined n Bottleneck Details
Kernel: dens2 (study_gust.clt11) Single work-item execution
dens2.B2 (study_gustcl:20) Yes >z1 nfa
4X Partially unrolled dens2 B4 (study_gustcl79) Yes ~3629 n Memory dependency

dens2.B3 (study_gustcl:28) Yes 1 nfa

Fig 5. The initial design report with high (II) because of memory dependencies.
https://doi.org/10.1371/journal.pone.0302578.9005

The Intel FPGA compiler generates multiple files that facilitate dependency identification,
pinpoint performance bottlenecks, and provide suggestions for overall design improvement.
In the task-parallel mode, the loop unrolling technique is crucial for creating the hardware
architecture and increasing the workload per clock cycle. As depicted in Fig 4(A) and 4(B).
The proposed design efficiently processes blocks of data instead of individual elements. The
innovative concept of establishing multiple and distinct memory banks enables multiple reads/
writes from memory buffers. The pragma ivdep is employed to signify the potential for reading
and writing multiple data in various iterations without encountering dependency issues, a situ-
ation the proposed design is primarily designed to avoid.

An essential parameter in crafting a robust pipeline design is the initiation interval (II), rep-
resenting the time between two successive operations. Ideally, the II is equivalent to one clock
cycle. However, data dependencies and extended global memory access times can elevate the II
to thousands of clock cycles, as illustrated in Fig 5. Nevertheless, the integration of local mem-
ory, shift-registers, and the division of global memory into multiple banks narrows the II,
bringing it closer to the ideal value of one clock cycle, as demonstrated in Fig 6. Loop unrolling
also enables the handling of a substantial number of computations by establishing sufficient
functional units within the proposed design.

Loop unrolling technique is employed to fully harness and maximize the FPGA device’s
capabilities as shown in Fig 7. Both phases are entirely pipelined, ensuring that several read/
write/computation operations are conducted in each phase, as shown also in Fig 4. The pro-
posed design incorporates all necessary functional units for these operations.

Regarding the acceleration achieved by the proposed architecture, its efficacy is predomi-
nantly contingent on the clock-cycle time, the workload executed per clock cycle (or the loop-
unrolling factor), and the initiation interval. Ideally, an effective pipeline design strives for an
II close to one clock cycle. However, augmenting the workload per clock cycle may extend the
clock-cycle time. Multiple experiments are conducted using the Intel FPGA compiler to opti-
mize the workload per clock cycle and attain a reasonable clock-cycle time.

To address the substantial cost associated with data dependencies, these dependencies are
reconfigured to occur between local memory buffers. The utilization of shift registers is then

Pipelined n Bottleneck Details
Kernel: dens2 (study_gust2.ct11) Single work-item execution
dens2 B2 (study_gust2.cl20) Yes >=1 nfa
16X Partially unrolled dens2 B4 (study_gust2.cl87) Yes -1 nja Il is an approximation

dens2 B3 (study_gust2.cl35) Yes 1 nja

Fig 6. The optimized design report after using several optimizations techniques.

https://doi.org/10.1371/journal.pone.0302578.9006

PLOS ONE | https://doi.org/10.1371/journal.pone.0302578 June 3, 2024 10/16

https://doi.org/10.1371/journal.pone.0302578.g005
https://doi.org/10.1371/journal.pone.0302578.g006
https://doi.org/10.1371/journal.pone.0302578

PLOS ONE A novel FPGA-based approach for efficient plasma investigations

Fully unrolled loop (study_gust1.c69) n/a n/a n/a Unrolled by #pragma unroll
Fully unrolled loop (study_gust1.cL78) na n/a nja Unrolled by #pragma unroll

dens2 B3 (study_gust1.cl35) Yes 1 nja

Fig 7. Loop unrolling optimization technique utilized in the proposed implementation.

https://doi.org/10.1371/journal.pone.0302578.g007

implemented to minimize dependencies and enhance the II value. Incorporating multiple
memory banks further mitigates dependencies, thereby enhancing the potential to increase the
workload per clock cycle. The entire dataset is moved from the host’s global memory to the
FPGA device’s global memory, with 32 particle structures being copied every clock cycle.
Given a total of 4 million particles, this necessitates approximately 2'° clock cycles for comple-
tion. Subsequently, the data is transferred to the local memory at a rate of thirty-two particles
per clock cycle. The charge interpolation process for all non-overlapping particles takes place
in the ensuing clock cycle, followed by the writing of results back to the global memory. This
entire procedure is fully pipelined, with charges accumulation for a total of thirty-two particles
being processed in each clock cycle. For each particle, there are two absolute value functions,
15 add/subtract functions, and 3 multiplications, summing up to 20 arithmetic operations per
particle and a grand total of 640 arithmetic operations in each clock cycle. Despite the rela-
tively large clock-cycle time, where the actual working frequency is 265.7 MHz, when com-
pared to recent CPUs (and being 10 times slower), on the other side a substantial number of
operations can be executed. The potential improvement can be up to 60 times, considering
each operation, on average, requires one clock cycle.

For a fair comparison, we conduct an approximate estimation of the processing time (in
nanoseconds) required for a single particle on the designated FPGA in this study, as well as on
similar or different computation platforms employing dissimilar approaches. Although the
FPGA chosen here may not represent the most recent and top-tier capabilities in FPGA com-
putation, the proposed methodology can be extended to be implemented on higher FPGA
capabilities. In the envisioned approach tailored for the De5 board, an average of eight parti-
cles is processed per clock cycle, translating to a requirement of approximately 0.48 ns per par-
ticle at the 265 MHz board frequency. To assess the efficiency of our proposed approach, we
benchmark our results against a study [52] that introduced a parallel 2D PIC simulation on
various GPU platforms (GTX-580, GTX Titan Black, and GTX Titan X). The comparison is
based on the total time required to process each particle during a comparable phase of the PIC
simulation. The study in question evaluated four algorithms, including a traditional serial
approach and a non-sorting algorithm, along with two sorting-based algorithms using differ-
ent particle-loop and cell-based memory allocation methods. The fourth algorithm leveraged
memory coalescing on the GPU for enhanced performance. Examination of Table 1. reveals
that the performance achieved by our proposed algorithm closely aligns with the peak perfor-
mance attained by the GTX Titan GPU (0.41 ns/particle). It's noteworthy to highlight that in

Table 1. The execution times (nano seconds) per particle are measured for four different algorithms [47], (A: first algorithm, B: second algorithm, C: third algo-
rithm: and D: fourth algorithm) using the DE5 FFPGA, GTX 580 GPU, GTX Titan Black and GTX Titan X.

DE5 (This Study) GTX 580 GPU GTX Titan Black GTX Titan X
A B C D A B C D A B C D
0.47 11.24 13.27 1.72 0.51 5.12 1.24 1.19 0.41 3.38 1.53 0.53 0.42

https://doi.org/10.1371/journal.pone.0302578.t001

PLOS ONE | https://doi.org/10.1371/journal.pone.0302578 June 3, 2024 11/16

https://doi.org/10.1371/journal.pone.0302578.g007
https://doi.org/10.1371/journal.pone.0302578.t001
https://doi.org/10.1371/journal.pone.0302578

PLOS ONE A novel FPGA-based approach for efficient plasma investigations

Table 2. Approximate energy consumed per particles in nano Joules (n]) for various computation platforms and algorithms (A: first algorithm, B: second algo-
rithm, C: third algorithm: and D: fourth algorithm).

DES5 (This Study) GTX 580 GPU GTX Titan Black GTX Titan X
A B C D A B C D A B C D
4.2 2742.6 32379 419.7 127.5 1280.0 310.0 297.5 102.5 845.0 382.5 132.5 105.0

https://doi.org/10.1371/journal.pone.0302578.t1002

the [52] research study, all GPU acceleration cards employed demonstrated a performance
improvement ranging from 80 to 140 times compared to the conventional single-core CPU
(Intel Xeon E5620) computation platform.

An additional advantage of utilizing the FPGA card lies in its energy efficiency, with an esti-
mated average dynamic power consumption of 9W for the DE5 board, whereas certain GPU
architectures may exceed 100W in power consumption, as per our power analyzer tool esti-
mates. For the purpose of comparing energy consumption, the Thermal Design Power (TDP)
serves as a benchmark. The GTX Titan GPU has a TDP of 250W, while the GTX 580 GPU’s
TDP is slightly lower at 244W [53]. TDP can provide a proper estimate of the average power
consumption under moderate workloads when a processor operates at its base clock [54]. Per-
forming a straightforward calculation in terms of joules consumed per particle shows that in
the targeted DE5 FPGA processing, approximately 4.27 nano joules (n]) are required per parti-
cle, compared to about 102.5 n] per particle when utilizing the GTX Titan GPU. This implies
that the adoption of the proposed FPGA computing platform could significantly improve the
power consumption factor by more than 24 times. The approximate joules consumed per par-
ticle for the utilized FPGA computing platform and several other GPU computing platforms
[52] are summarized in Table 2.

Conclusion

This research has successfully addressed the formidable computational challenges associated
with Particle-in-Cell (PIC) simulations in the investigation of plasma—a crucial state of matter
in the universe. The proposed novel implementation approach, focusing specifically on the
Particle-to-Interpolation phase, leverages the high-speed capabilities of a Field Programmable
Gate Array (FPGA) computation platform. By incorporating various optimization techniques
and capitalizing on the flexibility and performance attributes of the Intel FPGA device, our
approach significantly diminishes memory access latency, enhancing the efficiency of the PIC
simulation. The obtained results underscore the effectiveness of our design, demonstrating the
remarkable capability to execute hundreds of functional operations in each clock cycle. This
starkly contrasts with the limitations of operations performed on a general-purpose single-
core computation platform (CPU). The research study further underscores the significance of
employing the FPGA computing platform to enhance the energy consumption factor by
reducing it significantly. This groundbreaking research not only introduces a practical solution
to the computational bottleneck in PIC simulations but also opens avenues for further
advancements in the exploration of plasma characteristics. The optimized FPGA-based
approach showcased in this study holds great promise for accelerating research in plasma
physics and related fields, providing a valuable contribution to the scientific community’s
understanding of complex plasma phenomena.

Supporting information

S1 Fig.
(JPG)

PLOS ONE | https://doi.org/10.1371/journal.pone.0302578 June 3, 2024 12/16

http://www.plosone.org/article/fetchSingleRepresentation.action?uri=info:doi/10.1371/journal.pone.0302578.s001
https://doi.org/10.1371/journal.pone.0302578.t002
https://doi.org/10.1371/journal.pone.0302578

PLOS ONE

A novel FPGA-based approach for efficient plasma investigations

S2 Fig.
(JPG)

Author Contributions
Conceptualization: Abedalmuhdi Almomany.
Data curation: Abedalmuhdi Almomany.
Formal analysis: Abedalmuhdi Almomany.
Funding acquisition: Abedalmuhdi Almomany.

Investigation: Abedalmuhdi Almomany, Muhammed Sutcu, Babul Salam K. S. M. Kader
Ibrahim.

Methodology: Abedalmuhdi Almomany.

Project administration: Abedalmuhdi Almomany.

Resources: Abedalmuhdi Almomany, Muhammed Sutcu.

Software: Abedalmuhdi Almomany.

Supervision: Abedalmuhdi Almomany.

Validation: Abedalmuhdi Almomany.

Visualization: Abedalmuhdi Almomany.

Writing - original draft: Abedalmuhdi Almomany, Babul Salam K. S. M. Kader Ibrahim.
Writing - review & editing: Muhammed Sutcu, Babul Salam K. S. M. Kader Ibrahim.

References

1. Almomany A. (2017). Efficient OpenCL-based particle-in-cell simulation of auroral plasma phenomena
within a commodity spatially reconfigurable computing environment. University of Alabama in Hunts-
ville, 2017.

2. Almomany A., Sewell S., Wells B. E., & Nishikawa K.-1. (2017). A study of V-shaped potential formation
using two-dimensional particle-in-cell simulations. Physics of Plasmas, 24(5). https://doi.org/10.1063/
1.4982811.

3. Miloch W. J. (2015). Simulations of several finite-sized objects in plasma. Procedia Computer Science,
51, 1282—1291. https://doi.org/10.1016/j.procs.2015.05.313.

4. LedvinaS.A., MaY.-J., &Kallio E. (2008). Modeling and simulating flowing plasmas and related phe-
nomena. Space Science Reviews, 139(1—4), 143-189. https://doi.org/10.1007/s11214-008-9384-6.

5. Servidio S., Valentini F., Perrone D., Greco A., Califano F., Matthaeus W. H., et al. (2015). A kinetic
model of plasma turbulence. Journal of Plasma Physics, 81(1), 325810107. https://doi.org/10.1017/
S0022377814000841

6. Nishikawa K., Dutan I., Kéhn C., & Mizuno Y. (2021). PIC methods in astrophysics: simulations of rela-
tivistic jets and kinetic physics in astrophysical systems. Living Reviews in Computational Astrophysics,
7(1). https://doi.org/10.1007/s41115-021-00012-0 PMID: 34722863

7. DingW.J., LimJ.Z.J.,DoH.T.B., Xiong X., Mahfoud Z., Png C. E., et al. (2020). Particle simulation of
plasmons. Nanophotonics, 9(10), 3303-3313. https://doi.org/10.1515/nanoph-2020-0067.

8. NaD.-Y.,Omelchenko Y. A., Moon H., Borges B.-H. V., & Teixeira F. L. (2017). Axisymmetric charge-
conservative electromagnetic particle simulation algorithm on unstructured grids: Application to micro-
wave vacuum electronic devices. Journal of Computational Physics, 346, 295-317. https://doi.org/10.
1016/j.jcp.2017.06.016.

9. Pohl M., Hoshino M., & Niemiec J. (2020). PIC simulation methods for cosmic radiation and plasma
instabilities. Progress in Particle and Nuclear Physics, 111(103751), 103751. https://doi.org/10.1016/j.
ppnp.2019.103751.

PLOS ONE | https://doi.org/10.1371/journal.pone.0302578 June 3, 2024 13/16

http://www.plosone.org/article/fetchSingleRepresentation.action?uri=info:doi/10.1371/journal.pone.0302578.s002
https://doi.org/10.1063/1.4982811
https://doi.org/10.1063/1.4982811
https://doi.org/10.1016/j.procs.2015.05.313
https://doi.org/10.1007/s11214-008-9384-6
https://doi.org/10.1017/S0022377814000841
https://doi.org/10.1017/S0022377814000841
https://doi.org/10.1007/s41115-021-00012-0
http://www.ncbi.nlm.nih.gov/pubmed/34722863
https://doi.org/10.1515/nanoph-2020-0067
https://doi.org/10.1016/j.jcp.2017.06.016
https://doi.org/10.1016/j.jcp.2017.06.016
https://doi.org/10.1016/j.ppnp.2019.103751
https://doi.org/10.1016/j.ppnp.2019.103751
https://doi.org/10.1371/journal.pone.0302578

PLOS ONE

A novel FPGA-based approach for efficient plasma investigations

10.

1.

12

13.

14.

15.

16.

17.

18.

19.

20.

21.

22,

23.

24,

25.

26.

27.

28.

Fidler C., Tram T., Rampf C., Crittenden R., Koyama K., & Wands D. (2017). Relativistic initial condi-
tions for N-body simulations. Journal of Cosmology and Astroparticle Physics, 2017(06), 043—043.
https://doi.org/10.1088/1475-7516/2017/06/043.

Bowers K. J., Dror R. O., & Shaw D. E. (2007). Zonal methods for the parallel execution of range-limited
N-body simulations. Journal of Computational Physics, 221(1), 303—-329. https://doi.org/10.1016/j.jcp.
2006.06.014.

Almomany A., Wells B. E., & Nishikawa K.-I. Efficient particle-grid space interpolation of an FPGA-
accelerated particle-in-cell plasma simulation. 2017 IEEE 25th Annual International Symposium on
Field-Programmable Custom Computing Machines (FCCM). https://doi.org/10.1109/fccm.2017.63

Almomany A., Al-Omari A., Jarrah A., Tawalbeh M., & Alqudah A. (2020). An OpenCL-based parallel
acceleration of aSobel edge detection algorithm Using IntelFPGA technology. South African Computer
Journal, 32(1). https://doi.org/10.18489/sacj.v32i1.749.

Almomany A., Jarrah A., & Al Assaf A. (2022). FCM clustering approach optimization using parallel
high-speed Intel FPGA technology. Journal of Electrical and Computer Engineering, 2022, 1-11.
https://doi.org/10.1155/2022/8260283.

Almomany A., Ayyad W. R., & Jarrah A. (2022). Optimized implementation of an improved KNN classifi-
cation algorithm using Intel FPGA platform: Covid-19 case study. Journal of King Saud University—
Computer and Information Sciences, 34(6), 3815-3827. https://doi.org/10.1016/j.jksuci.2022.04.006.

Almomany A., Jarrah A., & Al Assaf A. (2023). Accelerating FCM algorithm using high-speed FPGA
reconfigurable computing architecture. Journal of Electrical Engineering and Technology, 18(4), 3209—
3217. https://doi.org/10.1007/s42835-023-01432-z.

Almomany A., Al-Omari A. M., Jarrah A., & Tawalbeh M. (2021). Discovering regulatory motifs of
genetic networks using the indexing-tree based algorithm: a parallel implementation. Engineering Com-
putations, 38(1), 354—370. https://doi.org/10.1108/ec-02-2020-0108.

Gulbahar I. T., Sutcu M., Almomany A., & Ibrahim B. S. K. K. (2023). Optimizing electric vehicle charg-
ing station location on highways: A decision model for meeting intercity travel demand. Sustainability,
15(24), 16716. https://doi.org/10.3390/su152416716.

Almomany Abedalmuhdi, Alquraan Afnan, and Balachandran Lakshmy. "GCC vs. ICC comparison
using PARSEC Benchmarks." IJITEE 4.7 (2014).

Jarrah A., Alimomany A., Alsobeh A. M. R., & Alqudah E. (2021). High-performance implementation of
wideband coherent Signal-Subspace (CSS)-based DOA algorithm on FPGA. Journal of Circuits Sys-
tems and Computers, 30(11), 2150196. https://doi.org/10.1142/s0218126621501966.

Jarrah A., Haymoor Z. S., Al-Masri H. M. K., & Almomany A. (2022). High-performance implementation
of power components on FPGA platform. Journal of Electrical Engineering and Technology, 17(3),
1555—-1571. https://doi.org/10.1007/s42835-022-01005-6.

Jarrah A., Bataineh A. S. A., & Almomany A. (2022). The optimisation of travelling salesman problem
based on parallel ant colony algorithm. International Journal of Computer Applications in Technology,
69(4), 309. https://doi.org/10.1504/ijcat.2022.129382.

Jarrah A., Alimomany A., & Alkhafaji A. (2022). A new approach of combining optical mapping algorithm
with adaptive Kalman filter to achieve fast and early detection of cardiac arrests: A parallel implementa-
tion. Traitement Du Signal, 39(5), 1489-1500. https://doi.org/10.18280/ts.390505.

Yildiz B., & Sut¢i M. (2023). A variant SDDP approach for periodic-review approximately optimal pric-
ing of a slow-moving a item in a duopoly under price protection with end-of-life return and retail fixed
markdown policy. Expert Systems with Applications, 212(118801), 118801. https://doi.org/10.1016/j.
eswa.2022.118801.

Sutct M. (2023). Parameter uncertainties in evaluating climate policies with dynamic integrated cli-
mate-economy model. Environment Systems & Decisions. https://doi.org/10.1007/s10669-023-09914-
1.

Tessier R., Pocek K., & DeHon A. (2015). Reconfigurable Computing Architectures. Proceedings of the
IEEE. Institute of Electrical and Electronics Engineers, 103(3), 332—354. https://doi.org/10.1109/jproc.
2014.2386883.

Pezzarossa L., Schoeberl M., & Sparso J. (2016). Reconfiguration in FPGA-based multi-core platforms
for hard real-time applications. 2016 11th International Symposium on Reconfigurable Communication-
Centric Systems-on-Chip (ReCoSoC). https://doi.org/10.1109/ReCo0S0C.2016.7533895

Thomas D. B., Howes L., & Luk W. (2009). A comparison of CPUs, GPUs, FPGAs, and massively paral-
lel processor arrays for random number generation. Proceedings of the ACM/SIGDA International Sym-
posium on Field Programmable Gate Arrays. https://doi.org/10.1145/1508128.1508139

PLOS ONE | https://doi.org/10.1371/journal.pone.0302578 June 3, 2024 14/16

https://doi.org/10.1088/1475-7516/2017/06/043
https://doi.org/10.1016/j.jcp.2006.06.014
https://doi.org/10.1016/j.jcp.2006.06.014
https://doi.org/10.1109/fccm.2017.63
https://doi.org/10.18489/sacj.v32i1.749
https://doi.org/10.1155/2022/8260283
https://doi.org/10.1016/j.jksuci.2022.04.006
https://doi.org/10.1007/s42835-023-01432-z
https://doi.org/10.1108/ec-02-2020-0108
https://doi.org/10.3390/su152416716
https://doi.org/10.1142/s0218126621501966
https://doi.org/10.1007/s42835-022-01005-6
https://doi.org/10.1504/ijcat.2022.129382
https://doi.org/10.18280/ts.390505
https://doi.org/10.1016/j.eswa.2022.118801
https://doi.org/10.1016/j.eswa.2022.118801
https://doi.org/10.1007/s10669-023-09914-1
https://doi.org/10.1007/s10669-023-09914-1
https://doi.org/10.1109/jproc.2014.2386883
https://doi.org/10.1109/jproc.2014.2386883
https://doi.org/10.1109/ReCoSoC.2016.7533895
https://doi.org/10.1145/1508128.1508139
https://doi.org/10.1371/journal.pone.0302578

PLOS ONE

A novel FPGA-based approach for efficient plasma investigations

29.

30.

31.

32.

33.

34.

35.

36.

37.

38.

39.

40.

41.

42,

43.

44.

45.

46.

47.

48.

Qasaimeh M., Denolf K., Lo J., Vissers K., Zambreno J., & Jones P. H. (2019). Comparing energy effi-
ciency of CPU, GPU and FPGA implementations for vision kernels. 2019 |IEEE International Confer-
ence on Embedded Software and Systems (ICESS), 1-8.

Plancher B., Neuman S. M., Bourgeat T., Kuindersma S., Devadas S., & Reddi V. J. (2021). Accelerat-
ing Robot Dynamics Gradients on a CPU, GPU, and FPGA. IEEE Robotics and Automation Letters, 6
(2), 2335-2342. https://doi.org/10.1109/Ira.2021.3057845.

Xiong C., & Xu N. (2020). Performance Comparison of BLAS on CPU, GPU and FPGA. 2020 IEEE 9th
Joint International Information Technology and Artificial Intelligence Conference (ITAIC), 9, 193-197.

Lubeck O. M., & Faber V. (1988). Modeling the performance of hypercubes: A case study using the par-
ticle-in-cell application. Parallel Computing, 9(1), 37-52. https://doi.org/10.1016/0167-8191(88)90017-
8.

Diederichs S., Benedetti C., Huebl A., Lehe R., Myers A., Sinn A, et al. (2021). HIPACE++: a portable,
3D quasi-static Particle-in-Cell code. hitps://doi.org/10.48550/ARXIV.2109.10277.

Bird R., Tan N., Luedtke S. V., Harrell S. L., Taufer M., & Albright B. (2022). VPIC 2.0: Next generation
particle-in-cell simulations. IEEE Transactions on Parallel and Distributed Systems: A Publication of the
IEEE Computer Society, 33(4), 952—963. https://doi.org/10.1109/tpds.2021.3084795.

Xiong Q., Huang S., Yuan Z., Sharma B., Kuang L., Jiang K., et al. (2024). GPIC: A set of high-efficiency
CUDA Fortran code using gpu for particle-in-cell simulation in space physics. Computer Physics Com-
munications, 295(108994), 108994. https://doi.org/10.1016/j.cpc.2023.108994.

Liewer P. C., & Decyk V. K. (1989). A general concurrent algorithm for plasma particle-in-cell simulation
codes. Journal of Computational Physics, 85(2), 302—-322. https://doi.org/10.1016/0021-9991(89)
90153-8.

Ferraro R. D., Liewer P. C., & Decyk V. K. (1993). Dynamic load balancing for a 2D concurrent plasma
PIC code. Journal of Computational Physics, 109(2), 329-341. https://doi.org/10.1006/jcph.1993.
1221.

Stitt G., Grattan B., Villarreal J., & Vahid F. (2003). Using on-chip configurable logic to reduce embed-
ded system software energy. Proceedings. 10th Annual IEEE Symposium on Field-Programmable Cus-
tom Computing Machines. https://doi.org/10.1109/FPGA.2002.1106669

Decyk V. K., & Singh T. V. (2011). Adaptable Particle-in-Cell algorithms for graphical processing units.
Computer Physics Communications, 182(3), 641-648. https://doi.org/10.1016/j.cpc.2010.11.009.

Decyk V. K., & Singh T. V. (2014). Particle-in-Cell algorithms for emerging computer architectures.
Computer Physics Communications, 185(3), 708—719. https://doi.org/10.1016/j.cpc.2013.10.013.

Stantchev G., Dorland W., & Gumerov N. (2008). Fast parallel Particle-To-Grid interpolation for plasma
PIC simulations on the GPU. Journal of Parallel and Distributed Computing, 68(10), 1339—1349.
https://doi.org/10.1016/j.jpdc.2008.05.009.

Ledvina S. A., Ma Y .-J., & Kallio E. (2009). Modeling and simulating flowing plasmas and related phe-
nomena. In Space Sciences Series of ISSI (pp. 143—-189). Springer New York. https://doi.org/10.1007/
978-0-387-87825-6_5

Sewell S. (2014). Efficient particle-in-cell simulation of auroral plasma phenomena using a CUDA
enabled graphics processing unit,” University of Alabama in Huntsville, HUNTSVILLE, ALABAMA,
USA.

Juhasz Z., Durian J., Derzsi A., Matejéik S., Donké Z., & Hartmann P. (2021). Efficient GPU implemen-
tation of the Particle-in-Cell/Monte-Carlo collisions method for 1D simulation of low-pressure capaci-
tively coupled plasmas. Computer Physics Communications, 263(107913), 107913. https://doi.org/10.
1016/j.cpc.2021.107913.

Vasileska I., Bogdanovic L., & Kos L. (2021). Particle-in-cell code for GPU systems. 2021 44th Interna-
tional Convention on Information, Communication and Electronic Technology (MIPRO), https://doi.org/
10.23919/MIPR0O52101.2021.9596959

Wang P., & Zhu X. (2021). Hybrid CPU- and GPU-based implementation for particle-in-cell simulation
on multicore and multi-GPU systems. 2021 Photonics & Electromagnetics Research Symposium
(PIERS), https://doi.org/10.1109/PIERS53385.2021.969491 1

Diamond G., Smith C. W., Zhang C., Yoon E., & Shephard M. S. (2021). PUMIPic: A mesh-based
approach to unstructured mesh Particle-In-Cell on GPUs. Journal of Parallel and Distributed Comput-
ing, 157, 1—12. https://doi.org/10.1016/j.jpdc.2021.06.004.

Myers A., Aimgren A., Amorim L. D., Bell J., Fedeli L., Ge L., et al. (2021). Porting WarpX to GPU-accel-
erated platforms. Parallel Computing, 108(102833), 102833. https://doi.org/10.1016/j.parco.2021.
102833.

PLOS ONE | https://doi.org/10.1371/journal.pone.0302578 June 3, 2024 15/16

https://doi.org/10.1109/lra.2021.3057845
https://doi.org/10.1016/0167-8191(88)90017-8
https://doi.org/10.1016/0167-8191(88)90017-8
https://doi.org/10.48550/ARXIV.2109.10277
https://doi.org/10.1109/tpds.2021.3084795
https://doi.org/10.1016/j.cpc.2023.108994
https://doi.org/10.1016/0021-9991(89)90153-8
https://doi.org/10.1016/0021-9991(89)90153-8
https://doi.org/10.1006/jcph.1993.1221
https://doi.org/10.1006/jcph.1993.1221
https://doi.org/10.1109/FPGA.2002.1106669
https://doi.org/10.1016/j.cpc.2010.11.009
https://doi.org/10.1016/j.cpc.2013.10.013
https://doi.org/10.1016/j.jpdc.2008.05.009
https://doi.org/10.1007/978-0-387-87825-6%5F5
https://doi.org/10.1007/978-0-387-87825-6%5F5
https://doi.org/10.1016/j.cpc.2021.107913
https://doi.org/10.1016/j.cpc.2021.107913
https://doi.org/10.23919/MIPRO52101.2021.9596959
https://doi.org/10.23919/MIPRO52101.2021.9596959
https://doi.org/10.1109/PIERS53385.2021.9694911
https://doi.org/10.1016/j.jpdc.2021.06.004
https://doi.org/10.1016/j.parco.2021.102833
https://doi.org/10.1016/j.parco.2021.102833
https://doi.org/10.1371/journal.pone.0302578

PLOS ONE

A novel FPGA-based approach for efficient plasma investigations

49.

50.

51.

52.

53.

54.

Chien S. W. D., Nylund J., Bengtsson G., Peng I. B., Podobas A., & Markidis S. (2020). SputniPIC: An
implicit particle-in-cell code for multi-GPU systems. 2020 IEEE 32nd International Symposium on Com-
puter Architecture and High Performance Computing (SBAC-PAD), 149-156.

Meredith L. T., Rezazadeh M., Hug M. F., Drobny J., Srinivasaragavan V. V., Sahni O., et al. (2023).
hPIC2: A hardware-accelerated, hybrid particle-in-cell code for dynamic plasma-material interactions.
Computer Physics Communications, 283(108569), 108569. https://doi.org/10.1016/j.cpc.2022.
108569.

Charoy T., Boeuf J. P., Bourdon A., Carlsson J. A., Chabert P., Cuenot B., et al. (2019). 2D axial-azi-
muthal particle-in-cell benchmark for low-temperature partially magnetized plasmas. Plasma Sources
Science & Technology, 28(10), 105010. https://doi.org/10.1088/1361-6595/ab46c5.
HurM.Y.,KimJ. S, Song|. C., Verboncoeur J. P., & Lee H. J. (2019). Model description of a two-
dimensional electrostatic particle-in-cell simulation parallelized with a graphics processing unit for

plasma discharges. Plasma Research Express, 1(1), 015016. https://doi.org/10.1088/2516-1067/
ab0918.

RuiR., LiH., & Tu Y.-C. (2015). Join algorithms on GPUs: A revisit after seven years. 2015 IEEE Inter-
national Conference on Big Data (Big Data).

Sun'Y., AgostiniN. B., Dong S., & Kaeli D. (2019). Summarizing CPU and GPU design trends with prod-
uct data. https://doi.org/10.48550/ARXIV.1911.11313.

PLOS ONE | https://doi.org/10.1371/journal.pone.0302578 June 3, 2024 16/16

https://doi.org/10.1016/j.cpc.2022.108569
https://doi.org/10.1016/j.cpc.2022.108569
https://doi.org/10.1088/1361-6595/ab46c5
https://doi.org/10.1088/2516-1067/ab0918
https://doi.org/10.1088/2516-1067/ab0918
https://doi.org/10.48550/ARXIV.1911.11313
https://doi.org/10.1371/journal.pone.0302578

