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Abstract

In order to improve the detection performance of image fusion in focus areas and realize

end-to-end decision diagram optimization, we design a multi-focus image fusion network

based on deep learning. The network is trained using unsupervised learning and a multi-

scale hybrid attention residual network model is introduced to enable solving for features at

different levels of the image. In the training stage, multi-scale features are extracted from

two source images with different focal points using hybrid multi-scale residual blocks

(MSRB), and the up-down projection module (UDP) is introduced to obtain multi-scale edge

information, then the extracted features are operated to obtain deeper image features.

These blocks can effectively utilize multi-scale feature information without increasing the

number of parameters. The deep features of the image are extracted in its test phase, input

to the spatial frequency domain to calculate and measure the activity level and obtain the ini-

tial decision map, and use post-processing techniques to eliminate the edge errors. Finally,

the decision map is generated and optimized, and the final fused image is obtained by com-

bining the optimized decision map with the source image. The comparative experiments

show that our proposed model achieves better fusion performance in subjective evaluation,

and the quality of the obtained fused images is more robust with richer details. The objective

evaluation metrics work better and the image fusion quality is higher.

Introduction

Due to various limitations of hardware devices, the depth of field of optical lenses is limited

[1]. Images captured by a single sensor or a single camera cannot effectively and comprehen-

sively describe the imaging scene. Objects within the depth of field are clear, while other scene

contents may be blurred. This makes it difficult to capture an image in which all the objects

present are in focus [2]. To extend the depth of field of the lens and improve the quality of the

image, an intelligent and efficient technique is needed. This technique should integrate multi-

ple images with different focus planes so that all objects are in full focus. A method to achieve

this goal is known as a multi-focus image fusion algorithm.
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A multi-focus image fusion algorithm can combine meaningful information from multiple

source images to obtain a single fused image with more detailed information and enhanced

features than a conventional bokeh image. Compared to the original image, the multi-focus

image fusion algorithm can obtain an image with a more accurate description of the scene

details, which is more beneficial for subsequent applications. Multi-focus image fusion algo-

rithms have been applied in many fields, such as micro-scopic image fusion [3], medical diag-

nosis [4], visual sensor networks [5], visual power patrol [6], and optical microscopy [7].

Multi-focus image fusion methods are mainly divided into traditional methods and deep

learning methods. Traditional methods usually utilize image processing and computational

geometry techniques, among others, while deep learning methods employ deep neural net-

works, such as convolutional neural networks, for implementation. Since 2017, image fusion

technology has experienced explosive development thanks to deep learning-related algorithms,

and the research into deep fusion methods has entered a new phase. Researchers from around

the world have proposed a large number of multi-focus image fusion methods based on deep

learning, which has led to new trends in this field.

Currently, cutting-edge advances in the field of multi-focus image fusion that utilize deep

learning are mainly focused on optimizing model structures, applying data enhancement tech-

niques, and designing loss functions. In recent years, researchers have proposed many CNN-

based models to improve the efficacy of multi-focus image fusion. To reduce the number of

parameters and computational complexity, deep separable convolutional networks have been

widely adopted in this area. In the realm of multi-focus image fusion, data enhancement tech-

niques can increase the diversity of training datasets and improve the generalization ability of

models. Various new data enhancement techniques have been proposed by researchers,

including using generative adversarial networks and methods based on transfer learning, to

further enhance the results of multi-focus image fusion. Moreover, several new loss functions

have emerged, such as hybrid loss functions that integrate perceptual loss with gradient loss, to

further refine the outcomes of multi-focus image fusion.

Image fusion algorithms had been intensively studied before the popularization of deep

learning. Early methods for achieving multi-focus image fusion can generally be divided into

two categories: spatial domain-based methods and transform domain-based methods. These

rely on relevant mathematical transformations to manually analyze the activity levels and to

design fusion rules in the spatial or transform domains, and are known as traditional image

fusion methods. Specifically, spatial domain-based methods operate directly in the spatial

domain and can be further divided into pixel-based methods [8–11], region-based methods

[12–15], and block-based methods [16–20]. On the other hand, transform domain-based

methods first convert the image to another domain, then utilize the transformed coefficients

for fusion, and ultimately obtain the fused image by applying the corresponding inverse trans-

formation. To date, many transform domain-based methods have been proposed, which

include sparse representation methods [21, 22], multiscale methods [23, 24], gradient domain-

based methods [25], and hybrid methods [26, 27].

However, traditional image fusion methods have numerous limitations. On one hand, to

ensure the feasibility of subsequent feature fusion, traditional methods must apply the same

transformation to different source images to extract features. Unfortunately, this approach

does not account for the various feature differences among the source images, which may

result in a poor representation of the extracted features. On the other hand, traditional feature

fusion strategies are rudimentary, and as a result, the fusion performance is significantly

constrained.

In recent years, researchers and scholars have started introducing deep learning into image

fusion to overcome the limitations of traditional image fusion methods. The first study in the
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field of multi-focus image fusion using a convolutional neural network model was conducted

by Liu et al. [28]. A large-scale dataset, consisting of clear-to-blurry patch pairs generated

using high-quality image blocks and their blurred versions, was created. They then used a deep

convolutional neural network to encode the mapping in which the focused image integrates

clarity information from all source images. In another study, Amin-Naji et al. [29] proposed a

novel multi-focus image fusion algorithm based on integrated learning. This algorithm over-

laps and integrates the feature information extracted from the input multi-focus images to

construct a decision map, enhancing the quality of the output image. Next, Yang et al. [30] pre-

sented a multi-level features convolutional neural network (MLFCNN) structure for multi-

focus image fusion. In this structure, all the features learned by the network from the previous

layer are passed on to the next layer. A 1 × 1 convolutional module is added to each pathway to

reduce redundancy, and the final multi-focus fusion image is obtained using a pixel-by-pixel

weighted averaging strategy. Continue the evolution in this area, Tang et al. [2] proposed a

pixel-wise convolutional neural network (P-CNN) model. The P-CNN can accurately measure

the focus level of each pixel in the source image. This measurement can effectively avoid arti-

facts in the fused image, making the model suitable for the problem of multi-focus image

fusion. Follow this, Tong et al. [31] suggested an improved dual-channel pulse coupled neural

network (IDC-PCNN) model. this IDC-PCNN model can overcome some defects of the stan-

dard P-CNN model. Then, Guo et al. [32] introduced a fully convolutional network (FCN)

that learns from synthesized multi-focus images., Guo et al. [33] were also inspired by the gen-

erative adversarial network (conditional generative adversarial network, GAN) to propose a

novel Fuse generative adversarial network (Fuse-GAN) model for image-to-image multi-focus

image fusion method.

Due to the limitations of the convolutional operator in the local receptive field, which can’t

capture enough feature information, the performance of most multi-focus image fusion meth-

ods based on convolutional neural networks is limited. To address this problem, a self-atten-

tion mechanism was proposed. Specifically, Guo et al. [34] proposed a twin-self-attention

network (SSAN) designed to ensure that the foreground region in the generated focused

image is marginally larger than the corresponding object. Wang et al. [35] proposed a new

Generative Adversarial Network (GAN)-based multi-focus image fusion algorithm called

MFIF-GAN (Multi-Focus Image Fusion Generative Adversarial Network). Their model gener-

ates a focus probability map by creating focus maps, which helps to attenuate the focus diffu-

sion effect. Similarly, Ma et al. [36] proposed an unsupervised deep learning model, the

Squeeze Excitation and Spatial Frequency (SESF-Fuse), to address the multi-focus image

fusion problem. Xu et al. [37] presented a gradient and connected regions-based multi-focus

image fusion model (GCF). This solution utilizes the gradient relationship of the source image

to narrow down the solution domain and accelerate the convergence rate, allowing the con-

straint on the number of connected regions to help generate a more accurate binary mask. Fur-

thermore, Xu et al. [38] came up with the concept of a many-to-one mapping between the

input source image and the output source image. They designed a new deep learning model

for multi-focus image fusion by constructing a fully convolutional neural network into a fully

convolutional end-to-end two-stream fusion network.

Given that low-level features can only capture low-frequency content, and high-level fea-

tures are only effective in capturing high-frequency details, Zhao et al. [39] proposed an

improved end-to-end multi-focused image fusion model. This model is based on the natural

enhancement method of a deep convolutional neural network (MLCNN) that combines

multi-level, deeply supervised visual features, thereby improving the fusion performance. Li

et al. [40] proposed an end-to-end modeling approach for multi-focused image fusion using a

dual U-shaped network. This approach is used to achieve direct mapping from the multi-
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focused image to the fused image. In another study, Li et al. [41] proposed a new deep learning

network model for multi-focus image fusion called deep Regression Party Learning (DRPL).

This model uses a pixel-to-pixel regression strategy, taking a pair of complementary source

images as input and converting them into binary masks. This approach enhances the quality of

the boundary region, effectively solving the blurring problem around the focus or defocus

boundary. Huang et al. [42] proposed an end-to-end generative adversarial network called

Auxiliary Classifier Generative Adversarial Network (ACGAN). This network eliminates the

need for manually designing complex activity level measurements and fusion rules, and it can

output the fused image directly without any post-processing steps.

In current convolutional neural network-based multi-focus image fusion methods, the

same convolutional kernel is used to extract features from all regions of the multi-focus image.

However, using the same convolutional kernel may not be optimal for all regions in the image,

as it can lead to artifacts in the untextured and edge regions of the fused image. To address this

issue, Duan et al. [43] proposed a dynamic convolutional kernel network (DCKN) for multi-

focus image fusion. In this model, the input image is used as the conditional region to dynami-

cally generate convolution kernels, and the context-aware convolution kernels are utilized to

detect focus information. This approach can accurately adapt to the spatial blur caused by

depth and texture changes in multi-focus images. Though effective, existing methods based on

deep learning generally have an issue of a large number of parameters, which leads to high

time complexity and low fusion efficiency of deep learning models. To tackle this problem,

Xiao et al. [44] proposed a multi-focus image fusion deep neural network based on the discrete

Tchebichef moment function (Discrete Tchebichef moment-based Net, DTMNet). This net-

work has only one convolutional layer with fixed discrete Tchebichef moment function coeffi-

cients, enabling efficient extraction of low-frequency or high-frequency information without

learning parameters. Additionally, it consists of three fully connected layers with learnable fea-

ture classification parameters.

To emphasize better feature exploration, multi-scale features are used. Li et al. [45] pre-

sented the first work in the field of multiscale super-resolution. However, the cross-connected

architecture leads to complex models and increases the computational cost. Zhen et al. [46]

used the concept of feedback mechanism for SISR. Hu et al. [47] proposed a multi-scale infor-

mation network for high-frequency detail reconstruction. Lu et al. [48] explored multi-scale

residual features for better feature extraction. Recently, Wang et al. [49] explored the notion of

sparsity in SISR. Despite the considerable improvement brought by pre-upsampling based SR

techniques, dedicated methods that consolidate feature representation and edge enhancement

capabilities are needed in a single network. Considering the above problems, in our proposed

framework, after each multi-scale attention residual block, a novel up-down sampling projec-

tion block (UDP) is used to collect high-frequency information to perform edge patching on

the extracted multi-scale features.

Attention mechanisms that focus on feature space or channel correlation are heavily used

in the field of image processing. The proposed attention-based SR network performs very well,

but it comes at the cost of a large number of parameters. Lei et al. [50] follow the ideas pro-

posed for high-level vision problems and exploit channel and spatial attention mechanisms

and show better performance. Due to the effectiveness of the attention block, our proposed

method further embeds the combined attention module into the proposed residual block. And

our proposed lightweight network architecture can promote an increased understanding of

image content with a small number of parameters, and utilize both feature and edge informa-

tion in a single network.

Although many current focused image fusion methods have achieved good fusion results,

they tend to produce partial fusion results with artifacts, white noise, and blurred edges when
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processing complex images. To obtain more accurate decision maps and better image fusion

quality, we propose a multi-focus image fusion model based on a multi-scale hybrid attention

residual network. This network directly generates an intermediate decision map to complete

the direct mapping from the source image to the fused image, thereby improving the fusion

efficiency. Our main contributions are as follows:

1. A multi-scale hybrid attention residual block is designed to adaptively capture the multi-

scale correlation between features. We propose a lightweight progressive multi-scale net-

work architecture to explore hierarchical information with fewer parameters, and design a

multi-scale hybrid attention residual block, which adaptively captures the multi-scale corre-

lation between features. This lightweight network architecture can efficiently process image

features to obtain high-quality fused images.

2. The Up-and-Down Sampling projection block (UDP) is introduced to patch the edge of the

extracted multi-scale features. It enables blocks to be able to efficiently exploit multi-scale

edge information without increasing the number of parameters.

3. We use a composite loss function to improve the quality of the decision map generated by

the network, and the proposed model achieves better fusion performance in terms of sub-

jective evaluation and higher robustness in the quality of the fused images obtained.

Residual network theory

The complexity and feature extraction ability of a convolutional neural network model mainly

depend on the depth of the network. Most neural networks currently seek to increase the net-

work’s depth to improve performance. However, increasing the depth of a network comes

with costs and challenges. As the depth increases, the neural network becomes more difficult

to train. This issue arises because the existing network parameter optimization algorithms are

based on backpropagation algorithms. The error values become highly susceptible to issues

such as gradient disappearance or gradient explosion after multiple layers of backpropagation,

which makes the model difficult to train. The introduction of the Deep Residual Network [51]

(DRCN) has solved the aforementioned training issue associated with increasing network

depth, attracting significant attention from researchers. The main idea of the residual network

is to improve the efficiency of the gradient information propagation by adding shortcut con-

nections to the non-linear convolutional layers. A residual network is a deep network con-

nected by a series of residual modules. As depicted in Fig 1, the residual module consists of

two weight layers and a cross-layer short connection, which is then activated by the ReLU acti-

vation function and outputted. Compared with general deep networks, the residual network

remains easy to train even with deep network depth. This is primarily due to the short connec-

tion that allows for the efficient propagation of gradient information between multiple neural

network layers, thus overcoming the training difficulties associated with increasing network

depth. Consequently, it has become a common model structure for many deep learning tasks.

Overall network structure

In general, the model of multi-focus image fusion can take two images with different focus

angles for fusion. If the number of images to be fused is greater than two, the final fusion

results need to be obtained by following a sequential order fusion method. In this paper, we

focus on the case of two different images in focus. The overall flow diagram of the proposed

algorithm is shown in Fig 2.
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The overall network architecture, as depicted in Fig 2, is primarily divided into three parts.

First, the encoder consists of two 3 × 3 convolutional layers. Second, the decoder network

comprises four 3 × 3 convolutional layers, serving the primary purpose of reconstructing the

input image features. Lastly, the feature fusion module conducts feature fusion on multi-scale

Fig 1. Individual residual module structure.

https://doi.org/10.1371/journal.pone.0302545.g001

Fig 2. Overall flow chart.

https://doi.org/10.1371/journal.pone.0302545.g002

PLOS ONE Multi-focused image fusion algorithm based on multi-scale hybrid attention residual network

PLOS ONE | https://doi.org/10.1371/journal.pone.0302545 May 24, 2024 6 / 24

https://doi.org/10.1371/journal.pone.0302545.g001
https://doi.org/10.1371/journal.pone.0302545.g002
https://doi.org/10.1371/journal.pone.0302545


feature maps. It merges the recovered feature maps with the source and target images at the

pixel level to produce the final fusion results.

First, we use the publicly available MS-COCO 2012 dataset to generate a set of near and far-

focused images to train the network model for the algorithm. After the model is trained, the

fusion phase is performed by using the network to fuse a set of multi-focus images that are to

be processed in order to obtain a clear focus decision map. The generated focus decision map

is then optimized using post-processing techniques, such as small region removal and consis-

tency verification methods, to produce the final fusion result map. The principle of the fused

image is derived from Eq 1.

F ¼ I1 �M þ ðI2 � MÞ ð1Þ

where F is the fusion result image, M is the decision map, I1, and I2 are the source images.

Encoder-decoder network structure

In this paper, we mainly use the Encoder-Decoder network to reconstruct the input images

throughout the training phase. During the training phase, the Encoder extracts multi-scale fea-

tures from two source images with different focuses through a Multi-Scale Residual Network

(MSRB). It then updates the edge information of the multi-scale features through an Up-and-

Down Sampling Projection Block (UDP) module. Subsequently, the extracted features are

concatenated and computed to obtain the deep features of the image. The Decoder network

consists of four 3 × 3 convolutional layers; its primary function is to reconstruct the input

image features. In the testing phase, the activity level is calculated by extracting the image fea-

tures, inputting them into the spatial frequency domain, and obtaining the initial decision

map. The decision map is then refined and optimized. The final fused image is obtained by

combining the optimized decision map with the source images. The structure of the Encoder-

Decoder network is shown in Fig 3.

Our multi-scale residual attention network improves the performance of the model by

introducing a multi-scale hybrid attention residual module and a UDP module. The multi-

Fig 3. Overall flow chart.

https://doi.org/10.1371/journal.pone.0302545.g003
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scale hybrid attention module includes a hybrid attention mechanism CBAM, which integrates

the advantages of channel attention mechanism and spatial attention mechanism, and pays

attention to channel features and spatial features at the same time. The attention to the impor-

tant channels and focus areas of the image was strengthened to improve the feature expression

ability of the network. And CBAM has the advantages of lightweight and strong versatility.

CAM and SAM in CBAM are lightweight modules, and their internal convolution operations

are less, which reduces the amount of calculation and improves the performance of the net-

work under the condition of increasing a small amount of network parameters. In image pro-

cessing, high-frequency information usually refers to the details or subtle changes in the image

that change more frequently. It reflects the edge, texture, detail and high-frequency oscillation

information in the image, and the high-frequency information of the image plays an important

role in image processing. In the image fusion task, when we perform multi-scale extraction of

the image, the resolution of the image is reduced, so some edge information of the image is

inevitably lost. The UDP block is used to update the edge of the extracted multi-scale feature

to supplement the edge information without increasing the number of parameters.

In our network, MSRB and UDP cooperate with each other to improve the overall perfor-

mance. We place the MSRB module in the backbone of the network for extracting multi-scale

feature representations. However, the UDP module can be used as an auxiliary module to han-

dle the up-and-down sampling operation of the feature map to adapt to the feature require-

ments of different scales. Through this collaboration, MSRB can make full use of multi-scale

feature information for image fusion, while UDP can maintain the consistency and detail

expression ability of feature maps. Specifically, MSRB can obtain a more comprehensive and

accurate feature representation through multi-scale feature extraction. On the other hand,

UDP can maintain the spatial consistency and detail expression ability of the feature map

through the up-and-down sampling operation, while reducing the computational complexity.

Through the cooperation of these two modules, the performance of the image fusion task can

be improved and better fusion results can be obtained.

Multi-scale mixed attention residuals module

The overall progressive multi-scale model is able to obtain better feature correlation while

moving deeper into the network. Unlike the residual blocks proposed in the existing literature

[45, 52], our model performs feature extraction more effectively by increasing the perceptual

field. To allocate resources more efficiently to the most informative features in the image, we

draw inspiration from the attention mechanism described in [53]. To further enhance the net-

work’s ability to learn more important features, we designed a hybrid attention unit (CBAM)

that combines a spatial attention unit (SAM) with a channel attention unit (CAM). Multi-scale

features obtained by aggregating information from parallel convolutional layers of sizes 1, 3,

and 5 are connected as follows:

φmsf ¼ ½ f1�1; f3�3; f5�5� ð2Þ

where [�] and φ denote cascaded features and multi-scale features, respectively. Each convolu-

tional layer of the proposed MSRB block consists of 32 filters.

Xc ¼ GAPðφcfmÞ ¼
1

h� w

Xh

i¼1

Xw

j¼1
φcfmði; jÞ ð3Þ

φCAM ¼ ½dð f1�1ðεðf1�1ðXCÞÞÞ� � φcfm ð4Þ

where GAP(�) represents the global averaging pooling operation that takes into account
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channel-level spatial information. δ(�) represents the sigmoid function, and ε(�) represents the

LeakyReLU activation function. ϕCAM represents the output of the channel attention module.

ϕcfm represents the channel feature map, and Xc represents the statistics obtained from the spa-

tial shrinkage ϕmsf.

To locally regulate the features, a spatial attention unit is used, which is defined as

φSAM ¼ ð f1�1ð�ðφmsf ÞÞÞ ð5Þ

φcat ¼ ½φSAM � φmsf ;φCAM � φmsf � ð6Þ

φMSRB ¼ φCABM ¼ φcat þ φmsf ð7Þ

where ϕSAM denotes the output of the spatial attention block. ϕMSRB shows the final output of

the MSRB block. ϕ(�) means that the size of the filter is 3 × 3, the number of channels is 3, and

the depth convolution operation is performed 3 times. ϕcat represents the connected atten-

tional features. ϕCABM indicates the mixed attention unit. The proposed attention block is able

to exploit inter and intraframe channel information, where the use of deep convolution further

helps to generate a different 2D spatial attention map for each channel, and then the obtained

attention map is better updated by passing it through a convolutional layer with 64 filters. In

order to take advantage of both blocks simultaneously, we combine them through channel

concatenation, resulting in a hybrid attention unit.

The CBAM integrates the advantages of the channel attention mechanism and the spatial

attention mechanism, focusing on both channel features and spatial features. It enhances the

attention to important channels and focal regions of images and improves the feature repre-

sentation capability of the network. Both the CAM and SAM in CBAM are lightweight mod-

ules with a reduced number of internal convolution operations, which decrease the

computational burden. These modules improve the performance of the network with only a

small increase in the number of network parameters.

CBAM integrates the advantages of the channel and spatial attention mechanisms, focusing

on both channel features and spatial features simultaneously. This focus enhances attention to

the important channels and the focal regions of an image, and improves the network’s feature

representation ability. CBAM is both lightweight and versatile. The CAM and SAM within

CBAM are lightweight modules with fewer internal convolution operations, reducing the

computational load. By utilizing two 3 × 3 convolution kernels instead of a single 5 × 5 kernel,

the network’s depth is increased while maintaining the same receptive field, thereby improving

the performance of the network with only a modest increase in the number of parameters.

Multi-scale hybrid 321 residual network structure, as shown in Fig 4.

Upper and lower projection blocks

After obtaining fine features from the MSRB block, we increase the high-frequency informa-

tion content in the image using the UDP block, as shown in Fig 3. The overall operation of the

UDP block is demonstrated in Eqs 8 and 9. First, the UDP module evaluates the discrepancy

of the continuous multi-scale feature map output by the MSRB, focusing on high-frequency

information. The features with reduced information are then passed through an upsampling

layer, Conv2DTranspose, with a stride of 2. The upsampled features are transformed back into

the LR (low-resolution) input space by using a convolution layer with a stride of 2. The final

subtraction operation, resulting in the output shown in Eq 8, helps to remove redundant infor-

mation. The addition operation in Eq 9 extracts the relevant features needed to reconstruct a

clear image, thus enhancing the information content of the multi-scale features. Additionally,
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the features from all UDP blocks are aggregated to promote better gradient propagation.

Finally, all residual and edge features are combined to fully utilize the multi-scale edge

features.

Here, "2 and #2 represent the operations of upsampling and downsampling of ×2, respec-

tively.ϑn represents the de-output features, in represents the redundant information, δn shows

the features after removing the redundant information, φmsfn
and φmsfn� 1

represents the multi-

scale information of the NTH and n − 1 layers.

dn ¼ Wn � in
Wn ¼ φmsfn

� φmsfn� 1

in ¼# 2ð" 2ðWnÞÞ

ð8Þ

�UDP ¼ dn þ φmsfn ð9Þ

Multi-scale feature fusion

In this paper, we develop a dual-bypass fusion system that uses multiple convolutional kernels

for various bypasses. This configuration allows the signals between the bypasses to be shared

with each other, enabling the fusion of image features of various sizes. The formula is defined

as follows:

S1 ¼ sðW1
3�3
∗Mn� 1 þ b1Þ

P1 ¼ sðW1
5�5
∗Mn� 1 þ b1Þ

S2 ¼ sðW2
3�3
∗ ½S1; P1� þ b2Þ

P2 ¼ sðW2
5�5
∗ ½P1; S1� þ b2Þ

S0 ¼ ðW3
1�1
∗ ½S2; P2� þ b3Þ

ð10Þ

where W and b denote the weight and bias values, the superscript denotes the number of layers

they are in, and the subscript denotes the size of the convolution kernel used in that layer. σ(x)

= max(0, x) represents the ReLU function and [S1, P1], [P1, S1], [S2, P2] represents the join

operation.S0 represents the fused image features.

Fig 4. Multi-scale hybrid attention residual module.

https://doi.org/10.1371/journal.pone.0302545.g004
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The specific operation is that the multi-scale feature map is input into the double bypass

system, and the double bypass system, for each scale feature map, inputs it into two indepen-

dent bypasses. A variety of convolution calculation kernels are used for each bypass, so that the

information between their side channels can be shared with each other. In each bypass, feature

fusion is performed on the processed feature map. We assign a weight to the feature maps at

each scale and add them by weight. The feature map is then resized to the same size as the orig-

inal image using operations such as upsampling. The recovered feature maps can then be

pixel-wise fused with the source and target images to generate the final fusion result.

Loss function design

Structural similarity function loss Lssim and pixel function loss Lp are used as loss functions in

many computer vision tasks to optimize method parameters. However, using them alone to

constrain the fusion result is not enough to further improve the quality of the fused image.

Therefore, our researchers try to use a composite function combining multiple loss functions

to better optimize the network. Because multi-scale features need to be extracted and fused in

our proposed method, we add the feature loss loss function to evaluate the quality of the fused

image from the feature dimension. We use a novel composite loss function to complete end-

to-end training without the help of additional trained models in the implementation of feature

loss terms. I adopt a joint loss function Lall consisting of three parts to optimize the proposed

structure, which can be expressed in Eq 11:

Lall ¼ lLssim þ Lp þ bLper ð11Þ

Where λ and β denote the weighting factor of the Lssim loss term and the Lp loss term, respec-

tively. According to the experimental experience, we set β = 0.1 and λ = 3.Lssim represents the

multiscale structural similarity loss term. The pixel loss Lp is the Euclidean distance between

the output O and the input I of the network:

Lp ¼ kO � Ik2 ð12Þ

The structural similarity function loss Lssim represents the structural difference between the

input and output.

Lssim ¼ 1 � SSIMðO; IÞ ð13Þ

where SSIM represents the structural similarity operation. The expressions for luminance con-

trast and structural similarity are shown in Eq 14, where μ is the mean, σ is the standard devia-

tion, and C1, C2, and C3 are constants.

SSIMðO; IÞ ¼
2mOmI þ C1

m2
O þ m

2
I þ C1

�
2sOsI þ C2

s2
O þ s

2
I þ C2

�
sO;I þ C3

s2
Os

2
I þ C3

ð14Þ

Fusion results and analysis

Experimental data set and preprocessing

The MS-COCO2012 dataset, consisting of over 120,000 images, is used for this experiment. In

this study, the dataset is divided into a training set with 104527 images, a test set with 10286

images, and a validation set with 10725 images. The validation set primarily serves to verify

network convergence during the training process. The images are resized to 256 × 256 and

converted to grayscale. We set the learning rate at 1 × 10−4, with a batch size of 16 and 300
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training rounds. Since the training parameters are fixed, we test the fused images on the test

set, part of which is shown in Fig 5. For the experiment, we select 100 sets of image data as test

images. The “Lytro” multi-focus image dataset, the most commonly used public dataset, con-

tains images of size 520 × 520 and includes both color and grayscale images.

Experimental environment and parameter settings

The proposed deep learning-based multi-focus image fusion algorithm is implemented using

the Python programming language and the PyTorch deep learning framework. The hardware

environment consists of a GTX 1080Ti GPU with 16GB of video memory.

Quality evaluation index

It is difficult for us to make an accurate evaluation of the fusion performance only by subjective

evaluation, so fusion indicators are also needed for objective evaluation. Various fusion met-

rics have been proposed in many studies, but none of them seems to be absolutely superior to

the others. Therefore, it is necessary to select multiple metrics to evaluate different fusion

methods.

This paper uses a variety of evaluation metrics, such as average gradient (AVG), which

mainly reflects the change of image resolution and texture. With the increase of the gradient,

the higher the resolution of the image, the clearer the image. Standard deviation (STD), the

fused image with high contrast tends to have a larger standard deviation measure, which

means that the fused image will obtain better visual effects. Structural Similarity index (SSIM),

which tests the distortion contrast and structural similarity loss of the source image and the

fused image, and a higher value indicates better fusion performance. Peak Signal-to-Noise

Ratio (PSNR), which is a metric that reflects the distortion by the ratio of peak power to noise

power, the higher the value, the better the fusion performance. Visual information fidelity

(VIF), which detects the fused image and evaluates the quality and performance of the

Fig 5. The multifocal image test dataset.

https://doi.org/10.1371/journal.pone.0302545.g005
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evaluated image through the correlation between the evaluated image and the reference image.

Mutual information (QNMI), which indicates how much edge information the fused image

obtains from the source image, the larger its value is, the more edge information exists in the

fused image. Based on human visual perception index (QCB), in information theory, it is a

measure of correlation between two random numbers of an important indicator, measure of

transfer of information from the source image and the fusion image. Edge information reten-

tion index (QAB/F), which is a quantitative evaluation index of fused image quality based on

human visual perception. From the perspective of human visual system, it evaluates the fusion

by comparing the contrast feature information between the image to be fused and the fused

image. Based on structural similarity index QY, it is a kind of based on image structure similar-

ity metric, you can evaluate how much F retained the fused image from the source image A
and B structure information.

Comparative analysis

On the “Lytro” dataset, we compare our method with those of other representative algorithms.

These include the curvilinear wavelet transform (CWT) [54], the dual-channel pulse-coupled

neural network (IDCP-CNN) [55], dense SIFT [56], multi-scale weighted gradient (MWG)

[57], multi-focus image fusion generative adversarial network (MFIF-GAN) [58], and

Squeeze-and-Excitation and Spatial Frequency fusion (SESF-Fuse) [59], as well as Fine-grained

Multi-focus Image Fusion (FGMF) [60]. Multi-focus image fusion using structure-guided flow

(MFST) [61]. The quantitative evaluation results of the different algorithms, analyzed through

experimental comparison, are shown in Table 1.

Through experimental comparison and analysis, our algorithm demonstrates the best per-

formance on six different quantitative metrics. The results indicate that the proposed algo-

rithm can more effectively preserve the pixel information of the source images. Moreover, all

the information related to pixel structure and edge contours from the source images is well

transferred to the fused image. Additionally, the network enhances the visual effect in a man-

ner consistent with human visual perception.

The results of fusing this algorithm with the Lytro-01 dataset are shown in Fig 6. It can be

seen that CWT, IDCP-CNN, DSIFT, MWG, and SESF-Fuse had many unclear areas after the

pseudo-color technique was applied, mainly in the far-focused images. The pseudo-color

image of SESF-Fuse in the far-focused region exhibited significant white noise and a blurred

background. Similarly, the pseudo-color images of FGMF and MFIF-GAN in the far-focused

regions contained considerable white noise around the focused and unfocused edges, and the

background image was blurred, indicating that the entire area could not be detected as a

Table 1. Quantitative experimental results of the present algorithm and other methods.

Approachs AVG STD PSNR SSIM VIF QAB/F

CWT 8.2375 61.6748 26.8376 0.8342 0.5760 0.6856

MWG 8.2661 62.2006 27.3152 0.8248 0.6671 0.7109

DSIFT 8.31235 62.3732 27.1251 0.8185 0.7106 0.7352

IDCP-CNN 8.1590 62.2523 27.1488 0.8315 0.7142 0.7326

MFIF-GAN 8.2453 62.2615 27.2337 0.8315 0.7146 0.7315

SESF-Fuse 8.3010 62.3140 27.2590 0.8316 0.7152 0.7321

FGMF 8.3114 62.4008 27.2775 0.8384 0.7318 0.7561

MFST 8.3189 62.3982 27.2854 0.8395 0.7359 0.7556

Ours 8.3475 62.4354 27.3391 0.8415 0.7490 0.7576

https://doi.org/10.1371/journal.pone.0302545.t001
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focused region. From Fig 7, it is apparent that the algorithm discussed in this paper can

completely segment and clearly detect focused and unfocused edge information at the far

focus.

The fusion results of our algorithm and those of other representative algorithms on the

Lytro-05 dataset are shown in Fig 8. From the pseudo-color image in Fig 9, it is apparent that

CWT, MWG, DSIFT, and IDCP-CNN produce a large number of artifacts on the right side of

the baby’s cheek in the focused image, indicating incomplete image segmentation. It can also

be seen that MFIF-GAN presents obvious artifacts in focus, while SESF-Fuse exhibits both arti-

facts and fuzzy contours at focus, as well as residual pixels. In the case of FGMF, there is some

white noise in the periocular area of the infant within the red box, but the overall pseudo-color

image is better. As demonstrated by the pseudo-color image in Fig 9, our algorithm effectively

addresses these issues, achieving a good fusion map and pseudo-color image.

The results of fusing our algorithm with the Lytro-05 dataset are shown in Fig 10. As can be

seen, CWT, MWG, DSIFT, IDCP-CNN, and MFIF-GAN leave many areas unclear after

pseudo-color processing, indicating incomplete image segmentation. The SUSE-Fuse algo-

rithm presents jagged residuals in the red box and also shows unclear segmentation at the

boundary. The pseudo-color image of FGMF in the far-focus region has a small amount of

Fig 6. Fusion results of the proposed algorithm and other methods on Lytro-05.

https://doi.org/10.1371/journal.pone.0302545.g006

Fig 7. Pseudo-color results of our algorithm versus other methods on Lytro-05.

https://doi.org/10.1371/journal.pone.0302545.g007
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Fig 8. Fusion results of the proposed algorithm and other methods on Lytro-01.

https://doi.org/10.1371/journal.pone.0302545.g008

Fig 9. Pseudo-color results of our algorithm versus other methods on Lytro-01.

https://doi.org/10.1371/journal.pone.0302545.g009

Fig 10. Fusion results of the proposed algorithm and other methods on Lytro-05.

https://doi.org/10.1371/journal.pone.0302545.g010
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white noise and image blur in the focus/non-focus boundary area, suggesting that this area

cannot be entirely detected as focused. From the pseudo-color images corresponding to each

algorithm in Fig 11, it is evident that our algorithm can fully segment the far-focus region and

provides clear detection of the focused and unfocused edge information.

The results of the fusion of our algorithm with the Lytro-05 dataset are presented in Fig 12.

This figure reveals that the pseudo-color processing by CWT, MWG, DSIFT, IDCP-CNN, and

MFIF-GAN leads to numerous unclear areas, indicating that image segmentation is not thor-

ough. The SUSE-Fuse algorithm produces a jagged residual effect on the man’s glasses, as well

as unclear segmentation at the boundaries. In the far-focus image, the FGMF pseudo-color

image exhibits a small amount of white noise and image blur in the region between the focused

and unfocused edges, suggesting that this region cannot be fully detected as a focused area. As

shown by the pseudo-color images corresponding to each algorithm in Fig 13, the proposed

algorithm is capable of completely segmenting the far-focus area, and it clearly detects the

information at the edges of the focused and unfocused areas.

Fig 11. Pseudo-color results of our algorithm versus other methods on Lytro-05.

https://doi.org/10.1371/journal.pone.0302545.g011

Fig 12. Fusion results of the proposed algorithm and other methods on Lytro-05.

https://doi.org/10.1371/journal.pone.0302545.g012
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Visualization of fusion results

As shown in Fig 14, the first row is the foreground image, the second row is the far-field

image, the third row is the gradient image, and the last row is the result image. The experimen-

tal results show that the fused image was clearer and better.

Fig 13. Pseudo-color results of our algorithm versus other methods on Lytro-05.

https://doi.org/10.1371/journal.pone.0302545.g013

Fig 14. Visualization of the fusion results.

https://doi.org/10.1371/journal.pone.0302545.g014
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Module ablation experiment

In order to verify the effectiveness of the above two important components of the network

structure, experiments were conducted on the “Lytro” dataset by comparing the two new mod-

ules obtained by adding and removing the modules of the algorithm in this paper. In particu-

lar, we perform ablation experiments on a single multi-scale residual block and a multi-scale

residual block plus a UDP module, along with a multi-scale residual block and an attention

mechanism. The algorithm was divided into five different modules, and the analysis of the

experimental results shows that the algorithm in this paper achieved the highest score with

stronger fusion effect and also improved the quality of the fused images. The quantitative eval-

uation results and the focus decision diagram were shown in Table 2 and Fig 15.

Where QNMI represents normalized mutual information, QAB/F represents edge informa-

tion retention, QY represents structural similarity, and QCB represents human visual

perception.

Loss function ablation experiment

To verify the effectiveness of the above two important components of the loss function, the

loss function of this algorithm was compared with the control variables method and the exper-

imental analysis was conducted on the “Lytro” dataset. The experimental results shows that

our algorithm achieved the highest score, which indicates that our algorithm had stronger

fusion effect and the quality of fuse images was improved. The quantitative evaluation results

and focus decision diagrams were shown in Table 3 and Fig 16.

Table 2. Experimental results of quantitative ablation of network structure.

Algorithm QNMI QAB/F QY QCB

No/MSRN 1.02366 0.65380 0.952341 0.752342

MSNR 1.05536 0.704531 0.958641 0.767840

MSNR+UDP 1.07512 0.710124 0.961512 0.778106

2MSNR+UDP 1.09542 0.714579 0.968551 0.798552

Ours 1.12458 0.734595 0.975871 0.814675

https://doi.org/10.1371/journal.pone.0302545.t002

Fig 15. Focusing decision diagrams generated by different network structure.

https://doi.org/10.1371/journal.pone.0302545.g015

Table 3. Experimental results of quantitative loss function ablation.

Algorithm QNMI QAB/F QY QCB

Only Lp 0.97567 0.69880 0.94357 0.75861

Only Lssim 1.00579 0.66423 0.97552 0.74358

Only Lper 1.01024 0.64231 0.95276 0.75018

Ours 1.35312 0.77473 0.98625 0.77881

https://doi.org/10.1371/journal.pone.0302545.t003
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Where QNMI represents normalized mutual information, QAB/F represents edge information

retention, QY represents structural similarity, and QCB represents human visual perception.

The optimal choice of MSRB and UDP

We use different numbers of MSRB modules to further study the performance of the proposed

network, as shown in Table 4, with the increase of the number of multi-scale MSRB modules,

each performance index is increasing, indicating that the performance of the network becomes

better, but when the number of MSRB modules is more than 3, the improvement of network

performance can be ignored. So we used 3 MSRB modules to ensure better feature learning.

To verify the importance of the UDP module, we analyzed the performance of the network

with and without the UDP module, and Table 4 shows the improvement of the network per-

formance when using the UDP module.

Model feasibility analysis

We analyze and compare the time efficiency, computational complexity and floating-point

operation of the model. Model feasibility analysis is shown in Table 5. It can be seen that the

computational complexity of our proposed model is the lowest, the floating point number is

relatively small, and the average fusion time is also the shortest, which verifies the feasibility of

our proposed model.

Multi-aggregate image sequence fusion verification

The actual scenario of multi-focus image fusion studied in this paper is the fusion of two origi-

nal images. In order to reflect the applicability and feasibility of the algorithm in this paper, the

scattered focus images of three positions in the same scene are taken for their fusion. The first

step was to fuse the first two different location images, and then fused the result image with the

last image of different angles. In this paper, the scatter images of three different locations in

the same scene from the “Lytro” dataset were used for image fusion. The fusion results were

Fig 16. Focusing decision diagrams generated by different loss functions.

https://doi.org/10.1371/journal.pone.0302545.g016

Table 4. Optimal selection of the number of MSRB and UDP.

Number of MSRB UDP QNMI QAB/F QY QCB

1 - 1.05456 0.704501 0.958443 0.767245

2 - 1.07563 0.712213 0.961321 0.775430

3 without 1.07831 0.720458 0.967249 0.779534

3 with 1.12436 0.734684 0.975564 0.814475

4 without 1.07871 0.720658 0.967549 0.779834

https://doi.org/10.1371/journal.pone.0302545.t004
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shown in Fig 17. The experimental results showed that a complete fused image can be obtained

by experimenting on three different focus angle images.

Conclusions

In this paper, we propose a multi-focus image fusion algorithm based on a multi-scale hybrid

attention residual network. In order to detect the information of the source image completely

and accurately and obtain a high-quality focused decision map, this paper innovates from two

aspects of network structure and loss function respectively. First, the method uses the

Encoder-decoder network, while introducing the multi-scale mixed attention residual block

into the encoder to obtain the focusing characteristics of the source image. Then, it extracts

edge information of the multi-scale features through UDP. Subsequently, the multi-scale

Table 5. Model feasibility analysis.

Approach Parameters Flops Times

CWT 19.7M 182.5G 13s

MWG 22.5M 108.2G 18s

DSIFT 38.5M 118.3G 29s

IDCP-CNN 40.1M 205.1G 35s

MFIF-GAN 15.4M 92.5G 10s

SESF-Fuse 10.1M 42.1G 7s

FGMF 8.3M 50.6G 20s

MFST 12.6M 60.2G 4.1s

Our 10.5M 55.6G 1.5s

https://doi.org/10.1371/journal.pone.0302545.t005

Fig 17. Multi-angle image fusion results.

https://doi.org/10.1371/journal.pone.0302545.g017
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feature information and multi-scale edge information are input into the decoder to reconstruct

the feature image. Finally, the multi-scale feature fusion module is used for feature fusion to

obtain the fused image. Second, a hybrid loss function of Lp and Lssim is introduced in the

design of the loss function to improve the quality of the decision graph generated by the net-

work. The advantages of this paper’s algorithm in multi-aggregate image fusion are verified by

objective index evaluation and subjective visual comparison. The ablation experiments on the

network structure and loss function prove the feasibility of the algorithm design and innova-

tion of this paper, which has practical application value.
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15. Aymaz S, Köse C. A Novel Image Decomposition-Based Hybrid Technique with Super-Resolution

Method for Multi-Focus Image Fusion. Information Fusion. 2018; 45. https://doi.org/10.1016/j.inffus.

2018.01.015

16. Aslantas V, Kurban R. Fusion of multi-focus images using differential evolution algorithm. EXPERT

SYSTEMS WITH APPLICATIONS. 2010; 37:8861–8870. https://doi.org/10.1016/j.eswa.2010.06.011

17. Bai X, Zhang Y, Zhou F, Xue B. Quadtree-based multi-focus image fusion using a weighted focus-mea-

sure. Inf Fusion. 2015; 22:105–118. https://doi.org/10.1016/j.inffus.2014.05.003

18. Li S, Kwok J, Wang Y. Combination of images with diverse focuses using the spatial frequency. Infor-

mation Fusion. 2001; 2:169–176. https://doi.org/10.1016/S1566-2535(01)00038-0

19. Huang W, Jing Z. Evaluation of focus measures in multi-focus image fusion. Pattern Recognition Let-

ters. 2007; 28:493–500. https://doi.org/10.1016/j.patrec.2006.09.005

20. Kauasar N, Majid A. Random forest-based scheme using feature and decision levels information for

multi-focus image fusion. Pattern Analysis and Applications. 2015; 19. https://doi.org/10.1007/s10044-

015-0448-4

21. Zhang Q, Guo BL. Multifocus image fusion using the nonsubsampled contourlet transform. Elsevier.

2009;(7).

22. Zhang Qiang, Liu Yi, Rick, et al. Sparse representation based multi-sensor image fusion for multi-focus

and multi-modality images: A review. Information Fusion. 2018;. https://doi.org/10.1016/j.inffus.2017.

05.006

23. Amin-Naji M, Aghagolzadeh A. Multi-Focus Image Fusion in DCT Domain using Variance and Energy

of Laplacian and Correlation Coefficient for Visual Sensor Networks. Shahrood University of Technol-

ogy. 2018;(2).

24. Liang K, Liguo Z, Kejia Z, Jianguo S, Qilong H, Zilong J, et al. A multi-focus image fusion method via

region mosaicking on Laplacian pyramids. PLoS ONE. 2018; 13(5):e0191085. https://doi.org/10.1371/

journal.pone.0191085

25. Bavirisetti D, Xiao G, Zhao J, Dhuli R, Liu G. Multi-scale Guided Image and Video Fusion: A Fast and

Efficient Approach. Circuits, Systems, and Signal Processing. 2019; 38. https://doi.org/10.1007/

s00034-019-01131-z

26. Paul S, Sevcenco Is, Agathoklis P. Multi-Exposure and Multi-Focus Image Fusion in Gradient Domain.

Journal of Circuits, Systems and Computers. 2016; 25:1650123. https://doi.org/10.1142/

S0218126616501231

27. Li S, Kang X, Fang L, Hu J, Yin H. Pixel-level image fusion: A survey of the state of the art. Information

Fusion. 2017; 33. https://doi.org/10.1016/j.inffus.2016.05.004

28. Liu Y, Chen X, Peng H, Wang Z. Multi-Focus Image Fusion with a Deep Convolutional Neural Network.

Inf Fusion. 2017; 36(C):191–207. https://doi.org/10.1016/j.inffus.2016.12.001

29. Amin-Naji M, Aghagolzadeh A, Ezoji M. Ensemble of CNN for Multi-Focus Image Fusion. Inf Fusion.

2019; 51(C):201–214. https://doi.org/10.1016/j.inffus.2019.02.003

30. Yang Y, Nie Z, Huang S, Lin P, Wu J. Multilevel features convolutional neural network for multifocus

image fusion. IEEE Transactions on Computational Imaging. 2019; 5(2):262–273. https://doi.org/10.

1109/TCI.2018.2889959

31. Tong HS, Wu XJ, Li H. Improved dual channel pulse coupled neural network and its application to multi-

focus image fusion. arXiv preprint arXiv:200201102. 2020;.

32. Guo X, Nie R, Cao J, Zhou D, Qian W. Fully convolutional network-based multifocus image fusion. Neu-

ral computation. 2018; 30(7):1775–1800. https://doi.org/10.1162/neco_a_01098 PMID: 29894654

33. Guo X, Nie R, Cao J, Zhou D, Mei L, He K. FuseGAN: Learning to fuse multi-focus image via conditional

generative adversarial network. IEEE Transactions on Multimedia. 2019; 21(8):1982–1996. https://doi.

org/10.1109/TMM.2019.2895292

PLOS ONE Multi-focused image fusion algorithm based on multi-scale hybrid attention residual network

PLOS ONE | https://doi.org/10.1371/journal.pone.0302545 May 24, 2024 22 / 24

https://doi.org/10.1016/j.inffus.2005.09.006
https://doi.org/10.1016/j.inffus.2005.09.006
https://doi.org/10.1006/gmip.1995.1022
https://doi.org/10.1016/j.sigpro.2005.06.015
https://doi.org/10.1016/j.inffus.2011.01.002
https://doi.org/10.1016/j.sigpro.2012.01.027
https://doi.org/10.1016/j.inffus.2018.01.015
https://doi.org/10.1016/j.inffus.2018.01.015
https://doi.org/10.1016/j.eswa.2010.06.011
https://doi.org/10.1016/j.inffus.2014.05.003
https://doi.org/10.1016/S1566-2535(01)00038-0
https://doi.org/10.1016/j.patrec.2006.09.005
https://doi.org/10.1007/s10044-015-0448-4
https://doi.org/10.1007/s10044-015-0448-4
https://doi.org/10.1016/j.inffus.2017.05.006
https://doi.org/10.1016/j.inffus.2017.05.006
https://doi.org/10.1371/journal.pone.0191085
https://doi.org/10.1371/journal.pone.0191085
https://doi.org/10.1007/s00034-019-01131-z
https://doi.org/10.1007/s00034-019-01131-z
https://doi.org/10.1142/S0218126616501231
https://doi.org/10.1142/S0218126616501231
https://doi.org/10.1016/j.inffus.2016.05.004
https://doi.org/10.1016/j.inffus.2016.12.001
https://doi.org/10.1016/j.inffus.2019.02.003
https://doi.org/10.1109/TCI.2018.2889959
https://doi.org/10.1109/TCI.2018.2889959
https://doi.org/10.1162/neco_a_01098
http://www.ncbi.nlm.nih.gov/pubmed/29894654
https://doi.org/10.1109/TMM.2019.2895292
https://doi.org/10.1109/TMM.2019.2895292
https://doi.org/10.1371/journal.pone.0302545


34. Guo X, Meng L, Mei L, Weng Y, Tong H. Multi-focus image fusion with Siamese self-attention network.

IET Image Processing. 2020; 14(7):1339–1346. https://doi.org/10.1049/iet-ipr.2019.0883

35. Wang Y, Shuang X, Liu J, Zhao Z, Zhang C, Zhang J. MFIF-GAN: A new generative adversarial network

for multi-focus image fusion. Signal Processing: Image Communication. 2021; 96:116295. https://doi.

org/10.1016/j.image.2021.116295

36. Ma B, Zhu Y, Yin X, Ban X, Huang HY, Mukeshimana M. SESF-Fuse: an unsupervised deep model for

multi-focus image fusion. Neural Computing and Applications. 2021; 33:1–12. https://doi.org/10.1007/

s00521-020-05358-9

37. Xu H, Fan F, Zhang H, Le Z, Huang J. A Deep Model for Multi-Focus Image Fusion Based on Gradients

and Connected Regions. IEEE Access. 2020; PP:1–1. https://doi.org/10.1109/ACCESS.2020.2971137

38. Xu K, Qin Z, Wang G, Zhang H, Huang K, Ye S. Multi-focus Image Fusion using Fully Convolutional

Two-stream Network for Visual Sensors. KSII Transactions on Internet and Information Systems. 2018;

12:2253–2272. https://doi.org/10.1109/10.3837/tiis.2018.05.019

39. Zhao W, Wang D, Lu H. Multi-Focus Image Fusion With a Natural Enhancement via a Joint Multi-Level

Deeply Supervised Convolutional Neural Network. IEEE Transactions on Circuits and Systems for

Video Technology. 2018; PP:1–1. https://doi.org/10.1109/TCSVT.2018.2821177

40. Li H, Nie R, Cao J, Guo X, Zhou D, He K. Multi-Focus Image Fusion Using U-Shaped Networks With a

Hybrid Objective. IEEE Sensors Journal. 2019; PP:1–1. https://doi.org/10.1109/JSEN.2019.2928818

41. Li J, Guo X, Lu G, Zhang B, Xu Y, Wu F, et al. DRPL: Deep Regression Pair Learning for Multi-Focus

Image Fusion. Trans Img Proc. 2020; 29:4816–4831. https://doi.org/10.1109/TIP.2020.2976190 PMID:

32142440

42. Huang J, Le Z, Ma Y, Mei X, Fan F. A generative adversarial network with adaptive constraints for multi-

focus image fusion. Neural Computing and Applications. 2020; 32:15119–15129. https://doi.org/10.

1007/s00521-020-04863-1

43. Duan Z, Zhang T, Luo X, Tan J. DCKN: Multi-focus Image Fusion via Dynamic Convolutional Kernel

Network. Signal Processing. 2021; 189:108282. https://doi.org/10.1016/j.sigpro.2021.108282

44. Xiao B, Wu H, Bi X. DTMNet: A Discrete Tchebichef Moments-based Deep Neural Network for Multi-

focus Image Fusion. In: 2021 IEEE/CVF International Conference on Computer Vision (ICCV); 2021.

p. 43–51.

45. Li J, Fang F, Mei K, Zhang G. Multi-scale Residual Network for Image Super-Resolution. In: Proceed-

ings of the European Conference on Computer Vision (ECCV); 2018. p. 517–532.

46. Li Z, Yang J, Liu Z, Yang X, Jeon G, Wu W. Feedback network for image super-resolution. In: Proceed-

ings of the IEEE/CVF conference on computer vision and pattern recognition; 2019. p. 3867–3876.

47. Hu Y, Gao X, Li J, Huang Y, Wang H. Single image super-resolution with multi-scale information cross-

fusion network. Signal Processing. 2021; 179:107831. https://doi.org/10.1016/j.sigpro.2020.107831

48. Lu T, Wang Y, Wang J, Liu W, Zhang Y. Single Image Super-Resolution via Multi-Scale Information

Polymerization Network. IEEE Signal Processing Letters. 2021; 28:1305–1309. https://doi.org/10.1109/

LSP.2021.3084522

49. Wang L, Dong X, Wang Y, Ying X, Lin Z, An W, et al. Exploring Sparsity in Image Super-Resolution for

Efficient Inference. In: 2021 IEEE/CVF Conference on Computer Vision and Pattern Recognition

(CVPR); 2021. p. 4915–4924.

50. Lei D, Ran G, Zhang L, Li W. A Spatiotemporal Fusion Method Based on Multiscale Feature Extraction

and Spatial Channel Attention Mechanism. Remote Sensing. 2022; 14(3). https://doi.org/10.3390/

rs14030461

51. Fu J, Li W, Du J, Huang Y. A multiscale residual pyramid attention network for medical image fusion. Bio-

medical Signal Processing and Control. 2021; 66:102488. https://doi.org/10.1016/j.bspc.2021.102488

52. Zhang Y, Tian Y, Kong Y, Zhong B, Fu Y. Residual dense network for image super-resolution. In: Pro-

ceedings of the IEEE conference on computer vision and pattern recognition; 2018. p. 2472–2481.

53. Ajith M, Kurup AR, Martı́nez-Ramón M. Time accelerated image super-resolution using shallow residual

feature representative network. arXiv preprint arXiv:200404093. 2020;.

54. Cai X, Wallis CG, Chan JY, McEwen JD. Wavelet-based segmentation on the sphere. Pattern Recogni-

tion. 2020; 100:107081. https://doi.org/10.1016/j.patcog.2019.107081

55. Panigrahy C, Seal A, Mahato NK. Fractal dimension based parameter adaptive dual channel PCNN for

multi-focus image fusion. Optics and Lasers in Engineering. 2020; 133:106141. https://doi.org/10.1016/

j.optlaseng.2020.106141

56. Hayat N, Imran M. Ghost-free multi exposure image fusion technique using dense SIFT descriptor and

guided filter. Journal of Visual Communication and Image Representation. 2019; 62:295–308. https://

doi.org/10.1016/j.jvcir.2019.06.002

PLOS ONE Multi-focused image fusion algorithm based on multi-scale hybrid attention residual network

PLOS ONE | https://doi.org/10.1371/journal.pone.0302545 May 24, 2024 23 / 24

https://doi.org/10.1049/iet-ipr.2019.0883
https://doi.org/10.1016/j.image.2021.116295
https://doi.org/10.1016/j.image.2021.116295
https://doi.org/10.1007/s00521-020-05358-9
https://doi.org/10.1007/s00521-020-05358-9
https://doi.org/10.1109/ACCESS.2020.2971137
https://doi.org/10.1109/10.3837/tiis.2018.05.019
https://doi.org/10.1109/TCSVT.2018.2821177
https://doi.org/10.1109/JSEN.2019.2928818
https://doi.org/10.1109/TIP.2020.2976190
http://www.ncbi.nlm.nih.gov/pubmed/32142440
https://doi.org/10.1007/s00521-020-04863-1
https://doi.org/10.1007/s00521-020-04863-1
https://doi.org/10.1016/j.sigpro.2021.108282
https://doi.org/10.1016/j.sigpro.2020.107831
https://doi.org/10.1109/LSP.2021.3084522
https://doi.org/10.1109/LSP.2021.3084522
https://doi.org/10.3390/rs14030461
https://doi.org/10.3390/rs14030461
https://doi.org/10.1016/j.bspc.2021.102488
https://doi.org/10.1016/j.patcog.2019.107081
https://doi.org/10.1016/j.optlaseng.2020.106141
https://doi.org/10.1016/j.optlaseng.2020.106141
https://doi.org/10.1016/j.jvcir.2019.06.002
https://doi.org/10.1016/j.jvcir.2019.06.002
https://doi.org/10.1371/journal.pone.0302545


57. Song X, Wei J, Song L. Synthetic multi-focus optical-resolution photoacoustic microscope using multi-

scale weighted gradient-based fusion. In: Advanced Optical Imaging Technologies III. vol. 11549.

SPIE; 2020. p. 83–89.

58. Ma X, Wang Z, Hu S, Kan S. Multi-focus image fusion based on multi-scale generative adversarial net-

work. Entropy. 2022; 24(5):582. https://doi.org/10.3390/e24050582 PMID: 35626467

59. Mao Q, Yang X, Zhang R, Jeon G, Hussain F, Liu K. Multi-focus images fusion via residual generative

adversarial network. Multimedia Tools and Applications. 2022; 81(9):12305–12323. https://doi.org/10.

1007/s11042-021-11278-0

60. Tian B, Yang L, Dang J. Fine-grained multi-focus image fusion based on edge features. Scientific

Reports. 2023; 13(1):2478. https://doi.org/10.1038/s41598-023-29584-y PMID: 36774391

61. Duan Z, Luo X, Zhang T. Multi-focus image fusion using structure-guided flow. Image and Vision Com-

puting. 2023; 138:104814. https://doi.org/10.1016/j.imavis.2023.104814

PLOS ONE Multi-focused image fusion algorithm based on multi-scale hybrid attention residual network

PLOS ONE | https://doi.org/10.1371/journal.pone.0302545 May 24, 2024 24 / 24

https://doi.org/10.3390/e24050582
http://www.ncbi.nlm.nih.gov/pubmed/35626467
https://doi.org/10.1007/s11042-021-11278-0
https://doi.org/10.1007/s11042-021-11278-0
https://doi.org/10.1038/s41598-023-29584-y
http://www.ncbi.nlm.nih.gov/pubmed/36774391
https://doi.org/10.1016/j.imavis.2023.104814
https://doi.org/10.1371/journal.pone.0302545

