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Abstract

At present, the mechanism of fluorosis-induced damage to the hepatic system is unclear.
Studies have shown that excess fluoride causes some degree of damage to the liver, includ-
ing inflammation. The SDF-1/CXCR4 signaling axis has been reported to have an impact on
the regulation of inflammation in human cells. In this study, we investigated the role of the
SDF-1/CXCR4 signaling axis and related inflammatory factors in fluorosis through in vitro
experiments on human hepatic astrocytes (LX-2) cultured with sodium fluoride. CCK-8
assays showed that the median lethal dose at 24 h was 2 mmol/l NaF, and these conditions
were used for subsequent enzyme-linked immunosorbent assays (ELISAs) and quantitative
real-time polymerase chain reaction (QPCR) analysis. The protein expression levels of SDF-
1/CXCR4 and the related inflammatory factors nuclear factor-kB (NF-«B), interleukin-6 (IL-
6), tumor necrosis factor-a (TNF-a) and interleukin 18 (IL-13) were detected by ELISAs
from the experimental and control groups. The mMRNA expression levels of these inflamma-
tory indicators were also determined by qPCR in both groups. Moreover, the expression lev-
els of these factors were significantly higher in the experimental group than in the control
group at both the protein and mRNA levels (P < 0.05). Excess fluorine may stimulate the
SDF-1/CXCR4 signaling axis, activating the inflammatory NF-kB signaling pathway and
increasing the expression levels of the related inflammatory factors IL-6, TNF-a and IL-1.
Identification of this mechanism is important for elucidating the pathogenesis of fluorosis-
induced liver injury.

1. Introduction

Fluorosis affects not only the liver system but also other systems of the body. Different types of
fluorosis cause different types of damage to the human body, which has been reported in
domestic and international studies. Dental fluorosis was observed in some areas of Mexico as
early as 1888, but it was not until 1931 that the link between fluoride in drinking water and

PLOS ONE | https://doi.org/10.1371/journal.pone.0302530 June 21, 2024

1/13


https://orcid.org/0009-0005-6804-6536
https://orcid.org/0009-0004-3515-2191
https://doi.org/10.1371/journal.pone.0302530
http://crossmark.crossref.org/dialog/?doi=10.1371/journal.pone.0302530&domain=pdf&date_stamp=2024-06-21
http://crossmark.crossref.org/dialog/?doi=10.1371/journal.pone.0302530&domain=pdf&date_stamp=2024-06-21
http://crossmark.crossref.org/dialog/?doi=10.1371/journal.pone.0302530&domain=pdf&date_stamp=2024-06-21
http://crossmark.crossref.org/dialog/?doi=10.1371/journal.pone.0302530&domain=pdf&date_stamp=2024-06-21
http://crossmark.crossref.org/dialog/?doi=10.1371/journal.pone.0302530&domain=pdf&date_stamp=2024-06-21
http://crossmark.crossref.org/dialog/?doi=10.1371/journal.pone.0302530&domain=pdf&date_stamp=2024-06-21
https://doi.org/10.1371/journal.pone.0302530
https://doi.org/10.1371/journal.pone.0302530
https://doi.org/10.1371/journal.pone.0302530
http://creativecommons.org/licenses/by/4.0/

PLOS ONE

Expression of SDF-1/CXCR4 and related inflammatory factors in sodium fluoride-treated hepatocytes

Funding: The second integrated scientific
investigation and research support of the Tibetan
Plateau, approval number 2019QZKK0607 The
funders had no role in study design, data collection
and analysis, decision to publish, or preparation of
the manuscript.

Competing interests: The authors have declared
that no competing interests exist.

dental fluorosis was uncovered [1]. Tooth development is closely related to the functions of
enamel-forming cells, and Bronckers [2] concluded that high levels of fluoride can directly
affect osteoblasts. In China, three main types of fluorosis are endemic: drinking-water fluoro-
sis, coal-burning fluorosis and tea-drinking fluorosis [3]. There are approximately 60 tea-pro-
ducing countries in the world, and the number of tea drinkers exceeds 2 billion [4]. In
contrast, drinking water fluorosis is still one of the most severe types of fluorosis in China [5].
In highly fluoridated areas, local people have experienced some degree of bone damage due to
drinking water with a high fluoride content [6]. Coal-burning fluorosis is also common in
China, mainly in the southwest [7, 8]. Approximately 43% of the districts and counties in Gui-
zhou Province, China, were reported to be impacted by fluorosis, and more than half of the
individuals in these areas suffer from fluorosis [9]. With global economic development and
changes in industry and lifestyle, the prevalence of endemic fluorosis has significantly
decreased, but groundwater fluoride contamination and tea-drinking fluorosis are still preva-
lent in some areas [10-13]. Thus, fluorosis remains a global public health problem that cannot
be ignored, and effective control of fluorosis is important for improving quality of life.

Fluorine is an essential trace element that often exists in natural compounds and can be bio-
active in humans. The intake of an appropriate amount of fluorine is beneficial, for example,
for caries prevention and treatment [14]. Excessive intake of elemental fluoride, however, can
cause damage to bones and other important organs in the body [15], such as the cardiovascular
and hepatic systems and teeth [16-19]. According to epidemiological investigations and in
vitro and in vivo experimental studies, fluorosis may cause a certain degree of damage to the
liver, inducing hepatic glucose and lipid metabolic dysfunction, and at the cellular level, fluo-
rosis can cause swelling of the endoplasmic reticulum and mitochondria, reduced nuclear vol-
ume, nuclear membrane wrinkling and other defects in hepatocytes [20, 21]. Fluorosis was
shown to increase the levels of inflammatory factors [22]. However, the pathogenesis of the
resulting liver inflammation is unclear.

Currently, signaling pathways are a hot topic in the study of the pathogenesis of fluorosis.
The stromal cell-derived factor 1 (SDF-1) and chemokine receptor 4 (CXCR4) signaling axes
are important for regulating inflammation in the human body [23-25]. CXCR4 is a member
of the G protein-coupled receptor superfamily and, along with its specific ligand SDF-1, also
known as C-X-C motif chemokine ligand 12, forms a chemokine network that is involved in
physiological processes such as cellular immunity, inflammatory cell metastasis, and cell prolif-
eration in humans. Chemokines are a large group of small-molecule inflammatory cytokines
with molecular weights in the range of 8-12 kDa that act by binding to the corresponding G
protein-coupled seven transmembrane receptors present on the surface of target cells to per-
form various physiological functions [26-28]. The expression of SDF-1/CXCR4 signaling axis
members has been reported to be significantly greater in the serum of patients with osteo-
fluorosis than in that of controls, and the expression level of the inflammatory factor NF-xB
was positively correlated with chemokine levels [29]. Activation of the NF-kB pathway is
closely linked to inflammatory mechanisms in disease [30-32]. The typical NF-«xB pathway
induces the production of proinflammatory cytokines such as TNF-o. and IL-1f in the innate
immune system to mediate inflammatory responses. In addition, the SDF-1/CXCR4 signaling
axis was shown to activate the NF-xB signaling pathway to participate in the inflammatory
response [33-35], suggesting that the SDF-1/CXCR4-NF-«B signaling pathway may play a
role in the pathogenesis of fluorosis. Both the SDF-1/CXCR4 signaling axis and the NF-kB sig-
naling pathway can recruit and mobilize inflammatory factors, which may act as signature
downstream signaling molecules [36-38]. The mechanism of the SDF-1/CXCR4 signaling axis
and its related inflammatory factors NF-«xB, IL-6, IL-18 and TNF-o in the context of the patho-
genesis of fluorosis has been poorly studied, and differences in the expression of the above
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proteins have been reported only in serum samples from individuals in areas with fluorosis
[29]. Therefore, the present study aimed to further investigate the role of the CXCL12/CXCR4
signaling axis and the related inflammatory factors IL-1f, TNF-o, IL-6 and NF-«B in the
mechanism of fluorosis-induced liver injury at the cellular level.

Although inflammatory damage has not been conclusively established in the pathogenesis
of fluorosis, several studies have shown a correlation between these factors. Whether inflam-
matory factors such as SDF-1/CXCR4, IL-6, TNF-a, NF-«B, and IL-1p play a role in the
hepatic system due to fluorosis deserves further exploration.

In this study, LX-2 cells were cultured with sodium fluoride for in vitro experiments, and
cell survival was evaluated via the CCK-8 method. Hematoxylin and eosin (HE) staining was
used to observe the growth and morphology of the cells in each group, and the expression lev-
els of SDF-1 and CXCR4, as well as those of inflammatory factors related to the SDF-1/CXCR4
signaling pathway, such as IL-6, TNF-o, NF-xB, and IL-1f, were analyzed to determine the
mechanism of fluoride intoxication-induced liver inflammation. These results provide a basis
for understanding the mechanism of hepatic inflammation caused by fluorosis.

2. Materials and methods
2.1. Cell culture

Human liver astrocytes (LX-2, 1 vial, model T25) were purchased from Wuhan Procell Life
Sciences Co. The cells were cultured in a humidified incubator at 37°C with 5% CO, for 48 h.
When the cell confluence was greater than 80%, the cells were cultured in a humidified incuba-
tor at 37°C with 5% CO, and rinsed twice with 2 ml of 1x PBS (Thermo Fisher Scientific,
China). Then, 1 ml of trypsin-EDTA (Thermo Fisher Scientific, China) was added to digest
the adherent cells, and the cells were placed in a 37°C and 5% CO, incubator for 3 min. Then,
4 ml of LX-2 medium was added to the T25 cell culture flasks (Wuhan Procell Life Sciences
Co., Ltd., China) to terminate tryptic digestion and mixed with a sterile pasteurized pipette to
resuspend the cells. Then, the cells were transferred to 15 ml sterile and enzyme-free centrifuge
tubes (Thermo Fisher Scientific, Ltd., China), centrifuged at 1200 x g for 3 min, and resus-
pended in an appropriate volume of medium for transfer to new culture flasks incubated at
37°Cand 5% CO, to continue the cultivation of the cell lines. The present study used cells
from the 3rd-7th passages.

2.2. Sodium fluoride for cell treatments

Sodium fluoride (10.5 g, Tianjin Yong da Chemical Reagent Co., Ltd., China) was dissolved in
500 ml of 1x PBS solution and filtered through a membrane to remove any bacteria, and the
concentration was adjusted to 500 mmol/l. Complete media with different NaF concentrations
were prepared according to each group, as shown in Table 1. After LX-2 cells were cultured at
37°Cin a 5% CO, incubator for 24 h, the cells were treated with fluorine (n = 4).

Table 1. Table of configurations for different NaF concentrations.

LX-2 special medium content (ml) Amount of 500 mmol/l NaF added (pl) Total volume (ml)

0.5 9.99 10 10
1 9.98 20 10
2 9.96 40 10
4 9.92 80 10
8 9.84 160 10

https://doi.org/10.1371/journal.pone.0302530.t001
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2.3. CCK-8 assay for cell viability

Cells (Nanjing Novozymes Bioscience and Technology Co., Ltd., China) were aliquoted into
96-well plates containing 2,000 cells/ml and incubated for 24 h, after which the culture
medium was removed when the cell wall density was greater than 80%. The cells were rinsed
twice with PBS, and a blank group, a control group (0 mmol/l NaF), and experimental groups
with different concentrations of NaF (0.5, 1, 2, 4, and 8 mmol/l NaF) were prepared. For each
well, except for those for the blank group, 200 pl of cell culture medium was added, and the
cells were incubated for 12 h, 24 h or 48 h. Then, 10 ul of CCK-8 reagent was added, and the
cells were incubated for 1 h in the dark. A fully automated enzyme labeling instrument
(Thermo Fisher Scientific, China) was used to determine the OD value of each group at 450
nm, and cell viability (%) was calculated as (OD of the experimental wells-OD of the blank
wells/OD of the control wells) x 100% (n = 4).

2.4. HE staining

LX-2 cell cultures were fixed with 4% paraformaldehyde for 5-10 min, washed with water for 1
min, treated with HD Constant Staining Pretreatment Solution for 1 min, and sequentially
stained with appropriate amounts of hematoxylin and eosin staining solution. Finally, the cells
were fixed with neutral resin, and the morphology of LX-2 hepatocytes was observed under a
light microscope.

2.5. Enzyme-Linked Immunosorbent Assays (ELISAs) of the expression of
each target protein in the cell supernatant and cell extract of each group of
cells

CXCR4, SDF-1, IL-1B, TNF-a, IL-6 and NF-«xB ELISA kits were obtained from Nanjing Boyan
Biotechnology Co., Ltd. (China). Cell supernatant collection: Cell supernatants were collected
by centrifugation of each test group at 20 min (3000 r/min) and stored at -20°C to avoid
repeated freezing and thawing. Cell extract collection: adherent cells were washed with PBS at
4°C and digested with trypsin, and then, the cells were collected after 5 min (1000 r/min) and
washed with PBS 3 times. Then, 200 pl of 1x PBS was added to resuspend the cells, the cells
were ruptured by repeated freezing and thawing, and the supernatant was collected for evalua-
tion. The expression level of each target protein in the cell supernatant was detected by an
enzyme labeling instrument (450 nm). The kits were left at room temperature for 30 min before
use. For the wash buffer, the concentrate in the kit was diluted with distilled water at 1:20.

All reagents and samples were used at room temperature. Blank wells (no sample or stan-
dard added), standard wells (50 pl of standards at different concentrations) and sample wells
(50 pl of samples to be tested) were prepared, and 2 replicate wells were prepared for each
group. Horseradish peroxidase (HRP)-labeled antibody (100 pl) was added to each of the
wells. The plate was sealed using plate sealing film and incubated for 60 min at 37°C in a water
bath or thermostat. The liquid was discarded, 300 pl of wash solution was added to each well,
and the plate was washed for 20 s and patted dry on absorbent paper; the washes were repeated
5 times. Then, 50 pl each of chromatography substrates A and B was added to each well and
incubated at 37°C for 15 min. Finally, 50 pl of termination solution was added to each well, the
color changed from blue to yellow, and readings were taken within 15 min.

2.6. RNA extraction

Total RNA was extracted with a Total RNA Extraction Kit (All Specialty Gold Biotechnology
Co., Ltd., Beijing, China). Then, cDNA was synthesized with a Reverse Transcription Kit (All
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Specialty Gold Biotechnology Co., Ltd., Beijing, China) for gene fragment detection; gene frag-
ments were amplified, and the optimal primers as determined by the HIFI RCR enzyme (All
Specialty Gold Biotechnology Co., Ltd., Beijing, China) and HIFI RCR enzyme (Beijing Total
Gold Biotechnology Co., Ltd., Beijing, China) were used to amplify the gene fragments at the
optimal primer annealing temperature. A fully automated enzyme labeling instrument
(Thermo Fisher Scientific) was used to determine the CXCR4, SDF-1, IL-1B, TNF-q, IL-6, and
NF-kB mRNA levels as well as the A260/280 ratio. Agarose electrophoresis buffer (LABJIC
Biotechnology Co., Ltd., Beijing, China) was used to prepare a 1% agarose gel to determine the
RNA concentration.

2.7. Real-time quantitative Polymerase Chain Reaction (QPCR)

Each reaction contained 0.4 pl of upstream primer, 0.4 pl of related primer, 0.8 ul of template,
10 pl of 2x PerfectStart Green qPCR SuperMix (Beijing Quan Shi Jin Biotechnology Co., Ltd.,
Beijing, China), 0.4 pl of Passive Reference Dye (50x), and 8 ul of nuclease-free water for a
total volume of 20 pl. Seven pairs of primers were designed by Sangyo Bioengineering Co.,
Ltd. (Shanghai, China); the primer names, primer sequences, gene IDs, and primer lengths are
shown in Table 2. The experimental conditions were 94°C for 30's, 59.6°C for 15 s, and 72°C
for 10 s (44 cycles). The experimental results were obtained by repeating the experiment three
times and taking the average value. The mRNA expression of the target genes CXCR4, SDF-1,
IL-1B, TNF-a, IL-6 and NF-kB was calculated by the 2"**“" method using glyceraldehyde
dehydrogenase 3-phosphate (GAPDH) as the internal reference gene (n = 6).

2.8. Statistical analysis

Excel was used for data entry and the development of statistical tables, GraphPad Prism 8.0.2
was used to generate statistical graphs, and SPSS 22.0 was used to statistically analyze the
experimental and control groups; a t test was used for data that were normally distributed and
exhibited homogeneity of variance, and the Mann-Whitney test was used for data that did not
satisfy these conditions. Measurement data are expressed as the mean + standard deviation (+
s), test level o = 0.05, and P < 0.05 indicated significance.

Table 2. Primer sequences, gene numbers and product amplification lengths.

Gene

GAPDH

CXCR4

SDE-1

NF-xB

IL-1B

IL-6

TNF-a

Primer sequences Product length (bp) Gene ID
F: GAGGAGGCATTGCTGATGAT 20 NM_002046.7
R: GAAGGCTGGGGCTCATTT 18
F: CTCCTCTTTGTCATCACGCTTCC 23 NM_001008540
R: GGATGAGGACACTGCTGTAGAG 22
F: GGGAAGACCCGTGTTACCAG 20 NM_199168.4
R: AGTCCAGCCTGCTATCCTCA 20
F: TGTGTTTGTCCAGCTTCG 18 NM_001165412.2
R: GCTTCTGACGTTTCCTCTG 19
F: TCGCCAGTGARATGATGGCT 20 NM_000576
R: TGAAGCCCTTGCTGTAGTGG 20
F: GAGGAGACTTGCCTGGTGAA 20 NM_000600.5
R: CAGCTCTGGCTTGTTCCTCA 20
F: ATGAGCACTGARAAGCATGATCC 22 NM_000594.4
R: AGGAGAAGAGGCTGAGGAACAAG 23

Gene numbers and product amplification lengths

https://doi.org/10.1371/journal.pone.0302530.t002
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3. Results

3.1. Effects of different exposure times and sodium fluoride concentrations
on the survival of human LX-2 cells

We first investigated the effects of different concentrations of sodium fluoride and different
fluoride staining times on cell survival by using CCK-8 assays. The results showed that with
different concentrations (0, 0.5, 1, 2, 4 and 8 mmol/l) of NaF, the survival rate of the cells grad-
ually decreased with increasing fluoride concentration, and the LD50 values for LX-2 cells at
12 h, 24 h and 48 h were all approximately 2 mmol/l NaF (see Fig 1). Therefore, 2 mmol/l NaF
was selected as the treatment concentration for the subsequent experiments.

The above figure shows the morphology of normal hepatocytes and sodium fluoride-treated
LX-2 hepatocytes under a light microscope. Sodium fluoride was added at a concentration of 2
mmol/l for a period of 24 h. The cells in the fluoride-treated group were relatively rounded or
swollen; moreover, the nuclei were more centralized, and the cytoplasm was dramatically
smaller in volume. Finally, the cellular arrangement was disorganized, and the interstitial
space between the cells was enlarged, among other phenomena (see Fig 2).

3.2. Increased expression of inflammatory factors in the supernatants of
NaF-treated hepatocytes

The OD values of the experimental group and the control group were determined at 450 nm
by an enzyme marker, and ¢ tests were used to identify any difference between the OD values
of the two groups. ELISA results showed that the expression of CXCR4, SDF-1, IL-1f, TNF-o,
IL-6 and NF-kB-specific proteins was significantly increased in the fluoride-treated cell group
compared to the control group (P < 0.05), as shown in Table 3 and Fig 3.

3.3. Increased expression of inflammatory factors in NaF-treated
hepatocyte extracts

ELISAs of cell extracts showed that CXCR4, SDF-1 (CXCL12), IL-1B, TNF-o, IL-6, and NF-xB
protein expression was significantly increased in the fluoride-treated cell group compared to
the control group (P < 0.05), as shown in Table 4 and Fig 4.

-~ 12h

)
-
N
T

24h
-+ 48h

Relative cell Livability(%

NaF(mmol/L)

Fig 1. Effects of sodium fluoride exposure time and concentration on the viability of LX-2 cells determined by
CCK-8 assays (meant SE, n = 4).

https://doi.org/10.1371/journal.pone.0302530.9001
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100 um 100 um
100 pm . 100 pm
100 um 100 um

Control (X10)

Fig 2. Results of HE staining of cells (n = 3).

NaF (X10)

https://doi.org/10.1371/journal.pone.0302530.9002

Cell extracts were obtained by repeatedly freezing and thawing the cells, and the lysates
were centrifuged to determine whether inflammatory factor receptors were expressed in the
cells. The cell supernatants were directly centrifuged and used to determine whether inflam-
matory factor receptors were expressed on the surface of the cell membranes. ELISAs of both
the cell extracts and the cell supernatants showed that fluoride significantly increased the
expression of cellular inflammatory factors at this concentration.

3.4. Analysis of the qPCR results

Fluorescent dyes were added to the PCR system, and fluorescent signal accumulation was used
to monitor the PCR process. We used GAPDH as the internal reference gene, and the 2-AACT

Table 3. Expression levels of CXCR4, IL-1pB, IL-6, SDF-1, TNF-a and NF-«B in the cell supernatants of the fluoride-treated and control groups (x+s).

Testing indicators CXCR4 (ng/ml) | IL-1p (pg/ml) | IL-6 (pg/ml) | SDF-1 (ng/ml) | TNF-a (pg/ml) | NF-kB (pg/ml)
Number of samples in the fluoride group (1) 4 4 4 4 4 4
Sample size of the control group (1) 4 4 4 4 4 4
Indicator expression in the fluoride-treated groups 2.13+0.07* 15.5+0.29 * 28.61+2.55" 2.2+0.12° 13.52+0.27% 415.40+14.72%
Expression of indicator in the control group 1.79+0.04 13.37+0.09 9.84+0.49 1.68+0.04 11.55+0.51 295.28+11.31
t 4.30 6.97 7.24 4.17 3.40 6.47
P <0.05 <0.05 <0.05 <0.05 <0.05 <0.05

Note:

? P < 0.05 compared to the same indicator in the control group the ¢ value is from a two-sample ¢ test, n = 4

https://doi.org/10.1371/journal.pone.0302530.t003
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Fig 3. Expression level of each target protein in the supernatants of the fluoride-treated and control cells (mean+SE,
n=4).*P <0.05, **P < 0.01, and ***P < 0.001 compared with the control group.

https://doi.org/10.1371/journal.pone.0302530.9003

method was used to calculate the mRNA levels of CXCR4, SDF-1, IL-1B, TNF-q, IL-6 and NF-
kB, in the fluoride group and the control group, as shown in Fig 5.

We concluded that fluoride enhanced the SDF-1/CXCR4 signaling axis and the inflamma-
tory factors IL-1B, TNF-o, IL-6 and NF-«B in normal hepatocytes, both in terms of gene
expression and protein expression, as shown by ELISA and qPCR.

4. Discussion

Fluorosis occurs in many regions of the world and affects human quality of life to a certain
extent not only by placing an economic burden on families but also by impeding the economic

Table 4. Expression levels of SDF-1, TNF-a, NF-kB, CXCR4, IL-1p and IL-6 in cell extracts from the fluoride-treated and control groups (x+s).

Testing indicators SDF-1 (ng/ml) | TNF-a (pg/ml) | NF-xB (pg/ml) | CXCR4 (ng/ml) | IL-1 (pg/ml) | IL-6 (pg/ml)
Number of samples in the fluoride group () 4 4 4 4 4 4
Sample size of the control group (1) 4 4 4 4 4 4
Indicator expression in the fluoride-contaminated groups 5.08+0.32" 41.99+1.91% 713.18+39.38° 5.74+0.38" 65.19+1.76 * | 35.49+1.82%
Expression of indicator in the control group 3.94+0.21 52.10£3.33 523.17+36.27 4.28+0.37 46.93+1.80 25.47+2.50
t 3.00 2.64 3.55 2.73 7.23 3.25
P <0.05 <0.05 <0.05 <0.05 <0.05 <0.05

Note:
“ P < 0.05 compared to the same indicator in the control group the ¢ value is a two-sample ¢ test, n = 4

https://doi.org/10.1371/journal.pone.0302530.1004
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Fig 4. Expression level of each target protein in cell extracts from the fluoride-treated and control cells (mean+SE,
n=4).*P < 0.05and **P < 0.01 compared with the control group.

https://doi.org/10.1371/journal.pone.0302530.9004

development of a region [39]. However, the pathogenesis of fluorosis has not yet been deter-

mined, although fluorosis is known to involve mainly oxidative stress, endoplasmic reticulum

stress, and signaling pathways that can damage human tissues or organs [40-42]. Although

inflammatory damage is not widely recognized as a major component of fluorosis, fluorosis

has been shown to cause increased expression of inflammatory factors such as IL-6 [43, 44].

Thus, inflammatory damage may be one of the pathogenic mechanisms leading to fluorosis,

but whether this damage plays a role in specific cases needs to be evaluated on a case-by-case

basis. SDF-1/CXCR4, as important signaling pathways, recruits cellular immune factors to par-

ticipate in the body’s inflammatory response [45, 46]. In the present study, human LX-2 cells

were treated with different concentrations of NaF in vitro, and the cell survival rate was
detected via the CCK-8 method. The LD50 value, which was found to be 2 mmol/l after fluori-
dation with different concentrations of NaF (0.5, 1, 2, 4, and 8 mmol/l) for 12, 24, and 48 h,
was selected as the appropriate concentration for further experiments. We analyzed the mor-

phology of the cells before and after fluoride treatment, as well as the mRNA and protein
expression of each target, CXCR4, CXCL12, NF-kB, IL-6, IL-1p and TNF-o. One limitation of
the present study is that we did not explore the relationship between the signaling axis and
inflammatory factors, which needs to be explored by signaling pathway antagonist experi-
ments. However, the present cellular experiments successfully identified the SDF-1/CXCR4
signaling axis, and the related inflammatory factors NF-«B, IL-6, IL-1B, and TNF-o. were
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Fig 5. mRNA expression levels of the indicators in the fluoride group and the control group (****P < 0.001, mean
+SE, n=6).
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expressed at high levels in hepatocytes treated with high concentrations of fluoride. We found
that the gene and protein expression levels of SDF-1/CXCR4 signaling axis members in the
fluoride group were significantly greater than those in the blank control group, and the mRNA
expression levels of inflammatory molecules such as NF-«xB, IL-6, IL-1f, and TNF-o. were con-
sistent with those of the SDF-1/CXCR4 signaling axis in both groups. We speculated that fluo-
ride could lead to upregulated expression of genes and proteins in the SDF-1/CXCR4 signaling
axis in hepatocytes and subsequently activate the NF-xB signaling pathway to release excessive
inflammatory factors such as IL-6, IL-1p and TNF-o. The association between the pathogene-
sis of inflammation in fluorosis and signaling pathways may be confirmed by further investi-
gating signaling pathway antagonists that block signaling pathways to explore the expression
of inflammatory factors. As the factors that cause inflammation are very complex, the present
findings may also suggest synergistic activation of the NF-kB signaling pathway and other sig-
naling pathways, which are involved in the release of the inflammatory factors IL-6, IL-1f, and
TNF-o [47]. However, the underlying mechanism needs to be further studied.

5. Conclusion

Excessive sodium fluoride induced an increase in the expression of the hepatic cellular inflam-
matory factors IL-6, TNF-o. and IL-1p as well as the chemokine signaling axis SDF-1/CXCR4
and the inflammatory signaling pathway NF-«B.
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