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Abstract

Digital speech recognition is a challenging problem that requires the ability to learn complex

signal characteristics such as frequency, pitch, intensity, timbre, and melody, which tradi-

tional methods often face issues in recognizing. This article introduces three solutions

based on convolutional neural networks (CNN) to solve the problem: 1D-CNN is designed to

learn directly from digital data; 2DS-CNN and 2DM-CNN have a more complex architecture,

transferring raw waveform into transformed images using Fourier transform to learn essen-

tial features. Experimental results on four large data sets, containing 30,000 samples for

each, show that the three proposed models achieve superior performance compared to

well-known models such as GoogLeNet and AlexNet, with the best accuracy of 95.87%,

99.65%, and 99.76%, respectively. With 5-10% higher performance than other models, the

proposed solution has demonstrated the ability to effectively learn features, improve recog-

nition accuracy and speed, and open up the potential for broad applications in virtual assis-

tants, medical recording, and voice commands.

1 Introduction

The recognition of acoustic features, mainly digital speech recognition, is essential in the pres-

ent scientific domain. It has widespread application in diverse areas of academia and industry,

such as bearing fault detection based on vibration analysis, earthquake early warning systems,

voice commands, musical instrument classification, and numerous other practical implemen-

tations. However, current solutions still exhibit certain limitations, including slow algorithm

processing speed, long training time, consuming many computer resources, and unsatisfactory

accuracy. Therefore, these limitations restrict practical deployment, particularly on devices

with low computational capabilities like mobile devices.

For instance, in machine failure detection, identifying engine-broken problems throughout

vibration signals requires collecting a substantial amount of data and utilizing high-perfor-

mance equipment to satisfy the training requirements of deep models with a significant num-

ber of parameters [1–4]. Consequently, this leads to a reduction in the solution’s capacity for

flexible application. Within earthquake early warning systems, detecting subterranean vibra-

tion indications necessitates expeditious and accurate analysis and predictive capabilities [5,

6]. However, the acquisition and subsequent analysis of extensive sensor-derived data
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necessitate adherence to rigorous processing equipment prerequisites. As a result, the ability to

promptly respond during an earthquake is diminished.

Analyzing audio signals in digital speech recognition applications necessitates proficiency

in distinguishing and transcribing raw waveform into textual representations or different lan-

guages [7, 8]. The feature extraction of audio of diverse qualities and multiple languages under-

mines the efficacy and precision of speech recognition. Similarly, in music classification

applications, identifying audio signals requires the ability to categorize and label distinct musi-

cal genres [9, 10]. The recognition of audio segments with differing durations and formats

necessitates the utilization of high-powered devices to fulfill the classification requirements,

thereby limiting the practical flexibility of the application.

Most traditional digital speech recognition models rely heavily on manual feature extrac-

tion, which requires expert knowledge and much effort. They usually have issues recognizing

complex signal characteristics such as frequency, pitch, timbre, and melody. These challenges

represent a significant barrier to building accurate, computationally efficient speech recogni-

tion systems.

Three different CNN architectures are introduced in this study to address the shortcomings

above, namely: one-dimensional CNN (1D-CNN), two-dimensional straight CNN

(2DS-CNN), and two-dimensional mixed CNN (2DM-CNN) for digital speech recognition.

These models can learn directly from raw data without manual feature extraction. In particu-

lar, 2DS-CNN and 2DM-CNN use Fourier transform techniques to convert digital audio to

such spectrogram or mel-spectrogram images, helping to effectively learn essential features. In

addition, we take advantage of modern techniques such as dropout and regularization to opti-

mize computing performance. The evaluation of these algorithms encompasses various crite-

ria, such as accuracy, precision, recall, and f1-score.

The main contribution of the research is to propose three advanced CNN architectures, tak-

ing advantage of modern signal processing techniques to enhance digital speech recognition

capabilities. Specifically, the contributions include: (1) Proposing three CNN architectures

1D-CNN, 2DS-CNN and 2DM-CNN for digital speech recognition; (2) Overcome limitations

of manual feature extraction from raw waveform data; (3) Using Fourier transform to convert

digital speech to spectrogram, mel-spectrogram images, improving feature learning, achieving

better performance compared to other CNN models; Moreover, (4) Open up the potential for

broad applications in virtual assistants, medical recording, and voice commands.

The remainder of the article is organized as follows: Section 2 reviews related research and

points out the strengths and weaknesses of these methods; Section 3 presents solutions, includ-

ing proposed convolutional neural networks that reduce the number of parameters and

increase the performance; Section 4 describes the experimental setup conducted to evaluate

the effectiveness and performance of the proposed solution; Section 5 presents the results and

discussion; Section 6 concludes the work.

2 Related work

Several techniques have been proposed in the literature to recognize acoustic features. G. Tang

et al. used the improved AecNet model to classify sound events with two different audio pre-

processing methods, Scalemax and Mean 0 Std 1. They achieved a performance of 84.9% on

ESC-10, 68.6% on ESC-50, and 86.5% on DCASE, respectively [11]. These results show that

the model can operate well and does not increase computational cost with small-sized datasets.

However, it may not be effective when classifying larger datasets. The proposed method should

clearly explain the mechanism and reason for using 1x1 convolutions and concatenating fea-

ture layers.
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J. Naranjo-Alcaza et al. conducted research on sound classification [12]. The author per-

formed fine-tuning changes to six different types of residual blocks and performed on two

datasets, UrbanSound8k and ESC-10, with two different audio preprocessing methods, and

compared their performance. The effectiveness achieved on the RB4 residual block has the

highest performance on both datasets, 68% for the UrbanSound8k dataset and 79% for the

ESC-10 dataset. It showed that the proposed model can operate well on small-sized datasets.

However, choosing the appropriate residual block design may depend heavily on the input

data, affecting the model’s performance.

Q. Zhu and X. Zu focused on analyzing and comparing the performance of many different

implementations of the residual block [13]. The main goal is to explore the suitability of differ-

ent residual blocks designed for raw image classification. The model is implemented on 4 data-

sets, and the highest performance in the test is 77.82% on CIFAR100, 94.25% on FaceScrub,

82.06% on ImageNet(100), and 77.56% on miniImageNet, respectively. The proposed model

reduces the number of computational parameters, improves the recognition rate, and increases

the accuracy and stability of the model. However, the article has yet to compare with other

image classification methods, has not tested the effectiveness of POD Loss on other datasets

and network architectures, and has not clearly explained the mechanism and reason for using

POD Loss in raw image classification.

The authors of the study [14] examined how well two machine learning models performed

in identifying emotions from speech: random forest (RF) with RF-based feature selection and

one-dimensional convolutional neural network (conv1D). By adding more audio files, the

authors’ small dataset for speech-based emotion recognition is expanded. They compared the

two models’ performance after extracting a variety of acoustic properties. According to the

findings, conv1D obtains a lower average accuracy (69%) than RF with feature selection. It

also has a lower precision (72%) and a higher recall (84%) for calm emotions than fear.

Tripathi and Mishra performed environmental sound classification to train a model to per-

form classification by sorting the shuffled parts of the audio spectrum to improve performance

[15]. The performance of environmental sound classification achieved the highest classifica-

tion result of 91.67% on ESC-10 and 75.09% on DCASE when using the model trained on the

assumed task. However, determining an assumed task related to the target sound classification

task is difficult. If the assumed task is unrelated to the target task, the model may not learn

valuable features from the data.

A neural population-based convolutional neural network (CNN) model is presented in the

paper [16] to mimic how the auditory cortex in the brain encodes genuine sounds. While

squirrels were exposed to ambient noises, the activity of hundreds of individual neurons in

their auditory cortex was observed by the scientists. They simultaneously predicted each of

these neurons’ activity from the input audio spectrum using CNN. With a median predicted

correlation coefficient of 0.67, our population CNN model explains 47% of the variance of the

experimental data, showing it to perform much better than other models and classic linear-

nonlinear models. More crucially, the trained CNN model demonstrates that it captures the

common representation space for sound in the auditory cortex by being easily generalized to

simulate new neurons not included in the original dataset.

T. Zhang et al. used mel-spectrogram decomposition combined with the CNN model to

classify environmental sounds to improve classification performance [17]. The above method

provides a new approach to sound scene classification and can take advantage of many unla-

beled data. The classification performance achieved the highest result compared to 5 different

models, 73.17% on DCASE. The paper has yet to compare with other sound feature extraction

methods, such as mfcc, wavelet transform, or different CNN network architectures, such as
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ResNet, DenseNet, and Transformer. It has not surveyed the impact of model parameters and

hyperparameters on classification performance.

In publication [18], Julia Berezutskaya et al. studied how the human brain processes sound

in natural environments, for example, when watching movies. The authors collected EEG data

from six patients with electrodes implanted during surgery while watching a 78-minute docu-

mentary. Next, they trained a deep artificial neural network (ANN) using the original audio

tape of the movie to predict brain activity in response to the sound. This ANN model achieved

high prediction accuracy, with Spearman correlation coefficients up to 0.5 in the lateral cingu-

late cortex. The model maintained good performance when applied to new data from 29 other

patients watching a different movie, especially with dialogue. The sound features learned by

the model reflect the acoustic properties specific to each type of sound, such as speech and

music. They are consistent with the spatial and temporal distribution of neural activity.

Inik focused on optimizing hyperparameters using Particle Swarm Optimization (PSO) for

CNNs to improve environmental sound classification performance [19]. Experiments were

conducted on the ESC-10, ESC-50, and Urbansound8k datasets, achieving accuracies of

91.17%, 88.5%, and 74.85%, respectively. There is a difference in algorithm performance

between data augmentation and non-augmentation. However, the article does not compare

with other hyperparameter optimization methods or investigate the impact of PSO parameters

and hyperparameters on optimization performance.

Jilt Sebastian et al. proposed in [20] a new signal-to-signal (S2S) neural network to estimate

spike signals from calcium imaging data. This method takes the calcium fluorescence signal as

input and learns to estimate the spike signal end-to-end. Experiments on the spikefinder chal-

lenge dataset show that the S2S method outperforms other state-of-the-art methods, achieving

a Pearson correlation coefficient of 0.6404 on the test set, providing a 46% improvement over

the best method in the competition and 2,832 times better than the baseline model. It also

improves the rank correlation coefficient by 56% compared to the best baseline model, reach-

ing 0.5208, and has an area under the ROC curve (AUC) equivalent to 0.847. The article also

analyzes the generalization ability, reliability, training target dependence, and interpretability

of the S2S method.

S. Abdoli et al. proposed using 1D-CNN to classify environmental sounds [21]. The net-

work input is learned directly from raw audio signals, resulting in a classification performance

on the UrbanSound8k dataset of 89% with a more compact architecture and fewer parameters

than the 2D-CNN representation. It can exploit the temporal structure of the audio signal and

learn filters suitable for the classification task. However, the feasibility and stability of the pro-

posed method could not be evident when only tested on a single dataset.

Quamhan et al. performed a classification of audio devices and recording environments

based on spectrogram feature extraction [22]. The article uniquely combined CNN and LSTM

(CRNN) to thoroughly exploit the audio signal’s valuable spatial and temporal features. The

result of environmental sound classification achieved the highest classification results, 98%

and 98.57% for device classification on the KSU-DB dataset based on the influence of gender,

phoneme type, environmental noise, and device quality on classification quality. However, the

article only uses spectrogram feature extraction, performs a comparison with the traditional

CNN model, and has yet to test the model on larger datasets.

I. Wieser et al. introduced two new methods to understand the audio representation of

emotional expressions through neural networks [23]. Both methods allow for deep analysis

and a better understanding of essential representations in emotional expression through

speech. However, it has yet to explain more about what the neural network learns and how it

does with the learned representations related to emotional characteristics in speech.
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Greta Tuckute et al. presented research on the ability of deep neural network (DNN) models

trained for audio processing tasks to predict human brain responses to natural sound [24]. The

authors evaluated the correlation between the stages of the DNN model and brain regions

involved in sound processing by comparing the model’s output with brain fMRI data. The results

show that most DNN models predict brain responses better than the standard temporal-spectral

filtering model and exhibit systematic correlations between model stages and brain regions.

However, some of the most advanced models predict worse. Models trained to recognize speech

in noisy environments showed better brain prediction results than models trained in quiet envi-

ronments. The training task also influences the prediction quality for each brain response char-

acteristic, with the best prediction results obtained from models trained on multiple tasks.

L. Gao et al. researched sound classification based on various feature representations [25].

Using three feature representations such as logMel, CQT, and mfcc, as inputs for neural net-

works and applying the knowledge transfer method to compress knowledge from multiple

neural networks into a single neural network reduces the computational cost of the model.

However, the article needs to indicate why using multiple feature representations can improve

classification performance and survey the impact of parameters such as the number of repre-

sentations, the number of neural networks, and the value of hyperparameters in the soft proba-

bility calculation equation.

A novel staircase network model is presented by Zhenqing Li et al. [26] to enhance speech

interpretation and quality in noisy conditions. The model’s distinct architecture prevents gra-

dient fading across layers and captures long-term correlations in voice data. To concentrate on

important spectral regions, avoidance linkages and concentrating mechanisms are provided.

As the training aim, the model is trained to estimate an ideal scaling mask (IRM). Based on

experimental evaluations using TIMIT, LibriSpeech, and VoiceBank datasets, the proposed

model improves STOI by 16.21%, 16.41%, and 18.33% compared to noisy speech; PESQ

improved by 31.1%, 32.9%, and 32%. The suggested model performs better in conditions with

known and unknown noise than previous DNN networks. With the Kaldi engine for auto-

matic speech recognition, the model achieved an average word error rate of 15.13% in noisy

environments.

Khurana et al. focused on sound classification based on Mel-frequency spectrogram repre-

sentation [27]. The TiCNN network proposed by the author classifies emotions into 8 different

types and achieved a performance of 93.27% on the RAVDESS dataset. However, it should

explain more about what the network has learned from the emotional features of speech.

F. Demir et al. focused on sound classification based on the representation of Mel-fre-

quency spectrograms [28]. The article used 3 different neural network models, AlexNet,

VGG16, VGG19, and the SVM model, to classify heart sounds and achieved high performance

on 2 datasets, FSDKaggle2018 and TUT Urban Acoustic Scenes 2018. However, it does not

explain the impact of parameters such as window size, overlap, and the number of FFTs in cre-

ating spectrogram images. It needs to explain why transfer learning can be beneficial.

Although the mentioned publications have achieved high accuracy in acoustic feature rec-

ognition, the neural network architectures still need to be simplified, increasing calculation

time and slowing down the system. In this research, the author proposes a more effective solu-

tion to address those limitations and improve the algorithm’s accuracy and stability.

3 Methodlogy

3.1 Visual representation of digital speech

Digital speech can be visualized as a figure representing a signal’s frequency spectrum. It con-

tains the frequency components of sound and their intensity. In a frequency spectrum that
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appears as an RGB image, the horizontal axis typically describes frequencies from low to high,

and the vertical axis illustrates the sound intensity corresponding to each contributed fre-

quency. Intensity is often expressed using color or brightness.

The frequency spectrum reflects critical sound components and allows the analysis of char-

acteristics such as scale, wave shape, resonance, and other phenomena. It is an essential mecha-

nism in the study and analysis of sound. In this research, we propose to define digital speech

through three visualization types: spectrogram, mel-spectrogram, and mfcc, as shown in Fig 1

and described in the next parts.

3.1.1 Representation in spectrogram form. To represent digital speech as a spectrogram

image, it is necessary to use Fourier transform to transform an audio signal from the time

domain to the frequency domain. A typical transformation used for this purpose is the short-

time Fourier transform, as described in Eq 1, more details in [29, 30]. The result is a spectro-

gram image where the horizontal axis represents time, the vertical axis represents frequency,

and color or brightness represents sound intensity.

STFTfxðnÞgðm;oÞ � Xðm;oÞ ¼
Xþ1

n¼� 1

xðnÞwðn � mÞe� ion ð1Þ

where:

• STFT: Short-time Fourier transform,

• Xm(f): Discrete-time STFT,

• x(n): the signal,

• w(n −m): the window function,

Fig 1. Raw data in waveform and representation in spectrogram, mel-spectrogram, and mfcc form.

https://doi.org/10.1371/journal.pone.0302394.g001
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• ω: the frequency,

• n: discrete time.

3.1.2 Representation in mel-spectrogram form. The mel-spectrogram uses a frequency

scale called the mel scale to replace the linear frequency scale in conventional spectrograms,

using the Eq 2 from O’Shaughnessy [31] to convert f hertz into m mels. The mel scale defines a

nonlinear transformation, creating a frequency representation close to how humans hear.

m ¼ 2595 log
10

1þ
f

700

� �

ð2Þ

where:

• m: the mel value,

• f: the frequency.

3.1.3 Representation in mfcc form. After applying the Fourier transform to the signal

and replacing the linear frequency scale with the mel scale, we apply logarithm to each mel fre-

quency of powers and then apply the Discrete Cosine Transform (DCT-II) of the list of mel

log powers according to Eq 3, more details at [30].

XðkÞ ¼
XN� 1

n¼0

xðnÞ cos
p

N
nþ

1

2

� �

k
� �

; for k ¼ 0; :::;N � 1 ð3Þ

3.2 Proposed convolutional neural networks

The proposed architecture aims to deal with digital speech recognition on both input types of

digital speech (waveform) and transformed images (spectrogram, mel-spectrogram, and mfcc)

in order to satisfy several expected requirements such as accuracy, run time, and robustness.

3.2.1 One-dimensional convolutional neural network. One-dimensional convolutional

neural network (1D-CNN) is a particular type of convolutional neural network designed to

process one-dimensional data such as speech or time series data. The value of 1D-CNN is that

it can learn directly from raw data, that is, original data that has not been processed or

extracted features, and it can handle audio signals of any length. In the digital speech recogni-

tion problem, a 1D-CNN is used to automatically extract features from voices. The input to

the 1D-CNN is a signal, and the output is a feature vector representing important information

about the voice. Once trained on a given labeled speech dataset, the network can learn to dis-

tinguish between different voices or speakers.

The proposed 1D-CNN model contains three Convolution layers, in which the number of

kernels (filter size) gradually increases from 10, 20, to 30 to extract features from input voice

data. After the Convolution layers, the Batch Normalization, ReLU, Max Pooling, and Dropout

layers are arranged in a specific order. Finally, two Fully Connected layers are used to learn the

engineering features. To make classification decisions, the model uses Softmax and cross-

entropy functions. The architecture of the proposed network is depicted in Fig 2, and the

detailed parameters are given in Table 1.

3.2.2 Two-dimensional straight convolutional neural network. Two-dimensional

straight convolutional neural network (2DS-CNN) is an improved version of the traditional
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network, designed to process data such as spectrogram images. Convolutional layers work by

sliding over vertical and horizontal areas of images to extract engineering features. Each fol-

lowing layer in this chain learns from the previous layer’s output, constructing a line through

the network and allowing the network to learn increasingly complex features. The proposed

network architecture is designed with two Convolution layers with kernels of 25 and 40. After

each Convolution layer is Batch Normalization, ReLU, Max Pooling, and Dropout layers are

arranged to form a straight line capable of extracting features from input images, including

width, height, and color space, allowing the model to understand and gain more clarity about

the data and improve classification performance. Finally, there are two Fully Connected layers

to classify images. The model uses the Softmax and the cross-entropy function to make

classification.

The 2DS-CNN network architecture used in this study is presented in Fig 3, and the param-

eters are shown in the Table 2.

Fig 2. The architecture of the proposed 1D-CNN model.

https://doi.org/10.1371/journal.pone.0302394.g002

Table 1. Layers and parameters of the proposed 1D-CNN model.

No. Layer name, description Channels Learnale properies Learnables

1 Sequence Input, with 1 dimention 1(c) x 1(B) x 1(T) - -

2 1-D Convolution, 10x100 with Stride 30, padding ‘same’ 10(c) x 1(B) x 1(T) Weights 100 x 1 x 10, Bias 1 x 10 1,010

3 Batch normalization 10(c) x 1(B) x 1(T) Offset 10 x 1, Scale 10 x 1 20

4 ReLU 10(c) x 1(B) x 1(T) - -

5 1-D Max Pooling, with pool size 20, stride 20, padding ‘same’ 10(c) x 1(B) x 1(T) - -

6 1-D Convolution, 20x100 with Stride 10, padding ‘same’ 20(c) x 1(B) x 1(T) Weights 100 x 10 x 20, Bias 1 x 20 20,020

7 Batch normalization 20(c) x 1(B) x 1(T) Offset 20 x 1, Scale 20 x 1 40

8 ReLU 20(c) x 1(B) x 1(T) - -

9 1-D Max Pooling, with pool size 20, stride 20, padding ‘same’ 20(c) x 1(B) x 1(T) - -

10 1-D Convolution, 30x100 with Stride 30, padding ‘same’ 30(c) x 1(B) x 1(T) Weights 100 x 20 x 30, Bias 1 x 30 60,030

11 Batch normalization 30(c) x 1(B) x 1(T) Offset 30 x 1, Scale 30 x 1 60

12 ReLU 30(c) x 1(B) x 1(T) - -

13 1-D Max Pooling, with pool size 20, stride 20, padding ‘same’ 30(c) x 1(B) x 1(T) - -

14 1-D global Max Pooling 30(c) x 1(B) - -

15 Dropout, 20% dropout 30(c) x 1(B) - -

16 Fully Connected, 100 fully connected layer 100(c) x 1(B) Weights 100 x 30, Bias 100 x 1 3,100

17 Fully Connected, 10 fully connected layer 10(c) x 1(B) Weights 10 x 100, Bias 10 x 1 1,010

18 Softmax 10(c) x 1(B) - -

19 Classification Output, crossentropyex 10(c) x 1(B) - -

- Total learnables - - 85,290

https://doi.org/10.1371/journal.pone.0302394.t001
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3.2.3 Crossmixed convolutional neural network. A crossmixed convolutional neural

network (2DM-CNN) is an efficient architecture composed of two types of layers: serial and

parallel. Serial layers allow the network to learn increasingly complex features as it goes deeper

into the network, and parallel layers allow it to learn features at the same level but with differ-

ent filters, creating diversity in learning. Such architecture allows the network to learn both

low-level and high-level features.

The 2DM-CNN architecture is divided into 2 blocks. The first block contains three parallel

Convolution layers with kernel sizes of 3×3, 5×5, and 7×7, respectively. It extracts features at

different spatial scales from the input image, increasing the model’s ability to recognize fea-

tures. Each Convolution layer is followed by a Max Pooling layer, which reduces the output

size of each previous layer and increases calculation speed. The outputs of all three Max Pool-

ing layers are then combined by stacking them via a Depth Concatenation layer. The second

block consists of output results from the first Depth Concatenation layer as input for the fol-

lowing three parallel Convolution layers with kernel sizes of 7×7, 5×5, and 3×3, respectively, to

carry out the task of feature extraction at many different spatial scales. A ReLU layer and a

Max Pooling layer follow each Convolution layer. Next, stack the results at the Max Pooling

output through the second Depth Concatenation layer and connect with two Fully Connected

Fig 3. The architecture of the 2DS-CNN model.

https://doi.org/10.1371/journal.pone.0302394.g003

Table 2. Layers and parameters of the 2DS-CNN model.

No. Layer name, description Channels Learnale properies Learnables

1 Image Input, 224 x 224 x 3 images, ‘rescale-zero-one’ normalization 224(s) x 224(s) x 3(c) - -

2 2-D Convolution, 25 5x5 Convolutions with Stride [3 3], padding ‘same’ 75(s) x 75(s) x 25(c) Weights 5 x 5 x 3 x 25, Bias 1 x 1 x 25 1,900

3 Batch normalization 75(s) x 75(s) x 25(c) Offset 1 x 1 x 25, Scale 1 x 1 x 25 50

4 ReLU 75(s) x 75(s) x 25(c) - -

5 2-D Max Pooling, 2 x 2 max pooling with stride [2 2], padding [0 0 0 0] 37(s) x 37(s) x 25(c) - -

6 2-D Convolution, 40 3x3 Convolutions with Stride [2 2], padding [0 0 0 0] 18(s) x 18(s) x 40(c) Weights 3 x 3 x 25 x 40, Bias 1 x 1 x 40 9,040

7 Batch normalization 18(s) x 18(s) x 40(c) Offset 1 x 1 x 40, Scale 1 x 1 x 40 80

8 ReLU 18(s) x 18(s) x 40(c) - -

9 2-D Max Pooling, 2 x 2 max pooling with stride [2 2], padding [0 0 0 0] 9(s) x 9(s) x 40(c) - -

10 Dropout, 20% dropout 9(s) x 9(s) x 40(c) - -

11 Fully Connected, 100 fully connected layer 1(s) x 1(s) x 100(c) Weights 100 x 3240, Bias 100 x 1 324,100

12 Fully Connected, 10 fully connected layer 1(s) x 1(s) x 10(c) Weights 10 x 100, Bias 10 x 1 1,010

13 Softmax 1(s) x 1(s) x 10(c) - -

14 Classification Output, crossentropyex 1(s) x 1(s) x 10(c) - -

- Total learnables - - 336,180

https://doi.org/10.1371/journal.pone.0302394.t002
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layers to classify the data. Finally, the model applies the Softmax function to generate probabil-

ity values for each prediction class and uses the cross-entropy function to evaluate the confi-

dence of the classification.

The 2DM-CNN network architecture used in this study is presented in Fig 4, and parame-

ters are shown in Table 3.

Fig 4. The architecture of the 2DM-CNN model.

https://doi.org/10.1371/journal.pone.0302394.g004

Table 3. Layers and parameters of the 2DM-CNN model.

No. Layer name, description Channels Learnale properies Learnables

1 Image Input, 224 x 224 x 3 images 224(s) x 224(s) x 3(c) - -

2 Batch normalization 224(s) x 224(s) x 3(c) Offset 1 x 1 x 3, Scale 1 x 1 x 3 6

3 2-D Convolution, 16 3x3 Convolutions with Stride [2 2], padding [0 0 0 0] 111(s) x 111(s) x 15(c) Weights 3 x 3 x 3 x 16, Bias 1 x 1 x 16 448

4 2-D Max Pooling, 7 x 7 max pooling with stride [7 7], padding [0 0 0 0] 15(s) x 15(s) x 16(c) - -

5 2-D Convolution, 16 5x5 Convolutions with Stride [3 3], padding [0 0 0 0] 74(s) x 74(s) x 16(c) Weights 5 x 5 x 3 x 16, Bias 1 x 1 x 16 1,216

6 2-D Max Pooling, 5 x 5 max pooling with stride [5 5], padding [0 0 0 0] 15(s) x 15(s) x 16(c) - -

7 2-D Convolution, 16 7x7 Convolutions with Stride [5 5], padding [0 0 0 0] 45(s) x 45(s) x 16(c) Weights 7 x 7 x 3 x 16, Bias 1 x 1 x 16 2,368

8 2-D Max Pooling, 3 x 3 max pooling with stride [3 3], padding [0 0 0 0] 15(s) x 15(s) x 16(c) - -

9 Depth Concatenation, Depth concatenation of 3 inputs 15(s) x 15(s) x 48(c) - -

10 2-D Convolution, 32 5x5 Convolutions with Stride [3 3], padding ‘same’ 5(s) x 5(s) x 32(c) Weights 5 x 5 x 48 x 32, Bias 1 x 1 x 32 38,432

11 ReLU 5(s) x 5(s) x 32(c) - -

12 2-D Max Pooling, 3 x 3 max pooling with stride [3 3], padding ‘same’ 2(s) x 2(s) x 32(c) - -

13 2-D Convolution, 32 3x3 Convolutions with Stride [2 2], padding ‘same’ 8(s) x 8(s) x 32(c) Weights 3 x 3 x 48 x 32, Bias 1 x 1 x 32 13,856

14 ReLU 8(s) x 8(s) x 32(c) - -

15 2-D Max Pooling, 4 x 4 max pooling with stride [4 4], padding ‘same’ 2(s) x 2(s) x 32(c) - -

16 2-D Convolution, 32 7x7 Convolutions with Stride [5 5], padding ‘same’ 3(s) x 3(s) x 32(c) Weights 7 x 7 x 48 x 32, Bias 1 x 1 x 32 75,296

17 ReLU 3(s) x 3(s) x 32(c) - -

18 2-D Max Pooling, 2 x 2 max pooling with stride [2 2], padding ‘same’ 2(s) x 2(s) x 32(c) - -

19 Depth Concatenation, Depth concatenation of 3 inputs 2(s) x 2(s) x 96(c) - -

20 Dropout, 20% dropout 2(s) x 2(s) x 96(c) - -

21 Fully Connected, 50 fully connected layer 1(s) x 1(s) x 50(c) Weights 50 x 384, Bias 100 x 1 19,250

22 Fully Connected, 10 fully connected layer 1(s) x 1(s) x 10(c) Weights 10 x 50, Bias 10 x 1 510

23 Softmax 1(s) x 1(s) x 10(c) - -

24 Classification Output, crossentropyex 1(s) x 1(s) x 10(c) - -

- Total learnables - - 151,382

https://doi.org/10.1371/journal.pone.0302394.t003
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4 Experimental setup

4.1 Dataset

To thoroughly evaluate the performance of the proposed models, four types of datasets were

used. The first one is digital speech dataset, containing English spoken of ten digits from 0 to 9

[32]. The dataset includes 30,000 speech samples of 60 separate speakers of different ages,

countries, genders, and recording environments. They pronounce each number 50 times,

using a single-channel microphone with a sampling rate of 48kHz. The total duration of the

dataset is approximately 9.5 hours.

The second type is three transformed image datasets: spectrogram, mel-spectrogram, and

mfcc. Each set contains 30,000 images transformed from the digital speech dataset using the

method presented in Subsection 3.1. There are a total of 10 classes, each labeled from 0 to 9,

and contains 3,000 samples. Fig 5 provides the first sample of each dataset used.

Each dataset has been randomly split into three separate subsets: 70% for training, 10% for

validation, and 20% for testing.

4.2 Models for comparison

To comprehensively evaluate the proposed models, five algorithms were selected for compari-

son in terms of performance, accuracy, and other critical metrics, including:

• Multi-layer pooling classifier convolutional neural network (MLPC-CNN) [3]: an algorithm

designed to diagnose errors for multi-sensor vibration signals. It has been widely used in

many applications related to vibration signals, from machine fault diagnosis to vibration sig-

nal analysis in different situations;

• Improved convolutional neural network for acoustic event classification (AecNet) [11]:

designed to classify acoustic events and has been widely used in many applications related to

sound, from speech recognition to environmental sound classification;

• End-to-End 1D convolutional neural network (End2End) [21]: an algorithm designed to

classify environmental sounds and has been widely used in many applications related to

sound, from speech recognition to environmental sound classification;

• GoogLeNet [33]: was designed to handle image classification tasks. GoogLeNet has been

proven to be particularly effective in image classification, achieving top results in the Large

Scale Image Recognition Contest ImageNet (ILSVRC) 2014;

Fig 5. Speech, spectrogram, mel-spectrogram and mfcc images of used datasets.

https://doi.org/10.1371/journal.pone.0302394.g005
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• AlexNet [34]: was designed to handle image classification tasks. AlexNet achieved top results

in the 2012 ILSVRC.

For GoogLeNet and AlexNet, the transfer learning technique was used to solve the digital

speech recognition problem in this study. AlexNet received the input image with the size of

224 × 224 × 3 and was modified with 10 output layers, each corresponding to a digit. Similarly,

GoogLeNet also receives the same input and output size as AlexNet.

4.3 Setup and metrics

Table 4 provides an overview of the hardware and software parameters employed in this study.

The experiments were designed, performed, evaluated, and analyzed on MATLAB R2023a

environment.

All models are run iteratively 10 times on corresponding datasets (digital speech, spectro-

gram, mel-spectrogram, and mfcc) for all processes of training, testing, and evaluating

obtained results. The results are calculated and compared based on the mean and standard

deviation. The Wilcoxon rank sum test (WRT) was performed to ensure the comparison

results were statistically significant at the 5% level [35, 36].

The parameter values of the proposed convolutional neural networks have been specified in

Subsection 3.2.1, Subsection 3.2.2, and Subsection 3.2.3. The parameter values of the neural

networks used for comparison were set similarly to those in the original published article and

cited in Section 4.2.

All models were trained using the adaptive moment estimation optimizer, 10% validation,

Initial Learning Rate of 0.0005, Max Epochs of 50, and Mini Batch Size of 500.

In order to rigorously evaluate the effectiveness of the proposed solutions, we investigate

the models from two major aspects: the complexity aspect (Space complexity, time complex-

ity, and number of parameters) and the performance aspect. Four main metrics are reported

to evaluate and compare the performance of the model on the test dataset:

Accuracy denotes the proportion of accurate predictions relative to all predictions, which

helps to understand the model’s overall performance. However, accuracy only sometimes

reflects the model’s proper performance, especially when the data is imbalanced.

Recall denotes the proportion of accurate positive predictions relative to all actual positives;

this index is high, meaning the model can detect many positive cases and miss a few critical

cases.

Precision denotes the proportion of accurate positive predictions relative to all positive predic-

tions; this index is high, meaning the model is less confused between classes and highly reli-

able when predicting a class.

Table 4. Hardware specification values were used for training, testing, and analysis.

Items Specification

Processor CPU 13th Gen Intel(R) Core(TM) i7-13700KF Base speed: 3.40 GHz

RAM Memory Memory 64.0 GB, Speed: 3600 MHz, Slots used: 4 of 4

OS Edition: Windows 11 Pro, Version 23H2

System Model and Type 64-bit operating system, x64-based processor

GPU GPU NVIDIA GeForce RTX 3060 Ti, DirectX version: 12 (FL 12.1)

https://doi.org/10.1371/journal.pone.0302394.t004
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F1-Score denotes a metric to assess the balance between two fundamental performance mea-

sures of recall and precision that helps to evaluate the model when both precision and recall

need to be considered.

5 Results and discussion

5.1 Computational complexity

Fig 6 compares the proposed models’ computational complexity to evaluate their practical fea-

sibility. It reflects the detailed number of parameters, the amount of memory occupied (KB),

and the execution time (s) on all models’ training/testing datasets. Including three main factors

presented as follows:

Space complexity: reflects the amount of memory needed to contain model parameter stor-

age space, input/output data, and intermediate memories during the calculation process. The

1D-CNN and 2DM-CNN models have lower space complexity due to using one- and two-

dimensional convolution with bigger kernel sizes and strides. In contrast, 2DS-CNN uses

smaller kernel sizes and strides and a bigger number of input channels, requiring more

Fig 6. Comparison of complexity and time parameters of all models (lower is better).

https://doi.org/10.1371/journal.pone.0302394.g006

PLOS ONE Crossmixed CNN for digital speech recognition

PLOS ONE | https://doi.org/10.1371/journal.pone.0302394 April 26, 2024 13 / 22

https://doi.org/10.1371/journal.pone.0302394.g006
https://doi.org/10.1371/journal.pone.0302394


memory. Accordingly, the spatial complexity ranked in ascending order is: MLPC-CNN,

1D-CNN, End2End, 2DM-CNN, 2DS-CNN, GoogLeNet, AecNet, AlexNet.

Time complexity: measures the total time required to perform calculations during training

and testing. It depends on the number of parameters, layers, size of each layer, number of itera-

tions per epoch, etc. Among the proposed models, 2DS-CNN has the lowest time complexity

during training, while 1D-CNN and 2DM-CNN are more time-consuming. On the other side,

1D-CNN performs fastest on the testing data. Meanwhile, AecNet consumes the most time in

both training and testing.

Fig 6 also reports the time complexity details for all investigated models. It shows the train-

ing time on the training set arranged in ascending order as 2DS-CNN, MLPC-CNN,

1D-CNN, End2End, 2DM-CNN, AlexNet, GoogleNet, AecNet. As for the time complexity

during testing on the testing set, this order varies and is arranged in ascending order as follows:

1D-CNN, End2End, 2DS-CNN, 2DM-CNN, MLPC-CNN, AlexNet, GoogLeNet, AecNet.

Number of parameters: reflects the complexity of the model; the larger the number, the

higher the computational resources. This figure highlights the correlation between model per-

formance and used resources. It shows that the GoogLeNet, AecNet, and AlexNet models have

numerous parameters, over 5, 12, and 56 million parameters, respectively, leading to extensive

calculation time, slow training speed, and taking up much memory. Meanwhile, our proposed

networks have fewer parameters, ranging under 0.4 million, equivalent to 2.5% compared to

GoogLeNet and 0.26% to AlexNet.

The 1D-CNN model uses one-dimensional convolutional layers with smaller learnable

parameters than two-dimensional convolutional layers, so it has the near-fewest parameters

(85,290), just behind the MLPC-CNN model with 16,410 parameters. The 1D-CNN model

also has the fastest calculating time per whole test set of about 1.43s (mean value of 10 runs).

The MLPC-CNN model has the smallest number of parameters; on the other hand, it also

has a high testing time of 2.23s. The 2DS-CNN and 2DM-CNN models have a higher number

of parameters than 1D-CNN, End2End, and MLPC-CNN but are still much lower than three

other models: AecNet, GoogLeNet, and AlexNet.

5.2 Performance comparison

Table 5 describes the performance comparison results of two 1D-CNN and End2End models

performed on speech data. The 1D-CNN model performs better than the End2End model on

all metrics, and the difference is statistically significant (ρ-value is less than 5%). That means

the 1D-CNN model can learn and classify speech data better than the End2End model. Table 5

also shows that the standard deviation is slight, meaning that the difference between runs is

negligible; the model performs stably, especially for the proposed 1D-CNN.

Table 6 describes the comparison and ranking results of the surveyed models on the spec-

trogram image dataset. Three models achieve similar first-ranking results: 2DS-CNN, GoogLe-

Net, and 2DM-CNN. These models have accuracy, precision, recall, and f1-Score metric close

to 99.20%. Other models have lower accuracy and statistically significant differences than the

first-ranked model (ρ-value less than 0.05). Besides, Table 6 shows that the standard deviation

Table 5. Comparison results on digital speech dataset (mean±std).

Ranking Models Input type Accuracy Precision Recall F1-Score ρ-value

1 1D-CNN Speech 95.87 ± 0.48 95.87 ± 1.67 95.93 ± 2.40 95.88 ± 1.48 -

2 End2End Speech 94.24 ± 0.23 94.24 ± 2.64 94.34 ± 3.65 94.26 ± 2.67 1.81e-04

https://doi.org/10.1371/journal.pone.0302394.t005
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of the proposed models is minimal (less than 1%), proving that the proposed models work

more stably on the spectrogram dataset compared to the digital speech dataset.

Table 7 shows the comparison and ranking results of different models on the mel-spectro-

gram dataset. They are ranked in descending order of accuracy metric, and if equal, in

descending order of f1-score. The proposed 2DM-CNN model achieves the highest perfor-

mance, with an accuracy of 99.76%. MLPC-CNN is the network with the lowest performance,

with an accuracy of 98.83%. Others, such as GoogLeNet, 2DS-CNN, AecNet, and AlexNet,

have high performance, above 98%, and are lower than the 2DM-CNN model. The ρ-values

show that the differences between models are statistically significant at the 5% level.

Table 8 shows the comparison and ranking results of all models on the mfcc dataset. The

2DM-CNN model achieved the highest performance, with an accuracy of 99.48%. The

2DS-CNN model ranked second, with 99.29% accuracy. The models applying transfer learning

techniques like GoogLeNet and AlexNet ranked third and fourth, with an accuracy of 98.86%

and 97.89%, respectively. The MLPC-CNN ranked last, with the lowest accuracy of 97.53%.

The ρ-values show that the differences between the networks are statistically significant.

Fig 7 shows the classification performance (accuracy with mean and standard deviation) of

the three proposed models, 1D-CNN, 2DS-CNN, and 2DM-CNN, on four types of the dataset,

including digital speech for 1D-CNN, spectrogram, mel-spectrogram, and mfcc for the

remaining two models. The classification results of the 2DM-CNN model on the mel-spectro-

gram dataset reach the highest performance of 99.76%. Next, the performance of the

2DS-CNN model on mel-spectrogram is 99.65%. Finally, the lowest classification performance

is 1D-CNN, with an accuracy of 95.87%.

The results in Fig 7 show that digital speech recognition on the transformed image dataset

will give higher accuracy and more stability than on the original digital speech dataset. The

mel-spectrogram has the highest accuracy among the image datasets compared to the spectro-

gram and mfcc.

The difference in input type is also a critical factor that determines the classification perfor-

mance of the models. For the raw waveform (speech data), both 1D-CNN and End2End

Table 6. Comparison results on spectrogram dataset.

Ranking Models Input type Accuracy Precision Recall F1-Score ρ-value

1 2DS-CNN Spectrogram 99.20 ± 0.06 99.20 ± 0.49 99.20 ± 0.52 99.20 ± 0.37 -

1 GoogLeNet Spectrogram 99.20 ± 0.17 99.20 ± 0.72 99.20 ± 0.80 99.20 ± 0.47 8.79e-01

1 2DM-CNN Spectrogram 99.14 ± 0.07 99.14 ± 0.54 99.14 ± 0.73 99.14 ± 0.45 7.34e-02

2 AlexNet Spectrogram 98.60 ± 0.06 98.60 ± 0.30 98.60 ± 0.36 98.60 ± 0.25 1.66e-04

3 AecNet Spectrogram 97.47 ± 0.23 97.47 ± 1.61 97.52 ± 1.93 97.48 ± 1.22 1.75e-04

4 MLPC-CNN Spectrogram 96.48 ± 0.01 96.48 ± 0.95 96.51 ± 1.46 96.49 ± 0.75 6.11e-05

https://doi.org/10.1371/journal.pone.0302394.t006

Table 7. Comparison results on the mel-spectrogram dataset.

Ranking Models Input type Accuracy Precision Recall F1-Score ρ-value

1 2DM-CNN Mel-spectrogram 99.76 ± 0.03 99.76 ± 0.29 99.76 ± 0.31 99.76 ± 0.19 -

2 GoogLeNet Mel-spectrogram 99.66 ± 0.03 99.66 ± 0.22 99.66 ± 0.32 99.66 ± 0.16 2.20e-04

2 2DS-CNN Mel-spectrogram 99.65 ± 0.05 99.65 ± 0.36 99.65 ± 0.34 99.65 ± 0.25 2.63e-04

3 AecNet Mel-spectrogram 98.96 ± 0.13 98.96 ± 0.94 98.96 ± 0.93 98.96 ± 0.59 1.70e-04

4 AlexNet Mel-spectrogram 98.94 ± 0.02 98.94 ± 0.10 98.94 ± 0.10 98.94 ± 0.07 1.62e-04

5 MLPC-CNN Mel-spectrogram 98.83 ± 0.01 98.83 ± 0.42 98.84 ± 0.59 98.83 ± 0.40 5.84e-05

https://doi.org/10.1371/journal.pone.0302394.t007
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models can learn the amplitude and duration of the digital speech, not other components,

either frequency or intensity of the speech, and other essential features such as pitch, timbre,

and melody. For the remaining input types, using more complex feature extractions such as

spectrogram, mel-spectrogram, and mfcc yields better results than the 1D-CNN model, as

shown in Fig 7. Spectrograms represent multiple sound components over time and reflect fun-

damental characteristics using different colors. Therefore, a spectrogram can extract more

complex features of digital speech. However, it is vastly affected by noise or environmental

background.

The mel-spectrogram represents digital speech in the frequency domain but uses the mel

frequency scale instead of the regular frequency scale. Mel-spectrogram can extract features

close to how humans hear and can overcome some limitations of the spectrogram, such as

being unable to distinguish speech with the same pitch but a different timbre. So, the classifica-

tion performance on the mel-spectrogram dataset is better.

Table 8. Comparison results on the mfcc dataset.

Ranking Models Input type Accuracy Precision Recall F1-Score ρ-value

1 2DM-CNN MFCC 99.48 ± 0.07 99.48 ± 0.38 99.48 ± 0.38 99.48 ± 0.26 -

2 2DS-CNN MFCC 99.29 ± 0.06 99.29 ± 0.47 99.29 ± 0.44 99.29 ± 0.36 1.75e-04

3 GoogLeNet MFCC 98.86 ± 0.15 98.86 ± 0.93 98.88 ± 1.01 98.86 ± 0.47 1.76e-04

4 AlexNet MFCC 98.81 ± 0.03 98.81 ± 0.16 98.81 ± 0.15 98.81 ± 0.10 1.72e-04

5 AecNet MFCC 97.89 ± 0.17 97.89 ± 1.02 97.90 ± 1.05 97.89 ± 0.70 1.76e-04

6 MLPC-CNN MFCC 97.53 ± 0.01 97.53 ± 1.06 97.53 ± 1.09 97.53 ± 1.00 6.15e-05

https://doi.org/10.1371/journal.pone.0302394.t008

Fig 7. Results of the proposed algorithms (higher is better).

https://doi.org/10.1371/journal.pone.0302394.g007
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Fig 8 compares the training progress of End2End and 2DM-CNN models in the first run.

The accuracy and loss curves of the 2DM-CNN model quickly approach 100% and 0, respec-

tively, in about 500 iterations. Meanwhile, the convergence speed of the End2End model is

slower: the final accuracy is lower (93.6% versus 99.79%), and the loss is higher than the

2DM-CNN model at iteration 2000.

Fig 9 depicts the confusion matrices, showing the classification results of End2End and

2DM-CNN. The last columns and rows of the matrix represent precision and recall values,

respectively. It shows that 2DM-CNN gives the best classification results in the first run,

whereas End2End performs much lower than 2DM-CNN.

Fig 10 shows the confusion matrices and the classification results on the mel-spectrogram

dataset of the six investigated models. Due to the low standard deviation, the confusion matrix

in the first run almost entirely reflects the performance. The 2DS-CNN model achieved a

mean precision and recall of 99.58% and 99.35%, respectively, while 2DM-CNN had a mean

precision and recall of 99.78%. MLPC-CNN achieved 98.84% and 98.85%, respectively. AecNet

is 98.83% and 98.85%. GoogLeNet and AlexNet have precision and recall of 99.69%, 99.68%,

98.83%, and 98.86%, respectively. These results show that the 2DM-CNN has the highest accu-

racy, demonstrating the effectiveness of the proposed solution, and AecNet has the lowest clas-

sification performance among the analyzed models.

Fig 11 summarizes the results of all models on four different datasets. Based on the confor-

mation of WRT, it can be concluded that the 2DM-CNN model has shown dominance over

other models in the digital speech recognition problem. More detail, the 1D-CNN is better

Fig 8. The training process of the End2End and 2DM-CNN models in the first run.

https://doi.org/10.1371/journal.pone.0302394.g008

Fig 9. The confusion matrix of End2End and 2DM-CNN models in the first run.

https://doi.org/10.1371/journal.pone.0302394.g009
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than the End2End model, and 2DM-CNN showed better performance than AlexNet, AecNet,

and MLPC-CNN.

The 2DM-CNN model is tied with 2DS-CNN and GoogLeNet for the Spectrogram dataset.

When looking at the ρ-value in the Wilcoxon statistic, we see that both 2DS-CNN and Goo-

gLeNet have a ρ-value greater than 0.05 when compared to 2DM-CNN, indicating that the dif-

ference in accuracy is not significant enough to conclude that 2DM-CNN is the best model as

shown in Table 6. For mel-spectrogram and mfcc datasets, the 2DM-CNN model has shown

superiority over others. When working with complex representations like mel-spectrogram

Fig 10. Confusion matrices at the first run of the proposed neural networks used on the mel-spectrogram dataset.

https://doi.org/10.1371/journal.pone.0302394.g010
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and mfcc, 2DM-CNN can extract features more effectively, thereby increasing the model’s

accuracy.

6 Conclusions

In this paper, we have proposed digital speech recognition solutions based on three types of

convolutional neural networks, including the 1D-CNN, 2DS-CNN, and 2DM-CNN. The

obtained results show that the proposed 2DM-CNN model has the highest classification accu-

racy and performance on two types of input, mel-spectrogram, and mfcc, outperforms other

models, equally ranking with the 2DS-CNN model on the spectrogram input type. The

1D-CNN model has lower classification accuracy than the two mentioned models but has the

lowest learnable parameters and calculating time per testing set. Models using transfer learning

techniques such as AecNet, GoogLeNet, and AlexNet have high classification accuracy but

have a large number of parameters and computation times, making them unsuitable for low-

performance devices. So, the proposed 2DM-CNN model can learn and classify digital speech

better than others while saving computational resources and time.
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Analysis of Residual Block Alternatives for End-to-End Audio Classification. IEEE Access. 2020;

8:188875–188882. Available from: https://ieeexplore.ieee.org/abstract/document/9226468. https://doi.

org/10.1109/ACCESS.2020.3031685

13. Zhu Q, Zu X. Fully Convolutional Neural Network Structure and Its Loss Function for Image Classifica-

tion. IEEE Access. 2022; 10:35541–35549. Available from: https://ieeexplore.ieee.org/abstract/

document/9745570. https://doi.org/10.1109/ACCESS.2022.3163849

14. Rezapour Mashhadi MM, Osei-Bonsu K. Speech emotion recognition using machine learning tech-

niques: Feature extraction and comparison of convolutional neural network and random forest. PLOS

ONE. 2023 11; 18(11):1–13. Available from: https://journals.plos.org/plosone/article?id=10.1371/

journal.pone.0291500. PMID: 37988352

PLOS ONE Crossmixed CNN for digital speech recognition

PLOS ONE | https://doi.org/10.1371/journal.pone.0302394 April 26, 2024 20 / 22

https://www.mdpi.com/2227-9717/10/11/2162
https://www.mdpi.com/2227-9717/10/11/2162
https://doi.org/10.3390/pr10112162
https://iopscience.iop.org/article/10.1088/2631-8695/ac4834
https://www.sciencedirect.com/science/article/pii/S0263224121012975
https://www.sciencedirect.com/science/article/pii/S0263224121012975
https://doi.org/10.1016/j.measurement.2021.110407
https://doi.org/10.1016/j.measurement.2021.110407
https://www.sciencedirect.com/science/article/pii/S0950705120305827
https://www.sciencedirect.com/science/article/pii/S0950705120305827
https://doi.org/10.1016/j.knosys.2020.106453
https://ieeexplore.ieee.org/abstract/document/9544057
https://ieeexplore.ieee.org/abstract/document/9544057
https://doi.org/10.1109/JIOT.2021.3114420
https://ieeexplore.ieee.org/abstract/document/9527461
https://link.springer.com/article/10.1007/s11042-020-10073-7
https://link.springer.com/article/10.1007/s11042-020-10073-7
https://ieeexplore.ieee.org/abstract/document/8632885
https://ieeexplore.ieee.org/abstract/document/8632885
https://doi.org/10.1109/ACCESS.2019.2896880
https://ieeexplore.ieee.org/abstract/document/1021072
https://ieeexplore.ieee.org/abstract/document/1021072
https://doi.org/10.1109/TSA.2002.800560
https://dl.acm.org/doi/abs/10.1145/860435.860487
https://link.springer.com/article/10.1007/s11042-018-6991-4
https://link.springer.com/article/10.1007/s11042-018-6991-4
https://ieeexplore.ieee.org/abstract/document/9226468
https://doi.org/10.1109/ACCESS.2020.3031685
https://doi.org/10.1109/ACCESS.2020.3031685
https://ieeexplore.ieee.org/abstract/document/9745570
https://ieeexplore.ieee.org/abstract/document/9745570
https://doi.org/10.1109/ACCESS.2022.3163849
https://journals.plos.org/plosone/article?id=10.1371/journal.pone.0291500
https://journals.plos.org/plosone/article?id=10.1371/journal.pone.0291500
http://www.ncbi.nlm.nih.gov/pubmed/37988352
https://doi.org/10.1371/journal.pone.0302394


15. Self-supervised learning for Environmental Sound Classification. Applied Acoustics. 2021; 182:108183.

Available from: https://www.sciencedirect.com/science/article/pii/S0003682X21002772. https://doi.org/

10.1016/j.apacoust.2021.108183

16. Pennington JR, David SV. A convolutional neural network provides a generalizable model of natural

sound coding by neural populations in auditory cortex. PLOS Computational Biology. 2023 05; 19:1–27.

Available from: https://journals.plos.org/ploscompbiol/article?id=10.1371/journal.pcbi.1011110. PMID:

37146065

17. Zhang T, Feng G, Liang J, An T. Acoustic scene classification based on Mel spectrogram decomposi-

tion and model merging. Applied Acoustics. 2021; 182:108258. Available from: https://www.

sciencedirect.com/science/article/pii/S0003682X21003522. https://doi.org/10.1016/j.apacoust.2021.

108258
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