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Abstract

Schistosomiasis is a neglected tropical disease which imposes a considerable and enduring
impact on affected regions, leading to persistent morbidity, hindering child development,
diminishing productivity, and imposing economic burdens. Due to the emergence of drug
resistance and limited management options, there is need to develop additional effective
inhibitors for schistosomiasis. In view of this, quantitative structure-activity relationship stud-
ies, molecular docking, molecular dynamics simulations, drug-likeness and pharmacokinet-
ics predictions were applied to 39 Schistosoma mansoni Thioredoxin Glutathione
Reductase (SmTGR) inhibitors. The chosen QSAR model demonstrated robust statistical
parameters, including an R® of 0.798, R%,q; of 0.767, Q°cv of 0.681, LOF of 0.930, R? g of
0.776, and cR®p of 0.746, confirming its reliability. The most active derivative (compound
40) was identified as a lead candidate for the development of new potential non-covalent
inhibitors through ligand-based design. Subsequently, 12 novel compounds (40a-40l) were
designed with enhanced anti-schistosomiasis activity and binding affinity. Molecular docking
studies revealed strong and stable interactions, including hydrogen bonding, between the
designed compounds and the target receptor. Molecular dynamics simulations over 100
nanoseconds and MM-PBSA free binding energy (AGy,ing) calculations validated the stability
of the two best-designed molecules. Furthermore, drug-likeness and pharmacokinetics pre-
diction analyses affirmed the potential of these designed compounds, suggesting their
promise as innovative agents for the treatment of schistosomiasis.
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1. Introduction

Schistosomiasis, a prevalent human parasitic infection, represents a significant global health
challenge, impacting more than 200 million individuals in developing countries [1-4]. The dis-
ease is prevalent across sub-Saharan Africa, parts of South America, the Caribbean, the Middle
East, and Southeast Asia [5]. Schistosomiasis exacts a heavy toll, causing approximately
280,000 deaths yearly [4]. Chronic infections of schistosomiasis can severely damage organs
like the liver, spleen, and urinary tract and increase the risk of bladder cancer and infertility as
reported by Silvestri V. and coworkers, along with many other researchers [6-8]. The predom-
inant therapeutic approach for schistosomiasis relies on a single drug, Praziquantel (PZQ),
which is administered extensively to combat the disease’s impact [9]. Despite its widespread
use, PZQ’s effectiveness is compromised by several factors, including its exclusive activity
against certain Schistosome species and the potential emergence of drug-resistant parasites
[10-12]. Moreover, the absence of a reliable alternative to PZQ underscores a critical limita-
tion in current treatment options. Hence, it is necessary to explore more potential inhibitors
for Schistosomiasis.

The enzyme Schistosoma mansoni Thioredoxin Glutathione Reductase (SmTGR) plays a
crucial role in the antioxidant defense system of the Schistosoma parasite, making it an attrac-
tive drug target for combatting schistosomiasis [13, 14]. SmTGR is involved in maintaining
the redox balance within the parasite’s cells, enabling it to neutralize harmful reactive oxygen
species (ROS) generated by the host’s immune system [15]. This function contributes to the
parasite’s ability to evade immune attacks and establish infection [16]. Therefore, inhibiting it
could disrupt the delicate redox balance that the parasite relies on for survival. According to
the research conducted by Gustavo Salinas and colleagues, SmTGR exhibits structural and
functional differences from its human counterparts, making it a potential target for selective
inhibition [17]. Exploiting these differences could minimize the risk of adverse effects on the
host. Also, in line with the discoveries of Jose T. Moreira-Filho and co-workers, as well as
numerous other researchers, SmMTGR is identified as a crucial survival mechanism for Schisto-
somes. Consequently, directing drugs at SmTGR has the potential to disrupt these vital pro-
cesses, offering a promising approach for the development of antischistosomal medications
[18, 19]. As a result, SmTGRs not only represent promising targets for drug development but
also hold potential as candidates for the development of a vaccine against the parasite.

The traditional process of designing and developing drugs has been demanding, costly, and
time-consuming [20]. Progress in computational science has revolutionized drug discovery,
rendering it more efficient and economical [21-23]. The effective utilization of Computer-
Aided Drug Design (CADD) signifies a notable advancement in drug discovery and develop-
ment methodologies, offering a more cost-effective and efficient alternative to the conven-
tional processes acknowledged for their prohibitive costs and time requirements. Recent
progress in in-silico techniques has enabled the construction of physicochemical models to
simulate biomolecular processes, empowering numerous research laboratories to innovate and
discover novel medications [24]. Through CADD approaches, several potent and commonly
prescribed drugs have been successfully developed to combat various life-threatening illnesses
and pathogenic infections such as Human Immunodeficiency Virus (HIV), Influence Virus,
Hepatitis C etc. notably example of such medications are Raltegravir (Isentress), Oseltamivir
(Tamiflu), Zanamivir (Relenza), Boceprevir (Victrelis), Doravirine (Pifeltro) among others
[25-29]. Various structure-based and/or ligand-based design methods are now employed,
with ligand-focused techniques like Quantitative Structure-Activity Relationship (QSAR)
gaining prominence [30, 31]. Robust QSAR models facilitate the economical virtual screening
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of extensive chemical databases, identifying potentially active compounds that meet the crite-
ria for promising drug candidates.

In this research, we utilize ligand-based drug design (LBDD) as a method to discover potent
non-covalent inhibitors of SmTGR with improved activity and enhanced binding capabilities.
Non-covalent inhibitors of SmTGR offer several advantages over covalent inhibitors, including
reversibility, selectivity, reduced potential for toxicity, ease of optimization, and lower risk of
drug resistance. These properties make them promising candidates for the development of
novel therapeutic agents against schistosomiasis [32]. Therefore, a collection of compounds
exhibiting phenotypic antischistosomal activities served as the initial foundation for devising
inhibitors targeting SmTGR, presenting a logical and effective method for identifying promis-
ing candidate compounds with possible therapeutic benefits against schistosomiasis [18]. This
approach exploits on the already established efficacy of compounds against the parasite,
enabling exploration of their molecular interactions and facilitating modification of drug can-
didates to enhance effectiveness and safety [33]. Consequently, the scope encompasses several
computational techniques, including QSAR modeling, molecular docking, molecular dynam-
ics (MD) simulations, drug-likeness assessment, and pharmacokinetics profiling. QSAR
modeling will be employed to predict the activity of candidate compounds and guide the
design of derivatives, while molecular docking simulations will identify potential binding sites
and optimize inhibitor structures. MD simulations will explore the dynamic behavior of pro-
tein-ligand complexes under physiological conditions to refine inhibitor designs. Drug-like-
ness assessment and pharmacokinetics profiling will prioritize compounds with favorable
pharmacokinetic properties. However, limitations exist, such as potential discrepancies
between computational predictions and experimental results, the availability of accurate struc-
tural data, and resource and time constraints. The main goal of this study is to identify and
characterize derivatives with potential application in the treatment of schistosomiasis using in-
silico approach.

2. Materials and methods

2.1 Dataset collection, preparations, structure determination and
optimization
The dataset was downloaded from ChEMBL (https://www.ebi.ac.uk/chembl) and included
experimental data for Schistosoma mansoni as a target (target ID: CHEMBL6110). The dataset
was screened and filtered to select compounds suitable for the QSAR study and was rigorously
cleaned to eliminate duplicates and resolve discrepancies (S1 Table) [34]. Compounds with
incomplete or inconsistent activity values were eliminated and data authenticity was verified
to maintain data quality and integrity [35]. The biological activities, initially recorded as ICs,
in nanomolar (nM), were transformed into pICs, to achieve data linearity and uniformity
throughout the dataset [36]. Following the filtration process, the dataset was reduced from the
initial count of 57 compounds to 49, which were subsequently employed for further analysis.
The Simplified Molecular Input Line Entry System (SMILES) notation for each compound
served as the foundation for constructing respective two-dimensional (2D) chemical structures
using PerkinElmer ChemDraw software [37]. These structures were then transformed into a
three-dimensional (3D) format utilizing Spartan v14.0 software. The optimization of molecu-
lar geometry was conducted on the Spartan interface through Density Functional Theory
(DFT) quantum mechanical calculations employing the B3LYP/631-G™* basis set [38]. The
optimized geometric structures of the molecules were saved in a unified folder in Spatial Docu-
ment File (sdf) format.
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2.2 Descriptor calculations, data pretreatment and division

The Pharmaceutical Data Exploration Laboratory (PaDEL) descriptor toolkit was utilized to
calculate essential molecular descriptors that contribute to the anti-schistosomiasis activities of
the derivatives [39]. This involved importing the 3D structures saved in sdf file format into the
PaDEL software. The chosen configuration included the selection of all descriptors (1D, 2D,
and 3D), while for ’standardization’, various options were checked (remove salt, detect aroma-
ticity, standardize tautomers, SMIRK tautomers file, standardize nitro groups and retain 3D
coordinated) and the MM2 forcefield was employed [23]. Subsequently, the generated descrip-
tors underwent manual preprocessing to eliminate redundant and highly correlated ones [40].
Further refinement was performed using version 1.2 of the pretreatment software. The dataset
was then divided into training (modeling) and test (validation) sets using the Kennard-Stone
algorithm [41]. The training set comprised 39 compounds, accounting for 80% of the dataset,
while the remaining 10 compounds, constituting 20%, were set aside for the external validation
test set [42].

2.3 Building and validation of QSAR Model

The training set compounds were employed for generating the QSAR model and perform-
ing internal validations, while the test set molecules were used for the model’s external vali-
dation and assessment of predictive performance [42]. Combination of the genetic function
algorithm (GFA) with multi-linear regression (MLR) within Material Studio v8.0 was
applied to generate the QSAR models [43]. Within the GFA regression, the biological activi-
ties (p1Csy) served as the dependent variables, while the descriptor values were treated as
independent variables. For ensuring model convergence, specific parameters were set: the
population sample and maximum generation were fixed at 10,000 and 1500, respectively;
the number of top equations returned was limited to 4; a mutation probability of 0.1 was
employed, and the default smoothing parameter of 0.5 was maintained [43]. Identification
and selection of the best QSAR model relied on key statistical parameters, encompassing
the correlation coefficient of the training set (R*ermar)> adjusted correlation coefficient
(Rzadj), cross-validation coefficient (Q%cv), and correlation coefficient of the external test
set (R%xternal) [44]. The equations characterizing these validation parameters are provided
in Eqs (1-4), respectively.

2
Z ( Yexp - Ypred)

R2internal =1- < 2 (1)
Z(Yex - Ytraining)
R~ C(B—1)
R, =— 2
“ = TB_C+1 @)
2
QZCV —1_ Z(Ypred - Yexp) (3)
4 2
Z(Yexp - thining)
2
2 _ Z(Yexp(test set) Ypred(test set))
R external — 1- 5 2 (4)
Z(Yexp(test set) Ytrm‘m‘ng)
Where, Y, Y, ,and Y, are the experimental, predicted and average training set activi-

ties. B is the total no. of compounds used as training set and C is the no. of descriptors used
to generate the model.
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The chosen model underwent evaluation using the subsequent quantitative evaluations:
mean effect (ME), variance inflation factor (VIF), and Y-scrambling analysis [22, 36, 45]. The
ME measurement was employed to assess the significance of each descriptor’s role within the
selected model, VIF was calculated to assess the multicollinearity between the descriptor’s
while the Y-scrambling test was implemented to substantiate the model’s robustness [46]. The
calculation of each descriptor’s ME was conducted utilizing Eq 5, which indicates the degree of
influence exerted by the descriptors on the compounds’ activities.

The Y-scrambling test was performed by computing the coefficient of the validation param-
eter for Y-randomization (cR*p) using Eq 6. This process involved rearranging the actual activ-
ities while maintaining the descriptors unchanged. It was anticipated that the reshuffled QSAR
model would exhibit low Q* and R* values, alongside a cR*p value surpassing 0.5, as an indica-
tor of its reliability [47].

_ A > dwg
b Z;ﬂ Aq Z; dwq

Where, ME, is the mean effect of descriptor q in the model, A is the coefficient of descriptor
q of that model, and dwq is the value of descriptor q in the data matrix for each compound in
the model building set. m is the sum of descriptors present in the model, and n is the number
of compounds in the model building set.

ME (5)

cRp =R x [R* =R’ (6)

where cR2p is the coefficient of determination for Y-scrambling, R is the coefficient of deter-
mination for Y-randomization and R, is the mean value of 'R’ derived from random models.

2.3.1 Applicability domain (AD). The domain of applicability was evaluated through
William’s plot, which plots standardized residuals against leverage values. This aimed to ascer-
tain whether the selected model contains compounds predominantly within the designed
domain or includes outliers and influential [23, 48]. The assessment involved examining the
leverage approach and the warning leverage using Eqs (7) and (8):

hi = xi(XTX)_lxiT (7)

_3Q+1

h*
N

(8)
where, h; represents the leverage approach, X is the nxk descriptor matrix pertaining to the
training sets. X" is the transposed matrix employed during model creation. h* is the warning
leverage. Q is the no. of descriptors in the chosen model, and N is the total number of com-
pounds within the training sets.

2.4 Ligand-based drug design

The criteria guiding the selection of a lead compound for subsequent analogous design were
exclusively centered around the information gained from the selected QSAR model [49]. This
involved identifying the compound with the highest pICs, a minimal residual value, found
within the preferred applicability domain (AD), and complied with Lipinski’s rule of five,
along with a favorable pharmacokinetic profile. In line with these considerations, compound
40 from the dataset emerged as the chosen lead compound. It was then subjected to modifica-
tions through the addition and replacement of various groups at specific positions (template
compound). These modifications were driven by the mean effect values of the molecular
descriptors used to generate the selected model [50].
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2.5 Molecular docking studies

In order to identify the active amino acid residues and to assess type of interactions between
the compounds and the SmTGR protein, molecular docking studies was performed [51, 52].
The optimized 3D-structures of all ligands were saved in the Protein Data Bank (PDB) format.
The 3D structure of the SmTGR receptor (PDB ID: 6ZST), co-crystallized with a 3-(3-methox-
yquinoxalin-2-yl)propanoic acid ligand with excellent resolution of 1.7 A, was acquired from
the Protein Data Bank (https://www.rcsb.org) and processed using Biovia Discovery Studio
(BDS) Visualizer Version 3.5 software. This involved the removal of excess water molecules
and the co-crystallized ligands from the X-ray structure prior to initiating the docking proce-
dure [53]. Employing the Molegro Virtual Docker (MVD) 6.0 software, the lead compound,
along with the newly designed compounds and PZQ, were subjected to docking within the
active site of the SmTGR receptor. The docking simulation was performed with a minimum of
50 iterations to produce five potential poses. The optimal poses were then chosen using prede-
fined scoring functions (MolDock score and Hydrogen bond energies). To examine the differ-
ent intermolecular interactions in the docked complexes, BDS Visualizer was utilized [46].

2.6 Molecular dynamics simulations

Molecular dynamics (MD) simulation serves as a scientific approach for probing the intricate
motions of molecules and atoms within dynamic systems, particularly protein-ligand com-
plexes, with the overarching goal of gaining insights into significant physicochemical phenom-
ena [54-56]. The 2 best designed compounds underwent a series of MD simulations lasting
100 nanoseconds. The CHARMM-GUI web-based graphical interface was employed to estab-
lish the simulation system, generating the force field for both ligands and proteins [57, 58].

The simulations, lasting 100 ns in a periodic water box, utilized the CHARMM36 force field
and the Gromacs version 2020 software package [59, 60]. The complexes were placed within a
rectangular box with a buffer distance of 10 in each direction [61]. Subsequently, the box was
solvated by adding TIP3P water molecules. To neutralize the system’s charge for the 40D and
40] ligands, 4 Na+ ions and 0 Cl- ions were added. Additionally, 0.00 M NaCl was introduced
to mimic a cellular environment. Minimization of the docked complexes was performed using
the CHARMM36 force field.

Each system underwent thermal equilibration at a temperature of 310 Kelvin, involving
5000 iterations (equivalent to 10 picoseconds). The production run of the NPT ensemble
extended for 100 seconds. The Lincs approach confined hydrogen, resulting in a time step of 2
fs. A switching technique with a range of 12-14 was employed to investigate van der Waals
forces, with a cutoff value of 14. Long-range electrostatic interactions were calculated using the
particle mesh Ewald (PME) technique, employing a maximum grid spacing of 1.2. PME calcu-
lations were performed at each iteration without a multiple-time stepping approach [62].

Temperature was maintained at a constant 310 K, and the barostat’s system size changes
were set to a target of 1 bar. Numerical integration used a time interval of 2 femtoseconds. Sub-
sequently, simulation output was adjusted, and trajectories were evaluated using VMD soft-
ware, Bio3D, and QTGRACE. System stability was examined through various parameters,
including root mean square deviation (RMSD), root mean square fluctuation (RMSF), radius
of gyration (Rg), number of hydrogen bonds (H-bonds), principal component analysis (PCA),
and dynamics cross-correlation map (DCCM) [63].

2.6.1 Binding free energy calculation using MM-PBSA. In the MD simulation, free
energy calculation takes a major role in determining the binding stability of ligands-protein
complex [64]. In this study, the MM-PBSA method was used to calculate the free binding
energy between ligands and the SmTGR enzyme. This method considers both bonded and
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non-bonded interactions, encompassing van der Waals and electrostatic forces. Binding free
energy (AG) estimation was done by Eq (9) using the script MMPBSA.py of the AMBER pack-
age [57].

[AG,;,4 G = —complex G — protein G — ligand] (9)

Where, G-complex is the free energy of the complex; G-receptor is the free energy of the recep-
tor; G-ligand is the free energy of the ligand [65].

2.7 Pharcokinetics and drug-likeness predictions

Following the successful docking with the SmTGR receptor, the newly developed compounds
were evaluated for their potential as drug candidates, by assessing their pharmacokinetic and
drug-like properties. This evaluation was carried out by utilizing the pkCSM (https://biosig.
lab.ug.edu.au/pkcsm/) and Swiss-ADME (http://www.swissadme.ch/) online tools, which
facilitated the assessment of their absorption, distribution, metabolism, excretion and toxicity
(ADMET) profiles and drug-likeness properties [66].

3. Results and discussion
3.1 QSAR analysis

Four distinctive QSAR models were generated utilizing the GFA technique, all passing internal
validation (shown below) as proposed by Umar Abdullahi Bello and co-workers [43]. Numer-
ous researchers have employed the GFA approach in model building due to its flexibility and
non-linear modeling capacity [67-69]. Aligning with benchmarks values in Table 1, only two
of the created models satisfied the requirements for external validation against the test set com-
pounds [70]. Among the models generated, model 2 emerged as the most suitable for predict-
ing the inhibitory activities of the compounds and was chosen for further studies.

Model 1 pICs = - 1.346 * VE1_Dzs—0.425 * nBondsM + 10.846 * SpMax2_Bhv + 2.194 *
MLFER_E—28.699 * WTPT-2 + 25.580

Model 2 pICsg = - 0.444 * nBondsM + 8.609 * SpMax2_Bhv + 2.232* MLFER_E—4.777 *
VE1_D—21.929 * WTPT-2 + 20.364

Model 3 pICs, = - 0.428 * nBondsM + 10.351 * SpMax2_Bhv + 2.794 * MLFER_E—20.769
*WTPT-2-0.014 * Zagreb + 11.618

Model 4 pICs, = - 0.432 * nBondsM + 10.407 * SpMax2_Bhv + 2.786 * MLFER_E—0.044
*MPC2-21.054 * WTPT-2 + 11.981

The reliability of the chosen QSAR model was assessed using the following evaluation
parameters: an internal R* (R ernar) Of 0.798, an adjusted R (Rzadj) of 0.767, a cross-validated
Q? (Q%cv) 0f 0.681, and a test set R? (R?.s) of 0.776 (Table 1). The R%, ornat Of 0.798 shows
that the model can explain almost 80% of the total variance in biological activities, indicating
how well the model fits the compounds in the training set. An Rzadj of 0.767 confirms the

Table 1. Validation parameters for all generated models with their respective recommended threshold values.

Validation Models parameters Recommended threshold Remark Reference
1 2 3 4

R%internal 0.806 0.798 0.797 0.794 > 0.6 Passed [73]

R’.; 0.777 0.767 0.767 0.763 > 0.6 Passed [72]

Q’cv 0.702 0.681 0.629 0.623 > 0.6 Passed [72]

LOF 0.891 0.930 0.932 0.946 Low value Passed [72]

R oot 0.704 0.776 0.532 0.543 > 0.6 Models 3 & 4 failed [72]

https://doi.org/10.1371/journal.pone.0302390.t001
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Table 2. Interpretation and classes of the molecular descriptors within the selected model.

S/ | Symbol Description Class
N
1 | NBondsM Total number of bonds that have bond order greater than one (aromatic bonds have 2D

bond order 1.5).

2 | SpMax2_Bhv | Largest absolute eigenvalue of Burden modified matrix—n 2 / weighted by relative van | 2D
der Waals volumes

3 MLFER_E Excessive molar refraction 2D
4 |VEL_D Coefficient sum of the last eigenvector from topological distance matrix 2D
5 | WIPT-2 Molecular ID / number of atoms 2D

https://doi.org/10.1371/journal.pone.0302390.t002

model’s reliability and suggests that it’s not overfitting, while Q*cv at 0.681 shows the model’s
ability to predict compound activities within the training set. A notable RZ,. value of 0.776
underlines the model’s proficiency in predicting activities for the test set compounds. These
values indicate the reliability and predictive capability of the selected QSAR model in assessing
compound activity. Additionally, validation metrics align with benchmark scores, meeting the
criteria for an acceptable QSAR model, as suggested by Mouad Mouhsin and others [71-73].

Furthermore, Table 2 indicates a detailed account of the molecular descriptors of the
selected QSAR model. These descriptors, along with their associated categories, guide the
molecular interpretation and the selection of suitable functional groups when designing new
novel anti-schistosomiasis compounds with enhanced inhibitory effects targeting the SmTGR
receptor [50]. Additionally, the numerical values of these descriptors are outlined in S2 Table
of the supplementary materials.

Fig 1 illustrates an activity plot of the predicted pICs, values for both the modeling and vali-
dation datasets against experimental activity values for inhibiting the SmTGR enzyme. Nota-
bly, the plot exhibits a close correspondence between these values, demonstrating minimal
scattering and deviations. This alignment strongly implies the effectiveness of the model, signi-
fying robust predictive capability. Additionally, Fig 2 shows the residual values of the entire
datasets plotted against the experimental pICs, values. This graph was formulated to compre-
hend the disparities between the model’s estimations and the experimental data. Notably, the
residuals are evenly dispersed around zero, indicating that the model’s predictions match the
experimental data well. These results are consistent with the discoveries of Sagiru Abdullahi
Hamza and coworkers [74].

3.1.1 QSAR statistical analysis. 3.1.1.1 Y-Scrambling. To further ascertain the model’s
robustness, a Y-scrambling test was conducted, involving a random reshuffling of the biologi-
cal activity of training set compounds while maintaining the molecular descriptor values
unchanged. As a result of this process, new models with lower performance metrics emerged.
Specifically, an R* value of 0.113, Q” score of -0.364, and cR*p value of 0.746 (Fig 3). The lower
R? and Q? values following the reshuffling of biological activities indicate the model’s inability
to construct a suitable predictive model under such conditions [75]. Notably, the cR’p value of
0.746 emphasizes that the selected model isn’t merely an outcome of coincidental correlations
[43]. A reliable model should exhibit notably higher R* and Q? values when applied to the orig-
inal (unscrambled) compared to the scrambled data [76].

3.1.1.2 Mean effect calculations. From the analysis of molecular descriptors, it was observed
that nBondsM, VE1_D, and WTPT-2 exhibited positive ME values, with WTPT-2 showing the
highest value of 3.017. In contrast, the descriptors SpMax2_Bhv and MLFER_E displayed a
negative ME values of -2.132 and -0.270, respectively (Table 3). Pearson’s correlation was
employed to examine the interrelation between descriptors in the model. The ME values of
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these descriptors sum up physicochemical characteristics in a numerical format, offering dis-
tinctive structural insights for each descriptor [77]. These numeric representations serve as
valuable information that can be used to enhance the compound activities. Notably, descrip-
tors with positive coefficients namely, nBondsM, VE1_D, and WTPT-2 signify a favorable
impact of these descriptors on the effectiveness of SmTGR inhibitors. This implies that higher
values of these descriptors correspond to increased anti-schistosomiasis activity, and vice versa
[77]. In contrast, descriptors with negative coefficients specifically, SpMax2_Bhv and
MLFER_E suggest an adverse influence on the compound activities [78]. Lower values of such
descriptors increases the inhibitory activities against schistosomiasis. Consequently, this
underscores the significance of electron-donating groups and functional groups possessing
lone electron pairs in increasing the activity of derivatives aimed at inhibiting the SmTGR
enzyme.

3.1.1.3 Applicability domain. The Williams plot was utilized to identify compounds that
unfavorably influence the model’s performance (Fig 4). This plot revealed that two com-
pounds originating from the training set and four from the test set fell outside the preferred
region, notably exceeding the warning leverage threshold (h* > 0.460) (Fig 4) [79]. Specifi-
cally, compounds 11, 37, 45, and 49 were from the test set, along with compounds 17 and 34
from the training set. These particular compounds were singled out as influential [80]. The
presence of bulky substituents might account for their deviation from the desired domain.
However, among the derivatives found within the predefined domain, compound 40, having
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the highest pICs,, minimal residual value, and a favorable pharmacokinetics profile, was cho-
sen as the lead compound.

3.2 Ligand-based drug design

Compound 40 was selected as a lead compound for drug design, with various positions tar-
geted for alterations, as indicated in the adopted template (Fig 5). The selection of substituents
to be incorporate was guided by the SpMax2_Bhv and WTPT-2 descriptors, which were previ-
ously noted for their significant negative and positive ME values [78]. Remarkably, twelve of
the newly designed analogues exhibited relatively higher activity than the lead compound.
This implies that the modifications based on these descriptors led to improved compound
activities, potentially making these analogues promising candidates for the treatment of
schistosomiasis.

It was observed that introducing substituents possessing electron-donating groups (EDG)
and groups containing multiple bonds holds promise for enhancing the biological activities of
the derivatives [81]. The inclusion of such groups, especially those with available lone pairs of
electrons, has exhibited notable increase in the efficacy of the designed compounds. Impor-
tantly, recent investigations have also validated the effectiveness of similar substituents in
improving compound activities [81]. Therefore, initial structural adjustments were performed
on the template structure by replacing R; with various groups such as N-hydroxyamide, car-
bothioic S-acid, PH(CO)-, cyclopropane, and cyclobut-1,3-diene (Table 4) (Fig 6). Further
modifications involving these aforementioned functional groups at positions R,-R5 have
exhibited a positive impact on compounds’ activities. Notably, the introduction of these func-
tional groups at R, has elevated the predicted activities from 7.676 for the lead compound to a
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range of 8.100-8.331 for the newly designed compounds. Substitutions at positions R,-Rs on
the aromatic ring have demonstrated a significantly stronger effect in increasing the biological
activities of the potential anti-schistosomiasis agents possibly due to stronger electron density
around the scaffold [82]. This effect is strikingly apparent among the newly designed entities,
displaying a remarkable range of 8.537-10.076 (Table 4). Moreover, compound 40j, which
exhibited the highest activity, featured two carbothioic S-acid groups substituted at positions
R; and Rs. This result could be attributed to an increased electron density within the ring,
which in turn impacts its reactivity and electronic attributes. Collectively, all twelve of the
newly designed derivatives showcased improved inhibitory effects, underscoring the potential

Table 3. Pearson’s correlation and mean effect values of selected model.

nBondsM SpMax2_Bhv MLFER_E VE1_D WTPT-2 ME
nBondsM 1 0.357
SpMax2_Bhv 0.865 1 -2.132
MLFER_E 0.845 0.799 1 -0.270
VE1_D -0.297 -0.318 -0.143 1 0.027
WTPT-2 0.469 0.678 0.579 0.021 1 3.017
YME 1

https://doi.org/10.1371/journal.pone.0302390.t003
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of N-hydroxyamide, carbothioic S-acid, PH(CO)-, cyclopropane, and cyclobut-1,3-diene
groups to enhance the anti-schistosomiasis properties of the derivatives.

3.3 Molecular docking studies

The process of docking analysis was carried out involving the lead compound, the twelve
designed derivatives and the standard drug against the SmTGR receptor (PDB ID: 6ZST).
Scoring functions, namely the MolDock score and hydrogen bond energies, were utilized to
furnish insights into the binding energy of their interactions (Table 4). These scoring metrics
were employed to assess the interactions between the designed analogs and the active site of
the SmTGR receptor.

The MVD was employed to predict the top 5 binding cavities and the most favorable bind-
ing cavity was identified by XYZ coordinates at 133.370, 9.770, and 75.030, confined within a
constrained sphere of radius 20.0 A, with a volume of 726.01 A* and a surface of 2242.560 A>.
The Moldock (GRID) scoring algorithm was chosen, employing a default grid resolution of 0.3
A for 10 independent runs. Each run encompassed a maximum of 1500 iterations, utilizing a
population size of 50. The default settings for pose generation and simplex evolution were con-
sistently employed throughout the process. Fig 7A illustrates the alignment of the prepared
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6ZST enzyme. Moreover, in order to confirm the precision of the docking algorithm and guar-
antee the accurate attachment of ligand molecules to the receptor’s distinct binding site, the
lead compound was subjected to a second docking onto the initially docked compound. This
procedure resulted in an RMSD value of 0.647 A (Fig 7B). This outcome not only substanti-
ated the reliability of the docking approach but also demonstrated its adherence to the well-
established benchmark of an RMSD value of <2.0 A [51].
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Table 4. Molecular structures of newly designed potential inhibitors of SmTGR with their predicted biological
activities, docking score and H-bond energies.

1L.D pICs, (pred) Moldock score/ kcal mol™ H-bond energy
40 7.676 -150.251 -5.038
40a 8.331 -155.258 -7.132
40b 8.242 -152.256 -7.862
40c 8.283 -161.43 -3.007
40d 8.135 -170.625 -2.980
40e 8.100 -146.869 -11.862
40f 9.134 -137.018 -11.438
40g 8.537 -156.788 -6.613
40h 8.911 -158.033 -8.861
40i 9.652 -167.617 -7.016
40j 10.076 -173.613 -12.160
40k 9.122 -152.725 -8.488
401 8.749 -147.185 -3.829
PZQ 6.067 -115.338 -3.314

https://doi.org/10.1371/journal.pone.0302390.t1004

Docking compound 40 into the optimal binding site of SmTGR revealed a MolDock score
of -150.251 kcal mol ' and a hydrogen bond energy of -5.038 kcal mol ™. The relatively strong
binding energy underscores the potency of the interaction between the ligand and the recep-
tor. Additionally, the hydrogen bond energy plays a significant role in establishing overall sta-
bility within the ligand-receptor complex. High hydrogen bond energy of -5.038 kcal mol™*
suggests a strong interaction between the ligand and the receptor. Abdullahi Bello Umar and
co-workers have also reported that high value of Moldock score and H-bond energies increases
the likelihood of the ligand being tightly bound to the receptor’s active site which can lead to a
higher binding affinity, potentially resulting in a more stable and long-lasting interactions
[83].

Fig 8A and 8B illustrated the interactions of the leading candidate (40) with specific amino
acid residues within the SmTGR binding site: Five conventional hydrogen bonding interac-
tions involving the oxygen atom of the oxadiazole ring, the carbonyl oxygen of the substituted
piperazine scaffold, the bridged carbonyl oxygen, and the anionic oxygen of the oxadiazole
scaffold with Gly115, Gly118, Thr153, and Tyr138, at distances of 2.782 A, 2.326 A, 1.585 A,
1.536 A, and 3.300 A, respectively. Additionally, five carbon-hydrogen bonding interactions
arise between the oxygen atom of the oxadiazole ring, the carbonyl oxygen of the substituted
piperazine scaffold, the bridged carbonyl oxygen, and the alkyl hydrogens of the substituted
piperazine ring. These interactions occur with Gly114, Gly18, Gly152, and Ala256, at distances
of 2.510 A, 3.035 A, 2.942 A, 2.886 A, and 2.803 A respectively. Furthermore, an electrostatic
interaction emerges between Asp433 and the aromatic ring moiety of the ligand. Supplemen-
tary hydrophobic interactions were identified with Ala445 and Cys154 amino acid residues.
Importantly, almost all the active residues of 6ZST were observed within the binding site of
compound 40 with SmTGR.

Molecular docking investigations of the ligand based designed compounds yielded interest-
ing results (Fig 9). The newly designed compounds with modifications at position R; of the
oxadiazole ring moiety (compound 40a - 40e) shows a significant influence on the binding
affinity as they all exhibited a higher binding energy (within the range -151.869 to -170.625
kcal ' and a H-bond energy range of -2.980 to -11.862 kcal mol ') compared to the lead com-
pound and PZQ with moldock score of -150.251 & 115.338 kcal mol ' and H-bond energies of
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Fig 6. Molecular structures of newly designed potential inhibitors of SmTGR.
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Fig 7. (A) The prepared 6ZST enzyme; (B) Superimposition of the lead entity.

https://doi.org/10.1371/journal.pone.0302390.9007
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-5.038 kcal mol™ & - 3.314 kcal mol ™ respectively. The incorporation of additional substitu-
ents at position R, to Rs of the benzene ring scaffold also substantially enhanced the binding
affinity of the compounds (compound 40f - 401) with moldock score range of -137.018 to
-173.613 kcal mol ' and a hydrogen bond energy range of -3.829 to -12.160 kcal mol . Inter-
estingly, the ligand (compound 40j) with the highest predicted activity of 10.076 was also
found to have the highest binding energy and hydrogen bond of -173.613 kcal mol ™" and
-12.160 kcal mol ™ respectively (Table 4). Compound 40j emerged as the top-performing
designed derivative due to it exhibiting the highest predicted biological activity while still
maintaining remarkable stability (reflected in the moldock score and hydrogen bond energy).
Compound 40j formed numerous interactions with the active amino acid residues in the bind-
ing site of 6ZST. Specifically, it engaged in five conventional hydrogen bonding interactions
between the bridged carbonyl oxygen, carbonyl oxygen of carbothioic S-acid at R” position,
nitrogen atom of the oxadiazole ring, Sulphur of carbothioic S-acid at R? position and the car-
bonyl oxygen of the primary amine scaffold with Gly116, Glu140, Thr153, Gly228, Asp433 at
the distance of 2.667 A, 2.394 A, 2.405 A, 2.718 A and 2.244 A respectively. Additional six car-
bon hydrogen bond interactions were observed between compound 40j and Gly114, Ser117,
Gly258, Arg260, Thr257 and Ser117 at a distance of 2.170 A, 2.035 A, 2.829 A, 3.055 A, 1.382 A
and 2.282 A. The molecular interactions of the generated PZQ derivatives are depicted in Fig 9
and summarized in Table 5. The 2-dimentional interactions are presented in S1 Fig of supple-
mentary materials.

3.4 Molecular dynamics simulations

MD simulation studies were conducted to elucidate the optimal interactions between 40d and
40j complexes as well as to assess their long-term stability and efficacy. The stability of the pro-
tein-ligand complexes throughout the simulation period was evaluated through the analysis of
Root Mean Square Deviation (RMSD), Root Mean Square Fluctuation (RMSF), Radius of
Gyration (Rg), no. of hydrogen bonds, principal component analysis (PCA), and dynamic
cross correlation metric (DCCM) [84].

To gauge the stability of each protein-ligand complex, the RMSD of the protein backbone
for the 40d and 40j complexes was calculated over a 100 ns MD trajectory, as depicted in Fig
10. RMSD is widely employed in structural analysis, providing insight into the stability of a
given complex [85]. When analyzing a protein-ligand complex, it is crucial to consider the
RMSD of the Co. atoms in the protein backbone, as it characterizes the overall conformational
stability of the complex during dynamic states and simulations [86]. As illustrated in Fig 10A,
the RMSD plot for the protein backbone’s Ca atoms exhibited an increasing pattern for the
initial 30 ns, reaching a value of 4.5 A. Notable variations were observed up to 85 ns, with pro-
nounced fluctuations at 60 and 63 ns resulting in an elevated RMSD value of 6.5 A. Subse-
quently, the RMSD showed a decreasing trend from 6.5 A to 4 A with slight fluctuations up to
90 ns. Although it reached the highest value around 90 ns, the RMSD decreased in the last 10
ns of the simulation, showing a stable graph line until the end. The average RMSD of the pro-
tein backbone is 3.94 A. Contrastingly, Fig 10B shows an RMSD plot that increased to 3 A for
the first 10 ns, reaching its highest value of 6.5 A after 10 ns. Notable decline occurred at 20 ns,
followed by substantial increments until 45 nanoseconds. The RMSD graph then displayed
ascending and descending fluctuations until the end of the simulation. Regarding the RMSD
of the ligands, Fig 10A shows an average RMSD of 1.62 A, while Fig 10B demonstrates an
average RMSD of 1.19 A. Despite the ligand in Fig 10A having a higher RMSD value com-
pared to Fig 10B, analysis using VMD software revealed no displacement of either ligand from
the protein domain. This suggests that both ligands remained stable within the binding site.
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To assess the stability of each protein-ligand combination, the RMSD of the protein backbone
and ligand along the 100 ns MD trajectory was calculated (Fig 10A and 10B). The average
RMSD values of the complexes are 2.12 A and 4.6 A, respectively. These RMSD values indicate
that the protein-ligand complex in Fig 10A (40d complex) is more stable than the complex in
Fig 10B (40j complex).
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Table 5. Summary of active site amino acid residues interacting with newly designed compounds.

ID

40a

40b

40c

40d

40e

40f

40g

40h

40i

40j

40k

401

https://doi.org/10.1371/journal.pone.0302390.t005

Conventional H-bonding / A

Gly115 (2.876), Glu140 (1.926), Glu259
(3.027), Arg393 (3.092), Tyr138 (2.186)

Gly115 (3.003), Gly116 (3.044), Glu140
(1.990), Glu259 (3.020), Arg393
(3.040), Thr257 (1.283)

Glyl115 (3.066), Gly118 (2.036), Thr153
(1.710), Ala256 (3.110),
Asp137 (2.986), Tyr138 (3.072)

Gly115 (2.926), Gly118 (2.115), Thr153
(1.599), Tyr138 (3.300)

Gly115 (2.843), Ser117 (2.471), Gly119
(1.916), Thr153 (2.378),
Asp433 (2.071), 1le431 (3.254)

Gly116 (2.805), Ser117 (2.568, 3.005),
Gly118 (2.416), Glu259 (1.955), Arg393
(2.796),

Ala256 (2.930), Gln440 (1.828, 2.310),
Glu259 (2.219)

Gly118 (1.713), Gly119 (2.507), Glu256
(2.151), Arg393 (2.814, 2.802), Thr257
(3.238), Asp137 (2.171), Tle431 (2.795)

Glyl15 (2.848), Ser117 (2.595), Glu140
(1.755), Thr153 (2.310), Cys154
(2.258), Glu259 (2.760), Thr257 (2.932
Glyl15 (2.964), Gly118 (2.077), Glu140
(1.739), Thr442 (2.629), Tyr138
(3.286), Thr257 (2.945)

Gly116 (2.667), Glu140 (2.394), Thr153
(2.405), Gly228 (2.718), Asp433 (2.244)

Thr153 (2.225), Cys154 (2.811), Tyr296
(2.093), Asp137 (2.516)

Gly115 (2.720), Glu140 (2.605), Glu259
(2.379), Arg260 (2.144), Arg393 (2.972)

Types of interactions

Carbon-hydrogen bond / A

Gly114 (3.089, 3.068), Thr257 (2.679), Ala256

(2.285)

Gly114 (3.015, 3.083), Ala256 (2.170)

Gly114 (3.072, 2.870), Gly118 (3.007), Arg260

(2.824), Ala256 (2.757)

Glyl114 (2.872), Gly118 (3.015), Ala256 (2.794)

Gly114 (2.039), Gly118 (2.295, 2.173), Gly152
(2.966) Thr257 (2.650, 2.687), Gly258 (2.585),
Gly432 (1.963), Ala256 (2.486, 2.195), Asp137

(2.897), Tyr138 (2.805),

Glyl116 (2.514), Arg393 (2.043), Asp433
(1.734), GIn440 (2.758)

Glyl16 (2.111), Gly118 (3.081), Thr257 (2.500),

Asp433 (1.200)

Glyl114 (2.127), Val139 (1.945), Thr257 (2.680,

2.141, 2.661), Ala256 (1.889)

Gly114 (3.087, 2.915), Gly118 (2.717), Val139
(2.105), Arg260 (2.794), Thr257 (2.252), Ala256

(2.542), Thr257 (2.866)

Gly114 (2.170), Ser117 (2.035), Gly258 (2.829),
Arg260 (3.055), Thr257 (1.382), Ser117 (2.282)

Thr153 (1.579), Gly432 (2.978), Leu441 (2.393)

Vall39 (2.268), Thr257 (2.714), Ala256 (2.587,

2.018), Asp433 (3.055)

Electrostatic
- -
anion | cation

Asp433 -
Asp433 -
Asp433 -
Asp433 | Arg260
Asp433 -
Aspl37 -
Asp433

- Arg260
Asp433 | Arg260
Asp433 -

-0

Ser117

Arg260

Arg260

Glyll6

Hydrophobic
Alkyl m-alkyl
Ala256 Vall39,
Arg260,
Ala445
Ala256 Vall39,
Arg260,
Ala445
Ala256, | Trpl48 *2,
Vall39 Cysl54
Ala445 Cysl154,
Val139
Vall39 Ala256,
Ala445,
Vall39
Cysl54, -
Cys159
Ala445 -
Ala256 Val139,
Arg260
Val139, -
Arg260
Ala256, Ala445
Ala445
Ala256 Val139,
Arg260,
Ala445

Other

Tyr138 (m-
lone pair)
Cys159 (n-
sulfur),
Thr257
(amide-m)

The average fluctuation seen in all atoms over a 100 ns MD trajectory was visualized using
RMSF data for proteins and protein-ligand complexes (Fig 10C and 10D). PHE 181, GLY 182,
TRP 183, ILE 592, VAL 593, and SER 594 showed significant alterations, possibly due to ligand
binding. Both complexes (40d and 40j in complex with SmTGR) exhibited similar RMSF,
indicating increased stability for both complexes.

The Rg data for the protein-ligand complexes were employed to visually represent varia-
tions in structural integrity and compactness over a 100 ns MD trajectory, as illustrated in Fig
10E. The assessment of structural integrity and compactness relies on the Rg parameter, mea-
suring the average distance of a group of atoms from their shared center of mass, factoring in
the masses of the atoms. The 40d-complex exhibited an average Rg value 2.80 A greater, with

the most significant deviation observed at 10 ns. Conversely, the 40j complex had an average
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Rg value 2.80 A lower, with notable deviations at 40 and 60 ns. The structural compactness
and tightness of the protein complexes displayed variability during the simulation, particularly
with larger fluctuations detected in the 40d complex, suggesting both complexes maintained
compact structures with 40j being more structural integrity.

The evaluation of hydrogen bond network on the 2 complexes was conducted over a 100 ns
simulation period as illustrated in Fig 11A and 11B. The criteria for hydrogen bonds were set
as acceptor-donor distance < 0.35 nm and angle >120, with frames sampled every 2 picosec-
onds. The analysis revealed a greater number of stable hydrogen bonds in the docked complex,
preserved throughout the MD simulations. In the case of the 40d-SmTGR complex, stability
was maintained by interactions with ASP137 and SER117 residues, with H-bond occupancies
of 24.65% and 19.76%, respectively (Table 6). The 40j-SmTGR complex, on the other hand,
exhibited stronger hydrogen bonds, particularly involving ILE431 and TYR138 residues, with
H-bond occupancies of 18.36% and 17.86% (Table 6). Notably, the 40d-protein complex had a
lower number of hydrogen bonds compared to 40j complex. This shows that stronger contacts
and more stable hydrogen bonding contribute to the 40j-SmTGR complex stability during
MD.

Additionally, PCA was employed to examine the changes in the domain dynamics inside
the receptor-ligand complex across a 100-nanosecond simulation period (Fig 12). The findings
were provided on eigenfractions, representing the variance proportion obtained from a covari-
ance matrix of 20 eigenmodels. The atomic backbone of the complex was analyzed using PCA
calculations. Three conformations, namely PC1, PC2, and PC3, were used for the analysis. The
normal mode molecular dynamics (MD) method was employed for these calculations. The
PCA analysis demonstrated structural alterations within all clusters. The blue region displayed
the most significant motions, the white region revealed moderate movements, and the red
region demonstrated the least flexible movements. Fig 12 demonstrates that the top 20 princi-
pal components (PCs) of the Ligand-40d and Ligand-40j systems accounted for 88% and 92%
of the overall variation, respectively. This indicates that in comparison to the Ligand-stand sys-
tem, the Ligand-40d system had a more limited phase space and less performance flexibility.
In comparison to the PCA plots of Ligand-40d and Ligand-40j, the PCI cluster exhibited the
greatest variability, accounting for 27.4% and 37.31% of the variance, respectively. The PC2
cluster demonstrated 13.36% and 18.18% variability, while the PC3 cluster exhibited minimal
variability, accounting for only 9.85% of the variance for Ligand-40j. In contrast to PC1 and
PC2, the Ligand-40j cluster’s PC3 demonstrates a comparatively low degree of variability, indi-
cating that the binding of Ligand-40j is exceptionally stable and characterized by a compact
structure. Additionally, the RMSF of the residual contribution to the PCA is shown in Fig 13
where the black and blue lines represent PC1 and PC2 respectively. The RMSF analysis
revealed that PC1 and PC2 exhibited diminished flexibility when compared to the Ligand-40d.

In addition, we explored the kinetics of protein-ligand interactions by creating a two-
dimensional projection graph using Principal Component Analysis (PCA). We analyzed the
movements by utilizing the initial two principle components, PC1 and PC2. The diagram in
Fig 14 depicts the exploration of several molecular arrangements of protein-ligand complexes
containing ligands 40d and 40j within a crucial region. When looking at the 2D projection
plot, the complex that fills a smaller phase space is the one that depicts the stable cluster, while
the complex that occupies a larger space is the one that depicts the non-stable cluster. The out-
comes of the two system simulations demonstrate that the ligand 40j protein complex is con-
fined to a smaller portion of phase space, while ligand 40d occupies a considerably larger
region of phase space. The results of the PCA unequivocally demonstrate that the ligand 40j
complex exhibits superior stability in comparison to the ligand 40d complex.
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Fig 11. The hydrogen bond count between (A) 40d-SmTGR complex and; (B) 40j-SmTGR complex through the 100 ns MD simulation.
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Table 6. Individual occupancies of detected H-bonds per ligand (40d and 40j) with SmTGR enzyme.

Donor Acceptor Occupancy
40D Complex
UNKI1-Side-O5 ASP137-Side-OD2 24.65%
SER117-Main-N UNK1-Side-O3 19.76%
40J Complex
UNKI1-Side-N1 ILE431-Main-O 18.36%
TYR138-Main-N UNK1-Side-O6 17.86%

https://doi.org/10.1371/journal.pone.0302390.t006

Furthermore, the DCCM demonstrated both positive and negative impacts of amino acid
correlation, displaying overall correlation in the range of —1.0 to 1.0, as shown in Fig 15A and
15B. Different colors represent varying degrees of association between residues, with darker
colors indicating stronger correlations. Correlations closer to 1 indicate residues moving in
the same direction, while correlations closer to —1 indicate residues moving in opposite direc-
tions. Pairwise correlated graphs were constructed to examine the relationship between I and J
residue indices. The analysis involved color-coding such as light green, green, and dark blue,
where dark blue represents full correlation and light green represents anti-correlation. Com-
paring the DCCM diagrams of the two systems, it becomes evident that the correlated motions
of the 40j system were notably distinct from the 40d-SmTGR complex. High correlation in the
40j complex was observed compared the 40d complex which suggests a more compact struc-
ture in the 40j system.

3.4.1 Binding free energy analysis. The binding free energies of the protein-ligand com-
plexes were determined based on the last 20 nanoseconds of the trajectory, employing the
Molecular Mechanics Poisson-Boltzmann Surface Area (MM-PBSA) approach. A more favor-
able binding free energy between protein and ligands is indicated by increasingly negative val-
ues. Presented in Fig 16 is the MMPBSA plot of 40d and 40j complexes. Notably, the 40j-
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Fig 12. The PCA findings and eigenvalue rank plots for (A) 40d-SmTGR complex and; (B) 40j-SmTGR complex.

https://doi.org/10.1371/journal.pone.0302390.g012
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SmTGR complex exhibited the highest binding energy (-16.03 kcal/mol) compared to the 40d
complex (-10.19 kcal/mol). Results from the MM-PBSA study emphasized the substantial
binding energy and enhanced stability of 40j complex.

3.5 Drug-likeness and ADMET Analysis

The drug-likeness and pharmacokinetic ADMET properties of the designed compounds were
examined to determine their suitability for therapeutic consumption [87]. A summary of the
assessed drug-likeness parameters is presented in Table 7. Assessing these parameters is a cru-
cial step in the early stages of drug discovery, as it links a molecule’s physical and chemical
characteristics to its potential in terms of oral bioavailability and other bio-pharmaceutical
properties [88]. One widely recognized preclinical guideline in drug development is Lipinski’s
rule of five, which suggests that a molecule failing to meet more than two of its criteria is likely
to be poorly absorbed [89]. As further discussed by Khalifah S. A and colleagues, validating the
Lipinski’s rule implies that, theoretically, define the likelihood of success for a compound as a
drug candidate [23]. However, it’s noteworthy that all twelve designed compounds meet these
criteria, indicating their potential for pharmacological effectiveness as anti-Schistosomiasis
agents.

To provide a more thorough evaluation of their drug-likeness, we applied the bioavailability
score (ABS) criteria. All twelve designed compounds established values of 0.55, demonstrating
compliance with the rule of five and indicating an ideal bioavailability profile. Additionally,
the synthetic accessibility score (SA) was evaluated, which offers insights into how easily these
molecules can be synthesized. This scoring system rates the difficulty of synthesis on a scale
from one (easy) to ten (very difficult). The SA scores for all proposed compounds fell within
the range of 3.63 to 4.14 (Table 7), suggesting that these compounds are amenable to favorable
and feasible synthesis [90].

ADMET predictions play a vital role in the drug development process, assisting in the selec-
tion of the most promising drug candidates, and alleviation of potential toxicity risks,
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Fig 14. 2D projections of trajectories on eigenvectors of ligands 40d, and 40j bound complexes.
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ultimately enhancing the efficiency and success of drug development [91]. For the newly
designed compounds, human intestinal absorption (HIA) was investigated, revealing absorp-
tion rates ranging from 43.524% to 79.637% (Table 8). Interestingly, all compounds displayed
absorption levels exceeding the 30% threshold, indicating effective absorption in the human
small intestine [91]. Moreover, the compounds were found to act as substrates for P-glycopro-
tein without inhibiting its function, suggesting they are likely to be transported by this efflux
pump without compromising their pharmacokinetics and bioavailability [92]. Following intes-
tinal absorption, drug molecules are distributed to their intended targets and tissues through
the circulatory systems. Various parameters were predicted, including the steady-state volume
of distribution (VDss), blood-brain barrier (BBB) permeability, and central nervous system
(CNS) permeability. VDss values indicated that some compounds may be distributed more in
plasma, while others were within a range suggesting a balance between tissue and plasma dis-
tribution [93].

Regarding BBB permeability, none of the compounds exhibited significant penetration
(Table 8), suggesting limited access to the brain. However, CNS permeability predictions indi-
cated that four compounds may moderately enter the CNS, while eight were less permeable.
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Importantly, for the context of targeting Thioredoxin Glutathione Reductase (TGR) from
Schistosoma mansoni, crossing the BBB and affecting the CNS is generally not a critical
requirement, as TGR is not associated with central nervous system functions [94].

The metabolism assessment shows predictions indicating that all but one of the twelve com-
pounds are potential substrates for CYP3A4, which could enhance their bioavailability and
reduce elimination rates [95]. However, none of the compounds were predicted to be CYP3A4
inhibitors, therefore minimizing the risk of drug-drug interactions and preserving therapeutic
efficacy [96]. Total clearance significantly influences the bioavailability and half-life of drug
molecules, determining appropriate dose sizes and regimens [97]. The projected total clear-
ance of the designed compounds indicated a moderate level, with log(CLtot) ranging between
0.310 and 0.690. This suggests that the compounds could be reasonably cleared from the
bloodstream by the liver [98]. Furthermore, an assessment of toxicity and skin sensitization for
the proposed compounds, revealed their non-toxic nature and favorable physicochemical and
pharmacokinetic ADMET properties (Table 8). In summary, these outcomes suggest that the
proposed compounds have the potential to act as inhibitors for Schistosoma mansoni and
could be considered for use in schistosomiasis treatment.

4. Conclusion

An in-silico modeling exploration was conducted on a set of 49 derivatives functioning as
inhibitors against SmTGR. This study utilized QSAR, molecular docking, molecular dynamics,
drug likeness and ADMET properties analyses. The reliability and predictive capability of the
developed QSAR models were evaluated through statistically validation parameters. The
molecular docking analysis elucidated the inhibition mechanism of the SmTGR receptor by
the chosen template scaffold (compound 40), demonstrating interactions through conven-
tional hydrogen bonding, hydrophobic interactions, and electrostatic interactions with the
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https://doi.org/10.1371/journal.pone.0302390.9016
Table 7. Drug-likeness assessment of designed compounds.
LD |MW/gmol™ HBA HBD MlogP Lipinski violation Bio availability score Synthetic accessibility Drug likeness
40 357.32 6 1 -2.10 0 0.55 3.56 Yes
40a 387.35 8 2 -1.32 1 0.55 4.13 Yes
40b 374.37 6 0 -0.17 0 0.55 3.63 Yes
40c 382.37 6 0 0.28 0 0.55 3.89 Yes
40d 392.36 6 0 0.36 0 0.55 4.14 Yes
40e 373.28 6 0 -0.44 0 0.55 3.68 Yes
40f 430.37 9 3 -1.99 1 0.55 4.12 Yes
40g 416.30 7 1 -1.13 1 0.55 3.78 Yes
40h 416.30 7 1 -1.13 1 0.55 3.74 Yes
401 475.29 8 1 -1.72 1 0.55 3.92 Yes
40j 477.47 8 1 -1.45 1 0.55 3.84 Yes
40k 417.40 7 1 -0.86 1 0.55 3.70 Yes
401 417.40 7 1 -0.86 1 0.55 3.72 Yes
Key: HBA: Hydrogen bond acceptor; HBD: Hydrogen bond donor; TPSA: Topological polar surface area; MlogP: Topological method
https://doi.org/10.1371/journal.pone.0302390.t007
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Table 8. ADMET parameters assessment of designed compounds.

I.D | HIA | P-gp Substrate | P-gp Inhibitor | VDss | BBB | CNS | CYP3A4 Substrate | CYP3A4 Inhibitor | Total clearance | AMES toxicity | Skin sensitization

40 | 64.925 Yes No -0.227 | -0.815 | -3.210 Yes No 0.368 No No
40a | 64.062 Yes No 0.165 | -1.132 | -3.614 No No 0.367 No No
40b | 68.454 Yes No -0.122 | -0.914 | -2.983 Yes No 0.354 No No
40c | 79.637 Yes No 0.124 | -0.534 | -2.794 Yes No 0.690 No No
40d | 79.051 Yes No 0.040 | -0.600 | -2.846 Yes No 0.576 No No
40e | 73.856 Yes No -0.288 | -0.885 | -2.897 Yes No 0.401 No No
40f | 43.524 Yes No 0.158 | -1.119 | -4.284 No No 0.351 No No
40g | 66.238 Yes No -0.472 | -1.135 | -3.383 Yes No 0.310 No No
40h | 65.854 Yes No -0.254 | -0.881 | -3.351 No No 0.327 No No
40i | 59.44 Yes No -0.686 | -1.456 | -3.908 Yes No 0.369 No No
40j | 48.674 Yes No -0.186 | -1.294 | -4.045 Yes No 0.596 No No
40k | 60.139 Yes No -0.202 | -0.856 | -3.398 Yes No 0.438 No No
401 | 60.809 Yes No -0.246 | -1.062 | -3.470 Yes No 0.425 No No

https://doi.org/10.1371/journal.pone.0302390.t008

active residues in the binding cavity. The findings from the QSAR modeling and docking anal-
yses guided the design of 12 new derivatives (40a-401) with improved activities and binding
potentials. Molecular dynamics simulations 100 ns, affirmed the stability of the two best-
designed molecules (40d and 40j), within the binding cavity of the SmTGR receptor. Analysis
of Root Mean Square Deviation (RMSD) and Root Mean Square Fluctuation (RMSF) plots
indicated minimal fluctuations, supporting system stability as corroborated by molecular
docking results. MM-PBSA calculations of binding free energy (AGy;,q) further validated the
stability of the complexes, with 40j emerging as the most promising among the newly designed
compounds. Additionally, the designed molecules exhibited favorable results in drug-likeness
and ADMET prediction analyses. The outcomes of this study suggest that these molecules
could serve as promising drug candidates for schistosomiasis treatment. However, further syn-
thesis and in vitro tests are imperative to validate the predicted properties and evaluate their
potential as anti-schistosomiasis agents.
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