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Abstract

Schistosomiasis is a neglected tropical disease which imposes a considerable and enduring

impact on affected regions, leading to persistent morbidity, hindering child development,

diminishing productivity, and imposing economic burdens. Due to the emergence of drug

resistance and limited management options, there is need to develop additional effective

inhibitors for schistosomiasis. In view of this, quantitative structure-activity relationship stud-

ies, molecular docking, molecular dynamics simulations, drug-likeness and pharmacokinet-

ics predictions were applied to 39 Schistosoma mansoni Thioredoxin Glutathione

Reductase (SmTGR) inhibitors. The chosen QSAR model demonstrated robust statistical

parameters, including an R2 of 0.798, R2
adj of 0.767, Q2cv of 0.681, LOF of 0.930, R2

test of

0.776, and cR2p of 0.746, confirming its reliability. The most active derivative (compound

40) was identified as a lead candidate for the development of new potential non-covalent

inhibitors through ligand-based design. Subsequently, 12 novel compounds (40a-40l) were

designed with enhanced anti-schistosomiasis activity and binding affinity. Molecular docking

studies revealed strong and stable interactions, including hydrogen bonding, between the

designed compounds and the target receptor. Molecular dynamics simulations over 100

nanoseconds and MM-PBSA free binding energy (ΔGbind) calculations validated the stability

of the two best-designed molecules. Furthermore, drug-likeness and pharmacokinetics pre-

diction analyses affirmed the potential of these designed compounds, suggesting their

promise as innovative agents for the treatment of schistosomiasis.
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1. Introduction

Schistosomiasis, a prevalent human parasitic infection, represents a significant global health

challenge, impacting more than 200 million individuals in developing countries [1–4]. The dis-

ease is prevalent across sub-Saharan Africa, parts of South America, the Caribbean, the Middle

East, and Southeast Asia [5]. Schistosomiasis exacts a heavy toll, causing approximately

280,000 deaths yearly [4]. Chronic infections of schistosomiasis can severely damage organs

like the liver, spleen, and urinary tract and increase the risk of bladder cancer and infertility as

reported by Silvestri V. and coworkers, along with many other researchers [6–8]. The predom-

inant therapeutic approach for schistosomiasis relies on a single drug, Praziquantel (PZQ),

which is administered extensively to combat the disease’s impact [9]. Despite its widespread

use, PZQ’s effectiveness is compromised by several factors, including its exclusive activity

against certain Schistosome species and the potential emergence of drug-resistant parasites

[10–12]. Moreover, the absence of a reliable alternative to PZQ underscores a critical limita-

tion in current treatment options. Hence, it is necessary to explore more potential inhibitors

for Schistosomiasis.

The enzyme Schistosoma mansoni Thioredoxin Glutathione Reductase (SmTGR) plays a

crucial role in the antioxidant defense system of the Schistosoma parasite, making it an attrac-

tive drug target for combatting schistosomiasis [13, 14]. SmTGR is involved in maintaining

the redox balance within the parasite’s cells, enabling it to neutralize harmful reactive oxygen

species (ROS) generated by the host’s immune system [15]. This function contributes to the

parasite’s ability to evade immune attacks and establish infection [16]. Therefore, inhibiting it

could disrupt the delicate redox balance that the parasite relies on for survival. According to

the research conducted by Gustavo Salinas and colleagues, SmTGR exhibits structural and

functional differences from its human counterparts, making it a potential target for selective

inhibition [17]. Exploiting these differences could minimize the risk of adverse effects on the

host. Also, in line with the discoveries of Jose T. Moreira-Filho and co-workers, as well as

numerous other researchers, SmTGR is identified as a crucial survival mechanism for Schisto-
somes. Consequently, directing drugs at SmTGR has the potential to disrupt these vital pro-

cesses, offering a promising approach for the development of antischistosomal medications

[18, 19]. As a result, SmTGRs not only represent promising targets for drug development but

also hold potential as candidates for the development of a vaccine against the parasite.

The traditional process of designing and developing drugs has been demanding, costly, and

time-consuming [20]. Progress in computational science has revolutionized drug discovery,

rendering it more efficient and economical [21–23]. The effective utilization of Computer-

Aided Drug Design (CADD) signifies a notable advancement in drug discovery and develop-

ment methodologies, offering a more cost-effective and efficient alternative to the conven-

tional processes acknowledged for their prohibitive costs and time requirements. Recent

progress in in-silico techniques has enabled the construction of physicochemical models to

simulate biomolecular processes, empowering numerous research laboratories to innovate and

discover novel medications [24]. Through CADD approaches, several potent and commonly

prescribed drugs have been successfully developed to combat various life-threatening illnesses

and pathogenic infections such as Human Immunodeficiency Virus (HIV), Influence Virus,

Hepatitis C etc. notably example of such medications are Raltegravir (Isentress), Oseltamivir

(Tamiflu), Zanamivir (Relenza), Boceprevir (Victrelis), Doravirine (Pifeltro) among others

[25–29]. Various structure-based and/or ligand-based design methods are now employed,

with ligand-focused techniques like Quantitative Structure-Activity Relationship (QSAR)

gaining prominence [30, 31]. Robust QSAR models facilitate the economical virtual screening
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of extensive chemical databases, identifying potentially active compounds that meet the crite-

ria for promising drug candidates.

In this research, we utilize ligand-based drug design (LBDD) as a method to discover potent

non-covalent inhibitors of SmTGR with improved activity and enhanced binding capabilities.

Non-covalent inhibitors of SmTGR offer several advantages over covalent inhibitors, including

reversibility, selectivity, reduced potential for toxicity, ease of optimization, and lower risk of

drug resistance. These properties make them promising candidates for the development of

novel therapeutic agents against schistosomiasis [32]. Therefore, a collection of compounds

exhibiting phenotypic antischistosomal activities served as the initial foundation for devising

inhibitors targeting SmTGR, presenting a logical and effective method for identifying promis-

ing candidate compounds with possible therapeutic benefits against schistosomiasis [18]. This

approach exploits on the already established efficacy of compounds against the parasite,

enabling exploration of their molecular interactions and facilitating modification of drug can-

didates to enhance effectiveness and safety [33]. Consequently, the scope encompasses several

computational techniques, including QSAR modeling, molecular docking, molecular dynam-

ics (MD) simulations, drug-likeness assessment, and pharmacokinetics profiling. QSAR

modeling will be employed to predict the activity of candidate compounds and guide the

design of derivatives, while molecular docking simulations will identify potential binding sites

and optimize inhibitor structures. MD simulations will explore the dynamic behavior of pro-

tein-ligand complexes under physiological conditions to refine inhibitor designs. Drug-like-

ness assessment and pharmacokinetics profiling will prioritize compounds with favorable

pharmacokinetic properties. However, limitations exist, such as potential discrepancies

between computational predictions and experimental results, the availability of accurate struc-

tural data, and resource and time constraints. The main goal of this study is to identify and

characterize derivatives with potential application in the treatment of schistosomiasis using in-
silico approach.

2. Materials and methods

2.1 Dataset collection, preparations, structure determination and

optimization

The dataset was downloaded from ChEMBL (https://www.ebi.ac.uk/chembl) and included

experimental data for Schistosoma mansoni as a target (target ID: CHEMBL6110). The dataset

was screened and filtered to select compounds suitable for the QSAR study and was rigorously

cleaned to eliminate duplicates and resolve discrepancies (S1 Table) [34]. Compounds with

incomplete or inconsistent activity values were eliminated and data authenticity was verified

to maintain data quality and integrity [35]. The biological activities, initially recorded as IC50

in nanomolar (nM), were transformed into pIC50 to achieve data linearity and uniformity

throughout the dataset [36]. Following the filtration process, the dataset was reduced from the

initial count of 57 compounds to 49, which were subsequently employed for further analysis.

The Simplified Molecular Input Line Entry System (SMILES) notation for each compound

served as the foundation for constructing respective two-dimensional (2D) chemical structures

using PerkinElmer ChemDraw software [37]. These structures were then transformed into a

three-dimensional (3D) format utilizing Spartan v14.0 software. The optimization of molecu-

lar geometry was conducted on the Spartan interface through Density Functional Theory

(DFT) quantum mechanical calculations employing the B3LYP/631-G* basis set [38]. The

optimized geometric structures of the molecules were saved in a unified folder in Spatial Docu-

ment File (sdf) format.
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2.2 Descriptor calculations, data pretreatment and division

The Pharmaceutical Data Exploration Laboratory (PaDEL) descriptor toolkit was utilized to

calculate essential molecular descriptors that contribute to the anti-schistosomiasis activities of

the derivatives [39]. This involved importing the 3D structures saved in sdf file format into the

PaDEL software. The chosen configuration included the selection of all descriptors (1D, 2D,

and 3D), while for ’standardization’, various options were checked (remove salt, detect aroma-

ticity, standardize tautomers, SMIRK tautomers file, standardize nitro groups and retain 3D

coordinated) and the MM2 forcefield was employed [23]. Subsequently, the generated descrip-

tors underwent manual preprocessing to eliminate redundant and highly correlated ones [40].

Further refinement was performed using version 1.2 of the pretreatment software. The dataset

was then divided into training (modeling) and test (validation) sets using the Kennard-Stone

algorithm [41]. The training set comprised 39 compounds, accounting for 80% of the dataset,

while the remaining 10 compounds, constituting 20%, were set aside for the external validation

test set [42].

2.3 Building and validation of QSAR Model

The training set compounds were employed for generating the QSAR model and perform-

ing internal validations, while the test set molecules were used for the model’s external vali-

dation and assessment of predictive performance [42]. Combination of the genetic function

algorithm (GFA) with multi-linear regression (MLR) within Material Studio v8.0 was

applied to generate the QSAR models [43]. Within the GFA regression, the biological activi-

ties (p1C50) served as the dependent variables, while the descriptor values were treated as

independent variables. For ensuring model convergence, specific parameters were set: the

population sample and maximum generation were fixed at 10,000 and 1500, respectively;

the number of top equations returned was limited to 4; a mutation probability of 0.1 was

employed, and the default smoothing parameter of 0.5 was maintained [43]. Identification

and selection of the best QSAR model relied on key statistical parameters, encompassing

the correlation coefficient of the training set (R2
internal), adjusted correlation coefficient

(R2
adj), cross-validation coefficient (Q2cv), and correlation coefficient of the external test

set (R2
external) [44]. The equations characterizing these validation parameters are provided

in Eqs (1–4), respectively.

R2
internal ¼ 1�

P
ðYexp � YpredÞ

2

P
ðYexp � YtrainingÞ

2
ð1Þ

R2
adj ¼

R2 � CðB � 1Þ

B � C þ 1
ð2Þ

Q2cv ¼ 1�

P
ðYpred � YexpÞ

2

P
ðYexp � YtrainingÞ

2
ð3Þ

R2
external ¼ 1�

P
ðYexpðtest setÞ � Ypredðtest setÞÞ

2

P
ðYexpðtest setÞ � YtrainingÞ

2
ð4Þ

Where, Yexp;Ypred and Ytraining are the experimental, predicted and average training set activi-

ties. B is the total no. of compounds used as training set and C is the no. of descriptors used

to generate the model.
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The chosen model underwent evaluation using the subsequent quantitative evaluations:

mean effect (ME), variance inflation factor (VIF), and Y-scrambling analysis [22, 36, 45]. The

ME measurement was employed to assess the significance of each descriptor’s role within the

selected model, VIF was calculated to assess the multicollinearity between the descriptor’s

while the Y-scrambling test was implemented to substantiate the model’s robustness [46]. The

calculation of each descriptor’s ME was conducted utilizing Eq 5, which indicates the degree of

influence exerted by the descriptors on the compounds’ activities.

The Y-scrambling test was performed by computing the coefficient of the validation param-

eter for Y-randomization (cR2p) using Eq 6. This process involved rearranging the actual activ-

ities while maintaining the descriptors unchanged. It was anticipated that the reshuffled QSAR

model would exhibit low Q2 and R2 values, alongside a cR2p value surpassing 0.5, as an indica-

tor of its reliability [47].

MEq ¼
Aq

Pw¼n
q¼1

dwq
Pm

q Aq

Pn
w dwq

ð5Þ

Where, MEq is the mean effect of descriptor q in the model, Aq is the coefficient of descriptor

q of that model, and dwq is the value of descriptor q in the data matrix for each compound in

the model building set. m is the sum of descriptors present in the model, and n is the number

of compounds in the model building set.

cR2p ¼ R� ½R2 � R2
r� ð6Þ

where cR2p is the coefficient of determination for Y-scrambling, R is the coefficient of deter-

mination for Y-randomization and Rr is the mean value of ’R’ derived from random models.

2.3.1 Applicability domain (AD). The domain of applicability was evaluated through

William’s plot, which plots standardized residuals against leverage values. This aimed to ascer-

tain whether the selected model contains compounds predominantly within the designed

domain or includes outliers and influential [23, 48]. The assessment involved examining the

leverage approach and the warning leverage using Eqs (7) and (8):

hi ¼ xiðX
TXÞ� 1xTi ð7Þ

h∗ ¼
3ðQþ 1Þ

N
ð8Þ

where, hi represents the leverage approach, X is the n×k descriptor matrix pertaining to the

training sets. XT is the transposed matrix employed during model creation. h* is the warning

leverage. Q is the no. of descriptors in the chosen model, and N is the total number of com-

pounds within the training sets.

2.4 Ligand-based drug design

The criteria guiding the selection of a lead compound for subsequent analogous design were

exclusively centered around the information gained from the selected QSAR model [49]. This

involved identifying the compound with the highest pIC50, a minimal residual value, found

within the preferred applicability domain (AD), and complied with Lipinski’s rule of five,

along with a favorable pharmacokinetic profile. In line with these considerations, compound

40 from the dataset emerged as the chosen lead compound. It was then subjected to modifica-

tions through the addition and replacement of various groups at specific positions (template

compound). These modifications were driven by the mean effect values of the molecular

descriptors used to generate the selected model [50].
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2.5 Molecular docking studies

In order to identify the active amino acid residues and to assess type of interactions between

the compounds and the SmTGR protein, molecular docking studies was performed [51, 52].

The optimized 3D-structures of all ligands were saved in the Protein Data Bank (PDB) format.

The 3D structure of the SmTGR receptor (PDB ID: 6ZST), co-crystallized with a 3-(3-methox-

yquinoxalin-2-yl)propanoic acid ligand with excellent resolution of 1.7 Å, was acquired from

the Protein Data Bank (https://www.rcsb.org) and processed using Biovia Discovery Studio

(BDS) Visualizer Version 3.5 software. This involved the removal of excess water molecules

and the co-crystallized ligands from the X-ray structure prior to initiating the docking proce-

dure [53]. Employing the Molegro Virtual Docker (MVD) 6.0 software, the lead compound,

along with the newly designed compounds and PZQ, were subjected to docking within the

active site of the SmTGR receptor. The docking simulation was performed with a minimum of

50 iterations to produce five potential poses. The optimal poses were then chosen using prede-

fined scoring functions (MolDock score and Hydrogen bond energies). To examine the differ-

ent intermolecular interactions in the docked complexes, BDS Visualizer was utilized [46].

2.6 Molecular dynamics simulations

Molecular dynamics (MD) simulation serves as a scientific approach for probing the intricate

motions of molecules and atoms within dynamic systems, particularly protein-ligand com-

plexes, with the overarching goal of gaining insights into significant physicochemical phenom-

ena [54–56]. The 2 best designed compounds underwent a series of MD simulations lasting

100 nanoseconds. The CHARMM-GUI web-based graphical interface was employed to estab-

lish the simulation system, generating the force field for both ligands and proteins [57, 58].

The simulations, lasting 100 ns in a periodic water box, utilized the CHARMM36 force field

and the Gromacs version 2020 software package [59, 60]. The complexes were placed within a

rectangular box with a buffer distance of 10 in each direction [61]. Subsequently, the box was

solvated by adding TIP3P water molecules. To neutralize the system’s charge for the 40D and

40J ligands, 4 Na+ ions and 0 Cl- ions were added. Additionally, 0.00 M NaCl was introduced

to mimic a cellular environment. Minimization of the docked complexes was performed using

the CHARMM36 force field.

Each system underwent thermal equilibration at a temperature of 310 Kelvin, involving

5000 iterations (equivalent to 10 picoseconds). The production run of the NPT ensemble

extended for 100 seconds. The Lincs approach confined hydrogen, resulting in a time step of 2

fs. A switching technique with a range of 12–14 was employed to investigate van der Waals

forces, with a cutoff value of 14. Long-range electrostatic interactions were calculated using the

particle mesh Ewald (PME) technique, employing a maximum grid spacing of 1.2. PME calcu-

lations were performed at each iteration without a multiple-time stepping approach [62].

Temperature was maintained at a constant 310 K, and the barostat’s system size changes

were set to a target of 1 bar. Numerical integration used a time interval of 2 femtoseconds. Sub-

sequently, simulation output was adjusted, and trajectories were evaluated using VMD soft-

ware, Bio3D, and QTGRACE. System stability was examined through various parameters,

including root mean square deviation (RMSD), root mean square fluctuation (RMSF), radius

of gyration (Rg), number of hydrogen bonds (H-bonds), principal component analysis (PCA),

and dynamics cross-correlation map (DCCM) [63].

2.6.1 Binding free energy calculation using MM-PBSA. In the MD simulation, free

energy calculation takes a major role in determining the binding stability of ligands-protein

complex [64]. In this study, the MM-PBSA method was used to calculate the free binding

energy between ligands and the SmTGR enzyme. This method considers both bonded and
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non-bonded interactions, encompassing van der Waals and electrostatic forces. Binding free

energy (ΔG) estimation was done by Eq (9) using the script MMPBSA.py of the AMBER pack-

age [57].

½DGbind G ¼ � complex G � protein G � ligand� ð9Þ

Where, G-complex is the free energy of the complex; G-receptor is the free energy of the recep-

tor; G-ligand is the free energy of the ligand [65].

2.7 Pharcokinetics and drug-likeness predictions

Following the successful docking with the SmTGR receptor, the newly developed compounds

were evaluated for their potential as drug candidates, by assessing their pharmacokinetic and

drug-like properties. This evaluation was carried out by utilizing the pkCSM (https://biosig.

lab.uq.edu.au/pkcsm/) and Swiss-ADME (http://www.swissadme.ch/) online tools, which

facilitated the assessment of their absorption, distribution, metabolism, excretion and toxicity

(ADMET) profiles and drug-likeness properties [66].

3. Results and discussion

3.1 QSAR analysis

Four distinctive QSAR models were generated utilizing the GFA technique, all passing internal

validation (shown below) as proposed by Umar Abdullahi Bello and co-workers [43]. Numer-

ous researchers have employed the GFA approach in model building due to its flexibility and

non-linear modeling capacity [67–69]. Aligning with benchmarks values in Table 1, only two

of the created models satisfied the requirements for external validation against the test set com-

pounds [70]. Among the models generated, model 2 emerged as the most suitable for predict-

ing the inhibitory activities of the compounds and was chosen for further studies.

Model 1 pIC50 = - 1.346 * VE1_Dzs—0.425 * nBondsM + 10.846 * SpMax2_Bhv + 2.194 *
MLFER_E—28.699 *WTPT-2 + 25.580

Model 2 pIC50 = - 0.444 * nBondsM + 8.609 * SpMax2_Bhv + 2.232 *MLFER_E—4.777 *
VE1_D—21.929 *WTPT-2 + 20.364

Model 3 pIC50 = - 0.428 * nBondsM + 10.351 * SpMax2_Bhv + 2.794 *MLFER_E—20.769
*WTPT-2–0.014 * Zagreb + 11.618

Model 4 pIC50 = - 0.432 * nBondsM + 10.407 * SpMax2_Bhv + 2.786 *MLFER_E—0.044
*MPC2–21.054 *WTPT-2 + 11.981

The reliability of the chosen QSAR model was assessed using the following evaluation

parameters: an internal R2 (R2
internal) of 0.798, an adjusted R2 (R2

adj) of 0.767, a cross-validated

Q2 (Q2cv) of 0.681, and a test set R2 (R2
test) of 0.776 (Table 1). The R2

internal of 0.798 shows

that the model can explain almost 80% of the total variance in biological activities, indicating

how well the model fits the compounds in the training set. An R2
adj of 0.767 confirms the

Table 1. Validation parameters for all generated models with their respective recommended threshold values.

Validation Models parameters Recommended threshold Remark Reference

1 2 3 4

R2
internal 0.806 0.798 0.797 0.794 > 0.6 Passed [73]

R2
adj 0.777 0.767 0.767 0.763 > 0.6 Passed [72]

Q2cv 0.702 0.681 0.629 0.623 > 0.6 Passed [72]

LOF 0.891 0.930 0.932 0.946 Low value Passed [72]

R2
test 0.704 0.776 0.532 0.543 > 0.6 Models 3 & 4 failed [72]

https://doi.org/10.1371/journal.pone.0302390.t001
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model’s reliability and suggests that it’s not overfitting, while Q2cv at 0.681 shows the model’s

ability to predict compound activities within the training set. A notable R2
test value of 0.776

underlines the model’s proficiency in predicting activities for the test set compounds. These

values indicate the reliability and predictive capability of the selected QSAR model in assessing

compound activity. Additionally, validation metrics align with benchmark scores, meeting the

criteria for an acceptable QSAR model, as suggested by Mouad Mouhsin and others [71–73].

Furthermore, Table 2 indicates a detailed account of the molecular descriptors of the

selected QSAR model. These descriptors, along with their associated categories, guide the

molecular interpretation and the selection of suitable functional groups when designing new

novel anti-schistosomiasis compounds with enhanced inhibitory effects targeting the SmTGR

receptor [50]. Additionally, the numerical values of these descriptors are outlined in S2 Table

of the supplementary materials.

Fig 1 illustrates an activity plot of the predicted pIC50 values for both the modeling and vali-

dation datasets against experimental activity values for inhibiting the SmTGR enzyme. Nota-

bly, the plot exhibits a close correspondence between these values, demonstrating minimal

scattering and deviations. This alignment strongly implies the effectiveness of the model, signi-

fying robust predictive capability. Additionally, Fig 2 shows the residual values of the entire

datasets plotted against the experimental pIC50 values. This graph was formulated to compre-

hend the disparities between the model’s estimations and the experimental data. Notably, the

residuals are evenly dispersed around zero, indicating that the model’s predictions match the

experimental data well. These results are consistent with the discoveries of Sagiru Abdullahi

Hamza and coworkers [74].

3.1.1 QSAR statistical analysis. 3.1.1.1 Y-Scrambling. To further ascertain the model’s

robustness, a Y-scrambling test was conducted, involving a random reshuffling of the biologi-

cal activity of training set compounds while maintaining the molecular descriptor values

unchanged. As a result of this process, new models with lower performance metrics emerged.

Specifically, an R2 value of 0.113, Q2 score of -0.364, and cR2p value of 0.746 (Fig 3). The lower

R2 and Q2 values following the reshuffling of biological activities indicate the model’s inability

to construct a suitable predictive model under such conditions [75]. Notably, the cR2p value of

0.746 emphasizes that the selected model isn’t merely an outcome of coincidental correlations

[43]. A reliable model should exhibit notably higher R2 and Q2 values when applied to the orig-

inal (unscrambled) compared to the scrambled data [76].

3.1.1.2 Mean effect calculations. From the analysis of molecular descriptors, it was observed

that nBondsM, VE1_D, and WTPT-2 exhibited positive ME values, with WTPT-2 showing the

highest value of 3.017. In contrast, the descriptors SpMax2_Bhv and MLFER_E displayed a

negative ME values of -2.132 and -0.270, respectively (Table 3). Pearson’s correlation was

employed to examine the interrelation between descriptors in the model. The ME values of

Table 2. Interpretation and classes of the molecular descriptors within the selected model.

S/

N

Symbol Description Class

1 NBondsM Total number of bonds that have bond order greater than one (aromatic bonds have

bond order 1.5).

2D

2 SpMax2_Bhv Largest absolute eigenvalue of Burden modified matrix—n 2 / weighted by relative van

der Waals volumes

2D

3 MLFER_E Excessive molar refraction 2D

4 VE1_D Coefficient sum of the last eigenvector from topological distance matrix 2D

5 WTPT-2 Molecular ID / number of atoms 2D

https://doi.org/10.1371/journal.pone.0302390.t002
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these descriptors sum up physicochemical characteristics in a numerical format, offering dis-

tinctive structural insights for each descriptor [77]. These numeric representations serve as

valuable information that can be used to enhance the compound activities. Notably, descrip-

tors with positive coefficients namely, nBondsM, VE1_D, and WTPT-2 signify a favorable

impact of these descriptors on the effectiveness of SmTGR inhibitors. This implies that higher

values of these descriptors correspond to increased anti-schistosomiasis activity, and vice versa

[77]. In contrast, descriptors with negative coefficients specifically, SpMax2_Bhv and

MLFER_E suggest an adverse influence on the compound activities [78]. Lower values of such

descriptors increases the inhibitory activities against schistosomiasis. Consequently, this

underscores the significance of electron-donating groups and functional groups possessing

lone electron pairs in increasing the activity of derivatives aimed at inhibiting the SmTGR

enzyme.

3.1.1.3 Applicability domain. The Williams plot was utilized to identify compounds that

unfavorably influence the model’s performance (Fig 4). This plot revealed that two com-

pounds originating from the training set and four from the test set fell outside the preferred

region, notably exceeding the warning leverage threshold (h*> 0.460) (Fig 4) [79]. Specifi-

cally, compounds 11, 37, 45, and 49 were from the test set, along with compounds 17 and 34

from the training set. These particular compounds were singled out as influential [80]. The

presence of bulky substituents might account for their deviation from the desired domain.

However, among the derivatives found within the predefined domain, compound 40, having

Fig 1. Activity plot of predicted against experimental values for SmTGR inhibition.

https://doi.org/10.1371/journal.pone.0302390.g001
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the highest pIC50, minimal residual value, and a favorable pharmacokinetics profile, was cho-

sen as the lead compound.

3.2 Ligand-based drug design

Compound 40 was selected as a lead compound for drug design, with various positions tar-

geted for alterations, as indicated in the adopted template (Fig 5). The selection of substituents

to be incorporate was guided by the SpMax2_Bhv and WTPT-2 descriptors, which were previ-

ously noted for their significant negative and positive ME values [78]. Remarkably, twelve of

the newly designed analogues exhibited relatively higher activity than the lead compound.

This implies that the modifications based on these descriptors led to improved compound

activities, potentially making these analogues promising candidates for the treatment of

schistosomiasis.

It was observed that introducing substituents possessing electron-donating groups (EDG)

and groups containing multiple bonds holds promise for enhancing the biological activities of

the derivatives [81]. The inclusion of such groups, especially those with available lone pairs of

electrons, has exhibited notable increase in the efficacy of the designed compounds. Impor-

tantly, recent investigations have also validated the effectiveness of similar substituents in

improving compound activities [81]. Therefore, initial structural adjustments were performed

on the template structure by replacing R1 with various groups such as N-hydroxyamide, car-

bothioic S-acid, PH(CO)-, cyclopropane, and cyclobut-1,3-diene (Table 4) (Fig 6). Further

modifications involving these aforementioned functional groups at positions R2-R5 have

exhibited a positive impact on compounds’ activities. Notably, the introduction of these func-

tional groups at R1 has elevated the predicted activities from 7.676 for the lead compound to a

Fig 2. Plot of residuals against pIC50 values for SmTGR inhibition.

https://doi.org/10.1371/journal.pone.0302390.g002
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range of 8.100–8.331 for the newly designed compounds. Substitutions at positions R2-R5 on

the aromatic ring have demonstrated a significantly stronger effect in increasing the biological

activities of the potential anti-schistosomiasis agents possibly due to stronger electron density

around the scaffold [82]. This effect is strikingly apparent among the newly designed entities,

displaying a remarkable range of 8.537–10.076 (Table 4). Moreover, compound 40j, which

exhibited the highest activity, featured two carbothioic S-acid groups substituted at positions

R3 and R5. This result could be attributed to an increased electron density within the ring,

which in turn impacts its reactivity and electronic attributes. Collectively, all twelve of the

newly designed derivatives showcased improved inhibitory effects, underscoring the potential

Fig 3. Y-scrambling assessment plot.

https://doi.org/10.1371/journal.pone.0302390.g003

Table 3. Pearson’s correlation and mean effect values of selected model.

nBondsM SpMax2_Bhv MLFER_E VE1_D WTPT-2 ME
nBondsM 1 0.357

SpMax2_Bhv 0.865 1 -2.132

MLFER_E 0.845 0.799 1 -0.270

VE1_D -0.297 -0.318 -0.143 1 0.027

WTPT-2 0.469 0.678 0.579 0.021 1 3.017

∑ME 1

https://doi.org/10.1371/journal.pone.0302390.t003
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of N-hydroxyamide, carbothioic S-acid, PH(CO)-, cyclopropane, and cyclobut-1,3-diene

groups to enhance the anti-schistosomiasis properties of the derivatives.

3.3 Molecular docking studies

The process of docking analysis was carried out involving the lead compound, the twelve

designed derivatives and the standard drug against the SmTGR receptor (PDB ID: 6ZST).

Scoring functions, namely the MolDock score and hydrogen bond energies, were utilized to

furnish insights into the binding energy of their interactions (Table 4). These scoring metrics

were employed to assess the interactions between the designed analogs and the active site of

the SmTGR receptor.

The MVD was employed to predict the top 5 binding cavities and the most favorable bind-

ing cavity was identified by XYZ coordinates at 133.370, 9.770, and 75.030, confined within a

constrained sphere of radius 20.0 Å, with a volume of 726.01 Å3 and a surface of 2242.560 Å2.

The Moldock (GRID) scoring algorithm was chosen, employing a default grid resolution of 0.3

Å for 10 independent runs. Each run encompassed a maximum of 1500 iterations, utilizing a

population size of 50. The default settings for pose generation and simplex evolution were con-

sistently employed throughout the process. Fig 7A illustrates the alignment of the prepared

Fig 4. Applicability domain plot of derivatives for SmTGR inhibition.

https://doi.org/10.1371/journal.pone.0302390.g004
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6ZST enzyme. Moreover, in order to confirm the precision of the docking algorithm and guar-

antee the accurate attachment of ligand molecules to the receptor’s distinct binding site, the

lead compound was subjected to a second docking onto the initially docked compound. This

procedure resulted in an RMSD value of 0.647 Å (Fig 7B). This outcome not only substanti-

ated the reliability of the docking approach but also demonstrated its adherence to the well-

established benchmark of an RMSD value of�2.0 Å [51].

Fig 5. (A) lead compound (40); and (B) design template for novel inhibitor of SmTGR.

https://doi.org/10.1371/journal.pone.0302390.g005
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Docking compound 40 into the optimal binding site of SmTGR revealed a MolDock score

of -150.251 kcal mol-1 and a hydrogen bond energy of -5.038 kcal mol-1. The relatively strong

binding energy underscores the potency of the interaction between the ligand and the recep-

tor. Additionally, the hydrogen bond energy plays a significant role in establishing overall sta-

bility within the ligand-receptor complex. High hydrogen bond energy of -5.038 kcal mol-1

suggests a strong interaction between the ligand and the receptor. Abdullahi Bello Umar and

co-workers have also reported that high value of Moldock score and H-bond energies increases

the likelihood of the ligand being tightly bound to the receptor’s active site which can lead to a

higher binding affinity, potentially resulting in a more stable and long-lasting interactions

[83].

Fig 8A and 8B illustrated the interactions of the leading candidate (40) with specific amino

acid residues within the SmTGR binding site: Five conventional hydrogen bonding interac-

tions involving the oxygen atom of the oxadiazole ring, the carbonyl oxygen of the substituted

piperazine scaffold, the bridged carbonyl oxygen, and the anionic oxygen of the oxadiazole

scaffold with Gly115, Gly118, Thr153, and Tyr138, at distances of 2.782 Å, 2.326 Å, 1.585 Å,

1.536 Å, and 3.300 Å, respectively. Additionally, five carbon-hydrogen bonding interactions

arise between the oxygen atom of the oxadiazole ring, the carbonyl oxygen of the substituted

piperazine scaffold, the bridged carbonyl oxygen, and the alkyl hydrogens of the substituted

piperazine ring. These interactions occur with Gly114, Gly18, Gly152, and Ala256, at distances

of 2.510 Å, 3.035 Å, 2.942 Å, 2.886 Å, and 2.803 Å respectively. Furthermore, an electrostatic

interaction emerges between Asp433 and the aromatic ring moiety of the ligand. Supplemen-

tary hydrophobic interactions were identified with Ala445 and Cys154 amino acid residues.

Importantly, almost all the active residues of 6ZST were observed within the binding site of

compound 40 with SmTGR.

Molecular docking investigations of the ligand based designed compounds yielded interest-

ing results (Fig 9). The newly designed compounds with modifications at position R1 of the

oxadiazole ring moiety (compound 40a – 40e) shows a significant influence on the binding

affinity as they all exhibited a higher binding energy (within the range -151.869 to -170.625

kcal-1 and a H-bond energy range of -2.980 to -11.862 kcal mol-1) compared to the lead com-

pound and PZQ with moldock score of -150.251 & 115.338 kcal mol-1 and H-bond energies of

Table 4. Molecular structures of newly designed potential inhibitors of SmTGR with their predicted biological

activities, docking score and H-bond energies.

I.D pIC50 (pred) Moldock score/ kcal mol-1 H-bond energy

40 7.676 -150.251 -5.038

40a 8.331 -155.258 -7.132

40b 8.242 -152.256 -7.862

40c 8.283 -161.43 -3.007

40d 8.135 -170.625 -2.980

40e 8.100 -146.869 -11.862

40f 9.134 -137.018 -11.438

40g 8.537 -156.788 -6.613

40h 8.911 -158.033 -8.861

40i 9.652 -167.617 -7.016

40j 10.076 -173.613 -12.160

40k 9.122 -152.725 -8.488

40l 8.749 -147.185 -3.829

PZQ 6.067 -115.338 -3.314

https://doi.org/10.1371/journal.pone.0302390.t004
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Fig 6. Molecular structures of newly designed potential inhibitors of SmTGR.

https://doi.org/10.1371/journal.pone.0302390.g006
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Fig 7. (A) The prepared 6ZST enzyme; (B) Superimposition of the lead entity.

https://doi.org/10.1371/journal.pone.0302390.g007
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Fig 8. (A) the three-dimensional complex formed between the lead compound and 6ZST within the optimal binding cavity; (B)

the two-dimensional interactions of the lead compound and 6ZST.

https://doi.org/10.1371/journal.pone.0302390.g008

PLOS ONE Unveiling potent inhibitors for schistosomiasis

PLOS ONE | https://doi.org/10.1371/journal.pone.0302390 June 26, 2024 17 / 35

https://doi.org/10.1371/journal.pone.0302390.g008
https://doi.org/10.1371/journal.pone.0302390


-5.038 kcal mol-1 & - 3.314 kcal mol-1 respectively. The incorporation of additional substitu-

ents at position R2 to R5 of the benzene ring scaffold also substantially enhanced the binding

affinity of the compounds (compound 40f – 40l) with moldock score range of -137.018 to

-173.613 kcal mol-1 and a hydrogen bond energy range of -3.829 to -12.160 kcal mol-1. Inter-

estingly, the ligand (compound 40j) with the highest predicted activity of 10.076 was also

found to have the highest binding energy and hydrogen bond of -173.613 kcal mol-1 and

-12.160 kcal mol-1 respectively (Table 4). Compound 40j emerged as the top-performing

designed derivative due to it exhibiting the highest predicted biological activity while still

maintaining remarkable stability (reflected in the moldock score and hydrogen bond energy).

Compound 40j formed numerous interactions with the active amino acid residues in the bind-

ing site of 6ZST. Specifically, it engaged in five conventional hydrogen bonding interactions

between the bridged carbonyl oxygen, carbonyl oxygen of carbothioic S-acid at R5 position,

nitrogen atom of the oxadiazole ring, Sulphur of carbothioic S-acid at R3 position and the car-

bonyl oxygen of the primary amine scaffold with Gly116, Glu140, Thr153, Gly228, Asp433 at

the distance of 2.667 Å, 2.394 Å, 2.405 Å, 2.718 Å and 2.244 Å respectively. Additional six car-

bon hydrogen bond interactions were observed between compound 40j and Gly114, Ser117,

Gly258, Arg260, Thr257 and Ser117 at a distance of 2.170 Å, 2.035 Å, 2.829 Å, 3.055 Å, 1.382 Å
and 2.282 Å. The molecular interactions of the generated PZQ derivatives are depicted in Fig 9

and summarized in Table 5. The 2-dimentional interactions are presented in S1 Fig of supple-

mentary materials.

3.4 Molecular dynamics simulations

MD simulation studies were conducted to elucidate the optimal interactions between 40d and

40j complexes as well as to assess their long-term stability and efficacy. The stability of the pro-

tein-ligand complexes throughout the simulation period was evaluated through the analysis of

Root Mean Square Deviation (RMSD), Root Mean Square Fluctuation (RMSF), Radius of

Gyration (Rg), no. of hydrogen bonds, principal component analysis (PCA), and dynamic

cross correlation metric (DCCM) [84].

To gauge the stability of each protein-ligand complex, the RMSD of the protein backbone

for the 40d and 40j complexes was calculated over a 100 ns MD trajectory, as depicted in Fig

10. RMSD is widely employed in structural analysis, providing insight into the stability of a

given complex [85]. When analyzing a protein-ligand complex, it is crucial to consider the

RMSD of the Cα atoms in the protein backbone, as it characterizes the overall conformational

stability of the complex during dynamic states and simulations [86]. As illustrated in Fig 10A,

the RMSD plot for the protein backbone’s Cα atoms exhibited an increasing pattern for the

initial 30 ns, reaching a value of 4.5 Å. Notable variations were observed up to 85 ns, with pro-

nounced fluctuations at 60 and 63 ns resulting in an elevated RMSD value of 6.5 Å. Subse-

quently, the RMSD showed a decreasing trend from 6.5 Å to 4 Å with slight fluctuations up to

90 ns. Although it reached the highest value around 90 ns, the RMSD decreased in the last 10

ns of the simulation, showing a stable graph line until the end. The average RMSD of the pro-

tein backbone is 3.94 Å. Contrastingly, Fig 10B shows an RMSD plot that increased to 3 Å for

the first 10 ns, reaching its highest value of 6.5 Å after 10 ns. Notable decline occurred at 20 ns,

followed by substantial increments until 45 nanoseconds. The RMSD graph then displayed

ascending and descending fluctuations until the end of the simulation. Regarding the RMSD

of the ligands, Fig 10A shows an average RMSD of 1.62 Å, while Fig 10B demonstrates an

average RMSD of 1.19 Å. Despite the ligand in Fig 10A having a higher RMSD value com-

pared to Fig 10B, analysis using VMD software revealed no displacement of either ligand from

the protein domain. This suggests that both ligands remained stable within the binding site.
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To assess the stability of each protein-ligand combination, the RMSD of the protein backbone

and ligand along the 100 ns MD trajectory was calculated (Fig 10A and 10B). The average

RMSD values of the complexes are 2.12 Å and 4.6 Å, respectively. These RMSD values indicate

that the protein-ligand complex in Fig 10A (40d complex) is more stable than the complex in

Fig 10B (40j complex).

Fig 9. 3-Dimentional interactions of designed compounds with 6ZST, (A) 6ZST complex with 40a; (B) 6ZST complex with 40b; (C) 6ZST complex with 40c;

(D) 6ZST complex with 40d; (E) 6ZST complex with 40e; (F) 6ZST complex with 40f (G) 6ZST complex with 40g; (H) 6ZST complex with 40h; (I) 6ZST

complex with 40i; (J) 6ZST complex with 40j; (K) 6ZST complex with 40k; (L) 6ZST complex with 40l.

https://doi.org/10.1371/journal.pone.0302390.g009
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The average fluctuation seen in all atoms over a 100 ns MD trajectory was visualized using

RMSF data for proteins and protein-ligand complexes (Fig 10C and 10D). PHE 181, GLY 182,

TRP 183, ILE 592, VAL 593, and SER 594 showed significant alterations, possibly due to ligand

binding. Both complexes (40d and 40j in complex with SmTGR) exhibited similar RMSF,

indicating increased stability for both complexes.

The Rg data for the protein-ligand complexes were employed to visually represent varia-

tions in structural integrity and compactness over a 100 ns MD trajectory, as illustrated in Fig

10E. The assessment of structural integrity and compactness relies on the Rg parameter, mea-

suring the average distance of a group of atoms from their shared center of mass, factoring in

the masses of the atoms. The 40d-complex exhibited an average Rg value 2.80 Å greater, with

the most significant deviation observed at 10 ns. Conversely, the 40j complex had an average

Table 5. Summary of active site amino acid residues interacting with newly designed compounds.

ID Types of interactions

Conventional H-bonding / Å Carbon-hydrogen bond / Å Electrostatic Hydrophobic Other

π-
anion

π-
cation

π-σ Alkyl π-alkyl

40a Gly115 (2.876), Glu140 (1.926), Glu259

(3.027), Arg393 (3.092), Tyr138 (2.186)

Gly114 (3.089, 3.068), Thr257 (2.679), Ala256

(2.285)

Asp433 - - Ala256 Val139,

Arg260,

Ala445

-

40b Gly115 (3.003), Gly116 (3.044), Glu140

(1.990), Glu259 (3.020), Arg393

(3.040), Thr257 (1.283)

Gly114 (3.015, 3.083), Ala256 (2.170) Asp433 - - Ala256 Val139,

Arg260,

Ala445

-

40c Gly115 (3.066), Gly118 (2.036), Thr153

(1.710), Ala256 (3.110),

Asp137 (2.986), Tyr138 (3.072)

Gly114 (3.072, 2.870), Gly118 (3.007), Arg260

(2.824), Ala256 (2.757)

Asp433 - - Ala256,

Val139

Trp148 *2,

Cys154

-

40d Gly115 (2.926), Gly118 (2.115), Thr153

(1.599), Tyr138 (3.300)

Gly114 (2.872), Gly118 (3.015), Ala256 (2.794) Asp433 Arg260 - Ala445 Cys154,

Val139

-

40e Gly115 (2.843), Ser117 (2.471), Gly119

(1.916), Thr153 (2.378),

Asp433 (2.071), Ile431 (3.254)

Gly114 (2.039), Gly118 (2.295, 2.173), Gly152

(2.966) Thr257 (2.650, 2.687), Gly258 (2.585),

Gly432 (1.963), Ala256 (2.486, 2.195), Asp137

(2.897), Tyr138 (2.805),

- - - Val139 Ala256,

Ala445,

Val139

-

40f Gly116 (2.805), Ser117 (2.568, 3.005),

Gly118 (2.416), Glu259 (1.955), Arg393

(2.796),

Ala256 (2.930), Gln440 (1.828, 2.310),

Glu259 (2.219)

Gly116 (2.514), Arg393 (2.043), Asp433

(1.734), Gln440 (2.758)

Asp433 - - Cys154,

Cys159

- -

40g Gly118 (1.713), Gly119 (2.507), Glu256

(2.151), Arg393 (2.814, 2.802), Thr257

(3.238), Asp137 (2.171), Ile431 (2.795)

Gly116 (2.111), Gly118 (3.081), Thr257 (2.500),

Asp433 (1.200)

Asp137

Asp433

- Ser117 Ala445 - -

40h Gly115 (2.848), Ser117 (2.595), Glu140

(1.755), Thr153 (2.310), Cys154

(2.258), Glu259 (2.760), Thr257 (2.932

Gly114 (2.127), Val139 (1.945), Thr257 (2.680,

2.141, 2.661), Ala256 (1.889)

- Arg260 Arg260 Ala256 Val139,

Arg260

-

40i Gly115 (2.964), Gly118 (2.077), Glu140

(1.739), Thr442 (2.629), Tyr138

(3.286), Thr257 (2.945)

Gly114 (3.087, 2.915), Gly118 (2.717), Val139

(2.105), Arg260 (2.794), Thr257 (2.252), Ala256

(2.542), Thr257 (2.866)

Asp433 Arg260 Arg260 Val139,

Arg260

- -

40j Gly116 (2.667), Glu140 (2.394), Thr153

(2.405), Gly228 (2.718), Asp433 (2.244)

Gly114 (2.170), Ser117 (2.035), Gly258 (2.829),

Arg260 (3.055), Thr257 (1.382), Ser117 (2.282)

- - - - - Tyr138 (π-

lone pair)

40k Thr153 (2.225), Cys154 (2.811), Tyr296

(2.093), Asp137 (2.516)

Thr153 (1.579), Gly432 (2.978), Leu441 (2.393) Asp433 - Gly116 Ala256,

Ala445

Ala445 Cys159 (π-

sulfur),

Thr257

(amide-π)

40l Gly115 (2.720), Glu140 (2.605), Glu259

(2.379), Arg260 (2.144), Arg393 (2.972)

Val139 (2.268), Thr257 (2.714), Ala256 (2.587,

2.018), Asp433 (3.055)

- - - Ala256 Val139,

Arg260,

Ala445

-

https://doi.org/10.1371/journal.pone.0302390.t005
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Fig 10. RMSD plot of (A) 40d-SmTGR complex and (B) 40j-SmTGR complex; RMSF plot of (C) 40d-SmTGR complex and (D) 40j-SmTGR complex; (E)

Radius of gyration (Rg) plot of both complexes derived from a 100 ns MD simulation.

https://doi.org/10.1371/journal.pone.0302390.g010
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Rg value 2.80 Å lower, with notable deviations at 40 and 60 ns. The structural compactness

and tightness of the protein complexes displayed variability during the simulation, particularly

with larger fluctuations detected in the 40d complex, suggesting both complexes maintained

compact structures with 40j being more structural integrity.

The evaluation of hydrogen bond network on the 2 complexes was conducted over a 100 ns

simulation period as illustrated in Fig 11A and 11B. The criteria for hydrogen bonds were set

as acceptor-donor distance < 0.35 nm and angle>120, with frames sampled every 2 picosec-

onds. The analysis revealed a greater number of stable hydrogen bonds in the docked complex,

preserved throughout the MD simulations. In the case of the 40d-SmTGR complex, stability

was maintained by interactions with ASP137 and SER117 residues, with H-bond occupancies

of 24.65% and 19.76%, respectively (Table 6). The 40j-SmTGR complex, on the other hand,

exhibited stronger hydrogen bonds, particularly involving ILE431 and TYR138 residues, with

H-bond occupancies of 18.36% and 17.86% (Table 6). Notably, the 40d-protein complex had a

lower number of hydrogen bonds compared to 40j complex. This shows that stronger contacts

and more stable hydrogen bonding contribute to the 40j-SmTGR complex stability during

MD.

Additionally, PCA was employed to examine the changes in the domain dynamics inside

the receptor-ligand complex across a 100-nanosecond simulation period (Fig 12). The findings

were provided on eigenfractions, representing the variance proportion obtained from a covari-

ance matrix of 20 eigenmodels. The atomic backbone of the complex was analyzed using PCA

calculations. Three conformations, namely PC1, PC2, and PC3, were used for the analysis. The

normal mode molecular dynamics (MD) method was employed for these calculations. The

PCA analysis demonstrated structural alterations within all clusters. The blue region displayed

the most significant motions, the white region revealed moderate movements, and the red

region demonstrated the least flexible movements. Fig 12 demonstrates that the top 20 princi-

pal components (PCs) of the Ligand-40d and Ligand-40j systems accounted for 88% and 92%

of the overall variation, respectively. This indicates that in comparison to the Ligand-stand sys-

tem, the Ligand-40d system had a more limited phase space and less performance flexibility.

In comparison to the PCA plots of Ligand-40d and Ligand-40j, the PC1 cluster exhibited the

greatest variability, accounting for 27.4% and 37.31% of the variance, respectively. The PC2

cluster demonstrated 13.36% and 18.18% variability, while the PC3 cluster exhibited minimal

variability, accounting for only 9.85% of the variance for Ligand-40j. In contrast to PC1 and

PC2, the Ligand-40j cluster’s PC3 demonstrates a comparatively low degree of variability, indi-

cating that the binding of Ligand-40j is exceptionally stable and characterized by a compact

structure. Additionally, the RMSF of the residual contribution to the PCA is shown in Fig 13

where the black and blue lines represent PC1 and PC2 respectively. The RMSF analysis

revealed that PC1 and PC2 exhibited diminished flexibility when compared to the Ligand-40d.

In addition, we explored the kinetics of protein-ligand interactions by creating a two-

dimensional projection graph using Principal Component Analysis (PCA). We analyzed the

movements by utilizing the initial two principle components, PC1 and PC2. The diagram in

Fig 14 depicts the exploration of several molecular arrangements of protein-ligand complexes

containing ligands 40d and 40j within a crucial region. When looking at the 2D projection

plot, the complex that fills a smaller phase space is the one that depicts the stable cluster, while

the complex that occupies a larger space is the one that depicts the non-stable cluster. The out-

comes of the two system simulations demonstrate that the ligand 40j protein complex is con-

fined to a smaller portion of phase space, while ligand 40d occupies a considerably larger

region of phase space. The results of the PCA unequivocally demonstrate that the ligand 40j

complex exhibits superior stability in comparison to the ligand 40d complex.
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Fig 11. The hydrogen bond count between (A) 40d-SmTGR complex and; (B) 40j-SmTGR complex through the 100 ns MD simulation.

https://doi.org/10.1371/journal.pone.0302390.g011
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Furthermore, the DCCM demonstrated both positive and negative impacts of amino acid

correlation, displaying overall correlation in the range of −1.0 to 1.0, as shown in Fig 15A and

15B. Different colors represent varying degrees of association between residues, with darker

colors indicating stronger correlations. Correlations closer to 1 indicate residues moving in

the same direction, while correlations closer to −1 indicate residues moving in opposite direc-

tions. Pairwise correlated graphs were constructed to examine the relationship between I and J

residue indices. The analysis involved color-coding such as light green, green, and dark blue,

where dark blue represents full correlation and light green represents anti-correlation. Com-

paring the DCCM diagrams of the two systems, it becomes evident that the correlated motions

of the 40j system were notably distinct from the 40d-SmTGR complex. High correlation in the

40j complex was observed compared the 40d complex which suggests a more compact struc-

ture in the 40j system.

3.4.1 Binding free energy analysis. The binding free energies of the protein-ligand com-

plexes were determined based on the last 20 nanoseconds of the trajectory, employing the

Molecular Mechanics Poisson-Boltzmann Surface Area (MM-PBSA) approach. A more favor-

able binding free energy between protein and ligands is indicated by increasingly negative val-

ues. Presented in Fig 16 is the MMPBSA plot of 40d and 40j complexes. Notably, the 40j-

Table 6. Individual occupancies of detected H-bonds per ligand (40d and 40j) with SmTGR enzyme.

Donor Acceptor Occupancy

40D Complex

UNK1-Side-O5 ASP137-Side-OD2 24.65%

SER117-Main-N UNK1-Side-O3 19.76%

40J Complex

UNK1-Side-N1 ILE431-Main-O 18.36%

TYR138-Main-N UNK1-Side-O6 17.86%

https://doi.org/10.1371/journal.pone.0302390.t006

Fig 12. The PCA findings and eigenvalue rank plots for (A) 40d-SmTGR complex and; (B) 40j-SmTGR complex.

https://doi.org/10.1371/journal.pone.0302390.g012
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SmTGR complex exhibited the highest binding energy (-16.03 kcal/mol) compared to the 40d

complex (-10.19 kcal/mol). Results from the MM-PBSA study emphasized the substantial

binding energy and enhanced stability of 40j complex.

3.5 Drug-likeness and ADMET Analysis

The drug-likeness and pharmacokinetic ADMET properties of the designed compounds were

examined to determine their suitability for therapeutic consumption [87]. A summary of the

assessed drug-likeness parameters is presented in Table 7. Assessing these parameters is a cru-

cial step in the early stages of drug discovery, as it links a molecule’s physical and chemical

characteristics to its potential in terms of oral bioavailability and other bio-pharmaceutical

properties [88]. One widely recognized preclinical guideline in drug development is Lipinski’s

rule of five, which suggests that a molecule failing to meet more than two of its criteria is likely

to be poorly absorbed [89]. As further discussed by Khalifah S. A and colleagues, validating the

Lipinski’s rule implies that, theoretically, define the likelihood of success for a compound as a

drug candidate [23]. However, it’s noteworthy that all twelve designed compounds meet these

criteria, indicating their potential for pharmacological effectiveness as anti-Schistosomiasis

agents.

To provide a more thorough evaluation of their drug-likeness, we applied the bioavailability

score (ABS) criteria. All twelve designed compounds established values of 0.55, demonstrating

compliance with the rule of five and indicating an ideal bioavailability profile. Additionally,

the synthetic accessibility score (SA) was evaluated, which offers insights into how easily these

molecules can be synthesized. This scoring system rates the difficulty of synthesis on a scale

from one (easy) to ten (very difficult). The SA scores for all proposed compounds fell within

the range of 3.63 to 4.14 (Table 7), suggesting that these compounds are amenable to favorable

and feasible synthesis [90].

ADMET predictions play a vital role in the drug development process, assisting in the selec-

tion of the most promising drug candidates, and alleviation of potential toxicity risks,

Fig 13. Root mean square fluctuation (RMSF) of the residual contribution to the principal component analysis (PCA). (A) 40d-SmTGR complex and;

(B) 40j-SmTGR complex. by the black and blue lines, which correspond to PC1 & PC2 respectively.

https://doi.org/10.1371/journal.pone.0302390.g013

PLOS ONE Unveiling potent inhibitors for schistosomiasis

PLOS ONE | https://doi.org/10.1371/journal.pone.0302390 June 26, 2024 25 / 35

https://doi.org/10.1371/journal.pone.0302390.g013
https://doi.org/10.1371/journal.pone.0302390


ultimately enhancing the efficiency and success of drug development [91]. For the newly

designed compounds, human intestinal absorption (HIA) was investigated, revealing absorp-

tion rates ranging from 43.524% to 79.637% (Table 8). Interestingly, all compounds displayed

absorption levels exceeding the 30% threshold, indicating effective absorption in the human

small intestine [91]. Moreover, the compounds were found to act as substrates for P-glycopro-

tein without inhibiting its function, suggesting they are likely to be transported by this efflux

pump without compromising their pharmacokinetics and bioavailability [92]. Following intes-

tinal absorption, drug molecules are distributed to their intended targets and tissues through

the circulatory systems. Various parameters were predicted, including the steady-state volume

of distribution (VDss), blood-brain barrier (BBB) permeability, and central nervous system

(CNS) permeability. VDss values indicated that some compounds may be distributed more in

plasma, while others were within a range suggesting a balance between tissue and plasma dis-

tribution [93].

Regarding BBB permeability, none of the compounds exhibited significant penetration

(Table 8), suggesting limited access to the brain. However, CNS permeability predictions indi-

cated that four compounds may moderately enter the CNS, while eight were less permeable.

Fig 14. 2D projections of trajectories on eigenvectors of ligands 40d, and 40j bound complexes.

https://doi.org/10.1371/journal.pone.0302390.g014
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Importantly, for the context of targeting Thioredoxin Glutathione Reductase (TGR) from

Schistosoma mansoni, crossing the BBB and affecting the CNS is generally not a critical

requirement, as TGR is not associated with central nervous system functions [94].

The metabolism assessment shows predictions indicating that all but one of the twelve com-

pounds are potential substrates for CYP3A4, which could enhance their bioavailability and

reduce elimination rates [95]. However, none of the compounds were predicted to be CYP3A4

inhibitors, therefore minimizing the risk of drug-drug interactions and preserving therapeutic

efficacy [96]. Total clearance significantly influences the bioavailability and half-life of drug

molecules, determining appropriate dose sizes and regimens [97]. The projected total clear-

ance of the designed compounds indicated a moderate level, with log(CLtot) ranging between

0.310 and 0.690. This suggests that the compounds could be reasonably cleared from the

bloodstream by the liver [98]. Furthermore, an assessment of toxicity and skin sensitization for

the proposed compounds, revealed their non-toxic nature and favorable physicochemical and

pharmacokinetic ADMET properties (Table 8). In summary, these outcomes suggest that the

proposed compounds have the potential to act as inhibitors for Schistosoma mansoni and

could be considered for use in schistosomiasis treatment.

4. Conclusion

An in-silico modeling exploration was conducted on a set of 49 derivatives functioning as

inhibitors against SmTGR. This study utilized QSAR, molecular docking, molecular dynamics,

drug likeness and ADMET properties analyses. The reliability and predictive capability of the

developed QSAR models were evaluated through statistically validation parameters. The

molecular docking analysis elucidated the inhibition mechanism of the SmTGR receptor by

the chosen template scaffold (compound 40), demonstrating interactions through conven-

tional hydrogen bonding, hydrophobic interactions, and electrostatic interactions with the

Fig 15. The DCCM plots for both the (A) 40d-complex and (B) 40j-complex.

https://doi.org/10.1371/journal.pone.0302390.g015
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Fig 16. Plot of MMPBSA binding energy parameters.

https://doi.org/10.1371/journal.pone.0302390.g016

Table 7. Drug-likeness assessment of designed compounds.

I.D MW/ gmol-1 HBA HBD MlogP Lipinski violation Bio availability score Synthetic accessibility Drug likeness

40 357.32 6 1 -2.10 0 0.55 3.56 Yes

40a 387.35 8 2 -1.32 1 0.55 4.13 Yes

40b 374.37 6 0 -0.17 0 0.55 3.63 Yes

40c 382.37 6 0 0.28 0 0.55 3.89 Yes

40d 392.36 6 0 0.36 0 0.55 4.14 Yes

40e 373.28 6 0 -0.44 0 0.55 3.68 Yes

40f 430.37 9 3 -1.99 1 0.55 4.12 Yes

40g 416.30 7 1 -1.13 1 0.55 3.78 Yes

40h 416.30 7 1 -1.13 1 0.55 3.74 Yes

40i 475.29 8 1 -1.72 1 0.55 3.92 Yes

40j 477.47 8 1 -1.45 1 0.55 3.84 Yes

40k 417.40 7 1 -0.86 1 0.55 3.70 Yes

40l 417.40 7 1 -0.86 1 0.55 3.72 Yes

Key: HBA: Hydrogen bond acceptor; HBD: Hydrogen bond donor; TPSA: Topological polar surface area; MlogP: Topological method

https://doi.org/10.1371/journal.pone.0302390.t007
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active residues in the binding cavity. The findings from the QSAR modeling and docking anal-

yses guided the design of 12 new derivatives (40a-40l) with improved activities and binding

potentials. Molecular dynamics simulations 100 ns, affirmed the stability of the two best-

designed molecules (40d and 40j), within the binding cavity of the SmTGR receptor. Analysis

of Root Mean Square Deviation (RMSD) and Root Mean Square Fluctuation (RMSF) plots

indicated minimal fluctuations, supporting system stability as corroborated by molecular

docking results. MM-PBSA calculations of binding free energy (ΔGbind) further validated the

stability of the complexes, with 40j emerging as the most promising among the newly designed

compounds. Additionally, the designed molecules exhibited favorable results in drug-likeness

and ADMET prediction analyses. The outcomes of this study suggest that these molecules

could serve as promising drug candidates for schistosomiasis treatment. However, further syn-

thesis and in vitro tests are imperative to validate the predicted properties and evaluate their

potential as anti-schistosomiasis agents.
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