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Abstract

As people age, their ability to maintain homeostasis in response to stressors diminishes.

Physical frailty, a syndrome characterized by loss of resilience to stressors, is thought to

emerge due to dysregulation of and breakdowns in communication among key physiological

systems. Dynamical systems modeling of these physiological systems aims to model the

underlying processes that govern response to stressors. We hypothesize that dynamical

systems model summaries are predictive of age-related declines in health and function. In

this study, we analyze data obtained during 75-gram oral-glucose tolerance tests (OGTT)

on 1,120 adults older than 50 years of age from the Baltimore Longitudinal Study on Aging.

We adopt a two-stage modeling approach. First, we fit OGTT curves with the Ackerman

model—a nonlinear, parametric model of the glucose-insulin system—and with functional

principal components analysis. We then fit linear and Cox proportional hazards models to

evaluate whether usual gait speed and survival are associated with the stage-one model

summaries. We also develop recommendations for identifying inadequately-fitting nonlinear

model fits in a cohort setting with numerous heterogeneous response curves. These recom-

mendations include: (1) defining a constrained parameter space that ensures biologically

plausible model fits, (2) evaluating the relative discrepancy between predicted and observed

responses of biological interest, and (3) identifying model fits that have notably poor model

fit summary measures, such as R2
pseudo, relative to other fits in the cohort. The Ackerman

model was unable to adequately fit 36% of the OGTT curves. The stage-two regression

analyses found no associations between Ackerman model summaries and usual gait

speed, nor with survival. The second functional principal component score was associated

with faster gait speed (p<0.01) and improved survival (p<0.01).
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Introduction

Homeostasis relies on a complex network of connections between functioning physiological

systems [1]. In good health, physiological systems are resilient—they can withstand and

recover from stressors. Throughout the adult lifespan, these systems often exhibit loss of resil-

ience and decline in performance [2]. In particular, loss of resilience in the physiological sys-

tems that govern stress response, the autonomic nervous system, energy regulation and

production, and musculoskeletal integrity are hypothesized to contribute to biological aging

and physical frailty [3, 4]. It is further hypothesized that loss of resilience is observable before

physical frailty manifests. Because a physiological system must undergo stress to demonstrate

resilience or lack thereof, tests that induce a stress response are well-suited for studying these

systems. Dynamic stimulation tests (also known as “provocative tests”) are in-clinic tests

designed to stress specific physiological systems. The use of dynamic stimulation tests to evalu-

ate resilience of physiological systems appears to hold promise for identifying older adults on

adverse aging trajectories or at risk of incident frailty.

Varadhan et al. 2008 developed a framework for studying physiological systems by dynam-

ical systems modeling [5]. This framework proposes parametrically modeling physiological

response during a dynamic stimulation test with the idea that parameter estimates can provide

insights into physiological functioning. The hypothesis that physiological response to dynamic

stimuli varies by frailty status has been explored in the metabolic, stress response, and muscu-

loskeletal systems [6]. One study examined glucose metabolism through an oral glucose toler-

ance test (OGTT) in a population of older women without diabetes. It found frail women—

those demonstrating decreased resilience to stressors, as defined by the Fried frailty index—

had significantly higher glucose levels two hours after glucose ingestion than non-frail women,

yet baseline glucose levels were comparable [3, 7]. Another study examined the stress-response

system in older women not taking corticosteroids through an adrenocorticotropic hormone

stimulation test. Post-stimulation dehydroepiandrosterone levels were more rapidly elevated

with increasing frailty, although mean pre- and post-stimulation levels did not significantly

vary by frailty status [8]. A third study in older women found that prefrail and frail women

had slower phosphocreatine recovery than nonfrail women after performing a 30-second max-

imal isometric contraction of the tibialis anterior muscle [9].

While studies have demonstrated frailty is associated with dysregulated physiological

response to stressors, none have employed the mathematical modeling approach outlined in

Varadhan et al. 2008. The supposed advantage of the mathematical modeling approach over

simple nonparametric summaries is that parameters related to the rate of recovery from stimu-

lus are hypothesized to summarize mechanisms governing physiological fitness or dysregula-

tion [5]. We applied the framework laid out in Varadhan et al. 2008 to energy regulation and

metabolism, the glucose-insulin system specifically.

We chose to study the glucose-insulin system because of its connections to several physio-

logical systems linked to frailty including energy production and regulation, the musculoskele-

tal system, and the endocrine system [6]. Because of its connections to these key systems,

functioning of the glucose-insulin system is associated with multiple adverse outcomes. Ele-

vated fasting glucose levels have been linked to increased risk of cardiovascular disease, death,

and stroke in older adults [10–12]. 2-hour plasma glucose (2hPG), measured during OGTTs,

is an independent predictor of mortality [11, 13–16]. Additionally, in non-diabetic women,

elevated 2hPG has shown an association with increased frailty status while fasting plasma glu-

cose did not [7].

Various mathematical models have been proposed to describe the metabolism of glucose

following the oral ingestion of a specified amount of glucose [17–21]. Some consider only
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first-order interactions between glucose and insulin; others incorporate the effects of incretins

and model the rate of glucose absorption from the intestines [17–20]. The Ackerman model is

one of the simplest, but still widely-used, models [21]. The Ackerman model assumes blood

glucose and insulin interact through a set of first-order linear differential equations and that

the rate of glucose uptake from the intestines peaks immediately and proceeds to fall off slowly.

While the Ackerman model does not model the underlying biological processes as explicitly as

some alternative models, it was selected for this study because it only requires estimation of

four parameters—one which estimates fasting glucose, another which controls the rate of an

exponential decay function, one which controls the sinusoidal pattern of the glucose curve,

and the last influences the amplitudes of the glucose curve oscillations. Although mathematical

models have not been used in physiology and clinical medicine as an established methodology

for explanatory or diagnostic purposes, they have been used extensively as investigative tools

in metabolic and endocrine studies [22]. Here we propose to explore whether the Ackerman

model parameters provide insights into age-related declines in function.

In applying the framework described in Varadhan et al. 2008, it became clear that fitting a

mathematical model of the glucose-insulin system in a cohort of heterogeneous adults presents

several challenges. We found significant variability in the shapes of OGTT curves between

individuals. While some prior studies have categorized OGTT curves into “monophasic”,

“biphasic”, or “continuous rise” shapes [23–26], we found a greater diversity of curve shapes in

our data. The Ackerman model struggled to fit these atypical OGTT curves. This paper com-

municates the challenges we encountered in fitting dynamical systems data in a heterogeneous

cohort of late middle aged and older adults and reports approaches we developed to address

them. It aims to inform and guide researchers pursuing similar lines of inquiry in best analytic

practices with their analyses of nonlinear dynamical systems models.

The rest of the paper is organized as follows. First, the data used in the case study are

described. Next, the Ackerman model, a parametric, mathematical model of the glucose-insu-

lin system, is introduced, as well as functional principal components analysis (fPCA), a non-

parametric modeling approach. To complete the methods section, the regression analyses used

in the case study are described. The results section explores the patterns of OGTT curves

which proved difficult to mathematically model. We termed the Ackerman model fits associ-

ated with these curves “inadequate fits” and we present the criteria we devised to identify these

fits in the results section. Findings from the fPCA analyses are also presented. To explore the

utility of summary measures of glucose response dynamics for identifying older adults at risk

for adverse outcomes, regression analyses of gait speed and mortality on these summary mea-

sures are presented. Lastly, we discuss possible causes of the difficulties with fitting the Acker-

man model, make suggestions for other researchers seeking to implement nonlinear model

fitting to a heterogeneous cohort, and identify future work needed.

Methods

Data source

The data for this case study comes from the Baltimore Longitudinal Study of Aging (BLSA),

the longest-running US study on aging [27]. The BLSA is a community-based cohort study

that continuously enrolls healthy volunteers aged 20 years and older who live within two hours

driving from Baltimore, Maryland [27]. The BLSA follows participants for life. The study was

designed to answer mechanistic questions about aging and the transition from health to dis-

ease with age. Participants undergo extensive, 3-day testing every 1–4 years, with older partici-

pants visiting more frequently. Data used in this manuscript are from the BLSA which is

approved by the Institutional Review Board of the National Institute of Environmental Health
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Sciences under protocol 03-AG-0325. BLSA participants given written informed consent at

each study visit. The National Institute of Aging provided the data used in this manuscript to

the study team upon review of the study plan and completion of a data use agreement. The

data provided by the BLSA to the study team were retrospective and anonymized and thus

were acknowledged to not be human subjects research by the study team’s IRB—the Johns

Hopkins Medicine IRB. Participants aged 50 years and older who had an OGTT conducted

between January 1, 2001, and March 11, 2020, were included in the provided data set. BLSA

participants with a history of diabetes and on insulin therapy do not undergo OGTTs. The

data were provided to the researchers on August 18, 2020.

Measures

The OGTT procedure consists of an overnight fast of at least 10 hours, consumption of an oral

75 g glucose load, and blood draws at 0, 20, 40, 60, 80, 100, and 120 minutes post-ingestion

[28]. Participants were prohibited from smoking, eating, or exercising during the test [29].

Plasma glucose concentration was measured using a glucose oxidase analyzer (Abbott, Chi-

cago, IL 2001–2006; Beckman Instruments, Brea, CA, 2006–2009; YSI Incorporated, Yellow

Springs, OH, 2009 onwards) [28, 30].

Regression analyses employed usual gait speed and mortality as outcomes. Usual gait speed

is measured at BLSA visits by asking participants to walk at their “usual, comfortable pace”

over 6 meters of an uncarpeted floor [31]. Two trials are performed, and the faster of the two is

used in our analyses. Death dates are tracked for BLSA participants, including those who drop

out, by notice by family members, participant’s physician of record, and search of the National

Death Index. Participants who had not died by May 2, 2020, were considered censored at that

date.

Because participants often undergo OGTTs and usual gait speed tests at multiple visits, we

used the first visit in which both tests were completed for each participant. We also obtained

personal characteristic variables including age at the recorded visit, BMI, self-reported sex,

race, and smoking history. For the survival models, time since this visit was used.

The study population included 783 White, 276 Black, 24 non-Chinese/Japanese/Filipino

Asian or other Pacific Islander, 11 other non-White, 11 Chinese, 6 not classifiable, 5 Filipino, 4

American Indian or Alaskan Native, and 4 Japanese participants. Due to small sample sizes,

races were recoded into White, Black, and Non-White/Non-Black. The Non-White/Non-

Black race category has a small number of participants and is highly heterogeneous. The group

is only defined to allow modeling differences between White and Black participants—model

coefficients for the Non-White/Non-Black category will not be interpreted.

Data analysis

We separated analyses into three categories, stage-one, stage-two, and auxiliary models. Stage-

one models were used to provide individual-level summaries of OGTT curves. A parametric

approach, the Ackerman model, and a nonparametric approach, fPCA, were employed as

stage-one models. Stage-two models were used to assess associations between the outputs of

stage-one models and the outcomes of interest, usual gait speed and risk of death, while con-

trolling for personal characteristics. Auxiliary models explored relationships between stage-

one model outputs and personal characteristics. Data from seven participants were included in

the stage-one models but excluded from the stage-two and auxiliary models due to missing

smoking history status.

Ackerman model. The Ackerman model is a lumped-parameter model of blood glucose

during an OGTT [21]. It was developed to test the hypothesis that physiological rhythms may
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differentiate between health and disease. Ackerman et al. created this model by representing

the glucose-insulin system in a block diagram including glucose absorption from the digestive

system and liver; removal of glucose by the kidneys, liver, and other tissues; insulin release

from the pancreas; insulin destruction; and interactions between insulin and glucose affecting

these rates [21]. The differential equations governing the Ackerman model are

_H ¼ � l1H þ l2 þ l3Y ð1Þ

and

_Y ¼ � l4Y þ l5 � l6H þ I ð2Þ

where Y is blood glucose concentration, H is insulin concentration, _Y and _H are the rates of

change in blood glucose and insulin concentrations, I is the rate of change in blood glucose

due to absorption from the intestines, l1H is the average rate of insulin removal independent of

glucose, l2 is the average rate of release of insulin from the pancreas independent of glucose,

l3Y is the net increase in the rate of release of insulin due to glucose, l4Y is the average rate of

glucose removal independent of insulin, l5 is the average rate of release of glucose into the

blood, and l6H is the net increase in the average rate of glucose removal from the blood due to

insulin [21]. Applying initial conditions and the assumption that _I follows a Dirac delta func-

tion centered at the start of the test yields the integral form of the Ackerman model

YðtÞ ¼ YF þ Ae� kt sin ðotÞ ð3Þ

where Y(t) is the blood glucose concentration at time t, YF is the fasting blood glucose concen-

tration, A is a scale parameter, k is an exponential decay parameter, and ω is a sinusoidal

parameter. For complete details, see Ackerman et al. 1964.

Allowing for differences in the parameters between individuals and measurement or model

error gives

YiðtÞ ¼ YFi
þ Aie� kit sin ðoitÞ þ �i;t ð4Þ

where i denotes the individual, Yi(t) is the measured plasma glucose concentration for individ-

ual i at time t, and �i,t is the error between the measured and the Ackerman model’s theoretical

plasma glucose concentration for individual i at time t. Plasma glucose is used in lieu of whole

blood glucose because plasma glucose was measured in the BLSA and the two are approxi-

mately proportionally equivalent.

Nonlinear least squares was used to fit the Ackerman model to individuals’ OGTT curves.

The parameter estimates Ŷ Fi
; Âi; k̂i; ô i were found such that

X

t2f0;20;:::;120g

�
YiðtÞ � YFi

� Aie
� kit sin ðoitÞ

�2

ð5Þ

was minimized at ðŶ Fi
; Âi; k̂i; ô iÞ. Homoscedastic errors with mean 0 were assumed.

Ackerman et al. were interested in modeling the glucose-insulin system because they

believed that natural periods of physiological systems could distinguish disease from health.

The disease and periodicity combination they investigated was diabetes and a parameter they

termed “effective period”. Effective period is a measure of the time it takes for the glucose-
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insulin system to recover from the glucose stimulus during an OGTT and is given by

Teffi
¼

2p
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
o2

i þ k2
i

p ð6Þ

[21].

Large effective periods indicate slow recovery to the glucose stimulus, while low effective

periods indicate rapid recovery of the glucose-insulin system. Ackerman et al. used a cutoff

value of 4 hours and found it performed well for differentiating between persons with versus

without diabetes. While the aim of the present paper is unrelated to diabetes diagnosis, effec-

tive period may be a concise measure of resilience of the glucose-insulin system during an

OGTT.

Parameter bounds. For the Ackerman model, bounds must be placed on the parameters so

that the curve is biologically plausible. For example, a negative YFi
would correspond to a nega-

tive basal glucose concentration; a negative Ai with a positive ωi, or vice versa, would signal an

initial decline in glucose concentrations after consumption of the glucose load; a negative ki

would indicate glucose concentrations oscillate with increasing amplitude in time. Upper

bounds are also necessary for biological plausibility as well as to achieve algorithm conver-

gence with a reasonably high likelihood. However, cutoff points are not as clear as for the

lower bounds. For example, extremely large values of ωi correspond to near-instantaneous

oscillations in plasma glucose concentration. Likewise, very large values of ki correspond to

near-instantaneous return to basal glucose levels. The parameter bounds we implemented

were YFi
2 ½0; 2Yið0Þ�, Ai 2 [0, 20(maxt 2 {0,20, . . .,120}Yi(t) − Yi(0))], ki 2 [0, 10], ωi 2 [0, 2π],

where the units for these parameters are mg/mL for YFi
and Ai, and 1/hour for ki and ωi. These

values were chosen through a combination of reasoning and trial-and-error aimed at achieving

convergence in the estimation algorithm.

The lower bounds for these parameters were chosen based solely on physiology. An added

benefit to imposing lower bounds of 0 on the parameters is the model is structurally identifi-

able except for Ai = 0. We did not find non-identifiability of Ai = 0 to be an issue in practice, as

this corresponds to a flat OGTT curve—none of which we observed.

Challenges due to non-linearity. The Ackerman model can be difficult to fit to OGTT data

due to the model’s inherent nonlinearity. Glucose concentrations and time measurements

were converted into mg/ml and hours, respectively. These units were chosen to scale the

parameters such that the optimal parameter estimates lie between 0 and 10 for most OGTT

curves. Rescaling has been shown to improve algorithms’ abilities to find optimal parameter

sets—especially when the parameters are of different orders of magnitude on the originally

scaled data [32].

Another issue that can arise when fitting the Ackerman model is an inability to converge to

the global minimum. Because the model is nonlinear, the least squares equation may have sev-

eral local minima. Optimization routines are not guaranteed to find the global minimum,

especially when initial points are chosen poorly [33].

Fitting algorithm. The Ackerman model was fit to individuals’ OGTT curves using the nls
function in the stats R package v4.2.1. The port algorithm for nonlinear regression was used in

the nls function. An initial value of 1 was chosen for all parameters. When the algorithm did

not converge to a satisfactory fit, the process was restarted with an initial value chosen from a

multivariate uniform distribution using the parameter bounds as the bounds of the distribu-

tion. This was repeated until a satisfactory fit was found, or 1,000 initial conditions were tried.

Satisfactory fits are defined under the subsection “A Taxonomy of Responses” in the Results

section.
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Functional principal components analysis

As nonlinear, parametric models pose model-fitting challenges, nonparametric methods were

also explored. Because the shape of the glucose curve is hypothesized to be related to resilience

of the glucose-insulin system to a glucose load, a method that captures this information was

desired. Functional principal components analysis was determined to be an appropriate

method. This method was also recommended by Varadhan et al. 2008 as an alternative to

parametric modeling for systems where a mathematical model of the dynamics is not available.

fPCA identifies eigenfunctions that explain the dominant modes of variation in functional

data around a mean curve. For OGTT data, fPCA can be used to identify dominant patterns in

plasma glucose response to an oral glucose load. Past research has employed fPCA on OGTT

data and found principal component (PC) scores better discriminate between pregnant

women who went on to develop gestational diabetes and those who did not when compared to

traditional OGTT summary measures [34]. Using fPCA to explore associations of OGTT

responses with gait speed and mortality is novel.

The first step of fPCA is fitting smoothing curves to individuals’ OGTT measurements.

This can be done in many ways, smoothing splines and kernel smoothing being among the

most popular [35, 36]. We used 6 cubic B-splines, with a roughness penalty of λ = 733 on the

second derivative of the smoothed curves. This value of λ was chosen using the generalized

cross-validation criterion described in section 5.4.3 of Ramsay et al. 2005. For smooth curves

x1(t), . . ., xn(t), the mean curve is calculated as

�xðtÞ ¼
1

n

Xn

i¼1

xiðtÞ: ð7Þ

Mean-centering each curve, principal component functions are calculated as

φ∗
j ðtÞ ¼ arg max

φjðtÞ

1

n

Xn

i¼1

�Z

t

�jðtÞ½xiðtÞ � �xðtÞ�
�2

dt ð8Þ

where ϕj(t) are orthonormal functions, i.e.
R

τϕj(t)2dt = 1,
R

τϕj(t)ϕk(t) = 0 for j 6¼ k, and

Pn
i¼1

�
R

t
�1ðtÞ½xiðtÞ � �xðtÞ�

�2

dt >
Pn

i¼1

�
R

t
�2ðtÞ½xiðtÞ � �xðtÞ�

�2

dt > :::

Functional principal component scores are calculated as

Zi;j ¼

Z

t

�
∗
j ðtÞ½xiðtÞ � �xðtÞ�dt: ð9Þ

Predicted curves using the first k eigenfunctions are calculated as

x̂iðtÞ ¼ �xðtÞ þ
Xk

j¼1

Zi;jðtÞ�
∗
j ðtÞ: ð10Þ

The end products of fPCA are a mean curve which is an average of all of the OGTT curves,

principal component functions which explain the maximal variation in OGTT curves about

the mean, and functional principal component scores which explain how an individual’s

OGTT curve varies about the mean. While fPCA may not provide deeper insights into the

mechanistic parameters, it has a few distinct advantages over a parametric modeling approach.

Firstly, fPCA is nonparametric so it does not assume a potentially incorrect model about the

data-generating distribution—a major cause of convergence issues in the parametric modeling

setting. Secondly, fPC scores are uncorrelated by design so there are no potential concerns of
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multicollinearity when using these scores in regression models. The R package fda v6.0.5 was

used to perform the functional principal components analysis.

Stage-two outcome models and auxiliary analyses

Stage-two models were used to explore whether the summaries produced by the stage-one

models are associated with the outcomes of interest, usual gait speed and risk of death. This

was done to test the hypothesis that our stage-one models are useful for summarizing OGTT

curves in a way that provides information about whether individuals are on adverse aging tra-

jectories. Linear regression models were used to examine the relationships between usual gait

speed and stage-one model summaries. Cox proportional hazards models were used to model

the risk of death as a function of stage-one model summaries. For the stage-two models, the

estimated Ackerman model parameters and fPC scores were standardized. The estimated Ack-

erman model parameters were standardized by subtracting the corresponding mean amongst

the adequate Ackerman model fits and then dividing by the standard deviation. The fPC scores

were standardized by only dividing by the standard deviation of the corresponding fPC score

amongst all fits since the fPC scores by formulation have mean 0. The estimated Ackerman

model parameters from inadequate fits in the stage-one models were not included in the stage-

two models. This was prevented by including an indicator variable, 1(Adequate Fit) which was

0 for inadequate fits and 1 for adequate fits. In the regression tables, 1(Adequate Fit) indicates

a separate intercept between adequate and inadequate fits, and T̂ eff � 1(Adequate Fit) indicates

the effect of a 1 hour increase in T̂ eff amongst the adequate fits.

Auxiliary models were used to explore how stage-one model summaries were related to per-

sonal characteristics. Logistic regression was used to model the odds that the Ackerman model

inadequately fit an individual’s OGTT curve based on personal characteristics. Linear regres-

sion was used to model the associations between estimated effective period and personal char-

acteristics, excluding individuals for whom the Ackerman model provided an inadequate fit.

Linear regressions were also used to model the associations between fPC scores and personal

characteristics.

Results

Ackerman model fits

A taxonomy of responses. The Ackerman model fitting procedure described in “Model

Fitting Procedure” of Methods produced Ackerman model fits for every OGTT curve except

one. Upon further inspection, the one OGTT curve that the fitting algorithm failed to model

showed highly atypical behavior. The glucose concentration of this individual decreased fol-

lowing the consumption of the glucose load rather than increasing as expected. This type of

behavior is difficult to explain biologically. The Ackerman model is not equipped to model

this phenomenon, and it is not of interest in this paper’s analyses. Thus, OGTT curves with

lower 20 minute glucose concentrations than baseline concentrations were excluded (n = 4).

This resulted in 1,120 individuals included in the subsequent analyses.

Although the fitting algorithm converged for almost every OGTT curve, not every fit

appeared to fit the data well. In general, three patterns of inadequate fits emerged: fits with esti-

mated parameters on the boundaries of the allowed parameter space, fits that poorly predicted

the peak glucose concentration, and fits with relatively low R2
pseudo. Adequate fits were defined

as Ackerman model fits which were not classified as inadequate fits. Classifying fits as adequate

or inadequate was done so that unreliable parameter estimates could be treated separately in

the stage-two models.
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Examples of predicted OGTT curves under the Ackerman model are shown in Fig 1. All of

these model fits were deemed to be adequate fits to the observed data. Panels A-D show Acker-

man models with increasing effective periods (1.9, 3.3, 4.9, and 8.4 hours, respectively).

Boundary fits. Fits with parameter estimates on the boundaries of the allowed parameter

space were termed “boundary fits”. Fig 2 panels A-D show example boundary fits. Panel A

shows a model fit where Âi ¼ 2 � Yið0Þ, panel B where k̂i ¼ 0, panel C where ŵi ¼ 2p, and

panel D where Âi ¼ 2 _Y ið0Þ and k̂i ¼ 0.

As shown by these plots, boundary fits typically do not appear to model the observed data

well. Boundary fits can occur for two reasons. First, there may exist an optimal Ackerman

model for a particular OGTT curve, but one or more of the parameters of this optimal model

lie outside of the allowed parameter space. In this case, the model-fitting algorithm returns fit-

ted parameter estimates that lie near the unrestricted maximum likelihood estimate (MLE),

but lie on the parameter space boundary. This appears to be the cause of boundary fits in

which k̂i and ôi are on the boundary of the parameter space.

When Âi is on the boundary of the parameter space, it appears to be caused by a nearly flat

likelihood near the MLE. For these fits, the OGTT curves can be equally, or nearly equally,

well-explained by multiple sets of Ackerman model parameters. Some authors call these “near

redundant” or “near singular” fits [37, 38]. These fits are caused by practical non-identifiabil-

ity. For these curves, the nonlinear model-fitting algorithm has difficulty finding an optimal fit

without imposing upper bounds on Âi. For example, the likelihood corresponding to the black

points in Fig 2 is nearly flat. Multiple sets of parameters are nearly equally capable of fitting

this curve. The OGTT curve in Fig 2 panel A can be fit nearly equally well by the Ackerman

model with vastly different Âi’s and ô0is: ranging from 10 to 200 mg/dL and 0.31 to 0.02 1/

hour, respectively. Even with this range of parameter estimates, these fits predict nearly indis-

tinguishable OGTT curves with nearly identical residual sum of squares (489, 486, and 486

Fig 1. Adequate Ackerman model fits. Estimated effective periods for the model fits by panel: A—1.9 hours, B—3.3 hours, C—4.9 hours, D—8.4

hours.

https://doi.org/10.1371/journal.pone.0302381.g001
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mg2/dl2, respectively). These fits can be obtained by changing the upper bound on Âi. Each of

these fits produced an Âi on the upper bound of the allowed parameter space. Since these fits

are nearly indistinguishable yet lead to different parameter estimates, they are deemed inade-

quate fits. In a sensitivity analysis, we created profile likelihood plots for each OGTT to exam-

ine for practical non-identifiability of the Ackerman model. We found several instances of

practical non-identifiability, as evidenced by flat profile likelihoods near profile maxima. How-

ever, these OGTT curves were found to be a subset of the inadequate fits we already identified,

so these Ackerman model fits were already excluded from the stage-two models.

While boundary fits could be avoided by not restricting the parameter space, this exchanges

one issue for many. For OGTT curves that correspond to an MLE in a biologically infeasible

region, the resulting model fits well but fails to provide a realistic model of reality. For example,

a k̂i of −0.03 1/hour fits the OGTT curve in Fig 2 panel A well. However, this model predicts

increasingly large oscillations in glucose concentration over time. For boundary fits where the

likelihood is nearly flat at the MLE, removing the parameter space restrictions severely limits

Fig 2. Inadequate Ackerman model fits. Reasons for inadequate fit classification by panel: A—Â on boundary of parameter space, B—k̂ on boundary

of parameter space, C—ô on boundary of parameter space, D—Â and k̂ on boundary of parameter space and small R2
pseudo, E—large underestimation in

max glucose concentration, F—small R2
pseudo.

https://doi.org/10.1371/journal.pone.0302381.g002
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the model-fitting algorithm’s ability to converge. As described in the previous paragraph,

increases in Âi can be counteracted by decreases in ô i to produce near-identical fits to some

OGTT curves. Because the residual sum of squares of these fits are nearly identical, it is gener-

ally not feasible to find the MLE without imposing upper bounds on the parameter space.

Extrapolated fits. Another pattern of inadequate fits is characterized by predicted peak glu-

cose concentration that differs significantly from observed peak glucose concentration. We

have termed this pattern of fits “extrapolated fits”, as the predicted peak glucose is often much

greater than any observed glucose concentration. The Ackerman model fit in Fig 2 panel C

shows an example of this type of fit. Mathematically, extrapolated fits are defined as fits where

the maximum predicted glucose concentration occurs during the test and

jYmax;pred � Ymax;obsj

Ymax;obs
� Dtol ð11Þ

where Ymax,pred and Ymax,obs are the predicted and observed maximum glucose concentrations

and Δtol is the allowed tolerance. The first condition, that the maximum predicted glucose con-

centration occurs during the test, prevents well-fitting but slow-peaking fits from being catego-

rized as extrapolated fits. The condition shown in 11 puts a restriction on the relative

difference between the predicted and observed maximum glucose concentration. Based on our

data, we set Δtol to be 10%. This cutoff in relative difference was decided upon by inspection of

Ymax,pred against Ymax,obs, shown in Fig 3, as well as visual inspection of OGTT curves with

Ackerman model fits near 10% relative difference in predicted and observed peak glucose con-

centrations. Fig 3 also shows several Ackerman model fits underpredict the peak glucose con-

centration. The fit in Fig 2 panel E shows an example of this. Fits with large underprediction of

the peak glucose concentration do not model the data well, so the absolute value signs in Eq 11

are necessary to ensure these fits are categorized as extrapolated fits.

It should be noted that an individual’s peak glucose during an OGTT likely occurs in the

time between two of the observed measurements. Thus, the observed peak glucose is almost

certainly lower than the true peak glucose. Care should be taken to ensure that a screening cri-

terion such as that presented in Eq 11 is not too stringent given that the true peak glucose is

not measured. For this study, we did not find this to be an issue as the Ackerman model typi-

cally underpredicted the peak glucose when the predicted and observed peaks varied by more

than 10% relative difference.

Low pseudo-R2. The last class of inadequate fits relates to fits with low R2
pseudo. Initially, we

explored categorizing model fits by their absolute residual sum of squares. However, some

model fits have high residual sum of squares while visually appearing to fit the data well. Fig 1

panel B shows an example where the Ackerman model appears to fit the OGTT curve well but

has a large residual sum of squares. Further investigation revealed several cases where large

residual sum of squares did not correspond to visually inadequate fits, and cases where the fit

was clearly inadequate but did not produce a large residual sum of squares. Classifying fits as

inadequate based on their pseudo-R2 appears to match better with visual inspection. The

pseudo-R2 measure used is from [39] and is given by

R2
pseudoi

¼ 1 �
DevianceiðYi; Ŷ Þ
DevianceiðY; �Y Þ

¼ 1 �

P
t2tðYi;t � Ŷ i;tÞ

2

P
t2tðYi;t �

�Y iÞ
2

ð12Þ

Larger R2
pseudo indicate the Ackerman model explains more variability in the data relative to

an intercept-only linear model. It is well-established that R2 can be problematic for model

selection of non-linear models [40]. However, in this research R2
pseudo is being used to classify
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some Ackerman model fits as inadequate—no alternate nonlinear model is used. Furthermore,

R2
pseudo is only one criterion that is used to evaluate whether the Ackerman model fit is inade-

quate or not.

The distribution of R2
pseudo for all Ackerman model fits and the non-boundary fits are shown

in S1 Fig. As expected, the non-boundary fits in general have larger R2
pseudo. Using S1 Fig as well

as visual inspection of selected Ackerman model fits, a cutoff of R2
pseudo ¼ 0:7 was established.

Fig 3. Predicted and observed maximum glucose concentrations. Black line corresponds to perfect prediction. Grey lines correspond to a 10%

relative difference. Blue triangles outside of the grey lines indicate fits for which the predicted maximum glucose concentration occurred later than

the end of the OGTT.

https://doi.org/10.1371/journal.pone.0302381.g003
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Fits with R2
pseudo less than 0.7 are classified as inadequate fits. Fig 2 panel F shows an example of

one such fit, with an R2
pseudo ¼ 0:4

Inadequate fit screening results. Applying the boundary fit, extrapolated fit, and pseudo-R2

criteria to the Ackerman model fits of the BLSA OGTT data resulted in 717 (64%) adequate

and 403 (36%) inadequate fits. Among all of the fits, 376 were boundary fits, 31 were extrapo-

lated fits, and 84 were low R2
pseudo fits.

Functional principal components analysis

Functional principal components analysis was applied to the same set of OGTT curves as the

Ackerman model-fitting algorithm. 90.5%, 6.9%, and 2.0% of the variance in the smoothed

OGTT curves was explained in the first, second, and third principal components, respectively.

In Frøslie et al.’s research, they found that the third principal component provided necessary

information about the shape of the OGTT curve [34]. Based on this, as well as the scree plot

corresponding to our fPCA, we also retained the first three principal components. The scree

plot, mean curve, and first three eigenfunctions are shown in Fig 4. The mean curve shows the

average fasting glucose in the study was approximately 97 mg/dL, with a peak glucose concen-

tration of about 161 mg/dL at 49 minutes, and a two-hour glucose concentration of 130 mg/

dL.

The eigenfunctions show the principal modes of variation about the mean curve. Based on

these eigenfunctions, large PC1 scores indicate reduced clearance of plasma glucose in the lat-

ter half of the OGTT relative to the average. Large PC2 scores correspond to earlier peak glu-

cose and increased clearance after 75 minutes. Large PC3 scores indicate higher glucose

concentrations at the start and end of the test, with reduced concentrations during the middle.

Dysregulated glucose-insulin systems are associated with impaired glucose clearance. OGTT

curves corresponding to high PC1 and low PC2 scores are likely indicative of dysregulation,

and low PC1 with high PC2 scores may be indicative of above-average glucose-insulin system

functioning. The third eigenfunction appears to follow the biphasic OGTT curve pattern that

has been described in diabetes literature [23, 24]. Biphasic OGTT curves are thought to indi-

cate healthy glucose regulation, and have been found to be associated with reduced risk of inci-

dent type 2 diabetes [25]. Thus, individuals with high PC3 scores may have above-average

glucose-insulin system functioning. However, the third eigenfunction is also characterized by

elevated predicted basal glucose. OGTT curves with high PC3 scores may be connected to

impaired fasting glucose with normal glucose tolerance.

Unlike with the Ackerman model, we did not intentionally identify poor-fitting predicted

OGTT curves fit using fPCA. First, the eigenfunctions do not have a direct biological interpre-

tation like the Ackerman model parameters do. While certain combinations of PC scores

could lead to predicted OGTT curves which are not biologically plausible, this cannot be deter-

mined by examining only one PC score in isolation. Second, each PC score is influenced by all

of the other curves in the data set. The Ackerman model is fit independently to each individu-

al’s OGTT curve so isolating inadequate fits does not impact other fits.

Stage-one models

The Ackerman model-fitting algorithm and fPCA both summarize the information of the

OGTT curve into a few metrics. Fig 5 shows the relationships between the estimated Acker-

man model parameters and the fPC scores for the subset of OGTT curves that the Ackerman

model adequately fit. Note there is a nonzero correlation between the fPC scores on this subset

of the OGTT curves because there is a relationship between the fPC scores and the ability of
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the Ackerman model to appropriately model the data. A logistic regression model of the odds

of the Ackerman model fitting inadequately was constructed. The second and third PCs were

found to strongly impact the odds of the Ackerman model fitting inadequately, with 1 stan-

dard deviation increases in PC1 and PC2 corresponding to odds ratios of 0.40 (95% CI:0.35—

0.46, P< 0.001) and 2.01 (95% CI:1.62—2.51, P< 0.001), respectively. The effect of PC1 was

more muted, with an odds ratio of 1.03 95% CI:(1.00, 1.06). Simply put, the Ackerman model

was most capable of fitting OGTT curves which displayed a single, strong peak followed by a

Fig 4. Functional PCA plots. Panel A—Proportion variance explained by principal component. Panels B-D—Eigenfunctions’ deviations about the

mean curve. The dashed red line shows a predicted OGTT curve for a 1 standard deviation increase in the respective fPC score with all other scores held

at 0. The dotted blue line shows the same but for a 1 standard deviation decrease in the respective fPC score.

https://doi.org/10.1371/journal.pone.0302381.g004
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rapid drop in glucose levels. The Ackerman model struggled to fit OGTT curves with multiple

peaks and curves which displayed slow declines in glucose levels after a peak was reached. A

sensitivity analysis controlling for personal characteristics had little effect on the PCs’ odds

ratio estimates.

For the stage-two models, two Ackerman model parameters, ŷF and Â, were logged to

make their distributions more symmetric. Note the large positive correlations between PC1

and logðŶ FÞ, PC1 and logðÂÞ, PC1 and T̂ eff , and PC3 and k̂ shown in 5. There are also large

Fig 5. Ackerman parameters and fPC scores scatterplot matrix. Scatterplots and correlations between estimated Ackerman model parameters and

fPC scores for OGTT curves which the Ackerman model adequately fit.

https://doi.org/10.1371/journal.pone.0302381.g005
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negative correlations between logðÂÞ and ô, T̂ eff and ô, and PC1 and ô. These relationships

reveal that PC1 is most closely related to the estimated Ackerman model parameters. The

directions of these correlations are a result of the first eigenfunction’s heightened glucose con-

centration, particularly at later time points, with increased yF, A, and Teff indicating elevated

glucose concentration and increased k and ω indicating lowered glucose concentration at later

time points. Interestingly, PC2 is not strongly correlated with any of the estimated Ackerman

model parameters, although there is a weak negative correlation with T̂ eff . This is to be

expected as the second eigenfunction is characterized by heightened glucose concentration fol-

lowed by reduced glucose concentration, and OGTT curves with smaller effective periods

exhibit similar behavior. The relationship between PC3 and k̂ is surprising because the third

eigenfunction takes on a bimodal form that the Ackerman model cannot capture. S2 Fig

includes data from all of the OGTT curves. Many of the relationships between the estimated

Ackerman model parameters and each other or with the PCs are obscured by the presence of

large outliers in k̂, ô, and T̂ eff . Additionally, the distributions of Â, k̂, and ô among the inade-

quately-fitting Ackerman models are bimodal due to congregations at the parameter bound-

aries. These distributions highlight the issues with the parameter estimates of boundary fits.

Fig 6 shows four OGTT curves, each with predicted Ackerman model and fPCA curves.

For the OGTT curve in panel A of Fig 6, the Ackerman model provides an adequate fit; in

panel B, a boundary fit with a small R2
pseudo; in panel C, a boundary fit with a large R2

pseudo; in

panel D, an extrapolated fit. For curves in which the Ackerman model fit has low R2
pseudo, the

fPCA predictions are similar to the Ackerman model, albeit with greater curvature. The greater

curvature flexibility of the fPCA fits allows the predicted maximum glucose concentration to

better track the observed maximal glucose for typical OGTT curves. For abnormal OGTT

curves like those in panels B and D, the predicted curves from the Ackerman model and fPCA

differ markedly with neither fitting the data well. The OGTT curve in panel B shows 20 mg/dl

oscillations in glucose concentration every 20 minutes, with even larger changes between 0 to

20 minutes and 100 to 120 minutes. The OGTT curve in panel D shows a glucose concentra-

tion at 20 minutes that is much greater than at any other time point. These curves display atyp-

ical glucose dynamics, so it is unsurprising that neither method is able to accurately model

them.

In general, the Ackerman model more closely fits the observed OGTT data than the fPCA

predictions. The average residual sum of squares for the Ackerman fits is 434 mg2/dl2 for the

complete data set and 295 mg2/dl2 excluding the inadequate fits. The corresponding values for

the fPCA predicted curves are 533 mg2/dl2 and 497 mg2/dl2. Better-fitting fPCA curves could

be obtained by retaining more principal components in the predictions, using a smaller tuning

parameter, or including more basis functions when smoothing the OGTT curves. However,

the trade-offs with these include reduced interpretability and overfitting.

S3 Fig shows the residuals from the predicted OGTT curves based on the Ackerman model

and fPCA fits. In general, the residuals are centered near 0 at each time point, so it does not

appear that either method consistently overestimates or underestimates the glucose concentra-

tion over time. The Ackerman model appears to outperform fPCA at 0 and 120 minutes in

particular.

Outcome models and auxiliary analyses

Table 1 shows the relationship between demographic variables and the odds that the Acker-

man model inadequately fits an individual’s OGTT curve. The odds the Ackerman model pro-

vides an inadequate fit are 16% (95% CI: 2%—31%, P = 0.020) higher for a 10 year increase in
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age, and 26% (95% CI: 1%—46%, P = 0.046) lower for White individuals than Black

individuals.

Table 2 shows the relationship between estimated effective period and demographic vari-

ables for individuals whose OGTT curves were able to be adequately fit by the Ackerman

model. Larger effective periods are associated with older age, 0.37 hours per 10 year age

Fig 6. Predicted OGTT curves from Ackerman and fPCA fits against observed data. Observed data are shown as black points, the Ackerman model

fit as a solid red line, and the fPCA fit as a blue dashed line. Panel A—Adequate Ackerman model fit. Predicted Ackerman and fPCA fit largely agree.

Panel B—Abnormal OGTT curve which neither the Ackerman nor fPCA fit model closely. Panel C—Boundary Ackerman model fit (k̂ ¼ 0). Ackerman

and fPCA fit model the observed data closely. Panel D—Extrapolated max Ackerman model fit. The Ackerman fit models the observed data more

closely, but the fPCA fit appears more reasonable.

https://doi.org/10.1371/journal.pone.0302381.g006
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increase, (95% CI: 0.26—0.49, P< 0.001); higher BMI, 0.42 hours per 5 unit increase, (95% CI:

0.29—0.56, P< 0.001); and male sex, 0.34 hours greater on average for males than females,

(95% CI: 0.10—0.57, P = 0.005). These results are in accordance with the hypothesis that longer

effective period is associated with poorer glucose regulation, as these demographic variables

are known to be associated with poorer glucose regulation.

The associations between the functional principal components and demographic variables

are shown in Table 3. PC1 scores are most strongly associated with the demographic variables.

PC1 scores are positively correlated with age and BMI, and are higher on average for White

individuals than Black individuals. PC2 is negatively correlated with age, is higher in White

Table 1. Logistic regression of ackerman model inadequate fit on demographic variables. Reference group: female

sex, Black race, never-smoker.

Variable Log Odds Ratio 95% CI P-value

Age (10 year change) 0.15 (0.02, 0.27) 0.020*
BMI (5 unit change) −0.03 (−0.17, 0.11) 0.687

Sex—Male −0.24 (−0.50, 0.01) 0.056

Race—White −0.31 (−0.61, −0.01) 0.046*
Smoking History—Ever Smoker *0 (−0.26, 0.25) 0.969

https://doi.org/10.1371/journal.pone.0302381.t001

Table 2. Linear regression of estimated effective period on demographic variables. Adequate fits only. Effective

period measured in hours. Reference group: female sex, Black race, never-smoker.

Variable Coefficient 95% CI P-value

Age (10 year change) 0.37 (0.26, 0.49) <0.001*
BMI (5 unit change) 0.42 (0.29, 0.56) <0.001*
Sex—Male 0.34 (0.10, 0.57) 0.005*
Race—White −0.01 (−0.30, 0.28) 0.955

Smoking History—Ever Smoker −0.01 (−0.25, 0.22) 0.908

https://doi.org/10.1371/journal.pone.0302381.t002

Table 3. Linear regressions of standardized principal components on demographic variables. Reference group: female sex, Black race, never-smoker.

Variable Outcome Coefficient 95% CI P-value

Age (10 year change) PC1 0.12 (0.06, 0.17) <0.001*
PC2 −0.17 (−0.22, −0.11) <0.001*
PC3 0.03 (−0.03, 0.09) 0.372

BMI (5 unit change) PC1 0.31 (0.25, 0.37) 0.001*
PC2 *0 (−0.07, 0.06) 0.948

PC3 0.03 (−0.04, 0.10) 0.349

Sex—Male PC1 0.23 (0.11, 0.34) <0.001*
PC2 0.10 (−0.01, 0.22) 0.080

PC3 −0.12 (−0.24, 0.00) 0.043*
Race—White PC1 0.14 (0.00, 0.28) 0.049*

PC2 0.41 (0.27, 0.55) <0.001*
PC3 −0.07 (−0.22, 0.07) 0.335

Smoking History—Ever-Smoker PC1 0.07 (−0.04, 0.18) 0.263

PC2 0.13 (0.02, 0.25) 0.027*
PC3 0.09 (−0.03, 0.21) 0.141

https://doi.org/10.1371/journal.pone.0302381.t003
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individuals than Black individuals, and is higher in ever-smokers than never-smokers. PC3 is

lower in males than females. These results show that PC1 is associated with demographic vari-

ables that are associated with poorer glucose regulation, and PC2 is associated with demo-

graphic variables associated with improved glucose regulation. These results match with the

eigenfunctions shown in Fig 4 which indicate PC1 is associated with elevated glucose concen-

tration late into the OGTT, and PC2 is associated with elevated early and reduced late glucose

concentrations.

A motivating drive of this research is to test the hypothesis of whether modeling physiologi-

cal systems provides insights into aging-related outcomes. The chosen outcomes are usual gait

speed—one component of Fried’s frailty phenotype—and mortality. The purpose of the stage-

two models is to test this hypothesis, using OGTT metrics to quantify the functioning of the

glucose-insulin system. All of the stage-two models were adjusted for the demographic vari-

ables to isolate the contributions of the OGTT metrics. A cubic B-spline with knots at 65, 75,

and 85 years was used for age in the gait speed models. For the survival models, increases in

age corresponded linearly to increases in the hazard ratio, so a linear age term was used instead

of a B-spline.

The Ackerman model has four parameters, yF, A, k, and ω, two of which combine to form

Teff. Rather than using all five quantities as covariates in the stage-two models, the correlations

between these parameters were used to select two subsets to avoid issues with multicollinearity.

The first subset includes Ŷ F , k̂, and ô; the second includes Ŷ F , k̂, and T̂ eff . For all of the stage-

two models with estimated Ackerman model parameters as covariates, a constant term was

included to allow for differences in average gait speed between individuals whose Ackerman

fit was inadequate or adequate. Additionally, only the estimated Ackerman model parameters

from good fits were used in estimating the coefficients for these parameters. This was done by

multiplying each estimated Ackerman model parameter term by 1(Adequate Fit). This indica-

tor term is 0 for inadequate fits and 1 for adequate fits. This process is equivalent to replacing

the estimated Ackerman model parameters for individuals with inadequate fits with the esti-

mated Ackerman model parameter of the adequate fits.

Regression of usual gait speed onto the first set of estimated Ackerman model parameters,

Ŷ F , k̂, and ô, and the demographic variables was termed Model 1 and the results are included

in Table 4.

Because Ackerman et al. emphasized the importance of T̂ eff , the model which includes

logðŶ FÞ, k̂, and T̂ eff was expanded into three models: one with only T̂ eff , one with T̂ eff and

logðŶ FÞ, and one including T̂ eff , logðŶ FÞ, and k̂. These are labeled Models 2–4 and the results

for the coefficient for T̂ eff � 1(Adequate Fit) are shown in Table 5.

Models 1–4 indicate that none of the estimated Ackerman model parameters are statisti-

cally significant predictors of usual gait speed. 1ðinadequate fitÞ in Model 1 and T̂ eff in Models

2–4 were the estimated Ackerman parameters most strongly associated with usual gait speed,

Table 4. Linear regression of usual gait speed (m/s) on standardized estimated ackerman model parameters,

model 1. Adjusted for age, BMI, sex, race, and smoking history.

Variable Coefficient 95% CI P-value

1(Inadequate Fit) −0.02 (−0.05, 0.00) 0.081

logðŶ FÞ � 1(Adequate Fit) 3.2 � 10−3 (−0.01, 0.02) 0.701

k̂ � 1(Adequate Fit) 4.5 � 10−3 (−0.01, 0.02) 0.568

ô � 1(Adequate Fit) 7.7 � 10−3 (−0.01, 0.02) 0.337

https://doi.org/10.1371/journal.pone.0302381.t004
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both having a negative association with usual gait speed. However, these results indicate the

Ackerman model does not appear to be useful for connecting OGTT curves to gait speed.

A linear regression of usual gait speed on the principal component scores and demographic

variables was also performed, and the results are shown in Table 6. PC2 was the only principal

component score significantly associated with usual gait speed after adjusting for demographic

variables. PC2 was found to be positively associated with usual gait speed.

A Cox proportional hazards model including the demographic variables, 1(Adequate Fit),

and T̂ eff � 1(Adequate Fit) was constructed to assess whether the Ackerman model is useful for

relating OGTT curves to risk of death. The model results are shown in Table 7. Neither Acker-

man model term was a significant predictor of mortality.

Lastly, a Cox proportional hazards model including the demographic variables and the

principal component scores was fitted. The model results are included in Table 8. PC2 was sig-

nificantly associated with a reduction in the hazard of death, with a one standard deviation

Table 5. Linear regression of usual gait speed on standardized estimated ackerman model parameters, models

2–4. Usual gait speed measured in m/s. Adjusted for age, BMI, sex, race, and smoking history.

Model, Variable Coefficient 95% CI P-value

Model 2: No additional adjustment

T̂ eff � 1(Adequate Fit)

−0.01 (−0.03, 0.00) 0.093

Model 3: Adjusted for: logðŶ FÞ � 1(Adequate Fit)

T̂ eff � 1(Adequate Fit)

−0.01 (−0.03, 0.00) 0.077

Model 4: Adjusted for: logðŶ FÞ � 1(Adequate Fit), k̂ � 1(Adequate Fit)

T̂ eff � 1(Adequate Fit)

−0.01 (−0.03, 0.00) 0.107

https://doi.org/10.1371/journal.pone.0302381.t005

Table 6. Linear regression of usual gait speed on standardized functional principal component scores. Usual gait

speed measured in m/s. Adjusted for age, BMI, sex, race, and smoking history.

Variable Coefficient 95% CI P-value

PC1 −6.1 � 10−3 (−0.02, 0.01) 0.348

PC2 18.1 � 10−3 (0.01, 0.03) 0.004*
PC3 −6.7 � 10−3 (−0.02, 0.01) 0.275

https://doi.org/10.1371/journal.pone.0302381.t006

Table 7. Cox proportional hazards model of death, standardized estimated ackerman parameters. Adjusted for

age, BMI, sex, race, and smoking history.

Variable Hazard Ratio 95% CI P-value

1(inadequate fit) 1.25 (0.90, 1.73) 0.179

T̂ eff �1(Adequate Fit) 1.07 (0.89, 1.31) 0.467

https://doi.org/10.1371/journal.pone.0302381.t007

Table 8. Cox proportional hazards model of death, standardized functional principal components. Adjusted for

age, BMI, sex, race, and smoking history.

Variable Hazard Ratio 95% CI P-value

PC1 0.99 (0.84, 1.17) 0.950

PC2 0.80 (0.67, 0.94) 0.007*
PC3 1.06 (0.91, 1.24) 0.460

https://doi.org/10.1371/journal.pone.0302381.t008
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increase in PC2 score corresponding to a 20% decrease in the expected hazard, holding all else

constant.

Discussion

We encountered challenges fitting a nonlinear model of glucose-insulin dynamics in a cohort

of heterogeneous older adults. We identified specific patterns of OGTT curves that the Acker-

man model could not adequately fit. These patterns include OGTT curves which are best fit by

Ackerman model parameters corresponding to physiologically implausible glucose-insulin

dynamics, instances where the likelihood of the Ackerman model is nearly flat, and cases for

which the Ackerman model provides poor predictions. Using these patterns, we developed

recommendations for classifying dynamical systems model fits as inadequate. For the Acker-

man model, these recommendations are to classify as inadequate: model fits with estimated

parameters on the boundary of the parameter space, model fits with relatively large differences

in the observed and estimated maximum glucose concentrations, and model fits which do not

substantially fit the data better than an intercept-only model. Using these criteria, we found

the Ackerman model inadequately fits 36% of the observed OGTT curves. Vargas et al. 2022,

an arXiv preprint, also developed criteria for identifying inadequate Ackerman model fits.

Their study population consisted of 1,911 patients at Mexico General Hospital, ranging from

18 to 80 years old. They employed a Bayesian modeling approach to estimate Ackerman

model parameters for each participant. Their model fit inadequately for 32% of the patients’

OGTT curves [41]. The similarity in the inadequate fit rates between their study and ours is

striking given the differences in the model-fitting algorithms, classification criteria, and study

populations. This similarity suggests that our inability to find adequate Ackerman model fits

for some OGTT curves is not due to deficiencies in our model-fitting algorithm. While one

could suspect OGTT measurement issues as a reason for some of the inadequate fits, it is

highly unlikely that a similar extent of issues would be present in two independent studies.

Thus, we do not believe that the relatively high percent of inadequate fits is a result of issues

with the BLSA’s OGTT data in particular.

We also fit the OGTT data using fPCA. The first three eigenfunctions explained over 99%

of the variability in the set of smoothed OGTT curves. This indicates that the variability

between the predicted OGTT curves using fPCA and the observed OGTT curves is primarily

due to the data smoothing process—not due to dropping higher order eigenfunctions. The

first eigenfunction appeared to be associated with elevated glucose concentration throughout

the OGTT. The second eigenfunction appeared to be associated with elevated glucose concen-

tration near the start of the test and diminished glucose concentration near the end. The third

eigenfunction was associated with a bimodal-shaped OGTT curve.

We did not find that the Ackerman model summaries of OGTT curves were significantly

associated with usual gait speed or hazard of death when controlling for demographic vari-

ables. Other studies have provided evidence that OGTT curves provide information relevant

to survival probability [11, 13–16]. Others have shown that there is a relationship between

individuals with high fasting glucose levels and slowed gait speed and lower extremity function

[42–44]. There is reason to believe the same for gait speed; the lack of association in these anal-

yses with the estimated Ackerman model parameters may be due to the inability of the Acker-

man model to capture the relevant information contained in the OGTT curves. This could be

a result of the Ackerman model oversimplifying the underlying physiology, especially for late-

middle and older adults.

The Ackerman model is a simplified representation of the glucose-insulin system. Two of

the most impactful assumptions are that insulin and other hormones are treated identically
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and the that rate of change in absorption of the glucose load from the intestines can be mod-

eled as a Dirac δ function at time 0 [21]. The former simplification assumes that all pertinent

regulatory hormones, such as insulin, glucagon, GLP-1, and amylin, can be modeled as one in

their effect on glucose concentration. Because these hormones are also time-varying and are

not perfectly synchronized, this simplification means the Ackerman model cannot model

changes in glucose concentration due to changes in the concentrations of these hormones rela-

tive to each other in time. A more accurate model would individually model these hormones,

or allow for time-varying parameters due to differences in secretion rates. However, both of

these approaches would further complicate parameter estimation.

The assumption that the rate of change in absorption of the glucose load from the intestines

can be modeled as a Dirac δ function at time 0 means the Ackerman model cannot properly

model heterogeneity in glucose absorption. Because the intestinal absorption function affects

the entire duration of the modeled OGTT curve, many of the OGTT curves the Ackerman

model failed to adequately fit may have been due to issues with this assumption. Carbohydrate

absorption rate is affected by sex and height [45]. Gastric emptying has been shown to be one

of the main sources of variability in OGTT curves repeated on the same individuals, and gas-

tric emptying varies between individuals with normal and impaired glucose-insulin systems

[46]. Differences in gastric emptying rates have been estimated to account for approximately

34% of the variability in peak glucose concentration among individuals without diabetes [47].

Dumping syndrome, where food moves rapidly from the stomach to the small intestine, often

induces an exaggerated insulin response and hypoglycemia during an OGTT [48]. Some mod-

els of blood glucose concentration during an OGTT, such as the oral minimal model, propose

explicitly modeling the intestinal absorption term [19]. Of course, this comes with the disad-

vantage of needing to estimate additional parameters—requiring additional OGTT

timepoints.

The simplifications the Ackerman model assumes can result in model fits that inadequately

model observed OGTT curves. In some cases, the best-fitting Ackerman model may severely

overestimate or underestimate the peak glucose concentration, as with extrapolated fits. In

cases where the underlying dynamics are vastly different than what the Ackerman model pre-

dicts, the Ackerman model fit produces a low R2
pseudo. Other times, the best-fitting Ackerman

model lies in the restricted parameter space, producing a boundary fit. In all of these cases, the

estimated Ackerman model parameters cannot be used in the stage-two analyses as the esti-

mates are unreliable. This reduction in sample size hinders our ability to detect associations

between estimated Ackerman model parameters and gait speed or mortality. Even worse, the

missingness induced by excluding the estimated Ackerman model parameters for inadequate

fits is highly related to the shape of the OGTT curve and the associated individual’s demo-

graphic variables. By the construction of the boundary fit criterion, individuals with low k and

ω, and consequently large Teff, parameters are more likely to be excluded from the stage-two

analyses than individuals with more average parameters. Excluding this subgroup of individu-

als also decreases power by reducing the variance in the estimated Ackerman model parame-

ters used in the stage-two analyses. However, the relationship between the ability of the model-

fitting algorithm to find an adequate Ackerman model fit and these outcomes are not straight-

forward, as the inadequate fit intercept term was not significant in any model. This indicates

that the individuals with OGTT curves that could not be adequately fit by the Ackerman

model are a heterogeneous group and are not uniformly slower or more at risk of death.

In addition to the inadequate fits in which the Ackerman model fails to provide a biologi-

cally plausible fit or cannot reasonably model the observed data, the Ackerman model can also

be too flexible for the observed OGTT curves. Relatively large changes in small ô i values can
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be counteracted by large changes in Âi values to produce nearly identical model fits. This phe-

nomenon can also occur for other parameter combinations and does not necessarily result in a

boundary fit classification. Because these fits produce nearly identical OGTT curve predic-

tions, there is large uncertainty in the estimated Ackerman model parameters that should be

propagated to the stage-two model. The relatively large number of parameters that must be

estimated for the Ackerman model (four) compared to the number of observed data points for

each OGTT curve (seven), is a major contributor to these estimation issues. Alternative

parametric models, such as the oral minimal model, contain even more parameters that must

be estimated. Many of these parametric models were created with the assumption that blood

glucose concentrations would be sampled more frequently throughout the course of the

OGTT. The original study proposing the oral minimal model, for example, included 21 time-

point samples during the OGTT [19]. The seven measurements captured in the BLSA’s OGTT

protocol are insufficient to fit these parametric models. Seven measurements are already more

than many studies collect, and in practice, only two or three timepoints are often collected.

Based on these realities, and the difficulties experienced even with seven time points, the Ack-

erman model may not be practical for fitting OGTT curves in a clinical setting to make assess-

ments of aging trajectories.

For this research, fPC score estimates were used from all OGTT curves in the stage-two

models. A sensitivity analysis was conducted by fitting the stage-two models using only the

fPC scores corresponding to the OGTT curves which the Ackerman model fit adequately.

These models did not show any significant deviations from the models fit using all OGTT

curves. It appears that fPCA is not as sensitive to outlier OGTT curves as the Ackerman model

is.

The fPCA results show, as expected, that the OGTT curves do contain information relevant

to gait speed and survival, independently from demographic variables. Individuals with greater

PC2 scores showed increased gait speed and survival on average than counterparts with lower

PC2 scores. These associations indicate that individuals who exhibit earlier peak glucose con-

centration and diminished glucose concentration after 80 minutes compared to the average

have greater gait speed and survival on average after adjusting for demographic variables.

Higher PC2 scores indicate a glucose-insulin system that is more capable of responding to and

recovering from a glucose stimulus. Although PC1 explains more variance in the OGTT curves

about the mean curve than PC2, individuals’ PC1 scores were not associated with gait speed

nor survival. While this may seem counterintuitive, similar results have been found in prior

research. Frøslie et al. found that only PC2 scores differed between women with and without

gestational diabetes [34]. Ramsay et al. 2005 noted that functional principal component curves

in general follow sinusoidal patterns, and that higher-order components tend to have higher

frequency component curves [35].

One of the primary aims of this research was to develop a robust process for fitting a range

of OGTT curves that could be encountered in practice. We set the age range for our study to

include late middle aged adults (50–64 year olds) rather than strictly older adults (aged 65

years or more) to include more OGTT curves that could potentially challenge our fitting pro-

cess, as well as to increase our sample size. Because we included late middle aged adults and

BLSA participants are relatively healthy compared to similar-age individuals from the US pop-

ulation, we did not use incident frailty in our regression analyses. Instead, usual gait speed and

mortality were selected.

This paper has several strengths. It was the first to explore associations between a paramet-

ric model of blood glucose concentration during an OGTT, gait speed, and mortality in a pop-

ulation of adults. The BLSA’s OGTT data is rich, containing seven time points per OGTT.
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This paper provides a case study of the challenges of fitting a nonlinear model to real-world,

discretely-sampled data. Two rounds of models were fit: stage-one models, including the

parametric Ackerman model and nonparametric fPCA, were fit to OGTT curves; stage-two

models, including linear regression and Cox proportional hazards, modeled aging-related out-

comes using the estimates produced in stage-one models. The aging outcomes, usual gait

speed and mortality, were only significantly associated with the fPCA summaries of the OGTT

curves. Parametric models appear to poorly model OGTT curves when the blood glucose con-

centration is not frequently sampled. fPCA appears to capture information from OGTT curves

relevant to aging outcomes.

This paper also has some weaknesses. The Ackerman model-fitting algorithm was only able

to adequately fit 64% of the observed OGTT curves. The upper bounds imposed on the Acker-

man model parameters were selected to ensure model convergence and with the understand-

ing that extreme parameter values correspond to unrealistic biological phenomena, but the

exact chosen bounds are not well supported. fPCA was performed on the entire set of OGTT

curves, so data abnormalities or outlier curves may impact the calculated fPC scores. The

uncertainty around the parameter estimates in the stage-one models was not carried through

to the stage-two models; this was not deemed to be a concern as the Ackerman model parame-

ters were not statistically significantly associated with the outcomes in the stage-two models.

For researchers using a similar methodology, this uncertainty would need to be propagated to

properly assess the standard errors of the parameter estimates in the stage-two models.

In future work, we plan to compare the use of Ackerman model parameter estimates and

fPC scores to commonly-used clinical OGTT measures such as FPG, 2hPG, and HbA1C, and

to OGTT composite measures commonly used in research such as area-under-the-curve

(AUC) and Matsuda index for predicting aging outcomes. Our hypothesis is that fPC scores

will prove to be most strongly correlated with frailty and survival as they capture information

about both the magnitude of glucose exposure and the shape of the glucose curve, whereas

commonly-used composite measures focus on the former and shape-based summaries on the

latter. Expanding on our methodology, we plan to more accurately fit the Ackerman model

parameters by modeling the insulin response solution to the Ackerman model differential

equations using OGTT insulin data. Additionally, we plan to assess whether alternative OGTT

designs can provide better estimates of the Ackerman model. In particular, we suspect a longer

test which includes a blood draw at three hours post-load would aid in assessing individuals

with slow recoveries. Lastly, we plan to obtain additional BLSA data to assess whether these

OGTT curve metrics are predictive of frailty incidence.

Supporting information

S1 Fig. Histograms of R2
pseudo of Ackerman model fits. Red vertical line indicates

R2
pseudo ¼ 0:7. Panel A—Ackerman model fits from all OGTT curves. Panel B—Ackerman

model fits excluding boundary fits.

(TIF)

S2 Fig. Scatterplot matrix of estimated Ackerman model parameters and fPC scores

including all OGTT curves.

(TIF)

S3 Fig. Residuals boxplots from Ackerman model and fPCA fits for all OGTT curves. Out-

liers above 20 mg/dl and below −20 mg/dl were excluded from the plot but were included in

constructing the boxes.

(TIF)

PLOS ONE Oral glucose tolerance test response and aging outcomes

PLOS ONE | https://doi.org/10.1371/journal.pone.0302381 May 16, 2024 24 / 27

http://www.plosone.org/article/fetchSingleRepresentation.action?uri=info:doi/10.1371/journal.pone.0302381.s001
http://www.plosone.org/article/fetchSingleRepresentation.action?uri=info:doi/10.1371/journal.pone.0302381.s002
http://www.plosone.org/article/fetchSingleRepresentation.action?uri=info:doi/10.1371/journal.pone.0302381.s003
https://doi.org/10.1371/journal.pone.0302381


Acknowledgments

We thank the National Institutes of Health and BLSA participants for providing the data used

in this study.

Author Contributions

Conceptualization: Grant Schumock, Karen Bandeen-Roche, Rita R. Kalyani, Ravi Varadhan.

Data curation: Chee W. Chia, Luigi Ferrucci.

Formal analysis: Grant Schumock, Karen Bandeen-Roche, Ravi Varadhan.

Funding acquisition: Karen Bandeen-Roche, Chee W. Chia, Luigi Ferrucci, Ravi Varadhan.

Methodology: Grant Schumock, Karen Bandeen-Roche, Ravi Varadhan.

Project administration: Grant Schumock, Karen Bandeen-Roche, Ravi Varadhan.

Software: Grant Schumock, Ravi Varadhan.

Supervision: Karen Bandeen-Roche, Ravi Varadhan.

Validation: Grant Schumock, Karen Bandeen-Roche, Chee W. Chia, Rita R. Kalyani, Luigi

Ferrucci, Ravi Varadhan.

Visualization: Grant Schumock.

Writing – original draft: Grant Schumock, Karen Bandeen-Roche, Ravi Varadhan.

Writing – review & editing: Grant Schumock, Karen Bandeen-Roche, Chee W. Chia, Rita R.

Kalyani, Luigi Ferrucci, Ravi Varadhan.

References
1. Lipsitz LA. Dynamics of stability: the physiologic basis of functional health and frailty. The Journals of

Gerontology Series A: Biological Sciences and Medical Sciences. 2002; 57(3):B115–25. https://doi.org/

10.1093/gerona/57.3.B115 PMID: 11867648

2. Lipsitz LA. Physiological complexity, aging, and the path to frailty. Science of Aging Knowledge Environ-

ment. 2004; 2004(16):pe16–6. https://doi.org/10.1126/sageke.2004.16.pe16 PMID: 15103055

3. Fried LP, Tangen CM, Walston J, Newman AB, Hirsch C, Gottdiener J, et al. Frailty in older adults: evi-

dence for a phenotype. The Journals of Gerontology Series A: Biological Sciences and Medical Sci-

ences. 2001; 56(3):M146–57. https://doi.org/10.1093/gerona/56.3.M146 PMID: 11253156

4. Fried LP, Hadley EC, Walston JD, Newman AB, Guralnik JM, Studenski S, et al. From bedside to

bench: research agenda for frailty. Science of Aging Knowledge Environment. 2005; 2005(31):pe24–4.

https://doi.org/10.1126/sageke.2005.31.pe24 PMID: 16079413

5. Varadhan R, Seplaki C, Xue Q, Bandeen-Roche K, Fried L. Stimulus-response paradigm for character-

izing the loss of resilience in homeostatic regulation associated with frailty. Mechanisms of ageing and

development. 2008; 129(11):666–70. https://doi.org/10.1016/j.mad.2008.09.013 PMID: 18938195

6. Fried LP, Cohen AA, Xue QL, Walston J, Bandeen-Roche K, Varadhan R. The physical frailty syndrome

as a transition from homeostatic symphony to cacophony. Nature aging. 2021; 1(1):36–46. https://doi.

org/10.1038/s43587-020-00017-z PMID: 34476409

7. Kalyani RR, Varadhan R, Weiss CO, Fried LP, Cappola AR. Frailty status and altered glucose-insulin

dynamics. Journals of Gerontology: Series A: Biomedical Sciences and Medical Sciences. 2012; 67

(12):1300–6. https://doi.org/10.1093/gerona/glr141 PMID: 21873592

8. Le NP, Varadhan R, Fried LP, Cappola AR. Cortisol and dehydroepiandrosterone response to adreno-

corticotropic hormone and frailty in older women. The Journals of Gerontology: Series A. 2021; 76

(5):901–5. https://doi.org/10.1093/gerona/glaa134 PMID: 32502234

9. Varadhan R, Russ D, Gabr R, Huang J, Kalyani R, Xue QL, et al. Relationship of physical frailty to phos-

phocreatine recovery in muscle after mild exercise stress in the oldest-old women. The Journal of frailty

& aging. 2019; 8(4):162–8. PMID: 31637400

PLOS ONE Oral glucose tolerance test response and aging outcomes

PLOS ONE | https://doi.org/10.1371/journal.pone.0302381 May 16, 2024 25 / 27

https://doi.org/10.1093/gerona/57.3.B115
https://doi.org/10.1093/gerona/57.3.B115
http://www.ncbi.nlm.nih.gov/pubmed/11867648
https://doi.org/10.1126/sageke.2004.16.pe16
http://www.ncbi.nlm.nih.gov/pubmed/15103055
https://doi.org/10.1093/gerona/56.3.M146
http://www.ncbi.nlm.nih.gov/pubmed/11253156
https://doi.org/10.1126/sageke.2005.31.pe24
http://www.ncbi.nlm.nih.gov/pubmed/16079413
https://doi.org/10.1016/j.mad.2008.09.013
http://www.ncbi.nlm.nih.gov/pubmed/18938195
https://doi.org/10.1038/s43587-020-00017-z
https://doi.org/10.1038/s43587-020-00017-z
http://www.ncbi.nlm.nih.gov/pubmed/34476409
https://doi.org/10.1093/gerona/glr141
http://www.ncbi.nlm.nih.gov/pubmed/21873592
https://doi.org/10.1093/gerona/glaa134
http://www.ncbi.nlm.nih.gov/pubmed/32502234
http://www.ncbi.nlm.nih.gov/pubmed/31637400
https://doi.org/10.1371/journal.pone.0302381


10. Kannel WB, McGee DL. Diabetes and cardiovascular disease: the Framingham study. Jama. 1979; 241

(19):2035–8. https://doi.org/10.1001/jama.1979.03290450033020 PMID: 430798

11. Barrett-Connor E, Ferrara A. Isolated postchallenge hyperglycemia and the risk of fatal cardiovascular

disease in older women and men: the Rancho Bernardo Study. Diabetes care. 1998; 21(8):1236–9.

https://doi.org/10.2337/diacare.21.8.1236 PMID: 9702426

12. Matheus ASdM, Tannus LRM, Cobas RA, Palma CCS, Negrato CA, Gomes MdB. Impact of diabetes

on cardiovascular disease: an update. International journal of hypertension. 2013; 2013. https://doi.org/

10.1155/2013/653789 PMID: 23533715

13. Meigs JB, Nathan DM, D’Agostino RB Sr, Wilson PW. Fasting and postchallenge glycemia and cardio-

vascular disease risk: the Framingham Offspring Study. Diabetes care. 2002; 25(10):1845–50. https://

doi.org/10.2337/diacare.25.10.1845 PMID: 12351489

14. Metter EJ, Windham BG, Maggio M, Simonsick EM, Ling SM, Egan JM, et al. Glucose and insulin mea-

surements from the oral glucose tolerance test and mortality prediction. Diabetes care. 2008; 31

(5):1026–30. https://doi.org/10.2337/dc07-2102 PMID: 18268070

15. Chia CW, Egan JM, Ferrucci L. Age-related changes in glucose metabolism, hyperglycemia, and car-

diovascular risk. Circulation research. 2018; 123(7):886–904. https://doi.org/10.1161/CIRCRESAHA.

118.312806 PMID: 30355075

16. Bergman M, Abdul-Ghani M, DeFronzo RA, Manco M, Sesti G, Fiorentino TV, et al. Review of methods

for detecting glycemic disorders. Diabetes research and clinical practice. 2020; 165:108233. https://doi.

org/10.1016/j.diabres.2020.108233 PMID: 32497744

17. Bolie VW. Coefficients of normal blood glucose regulation. Journal of applied physiology. 1961; 16

(5):783–8. https://doi.org/10.1152/jappl.1961.16.5.783 PMID: 13870789

18. Brubaker PL, Ohayon EL, D’Alessandro LM, Norwich KH. A mathematical model of the oral glucose tol-

erance test illustrating the effects of the incretins. Annals of biomedical engineering. 2007; 35:1286–

300. https://doi.org/10.1007/s10439-007-9274-1 PMID: 17393338

19. Della Man C, Caumo A, Cobelli C. The oral glucose minimal model: estimation of insulin sensitivity from

a meal test. IEEE Transactions on Biomedical Engineering. 2002; 49(5):419–29. https://doi.org/10.

1109/10.995680

20. Gatewood LC, Ackerman E, Rosevear JW, Molnar GD, Burns TW. Tests of a mathematical model of

the blood-glucose regulatory system. Computers and Biomedical Research. 1968; 2(1):1–14. https://

doi.org/10.1016/0010-4809(68)90003-7 PMID: 5743536

21. Ackerman E, Rosevear JW, McGuckin WF. A mathematical model of the glucose-tolerance test. Phys-

ics in medicine & Biology. 1964; 9(2):203. https://doi.org/10.1088/0031-9155/9/2/307

22. Cobelli C, Mari A, Thomaseth K, Bergman R. Simple Vs Comprehensive Models of Glucose/Insulin

Dynamic Interactions in the Whole Organism. Role of Identification and Validation. IFAC Proceedings

Volumes. 1982; 15(4):1021–6. https://doi.org/10.1016/S1474-6670(17)63129-X

23. Manco M, Nolfe G, Pataky Z, Monti L, Porcellati F, Gabriel R, et al. Shape of the OGTT glucose curve

and risk of impaired glucose metabolism in the EGIR-RISC cohort. Metabolism. 2017; 70:42–50.

https://doi.org/10.1016/j.metabol.2017.02.007 PMID: 28403944

24. Tschritter O, Fritsche A, Shirkavand F, Machicao F, Haring H, Stumvoll M. Assessing the shape of the

glucose curve during an oral glucose tolerance test. Diabetes care. 2003; 26(4):1026–33. https://doi.

org/10.2337/diacare.26.4.1026 PMID: 12663568

25. Abdul-Ghani MA, Lyssenko V, Tuomi T, DeFronzo RA, Groop L. The shape of plasma glucose concen-

tration curve during OGTT predicts future risk of type 2 diabetes. Diabetes/metabolism research and

reviews. 2010; 26(4):280–6. https://doi.org/10.1002/dmrr.1084 PMID: 20503260

26. Utzschneider KM, Younes N, Rasouli N, Barzilay JI, Banerji MA, Cohen RM, et al. Shape of the OGTT

glucose response curve: relationship with β-cell function and differences by sex, race, and BMI in adults

with early type 2 diabetes treated with metformin. BMJ Open Diabetes Research and Care. 2021; 9(1):

e002264. https://doi.org/10.1136/bmjdrc-2021-002264 PMID: 34531242

27. Ferrucci L. The Baltimore Longitudinal Study of Aging (BLSA): A 50-Year-Long Journey and Plans for

the Future. The Journals of Gerontology: Series A. 2008 12; 63(12):1416–9. https://doi.org/10.1093/

gerona/63.12.1416 PMID: 19126858

28. Moseley K, Chia C, Simonsick E, Egan J, Ferrucci L, Sellmeyer D. Sex-specific differences in progres-

sive glucose intolerance and hip geometry: the Baltimore Longitudinal Study of Aging. Osteoporosis

international. 2015; 26(5):1555–62. https://doi.org/10.1007/s00198-015-3027-z PMID: 25619633

29. Semba RD, Sun K, Egan JM, Crasto C, Carlson OD, Ferrucci L. Relationship of serum fibroblast growth

factor 21 with abnormal glucose metabolism and insulin resistance: the Baltimore Longitudinal Study of

Aging. The Journal of Clinical Endocrinology & Metabolism. 2012; 97(4):1375–82. https://doi.org/10.

1210/jc.2011-2823 PMID: 22344195

PLOS ONE Oral glucose tolerance test response and aging outcomes

PLOS ONE | https://doi.org/10.1371/journal.pone.0302381 May 16, 2024 26 / 27

https://doi.org/10.1001/jama.1979.03290450033020
http://www.ncbi.nlm.nih.gov/pubmed/430798
https://doi.org/10.2337/diacare.21.8.1236
http://www.ncbi.nlm.nih.gov/pubmed/9702426
https://doi.org/10.1155/2013/653789
https://doi.org/10.1155/2013/653789
http://www.ncbi.nlm.nih.gov/pubmed/23533715
https://doi.org/10.2337/diacare.25.10.1845
https://doi.org/10.2337/diacare.25.10.1845
http://www.ncbi.nlm.nih.gov/pubmed/12351489
https://doi.org/10.2337/dc07-2102
http://www.ncbi.nlm.nih.gov/pubmed/18268070
https://doi.org/10.1161/CIRCRESAHA.118.312806
https://doi.org/10.1161/CIRCRESAHA.118.312806
http://www.ncbi.nlm.nih.gov/pubmed/30355075
https://doi.org/10.1016/j.diabres.2020.108233
https://doi.org/10.1016/j.diabres.2020.108233
http://www.ncbi.nlm.nih.gov/pubmed/32497744
https://doi.org/10.1152/jappl.1961.16.5.783
http://www.ncbi.nlm.nih.gov/pubmed/13870789
https://doi.org/10.1007/s10439-007-9274-1
http://www.ncbi.nlm.nih.gov/pubmed/17393338
https://doi.org/10.1109/10.995680
https://doi.org/10.1109/10.995680
https://doi.org/10.1016/0010-4809(68)90003-7
https://doi.org/10.1016/0010-4809(68)90003-7
http://www.ncbi.nlm.nih.gov/pubmed/5743536
https://doi.org/10.1088/0031-9155/9/2/307
https://doi.org/10.1016/S1474-6670(17)63129-X
https://doi.org/10.1016/j.metabol.2017.02.007
http://www.ncbi.nlm.nih.gov/pubmed/28403944
https://doi.org/10.2337/diacare.26.4.1026
https://doi.org/10.2337/diacare.26.4.1026
http://www.ncbi.nlm.nih.gov/pubmed/12663568
https://doi.org/10.1002/dmrr.1084
http://www.ncbi.nlm.nih.gov/pubmed/20503260
https://doi.org/10.1136/bmjdrc-2021-002264
http://www.ncbi.nlm.nih.gov/pubmed/34531242
https://doi.org/10.1093/gerona/63.12.1416
https://doi.org/10.1093/gerona/63.12.1416
http://www.ncbi.nlm.nih.gov/pubmed/19126858
https://doi.org/10.1007/s00198-015-3027-z
http://www.ncbi.nlm.nih.gov/pubmed/25619633
https://doi.org/10.1210/jc.2011-2823
https://doi.org/10.1210/jc.2011-2823
http://www.ncbi.nlm.nih.gov/pubmed/22344195
https://doi.org/10.1371/journal.pone.0302381


30. Blake DR, Meigs JB, Muller DC, Najjar SS, Andres R, Nathan DM. Impaired glucose tolerance, but not

impaired fasting glucose, is associated with increased levels of coronary heart disease risk factors:

results from the Baltimore Longitudinal Study on Aging. Diabetes. 2004; 53(8):2095–100. https://doi.

org/10.2337/diabetes.53.8.2095 PMID: 15277391

31. Schrack JA, Zipunnikov V, Simonsick EM, Studenski S, Ferrucci L. Rising energetic cost of walking pre-

dicts gait speed decline with aging. Journals of Gerontology Series A: Biomedical Sciences and Medical

Sciences. 2016; 71(7):947–53. https://doi.org/10.1093/gerona/glw002 PMID: 26850913

32. Nash JC. 16. In: Nonlinear parameter optimization using R tools. John Wiley & Sons; 2014.

33. Bard Y. Nonlinear Parameter Estimation. Academic Press; 1974.

34. Frøslie KF, Røislien J, Qvigstad E, Godang K, Bollerslev J, Voldner N, et al. Shape information from glu-

cose curves: functional data analysis compared with traditional summary measures. BMC medical

research methodology. 2013; 13(1):1–15. https://doi.org/10.1186/1471-2288-13-6 PMID: 23327294

35. Ramsay JO, Silverman BW. Functional data analysis. 2nd ed. Springer series in statistics. New York:

Springer; 2005.

36. Yao F, Müller HG, Wang JL. Functional data analysis for sparse longitudinal data. Journal of the Ameri-

can statistical association. 2005; 100(470):577–90. https://doi.org/10.1198/016214504000001745

37. Catchpole EA, Kgosi P, Morgan BJ. On the near-singularity of models for animal recovery data. Bio-

metrics. 2001; 57(3):720–6. https://doi.org/10.1111/j.0006-341X.2001.00720.x PMID: 11550920

38. Gimenez O, Morgan BJ, Brooks SP. Weak identifiability in models for mark-recapture-recovery data.

Modeling demographic processes in marked populations. 2009:1055–67. https://doi.org/10.1007/978-

0-387-78151-8_48

39. Cameron AC, Windmeijer FA. An R-squared measure of goodness of fit for some common nonlinear

regression models. Journal of econometrics. 1997; 77(2):329–42. https://doi.org/10.1016/S0304-4076

(96)01818-0

40. Spiess AN, Neumeyer N. An evaluation of R2 as an inadequate measure for nonlinear models in phar-

macological and biochemical research: a Monte Carlo approach. BMC pharmacology. 2010; 10(1):1–

11. https://doi.org/10.1186/1471-2210-10-6 PMID: 20529254

41. Vargas P, Moreles MA, Peña J, Monroy A. A validation study of normoglycemia and dysglycemia indi-

ces as a diabetes risk model. arXiv preprint arXiv:221116348. 2022.

42. De Rekeneire N, Resnick HE, Schwartz AV, Shorr RI, Kuller LH, Simonsick EM, et al. Diabetes is asso-

ciated with subclinical functional limitation in nondisabled older individuals: the Health, Aging, and Body

Composition study. Diabetes care. 2003; 26(12):3257–63. https://doi.org/10.2337/diacare.26.12.3257

PMID: 14633811

43. Ferrucci L, Penninx BW, Leveille SG, Corti MC, Pahor M, Wallace R, et al. Characteristics of nondis-

abled older persons who perform poorly in objective tests of lower extremity function. Journal of the

American Geriatrics Society. 2000; 48(9):1102–10. https://doi.org/10.1111/j.1532-5415.2000.tb04787.

x PMID: 10983911

44. Rosso AL, Sanders JL, Arnold AM, Boudreau RM, Hirsch CH, Carlson MC, et al. Multisystem physio-

logic impairments and changes in gait speed of older adults. Journals of Gerontology Series A: Biomedi-

cal Sciences and Medical Sciences. 2015; 70(3):319–24. https://doi.org/10.1093/gerona/glu176 PMID:

25380599

45. Anderwald C, Gastaldelli A, Tura A, Krebs M, Promintzer-Schifferl M, Kautzky-Willer A, et al. Mecha-

nism and effects of glucose absorption during an oral glucose tolerance test among females and males.

The Journal of Clinical Endocrinology & Metabolism. 2011; 96(2):515–24. https://doi.org/10.1210/jc.

2010-1398 PMID: 21147888

46. Marathe CS, Horowitz M, Trahair LG, Wishart JM, Bound M, Lange K, et al. Relationships of early and

late glycemic responses with gastric emptying during an oral glucose tolerance test. The Journal of Clin-

ical Endocrinology & Metabolism. 2015; 100(9):3565–71. https://doi.org/10.1210/JC.2015-2482 PMID:

26171801

47. Horowitz M, Edelbroek M, Wishart J, Straathof J. Relationship between oral glucose tolerance and gas-

tric emptying in normal healthy subjects. Diabetologia. 1993; 36:857–62. https://doi.org/10.1007/

BF00400362 PMID: 8405758

48. Vavricka SR, Greuter T. Gastroparesis and dumping syndrome: current concepts and management.

Journal of clinical medicine. 2019; 8(8):1127. https://doi.org/10.3390/jcm8081127 PMID: 31362413

PLOS ONE Oral glucose tolerance test response and aging outcomes

PLOS ONE | https://doi.org/10.1371/journal.pone.0302381 May 16, 2024 27 / 27

https://doi.org/10.2337/diabetes.53.8.2095
https://doi.org/10.2337/diabetes.53.8.2095
http://www.ncbi.nlm.nih.gov/pubmed/15277391
https://doi.org/10.1093/gerona/glw002
http://www.ncbi.nlm.nih.gov/pubmed/26850913
https://doi.org/10.1186/1471-2288-13-6
http://www.ncbi.nlm.nih.gov/pubmed/23327294
https://doi.org/10.1198/016214504000001745
https://doi.org/10.1111/j.0006-341X.2001.00720.x
http://www.ncbi.nlm.nih.gov/pubmed/11550920
https://doi.org/10.1007/978-0-387-78151-8_48
https://doi.org/10.1007/978-0-387-78151-8_48
https://doi.org/10.1016/S0304-4076(96)01818-0
https://doi.org/10.1016/S0304-4076(96)01818-0
https://doi.org/10.1186/1471-2210-10-6
http://www.ncbi.nlm.nih.gov/pubmed/20529254
https://doi.org/10.2337/diacare.26.12.3257
http://www.ncbi.nlm.nih.gov/pubmed/14633811
https://doi.org/10.1111/j.1532-5415.2000.tb04787.x
https://doi.org/10.1111/j.1532-5415.2000.tb04787.x
http://www.ncbi.nlm.nih.gov/pubmed/10983911
https://doi.org/10.1093/gerona/glu176
http://www.ncbi.nlm.nih.gov/pubmed/25380599
https://doi.org/10.1210/jc.2010-1398
https://doi.org/10.1210/jc.2010-1398
http://www.ncbi.nlm.nih.gov/pubmed/21147888
https://doi.org/10.1210/JC.2015-2482
http://www.ncbi.nlm.nih.gov/pubmed/26171801
https://doi.org/10.1007/BF00400362
https://doi.org/10.1007/BF00400362
http://www.ncbi.nlm.nih.gov/pubmed/8405758
https://doi.org/10.3390/jcm8081127
http://www.ncbi.nlm.nih.gov/pubmed/31362413
https://doi.org/10.1371/journal.pone.0302381

