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de México, México, 2 Posgrado en Ciencias Naturales e Ingenierı́a, Universidad Autónoma Metropolitana,
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Abstract

The mosquito Aedes spp. holds important relevance for human and animal health, as it

serves as a vector for transmitting multiple diseases, including dengue and Zika virus. The

microbiome’s impact on its host’s health and fitness is well known. However, most studies

on mosquito microbiomes have been conducted in laboratory settings. We explored the

mixed microbial communities within Aedes spp., utilizing the 16S rRNA gene for diversity

analysis and shotgun metagenomics for functional genomics. Our samples, which included

Ae. aegypti and Ae. albopictus, spanned various developmental stages—eggs, larvae, and

adults—gathered from five semiurban areas in Mexico. Our findings revealed a substantial

diversity of 8,346 operational taxonomic units (OTUs), representing 967 bacterial genera

and 126,366 annotated proteins. The host developmental stage was identified as the pri-

mary factor associated with variations in the microbiome composition. Subsequently, we

searched for genes and species involved in mosquito biocontrol. Wolbachia accounted for

9.6% of the 16S gene sequences. We observed a high diversity (203 OTUs) of Wolbachia

strains commonly associated with mosquitoes, such as wAlb, with a noticeable increase in

abundance during the adult stages. Notably, we detected the presence of the cifA and cifB

genes, which are associated with Wolbachia’s cytoplasmic incompatibility, a biocontrol

mechanism. Additionally, we identified 221 OTUs related to Bacillus, including strains linked

to B. thuringiensis. Furthermore, we discovered multiple genes encoding insecticidal toxins,

such as Cry, Mcf, Vip, and Vpp. Overall, our study contributes to the understanding of mos-

quito microbiome biodiversity and metabolic capabilities, which are essential for developing

effective biocontrol strategies against this disease vector.
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Introduction

Mosquitoes are insects with complete metamorphosis (holometabolous) since their larvae dif-

fer remarkably from the adult state in their anatomy, ecology, and feeding. Mosquitoes have

four life stages: eggs, larvae, and pupae that are aquatic and the adult stage that flies. The larvae

feed on insects carcasses and debris [1], while adults have a proboscis that allows them to feed

on nectars, and in some species, females feed on blood [2]. The site where mosquitoes develop

has been reported as one of the factors that shape their microbiome [3–5]. However, the abun-

dance of each bacterium within the microbiome is determined by the mosquito stage, sex, and

species [6]. The microbiome of mosquito eggs comprises Actinobacteria, Firmicutes, and Cya-
nobacteria [7]. These phyla are also found in larvae; however, as the aquatic stages develop, the

bacterial diversity increases [5]. The adults develop wings during metamorphosis, and the

mouth structure changes completely. The change in the adult diet results in essential changes

in the microbiome. In adults, the microbiome diversity decreases and is dominated by Proteo-
bacteria [8]. The high carbohydrate concentration favors Enterobacteria growth [5]. In

females, iron intake generates free radicals, increasing the abundance of Enterobacteriaceae
and Flavobacteriaceae [5, 9, 10]. It is interesting that in the laboratory, Ae. aegypti adults from

different parts of the world converge on a very similar microbiome [11]. In addition, vertical

transmission ofWolbachia has been reported in mosquitoes. This intracellular bacterium has

been identified in more than 60% of insects worldwide [12].

Recent studies on the gut microbiota of field collected Aedes spp. Mosquitoes reveal a lim-

ited diversity at higher taxonomic levels across various geographical regions. The free living

adults are also dominated by Proteobacteria joined by Actinobacteria, Bacteroidetes, and Firmi-
cutes [6]. Common bacterial families such as Pseumonadaceae, Enterobacteriaceae, Acetobac-
teraceae, Rickettsiaceae, andMoraxellaceae have been identified as widespread through these

vectors [6, 13]. These findings are consistent across different species of wild mosquitoes,

including Anopheles spp. [14]. Notably, inter-individual variability in microbiota composition

is high, with some OTUs being exclusive to individual mosquitoes [13, 15]. Mosquito micro-

biota are afected by the blood source they feed on; human blood-fed mosquitoes harbor an

array of human skin-associated bacteria [7]. It has been validated in the field that the micro-

biome of free-living larvae is determined by their habitat [16]. Interestingly, in the field, it has

been observed that the microbial diversity of larvae has different taxa than that of adults before

they feed [17]. Many of the studies in free living mosquito have focused on monitoringWolba-
chia infection for control campaigns. Wolbachia genus is commonly found in Ae. albopictus
[18]. However, in some countries of the world, the presence ofWolbachia in Ae. aegypti has

not been detected [19], while in some studies,Wolbachia has been found [20, 21].

Aedes spp. is a global problem, as it transmits different diseases in humans and animals.

They are reported as the main vector for dengue fever, chikungunya, and Zika virus [22]. Con-

trolling mosquito populations is the most efficient way to prevent these viral diseases. Global

climate change has allowed the displacement of mosquitoes to new places. Aedes aegypti that

used to be in tropical regions are now detected in large cities in temperate regions [23]. The

distribution of mosquitoes in these new places increases the need to improve the types of bio-

control strategies. Two bacterial biocontrol strategies have been successfully used to control

mosquitoes: Bacillus thuringiensis as a larvicide [24] andWolbachia spp. by interfering with

the development of mosquitoes and protecting them from diseases [25]. Bacillus thuringiensis
spores are added in food pellets to the water where the larvae grow [26]. Spore toxins kill larvae

by forming pores in the midgut epithelium. These pores cause osmotic shock in the cells, lead-

ing to larval dehydration and death [27]. In contrast,Wolbachia gives rise to cytoplasmic

incompatibility (CI). Embryo development is prevented when the male is infected and the
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female is not infected.Wolbachia has been used in two types of biocontrol strategies. In the

first strategy, the incompatible insect technique (IIT), males transfected with aWolbachia
strain that does not exist in the wild are released; due to CI, these males reduce the mosquito

population [28]. In the population replacement strategy (PRS), male and female mosquitoes

are released with a Wolbachia strain that confers viral protection; thisWolbachia is fixed by CI

[29].

Biocontrol strategies have been successful where they have been applied, but the different

groups of microorganisms used as insecticides in mosquitoes have tended to lose effectiveness

due to insect adaptation [26, 30]. Therefore, identifying new candidates for biocontrol use

(whether new varieties of known species or new microorganisms) and determining the scope

of the strategies already implemented in other insect populations is essential. Here, we describe

the microbiome of Aedes ssp. in south-central Mexico and investigate the mosquito micro-

biome in real-world communities; our study remarks on the relevance of exploring microbial

diversity in natural mosquito populations. Hence, we investigated bacterial diversity using 16S

amplicons and microbial community metabolic capacity using shotgun metagenomics. Fur-

thermore, we identified genes coding for insecticidal toxins carried by mosquitoes captured in

semiurban environments. We defined the composition of bacteria previously reported as pos-

sible biocontrol agents. Our goal is to delve into overall diversity and coding genes to gain

insights into mosquito-microbe interactions and contribute to the continuing development of

microbe-directed mosquito biocontrol procedures.

Materials and methods

Sampling

We analyzed 14 samples, each representing a unique site and a specific developmental stage of

mosquito populations. For each of the samples, we gathered 30 individuals to ensure enough

DNA for metagenomic analysis. In the case of adult mosquitoes and larvae, all dissected organs

were combined into a single sample. All larvae were obtained from the same water tank, and

similarly, all eggs were collected from the same ovitrap. For the collection of adults, it was nec-

essary to search for them in one to four houses within the same neighborhood.

Five localities in Mexico were sampled in June and July 2016 (rainy season). These localities

have an incidence of dengue. The sampling sites were chosen based on the advice of the

National Center for Disease Control and Prevention Programs (CENAPRECE). All the sites

were semiurban single-family houses with roofs, ground-open water tanks, and electricity. The

houses could have drainage, septic tanks, or latrines. Some houses had windows that were

always open (no glass) or pets. Geographic location, temperature, and pressure data were col-

lected (S1 Table in S1 File). Eggs were sampled from ovitraps that were one-liter plastic con-

tainers with a filter paper placed half way down. Females oviposited in the aerial paper section.

Larvae were collected from the house’s water tanks or buckets, that were outdoors, using a

plastic Pasteur pipette and deposited in jars with distilled water. Adult mosquitoes were col-

lected from the indoors air with vacuum cleaners adapted with filters.

On the sampling day, the specimens were transported to the laboratory, adults and larvae

were identified, and adults were separated by sex. The preliminary taxonomic analysis was

conducted utilizing a stereoscopic microscope, coupled with the entomological expertise of

CENAPRESE personnel. Larvae were classified by species employing dichotomous keys as per

Mañez-Bernal & Martinez-Campos [31]. The species and sex of adults were determined using

the pictorial key by Rueda [32]. While the intent was to exclusively collect Ae. aegypti, subse-

quent DNA analysis also revealed the presence of Ae. albopictus. The morphological assess-

ment enabled us to exclude sites where Culex genus mosquitoes were prevalent.
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During the four hours after the collection, the dissection was carried out. Larvae and adults

were dissected to obtain intestines, salivary glands, ovaries, and Malpighian tubes [33]. Larvae

were rinsed with water before disection procedure. Females displaying a red abdomen indica-

tive of recent blood consumption were excluded to maximize the extraction of mosquito-

derived bacterial DNA. No further analyses were conducted to determine whether the individ-

uals had previously ingested blood. The organs of each individual were stored in batches of 30

individuals. The eggs were carefully removed with a clean spatula. Adult and larvae batches

were resuspended in 3 ml of Hank’s salt medium (Sigma–Aldrich) and kept at -80˚C until pro-

cessing. Eggs were sotored dry. The handling of the samples was carried out with gloves. All

solutions, tubes, and tips were sterile, while work surfaces and laboratory equipment were con-

stantly cleaned with 70% ethanol.

Ethics statement

No specific permits were required to collect field mosquitos since Ae. Aegipty, Ae albopictus or

Culex are not listed on the Red List of the International Union for Conservation of Nature

(IUCN; http://www.iucnredlist.org/search). Moreover, mosquitoes, particularly Aedes spp. are

classified within the national standard NOM-032-SSA2-2014 (for Epidemiological Surveil-

lance, Promotion, Prevention And Control Of Vector Transmitted Diseases) as vectors requir-

ing epidemiological surveillance and regular monitoring. The collection of eggs, larvae, and

adult mosquitoes was carried out employing the methodology and as part of the control activi-

ties endorsed by the National Center for Disease Control and Prevention Programs (CENA-

PRECE), adhering to the guidelines set forth in the "Methodological Guide for

Entomovirological Surveillance’’. We obtained oral consent from the homeowners where the

sampling was conducted. The project has been registered within Universidad Autonoma

Metropolitana under the number UAMC-DCN-47301018.

DNA extraction and sequencing

DNA extraction was performed with PowerSoil DNA Isolation Kit (Qiagen) following the

manufacturer’s instructions and optimized with phenol–chloroform. Briefly, sample batches

(approximately 250 μL) were vortexed for 10 min in bead tubes with 60 μL of C1 solution,

100 μL chloroform (Sigma–Aldrich), and 100 μL phenol (Sigma–Aldrich). Next, 16S ribosomal

amplicons were generated using the 341F (5’-CCTACGGGNGGCWGCAG-3’) and 805R (5’-
ACTACHVGGGTATCTAATCC-3’) primers. These amplified V3-V4 regions had a fragment

size of approximately 464 bp. Amplicon sequencing was performed using the MiSeq Illumina

platform (2x300 bp). Microbial DNA enrichment was performed for shotgun sequencing

using the NEBNext1Microbiome DNA Enrichment Kit (New England Biolabs, NEB) follow-

ing the manufacturer’s instructions. For shotgun sequencing, the Illumina NextSeq system

(2x150) was utilized. Both 16S amplicon and shotgun sequences were generated using the

LABSERGEN Langebio Cinvestav Irapuato platform.

Sequence processing

Raw amplicon sequences were pair-end merged using CASPER [34]. Joined sequences were

matched for 97% similarity using CD-HIT-EST [35]. One sequences for each OTU was

selected using QIIME [36]. Taxonomic assignment was performed using the SILVA [37] data-

base. Singletons and chimeras were removed using Chimera Slayer [38].

Shotgun reads were host filtered with bowtie2. Sequences were aligned with the genome

from Ae. aegypti (strain LVP_AGWG, PRJNA318737). Subsequently, all nonhost sequences

were quality filtered with Trimmomatic. The resulting sequences were assembled using
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SPADES [39]. A second assembly was performed with Velvet [40] for sequences discarded by

SPADES. The resulting sequences (contigs and unassembled sequences) were annotated using

BLAST [41] and DIAMOND [42] using the nonredundant M5nr database. The annotation

obtained was compared with the application programming interfaces (APIs) of interest:

PATRIC [43], RefSeq [44], and Ontology [45]. The taxonomic assignation was performed

using Kraken [46]. The Bacterial Pesticidal Protein Resource Center database was used for

toxin identification [47]. The molecular taxonomic classification of the mosquitoes was per-

formed by identifying the ITS2 sequences directly from the reads, to avoid any chimera, fol-

lowed by a BLAST against the RefSeq database [44]. Genome recruitments were performed

from the raw sequences per sample using bowtie2 [48] and compared with reference genomes

to determine resemblance and abundance within the metagenomes. The bacterial reference

genomes used wereWolbachia wMel from Drosophila melanogaster ASM1658442v1 (NCBI

NZ_CP046925.1),Wolbachia wPip from Culex quinquefasciatus (NCBI PRJNA30313), and

Wolbachia wAlbB from Ae. aegypti (NCBI PRJEA76855).

Statistical analysis

After the construction of the OTUs, ASV and shotgun metagenomic data were processed

using R project standard functions or R packages such as "phyloseq2" [49] and "ggplot2" [50].

Alpha diversity metrics were calculated using the OTUs generated from the amplicon

sequences of the 16S ribosomal gene, utilizing the “phyloseq2” package. Comparative analyses

were performed, generating upset graphs and nonmetric dimensional scaling using Bray–Cur-

tis distance.

Phylogenetic analysis

The OTUs assigned toWolbachia and Bacillus were compared with the closest sequences of

reference-type strains obtained from RDP [51] and RefSeq [44]. The sequences of the two

OTU groups and their references were aligned using SSU-align [52], and the trees were built

using FastTree [53] with default options (NJ and 1000 resamples). The trees were edited and

annotated for presentation with iTol [54].

Results

Aedes spp. microbiome general description

All mosquitoes were collected from five locations in Mexico (S1 Fig in S1 File). These semiur-

ban areas are characterized by a warm subhumid climate. Our study analyzed 14 samples, each

representing a unique site and a specific developmental stage of the mosquito lifecycle, includ-

ing eggs, larvae, female adults, and male adults. For each sample, we collected 30 individuals.

Unfortunately, larvae and eggs were sourced from only two locations. Prior to molecular anal-

ysis, we had performed a taxonomic identification of the Aedes spp. Mosquitoes by morpho-

logical characterization. Of the 14 samples subjected to 16S gene amplicon analysis, eight

underwent additional shotgun sequencing, encompassing all life stages of mosquitoes from the

two sites. Through ITS2 analysis on these eight samples, we determined that four samples con-

sisted exclusively of Ae. aegypti (samples: larvae_s1, larvae_s2, females_s1, male_s1), while the

other four were a mix of Ae. albopictus and Ae. aegypti (samples: eggs_s1, eggs_s2, females_s2,

male_s2) (S1 Table in S1 File). We obtained 1,882,521 amplicon reads of the 16S gene clustered

into 8,346 OTUs from 967 genera. In addition, we obtained 118,220,137 filtered reads from

shotgun sequencing, from which 126,366 bacterial proteins were annotated (S2 Table in S1

File). We also analyzed the diversity using ASV to enable these data to be compared with many
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other datasets. The general descriptions are similar, although the precise numbers change. The

most significant difference with the OTU analysis lies in the exclusion of rare organisms. We

detected 4,829 ASVs from 563 genera (S2 Table in S1 File, and S2 Fig in S1 File).

Alpha diversity indexes were estimated through analysis of the 16S data. Diversity during

the aquatic life stages (Simpson index 4.7 ± 0.4) exceeded that observed in adult stages (Simp-

son index 2.0 ± 0.5). This pattern of diversity was consistent across all assessed metrics (rich-

ness, Shannon, Simpson, and Chao1) (S3, S4 Tables in S1 File). Amplicon analysis showed that

the phylum Proteobacteria was the most abundant (67.8%), whereas the other phyla had much

lower values, i.e., Actinobacteria (11.3%), Firmicutes (10.3%), Bacteroidetes (5%), and Cyano-
bacteria (1.3%). Proteobacteria were more abundant in the adult stages (73.3% adults and

35.8% aquatic), and Actinobacteria were more abundant in the aquatic stages (5.6% adults and

30.1% aquatic). Interestingly, photosynthetic Cyanobacteria and Chloroflexi were more abun-

dant in the aquatic stages (Fig 1, S3 Fig in S1 File, and S5 Table in S1 File). Shotgun reads were

also classified taxonomically.

The predominant OTUs in the complete system are those abundant in adult mosquitoes,

whereas they are not the dominant ones in eggs and larvae. The dominant adult OTUs corre-

sponded to the genera Zymobacter sp., Bacillus sp.,Wolbachia sp., Enterobacter sp., and

Ornithimicrobium sp., whereas Pseudoxanthomonas sp. was dominant in eggs (S6 Table in S1

File). The comparative set analysis shows that 190 genera were shared across developmental

stages, although only 16 were detected in all samples. The eggs were the most diverse and had

223 unique genera. Despite being in the same developmental stage, only 288 genera were

shared between females and males, whereas eggs and larvae shared 392 genera, including the

190 ubiquitous genera (S4 Fig in S1 File).

Metagenome analysis showed that 49.7% of the shotgun reads belonged to bacteria. We

detected many fungal sequences, and 43.5% of the shotgun sequences belonged to the phylum

Ascomycota. Bacteria were more abundant in the adult stages (70.5% adults and 28.9% aquatic)

(S7 Table in S1 File). We grouped the samples by developmental stage and not by sample loca-

tion because the beta diversity analyses suggested that there was community similarity (Fig 1,

and S5 Fig in S1 File).

Through the analysis of metagenomes, we assessed the metabolic capabilities of the micro-

biome. Notably, the ’female_s1’ sample exhibited a significantly higher proportion of genes

associated with respiration, accounting for 76%, an evident contrast to the 3–5% observed in

other samples (Fig 2). This rise in respiration is primarily attributed to an increase in the gene

for cytochrome oxidases and respiratory complex I (S6 Fig in S1 File). Intriguingly, genes

related to virulence and defense were found to be more prevalent during the egg and larvae

stages, with percentages ranging from 3 to 6%, than in adults, where they accounted for only

0.9 to 1.6%. This suggests a reduction in these genes as development progresses. Within this

metabolic category, we also noted a shift in gene types; eggs and larvae predominantly featured

ton and tol trasport genes and efflux pumps, whereas in adults, type I and IV secretion systems

were more abundant. In aquatic samples, phosphate metabolism genes were overrepresented,

whereas adults showed a higher abundance of maltose and maltodextrin utilization genes. Cer-

tain genes, such as those for DNA replication and peptidoglycan synthesis, were highly repre-

sented across all samples. Across the entire system, the most prevalent metabolic category

comprised gene groups (i.e. clustering based subsystems) that are not yet well-described,

underscoring the importance of continuing research in bacterial physiology and classical

genetics (Fig 2). Beta diversity analyses, including NMDS and PCoA of the metagenomic data,

demonstrated that samples clustered according to the developmental stage (S7 Fig in S1 File).
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Potential biocontrol agents

We searched for microbes and genes that could be used for the biocontrol of mosquitoes. We

incorporated insights from comprehensive reviews by Scolari et al., [6] and Gao et al., [55],

which highlighted a spectrum of microbes already identified as pathogens [6, 55]. Additionally,

we inspected the classifications of entomopathogenic activity mechanisms, drawing upon the

frameworks set by Crickmore et al., [47] and the Bacterial Pesticidal Protein Database [47].

Our search was targeted towards microbes and genes that held potential for the biocontrol of

mosquitoes, leading to the identification of multiple genera of interest due to their known

insecticidal properties and relevance to biocontrol. We identified multiple bacteria with

known biocontrol interest: Bacillus,Wolbachia, Serratia, Enterobacter, Spiroplasma, Rickettsia,

Fig 1. Phylogenetic profile of Ae. aegypti microbiome from 16S amplicon sequences. A) Genus distribution. B) Phyla distribution. C) Beta diversity

plot (nonmetric multidimensional scaling, NMDS).

https://doi.org/10.1371/journal.pone.0302328.g001
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Lysinibacillus, and Clostridium. We also identified several genera of fungi already reported to

have entomopathogenic activity: Smittium, Conidiobolus,Metarhizium, Tolypocladium,

Pythium, and Beauveria.

We identified 519 contigs containing coding genes for biosynthesis of 102 different toxins

(Fig 3). The Crystal type (Cry) protein was the most abundant insecticidal toxin, with 371

sequences assigned to 78 Cry protein families. Cry8Ma2 stood out with 87 sequences, and

Cry1Ib6 had 35 sequences. The other group of frequent toxins was the Make Caterpillars

Floppy (Mcf) group, with 74 sequences assigned to four different Mcf clusters. Other groups of

toxins identified included alpha-helical pesticidal protein (App); nonspecific cytolytic (Cyt);

membrane attack complex/perforin (Mpf); Mtx2-related pesticidal protein (Mpp); mosquito-

cidal Mtx1 protein (Mtx); toxin-10 pesticidal proteins (Tpp); vegetative insecticidal protein

(Vip); Vip2, the active component of the Vpa/Vpb binary pesticidal protein (Vpa); Vip1, the

binding domain of the Vpa/Vpb binary pesticidal protein (Vpb) and holding class for pestici-

dal proteins (Xpp) (Fig 3). The samples with the most toxins were the eggs from site 2 (29 tox-

ins, 129 sequences) and the females from site 2 (28 toxins, 157 sequences). In general, each

toxin was observed only in one sample. Two toxin genes were shared between egg samples and

Fig 2. Ae. aegypti metabolic profiles from shotgun sequences. The SEED subsystems are shown to describe the main

metabolic features.

https://doi.org/10.1371/journal.pone.0302328.g002
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four between females and males from site 2. In one larval sample, no toxin was detected, and

in one female sample, only one gene was detected (Fig 3).

A dominant group in the mosquito microbiome was the genus Bacillus. We identified 221

OTUs from Bacillus, representing 12% of sequences (143,775) (S8 Table in S1 File). Bacillus
OTUs were identified as B. cereus, B. pumilus, B. firmus, B. aquimaris, B. vallismortis, B. thurin-
giensis, and Bacillus sp. We constructed a 16S phylogenetic tree with the Bacillus sequences to

describe their diversity in the mosquito microbiome. The Bacillus tree showed that the popula-

tions were divided into two groups: eggs and females. To identify the phylogenetic placement

of the OTUs, the tree included sequences from reference strains. There were 13 Bacilli in the

clade of B. cereus that came from aquatic and adult stages. However, none were identical to B.

cereus or B. thuringiensis type strains. Only two OTUs were detected in all four stages, includ-

ing the most abundant, corresponding to B. seohaeanensis and B. pseudofirmus (Fig 4).

The genusWolbachia was found in various samples in a nonhomogeneous pattern. We

assigned 203WolbachiaOTUs with more than two occurrences from 115,296 sequences (S9

Table in S1 File). These constituted 9.6% of the total system. However, theWolbachia abun-

dance in each sample ranged from 0 to 32%. In the sample ’males_s2,’ no OTUs were detected

despite the identification of Ae. albopictus within that sample. While in the samples exclusive

to Ae. aegypti, only sixWolbachiaOTUs were present, which also appeared in other samples.

Fig 3. Insecticidal toxins detected in metagenomic shotgun sequences. The heatmap shows the observed sequences annotated as toxins in the

Bacterial Pesticidal Protein Resource Center database. Each toxin type is highlighted in different colors. The Crystal type (Cry) protein family

encompasses 78 representative sequences.

https://doi.org/10.1371/journal.pone.0302328.g003
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Fig 4. Bacillus diversity in mosquito microbiomes. A) Neighbor-joining tree of the Bacillus OTUs along with ATCC reference strains of Bacillus
thuringiensis, B. cereus, B. amyloliquefaciens, B. subtilis, and B. atrophaeus. B) UpSet diagram of the distribution of Bacillus shared OTUs.

https://doi.org/10.1371/journal.pone.0302328.g004
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Adult samples exhibited a shared presence of 116 OTUs. As expected, the presence ofWolba-
chia in aquatic stages was minimal for all samples (0.037%). Wolbachia was not found in males

from site 2. In contrast, females from site 3 showed 158WolbachiaOTUs.Wolbachia abun-

dances or diversities were not similar within a sampling location or sex (S9 Table in S1 File). A

phylogenetic tree was constructed for a more detailed description, including reference

sequences (Fig 5). The tree showed that the OTUs corresponded primarily to strains ofWolba-
chia from supergroup B, and 9 OTUs were associated with supergroup A. However, both

supergroups were abundant and prevalent amongWolbachiaOTUs.

The recruitment ofWolbachia sequences in the metagenomes was conducted to understand

similarities toWolbachia previously isolated from Aedesmosquitoes and other Diptera, such

as Culex and Drosophila. We used three strains ofWolbachia as reference genomes: wAlbB
(PRJEA76855), wPip (PRJNA30313), and wMel (NZ_CP046925.1). The sample from site 2 pre-

sented moreWolbachia sequences, so the recruitment of that sample had better coverage. The

genome coverage of the wAlbB strain was almost complete in the sample from the female from

site 2 (wAlbB 83.05%, wMel 60.72%, and wPip 58.46%). The wAlbB recruitment showed a dis-

tribution across the entire genome of sequences with identities of 100%, so it is feasible that

this strain was in this sample. Recruitment also confirmed Wolbachia diversity because there

were many hits with identities between 85 and 99% throughout the genome (Fig 6 and S9

Table in S1 File).

We searched for cif genes associated with cytoplasmic incompatibility generated byWolba-
chia. Cif genes were only identified in the adult samples from site 2, which were the samples

with the highest number ofWolbachia sequences. We identified 425 sequences corresponding

to four cifA and 16 types of cifB. The genes were similar toWolbachia cif genes found in Culex
pipientis, Nasonia oneida, and Ceratitis capitata (S9 Table in S1 File).

Discussion

The microbiome of the Aedes spp. collected in Mexico was similar to those already reported

for field and laboratory mosquitoes. Proteobacteria, Actinobacteria, and Firmicutes were the

most abundant phyla; together, they accounted for 89% of the system, and an increase in Pro-
teobacteria was observed in the adult stage [6, 56–58]. We observed a doubling of Proteobac-
teria in adults (from 35 to 73%), which is expected due to the change in diet. For females,

blood intake promotes the growth of bacteria tolerant to reducing oxide environments [9].

Genera exhibited a unique distribution pattern across each sample, with only 16 genera consis-

tently present throughout. We observed a small core and a high proportion of rare OTUs, sug-

gesting stochasticity within their natural environment [59]. This could also be indicative of

intense competition among the bacteria or temporal instability within the bacterial communi-

ties. Studies focusing on isolated individuals have demonstrated significant variability between

individuals, aligning with the observed small core [15, 60]. As in other studies, we detected

that the most abundant egg genus is Pseudodoxanthomonas [56, 61].Mycobacterium is the

most abundant genus in larvae (in agreement with Zouache [16]). It is not typical for Zymo-
bacter to be dominant in adults; however, its presence is typical [62], and in a field study in

Malaysia, Zymobacter was also one of the most frequent bacteria [63].

Our beta diversity analyses demonstrated that the mosquito developmental stage is the pri-

mary determinant of the mosquito microbiome. However, other studies of field mosquitoes

have suggested that the sampling site is a significant factor in shaping mosquito microbiomes

[6]. In our case, the impact of the developmental stage appears to have been more substantial

than that of the location or microenvironment characteristics. Additionally, the variability in

species presence—some samples containing only one species and others two—also proved to
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Fig 5. Wolbachia diversity in mosquito microbiomes. A) Neighbor-joining tree of theWolbachia 16S rRNA gene OTUs. Rickettsia canadensis, Gordonia
lacunae, and Salmonella enterica were used as outgroups. OTUs from Supergroup A are highlighted in blue, while Supergroup B is highlighted in yellow. B)

UpSet diagram of the distribution ofWolbachia shared OTUs.

https://doi.org/10.1371/journal.pone.0302328.g005
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Fig 6. Recruitment of Wolbachia.Wolbachia genomes analyzed against the sample of females from site 2. A) wAlbB PRJEA76855. B)

wPip PRJNA30313. C) wMelNZ_CP046925.1.

https://doi.org/10.1371/journal.pone.0302328.g006
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be a less critical factor than the developmental stage. Yet, we cannot completely dismiss the

potential influence of the collection site in this study, as only one sample per site per state was

examined.

The female samples exhibited little resemblance to each other. In particular, the female sam-

ple S1 is dominated by Pantoea and Ornithinimicrobium. Pantoea is an aerobic bacterium; it is

commonly found in insects, and has been reported to boost insect fitness by metabolizing a

wide range of compounds, including toxic substances [64]. This ability to compete and survive

in various environments makes numerous species within this genus attractive candidates for

biocontrol and bioremediation applications [64]. Ornithinimicrobium is also aerobic, and

remains largely uncharacterized in terms of its metabolic or ecological traits. The observed tax-

onomic diversity between female samples corresponds to distinct metabolic gene patterns. It is

documented that adults’ microbiomes resemble those of pupae upon emergence; however, the

microbiome undergoes a complete transformation after the first feeding and can be shaped by

different blood meal sources or the elapsed time post-blood ingestion [5, 65, 66]. The micro-

biome of adult mosquitoes is molded by the accessibility of varied food sources, such as differ-

ences in nectar and blood [10]. Our sampling protocol does not provide the means to ascertain

whether the females had previously fed or if other environmental factors may have influenced

the microbiome. The substantial proportion of genes related to respiration in the female sam-

ple from site 1 suggests that these mosquitoes have likely blood fed. Aquatic samples display a

more diverse metabolism, and despite differences in bacterial genera, they show high meta-

bolic resemblance. Genes associated with virulence, disease, and defense are found to be less

prevalent in the adult stages.

The shotgun sequencing analysis also allowed us to detect fungi associated with these mos-

quitoes. In eggs and larvae,Mycosphaerella was widely dominant.Mycosphaerella is a pest

found in Diptera from plant galls [67]. In adults, the most common fungi were Aspergillus and

Metarhizium. Aspergillus is a ubiquitous filamentous fungus that is typically found in the soil

but is also capable of colonizing insects such as Tenebrio molitor, Apis mellifera, and Anopheles
coluzzii [68]. In Ae. aegypti, the Aspergillus prevalence was between 4 and 7% of adult samples.

Interestingly, some species of the Aspergillus genus have been reported to have entomopatho-

genic functions in mosquitoes [69]. Like Aspergillus,Metarhizium is a soil fungus that includes

entomopathogenic species. M. anisopliae is commercially produced as a biocontrol agent

against agricultural pests, including mosquitoes [70]. In addition,Metarhizium coinfection

decreased the load of dengue virus in female Ae. aegypti [71]. Moreover, transgenicM. aniso-
pliae have been developed that prevent Plasmodium transmission [72]. The disadvantage of

usingM. anisopliae as a biocontrol agent is that it is not specific to mosquitoes [70]. It is worth

mentioning that in our samples, 3.91 and 0.66% of the adult female sequences corresponded to

Plasmodium.

Detection ofWolbachia in mosquitoes is highly variable.Wolbachia has been reported as a

prevalent and the most abundant taxon for Ae. albopictus [8]. Numerous investigations have

failed to identifyWolbachia in Ae. Aegypti [30, 73, 74]. Nevertheless, Wolbachia has been

found in Ae. aegypti in the Philippines, Thailand, and Panamá in low abundance [21,59, 75].

Numerous studies have been directed towards detectingWolbachia, given its significance for

biocontrol. Most research has employed endpoint PCR using specific primers forWolbachia
supergroups A and B. Additionally, a variety of other methods have been utilized, including

PCR, real-time PCR (qPCR), restriction fragment length polymorphism (RFLP), multilocus

sequence typing (MLST), and massive sequencing of the 16S ribosomal gene [76]. A major

limitation of amplifying specific sequences is the potential to miss other strains. For massive

16S sequence analyses, a notable constraint is that when using Amplicon Sequence Variants
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(ASVs), the less abundant sequences are often discarded [77]. These methodological differ-

ences could be the reason for the highWolbachia diversity observed in our study.

Although we determined that the presence ofWolbachia was null for some samples and

sites, in other samples,Wolbachia was one of the most abundant OTUs. We identified 203

OTUs, which constituted 6% of the amplicon sequences; most corresponded to theWolbachia
B supergroup, and nine OTUs corresponded to the A supergroup.Wolbachia strains are

divided by molecular differences into eight phylogenetic supergroups (A-H). Wolbachia

supergroups A and B are commonly associated with arthropods and have both been detected

in Aedes spp. [78]; co-infection of both groups is even prevalent in Ae. albopictus [21]. Experi-

ments using qPCR have demonstrated that group B is more abundant [66]. Genomic analyses

indicate a low frequency of intergroup recombination, suggesting that the supergroups occupy

distinct niches (Wang et al., 2020). The variation in strain diversity and the sporadic occur-

rence of Wolbachia imply that, at least for the less common strains, vertical transmission of

Wolbachia in Aedes ssp. is inefficient and no solid symbiotic relationship promotes the natural

selection of infected mosquitoes. In addition, only two strains were observed in eggs and five

in larvae, suggesting that mostWolbachia colonization occurs in the adult stage.

Cytoplasmic incompatibility (CI) biocontrol in Ae. aegypti has been carried out withWol-
bachia-free mosquitoes [79], but in mosquitoes naturally infected withWolbachia, like Ae.
albopictus, cytoplasmic incompatibility processes have been generated by crossing a different

phylogenetic group from the same mosquito species or other species, such as D.melanogaster
[80]. Notably, we did not observe the wMel strain used in biocontrol experiments in the field.

In this work, we found that the diversity of sequences associated with cifA was much lower

than that of cifB (4 and 16 genes, respectively). However, we do not know the potential activity

of these genes to recover CI.

TheWolbachia distribution in Aedes spp. suggests that biocontrol by release fromWolba-
chia-transfected mosquitoes could have different efficiencies in different populations of Aedes
spp. These biocontrol strategies depend on cytoplasmic incompatibility (CI), directly in the

case of the incompatible insect technique (IIT) or to amplify the effect of the population

replacement strategy (PRS). When vertical transfer is not efficient, CI is not efficient; the possi-

bility of a diversity ofWolbachia in females could include rescue by cifA expression in females

[81]. Cytoplasmic incompatibility rescue becomes less likely than vertical transmission when

the introduced strain has a different phylogenetic origin, whereas vertical transmission effi-

ciency can be improved with temperature-resistantWolbachia strains [30]. Regardless, the

results using PRS are impressive. In Indonesia, it was possible to reduce the incidence of den-

gue by 77% owing to the release of mosquitoes transfected with wMel [82].

We identified 221 BacillusOTUs, of which 13 corresponded to the Bacillus thuringiensis
and B. cereus groups. Because we detected 78 Cry toxins, we assumed the presence of Bt. We

found that the B. thuringiensis clade is only abundant in the aquatic stages of the mosquito life

cycle, which could indicate its adult toxicity. The genes for Cry and Mcf toxins found in differ-

ent samples in apparently healthy specimens would not prevent consideration of these toxins

or bacteria as biocontrol agents. In total, 102 toxins were identified, including Cry toxins. The

gene sequences of these toxins differ from those previously reported, so samples from free-liv-

ing mosquitos are an excellent source of toxin biodiversity.

We also detected other bacteria with mosquito biocontrol potential. Spiroplasma is a male-

killing bacterium for Coleoptera [83]; Serratia prevents malaria in the mosquito and is an

insect pathogen [84]; Clostridium restricts systemic CHIKV infection [85] and produces larvi-

cidal toxins [86]; and Lysinibacillus can produce antimalarial siderophores [87]. We also found

Enterobacter, which has been used to express transgenic toxins in the midgut mosquito (para-

transgenic control) [88].
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Conclusion

We identified a source of microorganisms and toxins with insecticidal potential in different

mosquito populations, mainly in eggs. We determined that the microbiome is strongly associ-

ated with the mosquito developmental stage. Additionally, we detectedWolbachia with the

potential to generate and recover cytoplasmic incompatibility. Understanding the microbiome

of wild mosquito eggs and larvae could be relevant for developing future biocontrol strategies.
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