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Abstract

Rheumatoid arthritis causes joint inflammation due to immune abnormalities, resulting in

joint pain and swelling. In recent years, there have been considerable advancements in the

treatment of this disease. However, only approximately 60% of patients achieve remission.

Patients with multifactorial diseases shift between states from day to day. Patients may

remain in a good or poor state with few or no transitions, or they may switch between states

frequently. The visualization of time-dependent state transitions, based on the evaluation

axis of stable/unstable states, may provide useful information for achieving rheumatoid

arthritis treatment goals. Energy landscape analysis can be used to quantitatively determine

the stability/instability of each state in terms of energy. Time-series clustering is another

method used to classify transitions into different groups to identify potential patterns within a

time-series dataset. The objective of this study was to utilize energy landscape analysis and

time-series clustering to evaluate multidimensional time-series data in terms of multistability.

We profiled each patient’s state transitions during treatment using energy landscape analy-

sis and time-series clustering. Energy landscape analysis divided state transitions into two

patterns: “good stability leading to remission” and “poor stability leading to treatment dead-

end.” The number of patients whose disease status improved increased markedly until

approximately 6 months after treatment initiation and then plateaued after 1 year. Time-

series clustering grouped patients into three clusters: “toward good stability,” “toward poor

stability,” and “unstable.” Patients in the “unstable” cluster are considered to have clinical

courses that are difficult to predict; therefore, these patients should be treated with more

care. Early disease detection and treatment initiation are important. The evaluation of state

multistability enables us to understand a patient’s current state in the context of overall state
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transitions related to rheumatoid arthritis drug treatment and to predict future state

transitions.

Introduction

Rheumatoid arthritis (RA) causes joint inflammation due to immune abnormalities, resulting

in joint pain and swelling. In recent years, there have been considerable advancements in the

treatment of RA, partly due to the development of drugs such as methotrexate (MTX), biologic

disease-modifying anti-rheumatic drugs (bDMARDs), and targeted synthetic DMARDs

(tsDMARDs) such as Janus kinase (JAK) inhibitors; furthermore, the “treat-to-target (T2T)

algorithm”, in which treatment is periodically adjusted to a target disease index, has led to

improvements in RA treatment [1–5]. However, even with these approaches, only approxi-

mately 60% of patients achieve remission. Therefore, 10–20% of RA patients who are treat-

ment-refractory have been identified as having difficult-to-treat (D2T) RA. In 2020, the

European League Against Rheumatism (EULAR) published the D2T RA EULAR Definition.

The development of appropriate treatments for refractory patients is urgently needed [6–8].

Due to advances in information technology, a variety of digitized data from daily practice,

such as electronic medical records and various laboratory test values, can be collected. There-

fore, expectations regarding “real-world evidence” are increasing [9–11]. However, the aim of

many clinical studies is to consider the whole treatment as a “single intervention” and to deter-

mine the effectiveness and safety of that intervention while eliminating bias as much as possi-

ble. Multidimensional time-series data over the entire course of treatment are rarely analyzed

in a temporal manner. In contrast, daily practice requires that the patient’s condition be

observed over time and that the treatment method be selected in a timely manner to optimize

efficacy and survival time. In other words, in daily practice, the whole treatment is not consid-

ered a “single intervention.” Instead, the optimal treatment is selected based on the constantly

changing state of the patient. To obtain high-quality real-world evidence, it is necessary to

develop a method for analyzing multidimensional time-series data in a time-dependent man-

ner over the course of treatment and providing information that is more consistent with deci-

sion-making in daily practice [12, 13].

In multidimensional time-series data analysis in medicine, there are examples of applying

dynamic treatment regimens (DTRs) and deep learning. However, establishing DTRs requires

data on all treatments beginning at the initial visit in addition to an intermediate covariate his-

tory. The computational requirements for model building are high. Therefore, DTRs are often

used in clinical trials or observational studies where multiple treatment regimens that are pre-

dicted in advance are compared in a time-dependent manner [14–17]. Furthermore, the logic

of deep learning is not very transparent. In many cases, the rationale is unclear, thus making it

difficult to implement deep learning in daily practice [18–24].

The Kyoto University Rheumatoid Arthritis Management Alliance (KURAMA) cohort

database of the Rheumatology Center of Kyoto University Hospital includes data on initial

consultation, follow-up, blood tests, etc., from all patients with RA visiting the center. The

database has both clinical and research applications. It includes information on more than

3,000 patient registrations with more than 40,000 disease activity data points and has already

been used extensively for the analysis of drug administration and disease activity [25–28]. The

KURAMA cohort database includes high-quality, multidimensional time-series data and is

considered to be suitable for time-series data analysis.
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Energy landscape analysis is used to estimate a model distribution of maximum likelihood

from data, making it possible to visualize the ease with which transitions occur between high-

and low-energy states and thus enabling intuitive interpretation [29, 30]. Patients with chronic

or multifactorial diseases shift between states from day to day. These patients may remain in a

good or poor state with little change, or their condition may vary frequently. Energy landscape

analysis can quantitatively evaluate the stability/instability of each state as energy, which is not

possible with the conventional method of simply clustering state variables. By assessing stable/

unstable states in addition to conventional good/poor states, energy landscape analysis makes

it possible to determine when interventions are effective and which states are difficult to treat.

Energy landscape analysis is often used in areas such as protein folding and stability analysis

[31–33] and is considered useful for visualizing the state transitions of patients in real-world

practice.

Time-series clustering is another method used to classify transitions into different groups to

identify potential patterns within a time-series dataset [34–39]. Dynamic time warping (DTW)

is a type of time-series clustering that measures the distance and similarity between time-series

data by finding the shortest path, which can be identified by summing the distance (i.e., the

absolute value of the error) between the points of two time series. DTW can determine the simi-

larity of time series even if the length and period of the time series are different [35, 40].

We hypothesized that using energy landscape analysis and time-series clustering with DTW

to evaluate the multidimensional time-series data in the KURAMA cohort would enable the

visualization of transitions between time-dependent states in patients with RA during drug

treatment, thus providing useful information for achieving the goals of RA treatment.

The purpose of this study was to utilize energy landscape analysis and time-series clustering

with DTW to evaluate multidimensional time-series data in the KURAMA cohort in terms of

multistability, thereby facilitating the achievement of RA treatment goals.

Materials and methods

Study design and participants

This single-center, retrospective, observational study utilized the KURAMA cohort database

(S1 Checklist). The study protocol adhered to the principles of the Declaration of Helsinki and

was approved by the Kyoto University Graduate School of Medicine Medical Ethics Commit-

tee through a central collective review (R2820), and written informed consent for study partici-

pation was obtained from all patients. The study received approval on March 30, 2021,

granting access to the data from that point onward.

All patients who presented to the Rheumatology Center of Kyoto University Hospital and

who met the 1987 or 2010 RA classification criteria [41] were enrolled in the KURAMA cohort

study, and clinical and functional data were recorded at baseline and at each visit during the

study. The inclusion criteria were as follows: patients with RA enrolled between January 1,

2011, and December 31, 2018; no previous medication history at the first visit; and onset of

clinical remission within 3 years or follow-up for up to 3 years.

Variables

We defined a model of patient state transitions in RA drug treatment based on T2T. The

patient’s state shifts from time to time. Fig 1 shows the ease and direction of transition of the

patient’s state based on high and low energy in RA practice.

When energy is low, the patient is stable in a good or poor state. On the other hand, when

the energy is high, the patient is unstable and transitions easily to another state. The high-

energy state is considered to indicate the period of effective treatment. Individual states were
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evaluated using a comprehensive disease activity assessment. “Good stability” was defined as

meeting functional remission criteria based on the Health Assessment Questionnaire (HAQ),

and “poor stability” was defined as falling below the energy threshold without functional

remission (i.e., treatment dead-end) [42]. The term “treatment dead-end” indicates that the

patient will be not in remission, regardless of all potential future treatment sequences. In this

study, the treatment period was 3 years, and the state of each patient was evaluated up to 12

times. In RA practice, the physician collects information about the patient’s state through

visual examination, palpation, blood tests, and imaging tests. Variables related to disease activ-

ity, bone destruction, and immunological response are used in comprehensive disease activity

assessments in daily practice and were used to characterize the patient’s state in this study,

including:

• Rheumatoid factor (RF)

• Erythrocyte sedimentation rate at 1 hour (ESR1h)

• Patient’s visual analog scale (PtVAS)

• Doctor’s visual analog scale (DrVAS)

• State of bone destruction according to Steinbrocker’s staging classification (STAGE) [43]

• Swollen joint count– 28 joints (SJC28)

• Tender joint count– 28 joints (TJC28)

The time-series data that served as input values for the energy landscape analysis were

binarized as high activity (i.e., nonremission) = 1 and low activity (i.e., remission) = -1. RF and

ESR1h were binarized based on blood test reference values. PtVAS, DrVAS, SJC28, and TJC28

were binarized based on Boolean remission criteria [44], and STAGE was binarized based on

Steinbrocker’s staging classification [43]. The remission criteria were as follows:

• RF = 15 #Unit: IU/mL

• ESR1h (male) = 10 #units: mm

• ESR1h (female) = 20 #units: mm

Fig 1. Patient state transition model in RA drug treatment. The higher the energy is, the more unstable the state and the easier it is to obtain a

therapeutic effect. At initial consultation, many patients present in a poor state and with high disease activity (i.e., high energy). With treatment, they

may transition to a good state or stabilize in a poor state. The physician observes the patient’s state and executes a treatment strategy to stabilize the

patient in a good state or to prevent stabilization in a poor state below a certain energy threshold. The objective of this study was to visualize the state

transitions of these patients as a population.

https://doi.org/10.1371/journal.pone.0302308.g001
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• PtVAS = 10 #100mm VAS

• DrVAS = 10 #100mm VAS

• STAGE = 3 #stage 1, 2 or stage 3, 4

• SJC28 = 1

• TJC28 = 1

Since there are two patterns per factor (i.e., +1/-1), analyzing seven factors generates 128

(i.e., 2^7) activity patterns. The physician selected the optimal treatment according to this

information (i.e., state number) (Fig 2).

Medications for RA were reviewed at least every 3 months until treatment goals were

achieved according to T2T. The drug therapies were categorized as follows: “conventional syn-

thetic DMARDs (csDMARDs) including MTX”; bDMARDs, including “cytotoxic T lympho-

cyte antigen 4-immunoglobulin G (CD80/86)”, “interleukin-6 (IL6) inhibitor,” “tumor

necrosis factor (TNF) inhibitor”; and “tsDMARDs (JAK)”.

Analytical methods

Overview of the analytical methods. Energy landscape analysis was used to assess and

visualize state multistability as “energy.” Dynamic systems were formulated with a Boltzmann

machine that used the Boltzmann distribution with energy to define the probability distribu-

tion. The Boltzmann machine reduced multidimensional data to a measurement considered to

represent “energy.” An index of multistability was assigned to each state to identify whether

the disease condition was improving or worsening. Furthermore, multidimensional time-

series clustering of patients enabled us to classify and visualize the time-series transitions of

unstable and stable states.

Energy landscape analysis and the Boltzmann machine. For each patient (s), there are

seven different factor values (i) observed at each of the 12 time points (t) every 3 months over

3 years. Let O ¼ fTJC28; SJC28; STAGE;DrVAS; PtVAS; ESR1h;RFg and T = {1,2,. . .,11,12}.

Each factor xi(t) is binarized (-1 or +1) according to the clinical criteria for i2O and t2T.

Fig 2. Treatment selection by the Rheumatologist based on state number. Physicians select the optimal treatment according to seven test results

(i.e., RF, ESR1h, PtVAS, DrVAS, STAGE, SJC28, and TJC28) that are used in comprehensive disease activity assessments in daily practice.

https://doi.org/10.1371/journal.pone.0302308.g002

PLOS ONE Energy landscape analysis and time-series clustering for rheumatoid arthritis

PLOS ONE | https://doi.org/10.1371/journal.pone.0302308 May 6, 2024 5 / 22

https://doi.org/10.1371/journal.pone.0302308.g002
https://doi.org/10.1371/journal.pone.0302308


We apply a Boltzmann machine [45] that extends the deterministic dynamics of the Hop-

field model, a well-known model of associative memory, to stochastic dynamics.

The Boltzmann machine is defined as a multidimensional Boltzmann distribution. The def-

inition of the distribution includes energy. A stochastic model on an undirected graph G (O,

E) is defined, where E is the set of (i,j) links between nodes i,j2O.

P X ¼ ðx1; x2; . . . ; x6; x7Þjθ;Wð Þ≝
expð� FðX ¼ ðx1; x2; . . . ; x6; x7Þjθ;WÞÞ

Zðθ;WÞ

Zðθ;WÞ≝
X

xi¼� 1;þ1;i2O

expð� FðX ¼ ðx1; x2; . . . ; x6; x7Þjθ;WÞÞ

FðX ¼ ðx1; x2; . . . ; x6; x7Þjθ;WÞ≝ �
X

i2O

yixi �
X

i;j2O

wijxixj;

where xi = −1 or +1, vector θ = {θi}, and matrix W = {wij} for i,j2O. G (O, E) are assumed in

the link structure of the Boltzmann machine, such that wij = wji and wii = 0. The third equation

is called the energy function. The second equation is the normalizing constant of the first equa-

tion. According to the definition of the first equation, this Boltzmann machine is a mathemati-

cal model in which the energy function is smaller than the monotonically increasing nature of

the exponential function, and the activity pattern appears with higher probability.

The parameters θ and W are trained to match the probability of occurrence of the actual

observed data. For each person s2S, the observation vector obtained at each time t2T is

assumed to be generated from an independent homoscedastic distribution. For the obtained

dataset D ¼ fxs
iðtÞji 2 O; t 2 T; s 2 Sg, the maximum likelihood method is applied to estimate

the parameters s θ and W that satisfy the following equation:

ðθ;WÞ ¼ argmax
θ;W

LDðθ;WÞ

LDðθ;WÞ≝
Y

t2T;s2S

PðX ¼ ðxs
1
ðtÞ; xs

2
ðtÞ; . . . ; xs

6
ðtÞ; xs

7
ðtÞÞjθ;WÞ

The parameter that maximizes this log-likelihood function, log LD(θ,W), is obtained using

the gradient ascent method as follows:

y
new
i � y

old
i ¼ ε

P
t2T;s2Sx

s
iðtÞ

12jSj
� Eold½XðiÞ�

� �

;

Jnewij � Joldij ¼ ε

P
t2T;s2Sx

s
iðtÞx

s
jðtÞ

12jSj
� Eold½XðiÞXðjÞ�

� �

;

where Eold is the expected value from the Boltzmann distribution using the previous parameter

in the dataset, X(i) is the i-th element of X,i,j2O, |S| is the number of elements in S, and ε = 0.2

is the learning rate. Up to 5,000,000 iterations were performed.

Disconnectivity graph. First, a minimal activity pattern X = {xi|i2O} is defined such that

for any activity pattern Y with one different node in X, F(Y)≧F(X) holds for the given param-

eters s θ and W. Next, a path a with X and Y is defined. Let A(X,Y,a) = {Z|Z transform X one

node at a time until it can be transformed into Y}. Note that this set exists for the number of

paths a. Finally, the energy of the highest hill to be surmounted by path a is maxAðX;Y;aÞ FðZÞ.
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The energy barrier of the transition from X to Y is defined as mina½maxAðX;Y;aÞ FðZÞ� � FðXÞ
[29, 46, 47].

Time-series clustering. We chose the variables yid(t) based on the activity pattern and

chose the energy and HAQ for patient id and time t. Clustering was performed using the k-

means method with distances based on the dynamic contraction method toward time-series

vectors fyidðtÞgt2T , where yidðtÞ 2 RjOj � R2
; for id = 1,2,� � �,N, T is the time point, and N is the

number of samples [48].

The number of clusters K was determined by the elbow method or silhouette analysis [49,

50]. The initial central value fcidðtÞgt2T of cluster k was randomly chosen for

cidðtÞ 2 RjOj � R2
. The following method of minimizing the within-cluster sum of squared

errors of prediction (SSE) was used. Iterations by the k-means method were performed up to

50 times. The center value was updated by the mean vector in the cluster.

SSE ¼
XK

k¼1

XN

id¼1

dðid;kÞfDTWðfyidðtÞgt2T ; fc
idðtÞgt2TÞg

2

dðid;kÞ ¼

1; if id ¼ argmin
k2f1;2;���;Kg

DTWðfyidðtÞgt2T ; fcidðtÞgt2TÞ

0; otherwise

8
<

:

The distance function DTW: Ru
� Rv

! R of two time-series vectors fxtg
S
t¼u; fytg

S
t¼v is

defined as follows:

DTWðfxS; fytg
S
t¼vÞ ¼

XS

t¼v

jxS � ytj; DTWðfxtg
S
t¼u ; ySÞ ¼

XS

t¼u

jxt � ySj;

DTWðfxtg
S
t¼u; fytg

S
t¼vÞ

¼ jxu � yvj

þmin½DTWðfxtg
S
t¼uþ1

; fytg
S
t¼vÞ;DTWðfxtg

S
t¼uþ1

; fytg
S
t¼vþ1
Þ;DTWðfxtg

S
t¼u; fytg

S
t¼vþ1
Þ�;

for u<S and v<S, where |・| is the Euclidean distance. The DTW algorithm [51] for calculat-

ing the distance between two time series uses least-cost elasticity matching, which does not

allow the time series to intersect.

Analysis environment and preprocessing

Oracle Autonomous Data Warehouse and Oracle Cloud Infrastructure Data Science were

used as analysis environments. The Statistics and Machine Learning Toolbox and the Energy

Landscape Analysis Toolbox v1.2 [29] of MATLAB R2022b were used for energy landscape

analysis.

For missing value completion, STAGE, which comprises categorical data, was substituted

for the before and after data. All other factors were numerical data, and linear interpolation of

time-series data was used; for patients with fewer than 12 points, data were generated in the

same way as for missing value imputation above. For example, for patients who entered remis-

sion or who withdrew from the study, data were generated in the same way as for the final

point until the patients reached 3 years of remission. In the case of missing time-series points,

categorical STAGE data were assigned before and after the values, and the numerical data

were linearly interpolated.
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Results

Participants and descriptive data

A flowchart of the subject selection, the 3-year trends for the seven factor values, and the distri-

bution of the drug therapies administered are shown in Fig 3.

From the 3,439 individuals enrolled in the KURAMA cohort from 2011 to 2018, we

excluded 2,401 individuals who were duplicates or who lacked laboratory values or medication

information within 3 years of their first visit. In addition, we excluded 441 patients with a his-

tory of past medication use at the time of their first visit. Thus, 597 patients were ultimately

included in the analysis.

The baseline characteristics of the 597 subjects are shown in Table 1.

Results of the energy landscape analysis

The parameters of the Boltzmann machine were as follows:

θ = -0.4259–0.1940–0.2995–0.0313 0.7974–0.0784 0.6501

W = 0 0.1922 0.0028 0.5739 0.2281–0.0108 0.0189

0.1922 0 0.2048 0.5580 0.0284 0.1376–0.0332

0.0028 0.2048 0 0.1392 0.1422 0.0141 0.1811

0.5739 0.5580 0.1392 0 0.2834 0.1383 0.0793

0.2281 0.0284 0.1422 0.2834 0 0.0850–0.0103

-0.0108 0.1376 0.0141 0.1383 0.0850 0 0.2284

0.0189–0.0332 0.1811 0.0793–0.0103 0.2284 0

Fig 3. Subject selection flowchart, binarized averages of the seven factors, and distributions of administered drug therapies. (A) The subject

selection flowchart. (B) Binarized averages of the seven factors over 3 years. (C) 3-year trends in the distributions of administered drug therapies. The

horizontal axis shows the number of points (0–11) at which the treatment effect was assessed (every 3 months). The 3-year average values of the

seven factors were as follows: DrVAS = -0.11, Pt VAS = 0.49, TJC28 = -0.26, SJC28 = -0.22, STAGE = -0.17, RF = 0.51, and ESR1h = 0.03. Regarding

the percentages of patients receiving each drug therapy, the 3-year averages were as follows: csDMARDs = 54%, CD80/86 = 10%, IL6 = 9%, TNFα =

26%, and JAK = 1%.

https://doi.org/10.1371/journal.pone.0302308.g003
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Energy landscape analysis (Fig 4, Table 2, and S1 Table) revealed that patient state could be

divided into two fixed disease state patterns: “good stability leading to remission” (blue) and

“poor stability (i.e., treatment dead-end) (red).

Fig 4A shows the activity patterns. The numbers shown in the directed graph in Fig 4A are

unique state numbers. The scale to the right indicates the high and low energy values of each

state. The higher the energy value is, the more unstable the state is and the easier it is to transi-

tion to another state. On the other hand, the lower the energy value is, the more fixed the state

is and the harder it is to transition to another state. In other words, higher energy values indi-

cate that the patient is more responsive to drug treatment or that the rate of disease deteriora-

tion exceeds the effect of drug treatment. On the other hand, lower energy levels mean that the

patient is more likely to remain in the current state and that the disease is less likely to improve

or worsen.

Fig 4B shows whether each of the seven factors met the remission and nonremission criteria

according to the state numbers that take the minimal energy of the patterns of good stability

and poor stability. The factors shown in black met the remission criteria, while those in white

did not. In the “good stability” pattern, all factors except RF and PtVAS met the remission cri-

teria. On the other hand, in the “poor stability” pattern, none of the factors reached the remis-

sion criteria.

The patient’s state could switch between the two patterns as a result of drug treatment

effects or other factors. Fig 4C shows the threshold value of the energy at which pattern transi-

tions can occur (see: “Disconnectivity graph”).

Table 1. Baseline characteristics of the 597 subjects.

Sex

Male, n (%) 123 (20.6%)

Female, n (%) 474 (79.4%)

Age, laboratory values at initial examination,

etc.

(Mean±SD, Median (Range))

Age at initial examination

(years)

61.1 ± 13.1, 63.0 (17.0–91.0)

Duration of illness (years) 9.2 ± 11.0, 4.9 (0.1–62.4)

Age at disease onset (years) 51.9 ± 15.0, 53.0 (5.0–89.0)

HAQ 0.7 ± 0.7, 0.5 (0.0–3.0)

mHAQ 0.5 ± 0.6, 0.4 (0.0–2.9)

ACPA (U/mL) 175.1 ± 255.7, 76.9 (0.5–

1960.0)

RF (IU/mL) 138.6 ± 250.7, 49.2 (6.0–

2173.8)

CRP (mg/dL) 1.4 ± 2.4, 0.4 (0.0–23.4)

ESR (mm/h) 32.8 ± 25.9, 24.0 (0.0–124.0)

CDAI 14.5 ± 10.8, 12.0 (0.0–66.0)

SDAI 16.3 ± 12.3, 13.6 (0.2–71.8)

DAS28-ESR 4.1 ± 1.5, 4.1 (1.0–8.1)

DAS28-CRP 3.5 ± 1.4, 3.4 (1.0–7.8)

Stage, Class

Stage 1, 2, 3, 4 33.5%, 25.0%, 14.7%, 26.8%

Class 1, 2, 3, 4 20.9%, 63.1%, 14.9%, 1.0%

https://doi.org/10.1371/journal.pone.0302308.t001
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Fig 4D shows the distributions of state numbers and energies. The horizontal axis is the

energy value, and the vertical axis is the number of states. The line in red indicates the energy

threshold (-1.48) at which the pattern can move between states. The threshold value was

approximately -1.48. Approximately 85% (109/128) of the state numbers had energy values

that could be transferred between patterns.

The state numbers were aggregated into four quadrants at the energy threshold, and the

number of patients per quadrant was calculated (Fig 5).

Fig 5A divides energy and pattern into four quadrants by threshold. The quadrant in which

the energy is lower than the threshold and the activity pattern is “good stability” is G-L; the

quadrant in which the energy is higher than the threshold and the activity pattern is “good sta-

bility” is G-H; the quadrant in which the energy is higher than the threshold and the activity

pattern is “poor stability” is P-H; and the quadrant in which the energy is lower than the

threshold and the activity pattern is “poor stability” is P-L.

Fig 5B shows the number of patients in each quadrant, with a marked increase in G-L and a

decrease in P-L until approximately two points (i.e., 6 months), followed by a gradual increase

or decrease. P-L decreased until approximately two points (i.e., 6 months), with no significant

change thereafter. G-H decreased significantly throughout the entire period. G-H did not

increase or decrease significantly across the entire treatment period.

Fig 5C shows the HAQ scores in each quadrant: G-L patients met the remission criteria for

almost the entire period; the number of P-L patients who met the remission criteria decreased

over time; the number of G-H and P-H patients who met the remission criteria changed

Fig 4. Results of the energy landscape analysis.

https://doi.org/10.1371/journal.pone.0302308.g004
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Table 2. Factor breakdown per state number (High activity: Nonremission = 1; low activity: Remission = -1), energy per state number, next transition state number,

and minimal state number.

State number RF ESR 1 h Pt VAS Dr VAS STA GE SJC 28 TJC 28 Energy Next transition state number Minimal state number

1 -1 -1 -1 -1 -1 -1 -1 -2.7629 65 81

2 -1 -1 -1 -1 -1 -1 1 0.098937 1 81

3 -1 -1 -1 -1 -1 1 -1 -0.19946 1 81

4 -1 -1 -1 -1 -1 1 1 1.8936 3 81

5 -1 -1 -1 -1 1 -1 -1 -0.79545 1 81

6 -1 -1 -1 -1 1 -1 1 2.0551 5 81

7 -1 -1 -1 -1 1 1 -1 0.94894 5 81

8 -1 -1 -1 -1 1 1 1 3.0307 7 81

9 -1 -1 -1 1 -1 -1 -1 0.84369 1 81

10 -1 -1 -1 1 -1 -1 1 1.4102 26 128

11 -1 -1 -1 1 -1 1 -1 1.1752 3 81

12 -1 -1 -1 1 -1 1 1 0.97285 28 128

13 -1 -1 -1 1 1 -1 -1 2.2545 5 81

14 -1 -1 -1 1 1 -1 1 2.8096 30 128

15 -1 -1 -1 1 1 1 -1 1.7669 31 128

16 -1 -1 -1 1 1 1 1 1.5532 32 128

17 -1 -1 1 -1 -1 -1 -1 -2.8443 81 81

18 -1 -1 1 -1 -1 -1 1 -0.8946 17 81

19 -1 -1 1 -1 -1 1 -1 -0.39429 17 81

20 -1 -1 1 -1 -1 1 1 0.78658 28 128

21 -1 -1 1 -1 1 -1 -1 -1.4456 17 81

22 -1 -1 1 -1 1 -1 1 0.49277 21 81

23 -1 -1 1 -1 1 1 -1 0.18531 21 81

24 -1 -1 1 -1 1 1 1 1.3548 32 128

25 -1 -1 1 1 -1 -1 -1 -0.37108 17 81

26 -1 -1 1 1 -1 -1 1 -0.71684 90 128

27 -1 -1 1 1 -1 1 -1 -0.15312 28 128

28 -1 -1 1 1 -1 1 1 -1.2677 92 128

29 -1 -1 1 1 1 -1 -1 0.47091 21 81

30 -1 -1 1 1 1 -1 1 0.11382 94 128

31 -1 -1 1 1 1 1 -1 -0.13022 95 128

32 -1 -1 1 1 1 1 1 -1.2561 96 128

33 -1 1 -1 -1 -1 -1 -1 -1.421 1 81

34 -1 1 -1 -1 -1 -1 1 1.484 33 81

35 -1 1 -1 -1 -1 1 -1 0.59228 33 81

36 -1 1 -1 -1 -1 1 1 2.7285 35 81

37 -1 1 -1 -1 1 -1 -1 0.49006 101 81

38 -1 1 -1 -1 1 -1 1 3.3837 37 81

39 -1 1 -1 -1 1 1 -1 1.6842 103 81

40 -1 1 -1 -1 1 1 1 3.8091 39 81

41 -1 1 -1 1 -1 -1 -1 1.6325 33 81

42 -1 1 -1 1 -1 -1 1 2.2421 58 128

43 -1 1 -1 1 -1 1 -1 1.4138 59 128

44 -1 1 -1 1 -1 1 1 1.2546 60 128

45 -1 1 -1 1 1 -1 -1 2.9869 37 81

46 -1 1 -1 1 1 -1 1 3.5851 62 128

(Continued)
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Table 2. (Continued)

State number RF ESR 1 h Pt VAS Dr VAS STA GE SJC 28 TJC 28 Energy Next transition state number Minimal state number

47 -1 1 -1 1 1 1 -1 1.949 63 128

48 -1 1 -1 1 1 1 1 1.7785 64 128

49 -1 1 1 -1 -1 -1 -1 -1.8425 113 81

50 -1 1 1 -1 -1 -1 1 0.15031 49 81

51 -1 1 1 -1 -1 1 -1 0.057273 49 81

52 -1 1 1 -1 -1 1 1 1.2813 60 128

53 -1 1 1 -1 1 -1 -1 -0.50023 117 81

54 -1 1 1 -1 1 -1 1 1.4812 118 81

55 -1 1 1 -1 1 1 -1 0.58042 119 81

56 -1 1 1 -1 1 1 1 1.7931 64 128

57 -1 1 1 1 -1 -1 -1 0.077572 49 81

58 -1 1 1 1 -1 -1 1 -0.22506 122 128

59 -1 1 1 1 -1 1 -1 -0.25468 123 128

60 -1 1 1 1 -1 1 1 -1.3261 124 128

61 -1 1 1 1 1 -1 -1 0.86311 125 81

62 -1 1 1 1 1 -1 1 0.54914 126 128

63 -1 1 1 1 1 1 -1 -0.28824 127 128

64 -1 1 1 1 1 1 1 -1.371 128 128

65 1 -1 -1 -1 -1 -1 -1 -3.1347 81 81

66 1 -1 -1 -1 -1 -1 1 -0.34836 65 81

67 1 -1 -1 -1 -1 1 -1 -0.43854 65 81

68 1 -1 -1 -1 -1 1 1 1.579 67 81

69 1 -1 -1 -1 1 -1 -1 -1.8916 65 81

70 1 -1 -1 -1 1 -1 1 0.88338 69 81

71 1 -1 -1 -1 1 1 -1 -0.014557 69 81

72 1 -1 -1 -1 1 1 1 1.9917 71 81

73 1 -1 -1 1 -1 -1 -1 0.15463 65 81

74 1 -1 -1 1 -1 -1 1 0.64557 90 128

75 1 -1 -1 1 -1 1 -1 0.61881 91 128

76 1 -1 -1 1 -1 1 1 0.34096 92 128

77 1 -1 -1 1 1 -1 -1 0.841 69 81

78 1 -1 -1 1 1 -1 1 1.3206 94 128

79 1 -1 -1 1 1 1 -1 0.48609 95 128

80 1 -1 -1 1 1 1 1 0.19691 96 128

81 1 -1 1 -1 -1 -1 -1 -3.1748 81 81

82 1 -1 1 -1 -1 -1 1 -1.3007 81 81

83 1 -1 1 -1 -1 1 -1 -0.59216 81 81

84 1 -1 1 -1 -1 1 1 0.51318 92 128

85 1 -1 1 -1 1 -1 -1 -2.5005 81 81

86 1 -1 1 -1 1 -1 1 -0.63775 85 81

87 1 -1 1 -1 1 1 -1 -0.73698 85 81

88 1 -1 1 -1 1 1 1 0.35703 96 128

89 1 -1 1 1 -1 -1 -1 -1.0189 81 81

90 1 -1 1 1 -1 -1 1 -1.4402 122 128

91 1 -1 1 1 -1 1 -1 -0.66827 92 128

92 1 -1 1 1 -1 1 1 -1.8583 124 128

93 1 -1 1 1 1 -1 -1 -0.90136 85 81
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minimally over time; and the number of P-H patients who met the criteria did not change

over time.

In terms of overall treatment, the number of patients who responded to drug therapy and

who demonstrated an improved disease status increased markedly until approximately 6

months after the start of treatment, after which the rate of increase gradually slowed. The rate

of change plateaued after 1 year.

Results of time-series clustering

Individual patient state transitions are highly variable, making it difficult to identify patterns

across the population (S1 Appendix). Time-series clustering was performed based on activity

Table 2. (Continued)

State number RF ESR 1 h Pt VAS Dr VAS STA GE SJC 28 TJC 28 Energy Next transition state number Minimal state number

94 1 -1 1 1 1 -1 1 -1.334 96 128

95 1 -1 1 1 1 1 -1 -1.3698 96 128

96 1 -1 1 1 1 1 1 -2.5712 128 128

97 1 1 -1 -1 -1 -1 -1 -2.7062 65 81

98 1 1 -1 -1 -1 -1 1 0.12328 97 81

99 1 1 -1 -1 -1 1 -1 -0.56024 97 81

100 1 1 -1 -1 -1 1 1 1.5004 99 81

101 1 1 -1 -1 1 -1 -1 -1.5196 97 81

102 1 1 -1 -1 1 -1 1 1.2986 101 81

103 1 1 -1 -1 1 1 -1 -0.19272 101 81

104 1 1 -1 -1 1 1 1 1.8566 112 128

105 1 1 -1 1 -1 -1 -1 0.030022 97 81

106 1 1 -1 1 -1 -1 1 0.56409 122 128

107 1 1 -1 1 -1 1 -1 -0.056019 123 128

108 1 1 -1 1 -1 1 1 -0.29074 124 128

109 1 1 -1 1 1 -1 -1 0.65994 101 81

110 1 1 -1 1 1 -1 1 1.1827 126 128

111 1 1 -1 1 1 1 -1 -0.2452 127 128

112 1 1 -1 1 1 1 1 -0.49126 128 128

113 1 1 1 -1 -1 -1 -1 -3.0865 81 81

114 1 1 1 -1 -1 -1 1 -1.1692 113 81

115 1 1 1 -1 -1 1 -1 -1.054 113 81

116 1 1 1 -1 -1 1 1 0.094419 124 128

117 1 1 1 -1 1 -1 -1 -2.4687 113 81

118 1 1 1 -1 1 -1 1 -0.56275 117 81

119 1 1 1 -1 1 1 -1 -1.2553 117 81

120 1 1 1 -1 1 1 1 -0.11819 128 128

121 1 1 1 1 -1 -1 -1 -1.4837 113 81

122 1 1 1 1 -1 -1 1 -1.8619 124 128

123 1 1 1 1 -1 1 -1 -1.6833 124 128

124 1 1 1 1 -1 1 1 -2.8302 128 128

125 1 1 1 1 1 -1 -1 -1.4226 117 81

126 1 1 1 1 1 -1 1 -1.8121 128 128

127 1 1 1 1 1 1 -1 -2.4413 128 128

128 1 1 1 1 1 1 1 -3.5995 128 128

https://doi.org/10.1371/journal.pone.0302308.t002

PLOS ONE Energy landscape analysis and time-series clustering for rheumatoid arthritis

PLOS ONE | https://doi.org/10.1371/journal.pone.0302308 May 6, 2024 13 / 22

https://doi.org/10.1371/journal.pone.0302308.t002
https://doi.org/10.1371/journal.pone.0302308


patterns, energy, and HAQ scores, and patient profiling was performed for each cluster. The

number of clusters was set to “3” based on comprehensive analysis using the elbow method

and silhouette technique [48, 49] (Fig 6 and Table 3).

Fig 5. Remission trends by number of people and HAQ score in the four quadrants.

https://doi.org/10.1371/journal.pone.0302308.g005

Fig 6. Results of time-series clustering. (A) Percent changes in the numbers of patients in the following three clusters: cluster 0, “toward good

stability”; cluster 1, “toward poor stability”; and cluster 2, “unstable.” (B) HAQ scores. c Energy values.

https://doi.org/10.1371/journal.pone.0302308.g006
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Cluster 0 (toward good stability) (blue) was defined as patients with low energy, 80% of

whom eventually assumed a good stability pattern and became stable. Cluster 1 (toward poor

stability) (red) was defined as patients with low energy, almost all of whom were characterized

by the “poor stability” pattern and had high HAQ scores. Cluster 2 (unstable) (green) consisted

of patients with relatively high energy, almost all of whom demonstrated a “poor stability” pat-

tern in the early stage of treatment. For the patients in Cluster 2 (unstable)”, the treatment

response was not yet determined, and the majority of them met the remission criterion based

on the HAQ score, although a high proportion of these patients exhibited a “poor stability”

pattern in the early stage of treatment. Although the age at disease onset did not differ signifi-

cantly between clusters, the age at initial diagnosis, duration of disease, and laboratory tests at

initial diagnosis did differ, with the “poor stability” cluster (Cluster 1) showing a greater ten-

dency for age and all laboratory values at initial examination than the other clusters.

The state transitions of individuals from each cluster are shown in the S2 Appendix.

Discussion

Key results

The whole treatment course of patients in the KURAMA cohort was analyzed in a time-depen-

dent manner.

Energy landscape analysis revealed that state transitions were divided into two patterns:

“good stability leading to remission” and “poor stability below the energy threshold without

functional remission (i.e., treatment dead-end).” The energy threshold cutoff for switching

Table 3. Detailed characteristics of patients in the three clusters, based on data obtained at initial examination.

Cluster 0: toward good

stability

Cluster 1: toward poor

stability

Cluster 2: unstable

Sex

Male, n (%) 71 (22.9%) 14 (14.7%) 38 (19.8%)

Female, n (%) 239 (77.1%) 81 (85.3%) 154 (80.2%)

Age, laboratory values at initial

examination, etc.

Age at initial examination

(years)

58.9 ± 12.9 69.2 ± 9.2 60.6 ± 13.4

Duration of illness (years) 2.5 (0.1–47.0) 17.3 (0.1–62.4) 5.3 (0.1–53.7)

Age at disease onset (years) 52.1 ± 14.0 51.5 ± 16.7 51.6 ± 15.7

HAQ 0.6 ± 0.6 1.4 ± 0.8 0.6 ± 0.7

mHAQ 0.4 ± 0.5 1.1 ± 0.7 0.5 ± 0.5

ACPA (U/mL) 73.7 (0.5–1890.0) 107 (0.6–1140.0) 54.8 (0.5–1960.0)

RF (IU/mL) 59.2 (6.0–2173.8) 119.1 (8.0–1466.8) 27.1 (6.0–889.9)

CRP (mg/dL) 0.4 (0.0–23.4) 0.9 (0.0–11.8) 0.3 (0.0–12.2)

ESR (mm/h) 23 (0.0–111.0) 35 (2.0–124.0) 20 (1.0–114.0)

CDAI 11.7 (0.1–53.5) 13.8 (0.5–52.8) 11.4 (0.0–66.0)

SDAI 13.4 (0.2–71.8) 15.5 (1.0–60.4) 13 (0.2–70.1)

DAS28-ESR 4.0 ± 1.5 4.5 ± 1.3 4.0 ± 1.5

DAS28-CRP 3.5 ± 1.4 3.9 ± 1.2 3.4 ± 1.4

Stage, Class

Stage 1, 2, 3, 4 45.80%, 29.70%, 8.40%,

16.10%

10.50%, 10.50%, 21.10%,

57.90%

25.00%, 24.50%, 21.90%,

28.60%

Class 1, 2, 3, 4 23.50%, 67.10%, 9.00%,

0.30%,

3.20%, 51.60%, 42.10%,

3.20%

25.50%, 62.50%, 10.90%,

1.00%

https://doi.org/10.1371/journal.pone.0302308.t003
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between patterns was approximately -1.48. The states were aggregated into four quadrants

based on this energy threshold, and the number of patients in each quadrant was calculated.

The number of patients who demonstrated status improvement increased markedly until

approximately 6 months after the start of treatment, after which the rate of increase gradually

slowed. The rate of change plateaued after 1 year.

Patient profiling by time-series clustering showed that patients were classified into three

clusters: “toward good stability,” “toward poor stability,” and “unstable.” Patients in the

“unstable” cluster are considered to have clinical courses that are difficult to predict in RA

practice; therefore, these patients should be treated with more care. Age at initial diagnosis,

duration of disease, and laboratory values at initial diagnosis tended to differ by cluster, with

the “toward poor stability” cluster exhibiting a higher age and higher laboratory values at initial

examination than the other clusters. Compared to the “toward good stability” cluster, the

“unstable” cluster had a higher age at initial examination and a longer duration of illness, but

the “unstable” cluster tended to have better laboratory values at initial examination. The differ-

ence between these two clusters was marginal; however, there was a possibility that the initia-

tion of effective treatment was delayed in the “unstable” cluster due to the relatively favorable

initial conditions at the time of the first visit. Further research is warranted; however, the

results of this study indicate the importance of early disease detection and treatment initiation,

especially in “unstable” cases.

Energy landscape analysis was performed to visualize the state transitions of the patient pop-

ulation as a whole. However, this approach alone did not allow for the visualization of individ-

ual patient state transitions. We utilized time-series clustering to clarify the specific state

transitions occurring within the given population. These methodologies complemented each

other, revealing insights into both the collective state transitions of the population and the char-

acteristic attributes of patients within that population. Traditionally, treatment decisions have

been made based on past treatment histories and the latest evaluation of disease activity. Energy

landscape analysis and time-series clustering analysis could yield insights regarding how a

patient’s state might transition in the future and the optimal timing for effective treatment.

Limitations

This was a single-center observational study at Kyoto University Hospital that used registry

data from 2011 to 2018. This study also did not evaluate the effectiveness of state transition

visualization in daily RA drug therapy.

Interpretation

Currently, RA treatment practices are based on practice guidelines, and treatment approaches

are determined based on evaluations of the efficacies of previously administered agents. Spe-

cific treatment strategies for individual patients are determined based on data obtained from

comprehensive disease activity assessments and on the treatment history from the initial diag-

nosis to the present, and future state transitions rely on speculation based on physicians’ clini-

cal experience. In our study, patient response to drug therapy and improved disease status

significantly increased for approximately 6 months after the start of treatment and then pla-

teaued after 1 year. Furthermore, our findings demonstrated that the patient population could

be divided into three clusters: “toward good stability,” “toward poor stability,” and “unstable.”

We quantitatively clarified the timing and duration of significant treatment effects through

time-dependent analysis of the state of patients with RA, which is ever-changing due to drug

therapy. In addition to the conventional assessment of overall disease activity, the evaluation

of energy (i.e., state multistability) enables us to understand the relevance of the current state
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in the overall state transition related to RA drug treatment and to predict future state transi-

tions. In the realm of artificial intelligence (AI) applications in healthcare, there is a fascinating

parallel with the domain of chess, shogi, and go AI, where professionals occasionally find

themselves defeated by seemingly unorthodox moves beyond human comprehension [52].

Similarly, in the context of real-world practice visualization derived from our methodologies,

the recommended treatment may significantly deviate from established clinical guidelines.

Despite low disease activity, AI could suggest early and intensive administration of biologic

agents. In such cases, it becomes imperative to assume that the proposed therapeutic approach

of AI holds merit and to therefore perform rigorous validation through randomized controlled

trials (RCTs). Our research suggests the emergence of an innovative approach to the future

landscape of medical research and practice, tentatively termed “AI-based RCTs,” to systemati-

cally investigate and corroborate the efficacy of AI-suggested clinical interventions. In the con-

text of our study, for patients who are likely to experience treatment dead-end, it may be

necessary to select a more effective treatment, such as a biologic, at an earlier stage. For

patients whose condition improves, it may be possible to offer drug discontinuation or dose

reduction. Clinical research involving “unstable” patients may allow for more effective clinical

evaluation with smaller numbers of patients. Furthermore, state transition visualization may

be a useful tool for facilitating communication between physicians and patients. Ultimately, by

selecting treatments according to a patient’s cluster and their state transitions, it may be possi-

ble to adopt a personalized medicine approach targeting each patient’s state. This study sug-

gested the possibility of optimizing the treatment plan based on the whole treatment course.

Generalizability

This was a single-center observational study. Kyoto University Hospital is a tertiary hospital

and may accommodate patients with more severe illness than general hospitals and clinics;

therefore, a multicenter study is needed. In addition, since this study was based on data col-

lected in 2018, new drugs such as JAK inhibitors were likely to be used less frequently. There-

fore, data from 2019 and beyond should be examined in future studies. Analyzing more recent

data will enable the visualization of state transitions of RA drug therapy that more accurately

reflect the reality of daily practice.

We believe that our proposed approach is useful as a visualization method for multidimen-

sional time-series data in medicine and can be applied to diseases other than RA. In general, it

is difficult to intuitively interpret multidimensional time-series data in medicine. We have

made it possible to readily interpret state transitions in the drug treatment of patients with RA

by consolidating the seven factors used in comprehensive disease activity assessment in daily

practice into two dimensions, namely, state number and energy, and clustering along the time

course. In many diseases, even the best treatment does not lead to a cure or remission; there-

fore, conservative treatment is used to prevent deterioration and maintain a good state. For

multifactorial diseases such as diabetes and hypertension, target treatment values such as

HbA1C and blood pressure levels are set by guidelines, and treatment strategies are chosen

based on concepts equivalent to T2T in RA [53, 54]. Various factors, such as diet, lack of exer-

cise, and stress, affect the condition of patients with multifactorial diseases. Nonetheless,

advances in digital health technology have led to increased adoption of personal health records

and health-related apps; therefore, the collection of frequently measured time-series sensor

data from wearable devices is becoming increasingly feasible [55–57]. We believe that our

method may provide useful information for optimizing treatment plans to achieve behavioral

change and personalized medicine by reducing the dimensionality of multiple factors and

visualizing state transitions.
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Considering the application of this research to personalized medicine in daily practice, it is

necessary to develop an application that can calculate energy based on these seven factors and

display its position in the state transition pattern in real time (Fig 7).

In addition, standardization of medical practice is necessary for high-quality multidimen-

sional time-series data collection. Conventional medical practice involves interviewing each

patient and performing necessary tests on a case-by-case basis. In the KURAMA cohort, all

physicians used a common medical questionnaire to record patient states over time under cer-

tain standards and quality controls. It is necessary to standardize data and improve the medical

system to enable the collection of high-quality time-series data that are useful for both medical

care and analysis while balancing routine medical care and data analysis and eliminating

unnecessary burdens as much as possible [58, 59].

Conclusions

This study suggested that evaluating state multistability and determining the patient’s state in

daily practice may enable treatment plan optimization over the entire course of treatment. We

believe that this study will contribute to the development of personalized medicine utilizing

real-world data.
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