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Abstract

Enhanced animal welfare has emerged as a pivotal element in contemporary precision ani-

mal husbandry, with bovine monitoring constituting a significant facet of precision agricul-

ture. The evolution of intelligent agriculture in recent years has significantly facilitated the

integration of drone flight monitoring tools and innovative systems, leveraging deep learning

to interpret bovine behavior. Smart drones, outfitted with monitoring systems, have evolved

into viable solutions for wildlife protection and monitoring as well as animal husbandry. Nev-

ertheless, challenges arise under actual and multifaceted ranch conditions, where scale

alterations, unpredictable movements, and occlusions invariably influence the accurate

tracking of unmanned aerial vehicles (UAVs). To address these challenges, this manuscript

proposes a tracking algorithm based on deep learning, adhering to the Joint Detection

Tracking (JDT) paradigm established by the CenterTrack algorithm. This algorithm is

designed to satisfy the requirements of multi-objective tracking in intricate practical scenar-

ios. In comparison with several preeminent tracking algorithms, the proposed Multi-Object

Tracking (MOT) algorithm demonstrates superior performance in Multiple Object Tracking

Accuracy (MOTA), Multiple Object Tracking Precision (MOTP), and IDF1. Additionally, it

exhibits enhanced efficiency in managing Identity Switches (ID), False Positives (FP), and

False Negatives (FN). This algorithm proficiently mitigates the inherent challenges of MOT

in complex, livestock-dense scenarios.

1. Introduction

Livestock husbandry, an integral component of agriculture, involves the raising of livestock

and has evolved significantly with the advent of smart agricultural technologies during the

fourth agricultural revolution. This intricate practice presents various challenges, including the

need for animal traceability, effective health information management, and accurate perfor-

mance recording. In response to these challenges, innovative monitoring systems
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incorporating deep learning and drone technology have recently emerged to monitor farm

animals and assess their welfare at the farm level. These systems serve multiple purposes, such

as evaluating various monitoring systems, diagnosing welfare issues at individual farms, and

assisting farm managers in identifying, preventing, or resolving problems related to herd wel-

fare [1]. Recent research surveys have emphasized the importance of allowing cows to express

their natural behaviors in their native environment [2–4]. Consequently, the adoption of these

systems contributes to improved animal welfare, preservation of pasture, and informed deci-

sion making among farm managers, the development of management-related systems,

reduced workload, and increased profits.

Unmanned aerial vehicles (UAVs) hold significant promise for wildlife monitoring.

Equipped with remote sensors and integrated with positioning technology, UAVs can capture

extensive remote sensing data, generating high-definition images with spatial resolutions accu-

rate to centimeters or even millimeters [5]. The UAV remote sensing technology has gradually

and extensively applied to investigate the wild animals in grasslands [6–9]. However, drone-

based detection faces some challenges. For example, Luo et al. highlighted that when drones

are applied to track and monitor dense populations of Proctor antelopes, the presence of indi-

vidual antelopes obstructing each other can decrease detection accuracy [10]. Moreover,

improving detection accuracy often requires increased hardware configuration and computa-

tional resources, posing logistical and financial challenges.

Recently, Multi-Object Tracking (MOT) technology has emerged as a prominent area of

research in computer vision [11,12]. It involves analyzing video image data collected from

visual sensors to extract crucial information about targets, including their appearance features

and motion. Additionally, it can explore the relationships among distinct targets simulta-

neously, ultimately generating continuous motion trajectories for each target. Given its mis-

sion-specific characteristics, MOT technology holds remarkable practical significance in

distinct fields like autonomous driving [13] and animal monitoring [14]. Currently, deep

learning-based MOT technology can be broadly categorized into Tracking by Detection

(TBD) and Joint Detection Tracking (JDT), depending on whether the algorithm framework

is end-to-end [15].

Most contemporary multi-objective tracking approaches adhere to the tracking by detec-

tion paradigm. These methods can be roughly categorized into online methods [11,12,16–23]

and offline methods [24–28]. Online methods extend trajectories at each time step, while off-

line methods update trajectories after processing a batch of frames. Within the TBD frame-

work, the initial step involves employing a target detector [29–32] to locate all objects in each

frame. Subsequently, the associations between detections in different frames are established by

comparing the similarity of features extracted from various sources, such as motion models

[33,34], re-identification models [12,19,20,35], or graph neural networks [18,24,25]. Bewley

et al. proposed the SORT algorithm in 2016 [11], which achieved fast speed and high accuracy

without occlusion. But it hardly handles occlusion, resulting in high ID switching times and

low tracking accuracy in the presence of occlusion. In response to this issue, Wojke et al. opti-

mized the SORT algorithm [11] in 2017 and proposed the Deep SORT algorithm [12], which

introduced a deep learning model to extract the appearance features of the target for nearest

neighbor matching in real-time target tracking. This improved the target tracking perfor-

mance in occluded situations and also reduced the problem of target ID switching. The algo-

rithm achieved a significant frame rate in the tracking benchmark. However, the performance

of TBD largely depends on the quality of the target detector used. In addition, due to the vari-

ety of required feature components, the training process is relatively complex.

In order to reduce computational costs, researchers [36–46] have made significant efforts to

use neural networks to complete detection and tracking tasks. For example, Trackor++ [36]
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explored the bounding box regression head of object detectors to enhance tracking, proposing

the re ID model (Siamese Network) and motion model (motion estimation) to better enhance

tracking performance. The chained tracker [38] takes two consecutive frames as inputs and

predicts a pair of bounding boxes for the same target. It uses simple IoU information, and two

adjacent and overlapping nodes can be linked together through their boxes in the common

frame. By alternately applying pairwise box regression and node linking, tracking trajectories

can be generated, achieving good tracking results. JDE [42] adopts the Feature Pyramid Net-

work (FPN) architecture [44] to output a dense prediction map, which includes

box classification results, box regression coefficients, and dense embedding maps. These meth-

ods have been extensively tested and validated for their value in the field of multi-target track-

ing. But its tracking performance is not ideal when facing occlusion conditions. FairMOT [45]

adopted a JDE like approach, but replaced the backbone network with an encoder decoder net-

work, running in a center-based manner, achieving better tracking performance and better

handling of occlusion issues. But it also has certain problems, as it combines detection and

appearance feature extraction in the network structure, triggering competition among various

components and increasing the appearance of target IDs. Based on the FairMOT model, Sim-

pleTrack [47] uses different feature fusion branches to extract different features, aiming to

enhance the feature map modeling in the task head network, amplify the differences between

the task head and the original feature map, and improve the detection and recognition perfor-

mance of the algorithm. Wang et al. [48] applied a time-based encoder decoder architecture to

multi frame prediction while estimating multi-channel trajectory maps. Although these meth-

ods have achieved good detection and recognition performance, they still have not solved the

problem of increased ID switching during long-term tracking.

In the research of drone target positioning, determining the three-dimensional coordinates

of stationary targets is a relatively straightforward task. This involves utilizing the position and

attitude information of the drone in relation to the target, along with angle and range data

from the optoelectronic platform, which can be directly fed into the positioning solution

model. However, maneuvering targets introduce complexity as they are in constant motion,

posing challenges to accurate tracking influenced by various factors. Achieving high-precision

target positioning with unmanned aerial vehicles requires addressing the challenge of state

estimation for these dynamic targets. The objective is to utilize the observation data to estimate

parameters such as the position, velocity, and current state of the target. For nonlinear system

estimation, the Particle Filter (PF) algorithm is commonly employed due to its strong filtering

performance. However, it may exhibit suboptimal performance when tracking target with

high maneuverability. Consequently, researchers have focused on enhancing the PF algorithm

with dynamic models. For instance, Magill et al. [49] initially introduced a Multiple Model

(MM) algorithm by integrating with multiple filters, each corresponding to different target

motion models. Blom et al. [50] analyzed the interaction among multiple models within the

MM algorithm in detail and proposed the Interactive Multiple Model (IMM) algorithm by

incorporating the Markov transition probabilities to better adapt to changing target behaviors.

In 2003, Boers et al. [51] put forward the IMM-based PF algorithm, which demonstrated supe-

rior tracking performance in scenarios involving targets with strong maneuverability.

Presently, MOT encounters several challenges. In densely congested scenarios, detection

results may not always be completely reliable. Instances of missed detections can lead to inac-

curacies in tracking, and the tracking process is susceptible to interruptions when objects are

obstructed or temporarily vanish. On the other hand, target association in complex scenes

often necessitates the use of re-identification features to extract deep surface features, enabling

the re-recognition of partially occluded objects. However, the repetitive nature of feature

extraction operations can significantly increase the computational workload, making it

PLOS ONE High-precision tracking and positioning for monitoring Holstein cattle

PLOS ONE | https://doi.org/10.1371/journal.pone.0302277 May 14, 2024 3 / 22

https://doi.org/10.1371/journal.pone.0302277


challenging for drone platforms to cope with substantial computational demands. In addition,

many visual-based algorithms tend to overlook the height and rolling motion of helicopters.

Considering that the camera is typically fixed to the drone, rapid drone movements can cause

noticeable changes in field of view of the camera, resulting in reduced tracking performance.

This article presents an effective tracking algorithm that adopts the JDT paradigm building

upon the CenterTrack [41] algorithm to address the issues mentioned earlier. The primary

contributions of this article can be summarized as follows:

• A feature enhancement module is designed, incorporating the attention mechanism and the

Swish Activation Function (SAF). This module boosts the tracking performance, especially

of the model for small and overlapping targets.

• A two-stage matching algorithm is proposed to effectively reduce the tracking interruptions

and other issues arising from short-term occlusions of objects.

• The IMM-PF algorithm is employed to maintain high-precision target positioning and

improve overall target tracking performance.

The structure of this article is organized as follows. Section 2 introduces the research field

and objects and provides an overview of the overall system framework. Sections 3 and 4 delve

into the presentation and discussion of the experimental results, respectively. Finally, Section 5

summarizes the findings and conclusions.

2. Materials and methods

2.1 Study area and objects

The study area selected is situated in Youzhi Ranch, Luquan District, Shijiazhuang City, Hebei

Province, it is located at 114.35E, 37.98N, covering a total area of 1,206 acres. Currently, the

ranch accommodates approximately 5,500 dairy cows, of which 5,000 are purebred Holstein

cows. Holstein cows are globally recognized as the top milk-producing and most prolific dairy

breed. Originating from the Netherlands, they have been continually refined through breeding

programs in various countries due to their exceptional milk production capabilities. Currently,

80%–90% of dairy cows worldwide can trace their lineage back to Holstein cows. This ranch

has embraced innovative farming practices, employing the first mobile farming mode of the

world and fully automated rotary milking. This pioneering approach has resulted in the pro-

duction of high-quality milk, reaching international advanced standards in ranch construc-

tion, dairy farming, and dairy variety. Consequently, the ranch serves as an ideal setting for

investigating precise grazing technology driven by artificial intelligence.

In August 2023, the author and research colleagues conducted aerial photography at Shijia-

zhuang Youzhi Ranch. A total of 20 aerial sorties were completed at an altitude of 10 meters for

sampling. Subsequently, Holstein cows were selected as the research subjects, as depicted in Fig

1. Holstein cows are recognized for their distinctive characteristics, including a tall stature, well-

proportioned structure, thin skin, slender bones, and lower subcutaneous fat. They exhibit a

more developed hindquarter compared to the forequarters, resulting in a wedge-shaped appear-

ance when viewed from the side. These cows possess distinct characteristics such as short

capillaries, black and white patches with well-defined boundaries, white spots on the forehead,

and white patches on the lower abdomen, below the knee joints of the limbs, and at the tail.

2.2 System overview

To collect data within the selected area, a P600 type intelligent UAV (manufactured by

Chengdu Bobei Technology Co., Ltd., China) was adopted. Specific details regarding the UAV
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are presented in S1 Table. The P600 UAV serves as a robust research platform, featuring a sub-

stantial payload capacity, extended endurance, and scalability. Equipped with pods, two-

dimensional planar Lidar, and GPS, it enables functions such as pod selection and tracking,

LiDAR obstacle avoidance, UAV position, and speed-guided flight. In addition, the P600 UAV

integrates a Q10F 10x single light pod with a USB interface to enhance its capabilities. A spe-

cific robot operating system (ROS2) driver was developed convenient operation with the P600.

This equipment allows for the real-time image capture through the airborne computer, achiev-

ing image resolutions as fine as 5 cm. Furthermore, it can autonomously track the targets and

adjust its position to maintain a constant distance from moving targets. During the target

tracking, both the UAV and the pod can operate autonomously via ROS2 control.

The workflow of this system is illustrated in the following Fig 2. Initially, drone camera cap-

tured the image of the target. Subsequently, the improved high-reliability tracking algorithm

was employed to detect and track the target. In response to the decrease in tracking accuracy

resulting from motion between the drone and the target during tracking, a target position esti-

mation model was designed herein. This model applies the IMM-PF algorithm to maintain

high-precision target positioning, thereby enhancing the overall target tracking performance.

2.3 Tracking algorithm

The proposed tracking algorithm primarily comprises four key components: input, backbone

network, output, and matching (two-stage). The input data includes red-green-blue (RGB)

Fig 1. Aerial images of the study area.

https://doi.org/10.1371/journal.pone.0302277.g001

Fig 2. The overall technical framework proposed.

https://doi.org/10.1371/journal.pone.0302277.g002
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images from both the current and previous frames, along with the heat-map generated by the

model based on the previous frame. Furthermore, the modified DLA-34 served as the back-

bone network for feature extraction. Subsequently, the obtained feature maps were input into

three branches: heat-map and its offset, object size and its offset, and bi-directional motion

prediction. The outputs from these branches play crucial roles in two matching stages. The

overall workflow is visually depicted in Fig 3.

2.3.1 Improved backbone network. The DLA-34 network presents an encoder decoder

structure that utilizes multi-layer feature aggregation to fuse shallow and deep features. How-

ever, the original DLA-34 had a complex network structure and many parameters, consuming

a large amount of computing resources. In addition, the original DLA-34 network has poor

detection and tracking performance for small and occluded targets due to insufficient feature

extraction capabilities. In order to reduce the number of network computing parameters,

improve computational efficiency, and enhance network generalization ability, we have made

two key improvements [52] to the backbone network of the algorithm based on the DLA-34

network.

Firstly, the Pyramid Segmentation Attention (PSA) feature enhancement module and the

SAF were integrated into the residual block of the DLA-34 network. Secondly, the network

structure and the number of layers were adjusted as required. As explicated in Fig 4, the opti-

mized backbone network is composed of 6 layers (layers 0–5), facilitating the entire down-

sampling process. Initial feature extraction from the input image is completed in layers 0 and 1

using traditional two-dimensional convolution normalization and activation functions. Layers

2–5 utilize an iterative deep aggregation structure to comprehensively extract the feature data

Fig 3. MOT pipeline.

https://doi.org/10.1371/journal.pone.0302277.g003

Fig 4. Backbone network diagram.

https://doi.org/10.1371/journal.pone.0302277.g004
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of the target. Layers 3–5 in Fig 4 represent the up-sampling process. This article interleaves

and connects various basic modules and aggregation nodes to form a tree-like unit with the

ultimate goal of facilitating information exchange among varying levels. For this purpose, the

PSA model [53] was integrated into the backbone network by replacing the 3*3 convolutional

kernel in the node residual block, as depicted in Fig 4. In addition, this article replaced the

Relu activation function adopted in the original DLA-34 network with the SAF to enhance the

generalization ability of the model.

As depicted in Fig 5, the PSA module was primarily executed five steps. Initially, the SPC

module was employed for channel segmentation, and multi-scale features were extracted

based on the spatial information within the feature map of each channel. Subsequently, the

SEW eight module was utilized to extract channel attention from feature maps at distinct

scales, yielding channel attention weights corresponding to these scales. Then, the Softmax

activation function was applied to recalibrate the multi-scale channel attention vector, result-

ing in new attention weights after interaction across these different scales. Moreover, the recal-

ibrated weights were element-wise multiplied by their respective feature maps, generating a

feature map enriched with multi-scale feature information and attention weights. Lastly, the

refined feature map containing a wealth of multi-scale feature information is output by the

model.

Substituting the 3*3 convolution kernel within the residual block of the node using the PSA

module can facilitate the incorporation of multi-scale spatial information and cross-channel

attention into every individual node of the DLA-34 backbone network.

In the mode for the original DLA-34 backbone network, the residual block is referred to as

the Basic Block and its addition strategy is illustrated in Fig 5. The Basic Block, along with its

addition approach, is replaced by the PSA module, which substitutes the 3*3 convolution ker-

nel of the Bottleneck in the original ResNet [54]. The experimental results undeniably demon-

strate that integrating the Basic Block with the PSA module enhances the tracking

performance significantly within the DLA-34 architecture.

Fig 5. The structure of PSA module.

https://doi.org/10.1371/journal.pone.0302277.g005
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SAF is characterized by its smooth, continuous, and monotonic attributes, with a lower but

no upper bound. Incorporating SAF into a model results in a more gradual gradient propaga-

tion, preservation of valuable information, and enhancement of the model’s generalization

ability. The incorporation of SAF into our model proves advantageous for enhancing its target

detection capacity, especially in scenarios involving overlapping targets. The mathematical

expressions for the SAF and its derivatives are given in Eqs (1) and (2).

Swish ¼ x � sðbxÞ ð1Þ

Swish0 ¼ b � x � sðbxÞ þ sðb � xÞð1 � b � x � sðbxÞÞ ð2Þ

Where σ is the sigmoid function, and β signifies a constant or trainable parameter.

2.3.2 Two-stage matching algorithm. The baseline algorithm CenterTrack uses a dis-

tance based greedy matching algorithm to complete data association. It can track targets in

some scenarios, but in some complex and dense scenarios, this method cannot effectively

track occluded targets for a long time, resulting in a sharp increase in ID switching times and a

decline in tracking performance.

A two-stage matching algorithm is designated [55] in this article to improve the tracking

performance in the case of object occlusion. The algorithm leverages bi-directional motion

information and a given stranding region to execute two distance-based greedy matching pro-

cesses. Tracking boxes that do not find a match in the first matching phase are relocated to the

stranding area, where their positions are constantly updated based on object motion predic-

tion. Therefore, when these objects appear again, they can be successfully matched in the sec-

ond matching phase.

The proposed matching algorithm consists of two stages, both employing distance-based

greedy matching strategies. In the first matching phase, objects with successful matches inherit

their ID information from the previous frame, while unmatched objects are kept in the stand-

ing area for potential second-stage matching.

Failure of the initial match can be attributed to two conditions: when a new object emerges

in the current frame, and when an object that was blocked in the previous frame appears

again. To mitigate the risk of incorrectly identifying re-emerging objects as new entities, a sig-

nificant challenge in MOT, this article introduces a “stranding area” to temporarily accommo-

date the obscured objects, providing them an opportunity for a second match if they reappear.

To enhance the implementation of the distance-based greedy algorithm, targets in the

stranded frame were constantly displaced using motion vectors relative to future frames, simu-

lating the movement of the target after occlusion in the real world. Therefore, when these tar-

gets reappear, they can be reconnected through a distance-based greedy matching algorithm,

ensuring the continuity of the tracking trajectory. The visualization of this process is depicted

in Fig 6.

The duration for which an object remains within the “stranding area” is contingent upon

the timing of its reappearance. In some cases, some objects may not reappear at all, necessitat-

ing their removal from the stranding area. To identify objects that are unlikely to return, each

object was allocated a health point upon entering the “stranding area”, with the score gradually

decreasing over time. When the lifetime value of these objects reached 0, they were subse-

quently deleted from the “stranding area”.

If an unmatched object from the first stage still failed to be matched in the stranding area in

the second stage, it was allocated a new ID and treated as a distinct object. The comprehensive

matching algorithm is illustrated in S2 Table.
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2.4 Target positioning algorithm

During the detection and tracking of ground target s by the UAV, the target is surrounded by

a detection frame and marked with an ID. The center of the detection frame is taken as the tar-

get point, and its pixel coordinate is (xp, yp). The target line-of-sight vector,! r , is defined as

the vector between the optical center of the camera and the target point. As a result,! r can

effectively reflect the relative position between the target point T and the UAV. The relation-

ship between the parameters is shown in Fig 7.

Fig 6. Operation process in stranding area.

https://doi.org/10.1371/journal.pone.0302277.g006

Fig 7. Schematic showing the line-of-sight angle.

https://doi.org/10.1371/journal.pone.0302277.g007
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Geographic coordinate system for the UAV was established with the center of the GPS

receiver serving as its origin point herein. In this system, the X-axis and Y-axis point directly

north and east, respectively, while the Z-axis complements the system as the vertical axis,

forming a right-hand coordinate system. The line-of-sight angle is defined as (ρ, ε), where ρ
signifies the angle between the line-of-sight vector directed towards the target and the Z-axis

and is often referred to as the line-of-sight height angle; ε denotes the angle between the pro-

jection of the line-of-sight vector onto the XOY plane and the X-axis, known as the field of

view direction angle. Throughout the flight, the attitude angle of UAV, camera pointing, and

target position can be integrated to determine the ρ and ε values.

To compute the target line-of-sight angle, three coordinate systems were assigned: the cam-

era system (referred to as C, with its origin at the camera’s optical center), the Inertial Mea-

surement Unit (IMU) system (denoted as I, taking its origin at the IMU measurement center),

and the UAV geographic system (knowns as L, with its origin at the GPS receiver center). The

spatial interrelations among these coordinate systems are visually illustrated in Fig 8.

In practical situations, the state of cows undergoes dynamic changes, which are difficult to

capture using a single motion model. The original baseline algorithm is better at handling lin-

ear motion, but in the work of tracking cows using drones, the motion between drones and

cows is usually non-linear, which leads to poor tracking performance of the algorithm. In addi-

tion, during the process of tracking and detecting cows, the horizontal, vertical, and rotational

movements of the drone camera can also affect the tracking effect of the cows. Therefore, it is

necessary to establish a drone positioning algorithm to reduce the interference caused by the

rapid movement of drones and targets on tracking, achieve precise target positioning, and

assist drones in better tracking targets. The task of drone target positioning encompasses three

main systems: the aircraft itself, the camera, and the GPS/Inertial Navigation System (INS).

Fig 8. Coordinate conversion.

https://doi.org/10.1371/journal.pone.0302277.g008
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However, these systems come with their own inherent errors. GPS measurements may exhibit

inaccuracies in estimating the aircraft’s latitude and longitude, while INS can introduce errors

in measuring the aircraft’s attitude. Additionally, camera visual axis jitter further compounds

the complexities. When dealing with moving targets, the PF algorithm offers a suitable

approach, as it excels in handling nonlinear and non-Gaussian system filtering. In this article,

the combined strengths of the IMM and PF algorithms were harnessed into the IMM-PF algo-

rithm to achieve precise target localization [51].

In the context of multiple models, the equations for state transition and observation are

expressed as follows:

xk ¼ F mkð Þxk� 1 þ G mkð Þuk� 1 mkð Þ; ð3Þ

zk ¼ H xk;mkð Þ þ vk mkð Þ: ð4Þ

In the above equations, xk represents the target state vector of the modelmk at time k, and

zk signifies the corresponding state observation variable. The state transition matrix (F), the

observation matrix (H), the process noise (uk), and the observation noise (vk) are all associated

with the modelmk. The probability densities of uk and vk are defined as duk mkð ÞðuÞ and

dvk mkð ÞðvÞ, respectively.

The IMM-PF algorithm tool the IMM algorithm as its foundational framework, incorporat-

ing the PF as the model matching filter. The IMM algorithm encompass four distinct steps:

input interaction, model matching filtering, model probability update, and estimated output.

Within the framework of the IMM algorithm, recursive Bayesian filtering was employed to

describe evolution of the IMM-PF algorithm from time k-1 to k.

(1) Inputting interaction: the interaction probability of the model at time k-1 was computed

by utilizing the expression (5):

mk� 1 mk� 1 j mkð Þ ¼
pi;jmk� 1 mk� 1ð Þ

bk� 1 mkð Þ
: ð5Þ

The normalization factor was expressed as follows:

bk� 1 mkð Þ ¼

X

mk� 12M

pi;jmk� 1 mk� 1ð Þ: ð6Þ

Interactions for state estimations among different particles in varying models l = (1, 2, � � �,N)

were as follows:

~xlk� 1
mkð Þ ¼

XM

mk� 1 6¼mk

~xk� 1 mk� 1ð Þmk� 1 mk� 1 j mkð Þ þ ~xlk� 1
mkð Þmk� 1 mk j mkð Þ: ð7Þ

(2) Interactive model matching filtering: the particle state at time k was predicted by Eq (3):

~xlkðmkÞ ¼ FðmkÞ~x
l
k� 1
ðmkÞ þ GðmkÞ~m

l
k� 1
ðmkÞ ð8Þ

The observed value of the particle state at time k was predicted by Eq (4):

~zlkðmkÞ ¼ Hð~x
l
k;mkÞ ð9Þ
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The particle weight was determined based on the observed system state, denoted as zk, and

the probability density of observation noise was designated as dvk mkð ÞðvÞ.

~wl
kðmkÞ ¼ dvkðmkÞðzk � ~zlkðmkÞÞ ð10Þ

The normalized weight was expressed as follows:

~wl
kðmkÞ ¼

~wl
kðmkÞ

XN

l¼1

~wl
kðmkÞ

ð11Þ

In the above equation, ~xlkðmkÞ was subjected to a further sampling using the

½�xlkðmkÞ ¼ ~xlkðmkÞ� ¼ ~wl
kðmkÞ, yielding a new particle set �xlkðmkÞ, with the particle weight of

�xlkðmkÞ ¼
1

N= . In this context, state of the modelmk at time k can be estimated as follows:

~xlkðmkÞ ¼
1

N

XN

l¼1

�xlkðmkÞ ð12Þ

(3) Update of the model probability: the residual of particle observation was expressed in

Eq (13) below:

rlkðmkÞ ¼ zk � Hð�x
l
k;mkÞ ð13Þ

Similarly, mean of the particle observations could be calculated by expression below:

�zkðmkÞ ¼
1

N

XN

l¼1

Hð�xlk;mkÞ ð14Þ

At this time, the residual covariance was acquired as below:

SkðmkÞ ¼
1

N

XN

l¼1

½Hð�xlk;mkÞ � �zkðmkÞ� � ½Hð�x
l
k;mkÞ � �zkðmkÞ�

T
ð15Þ

The likelihood function was represented in below equation:

LkðmkÞ ¼
1

N

XN

l¼1

NðrlkðmkÞ; 0; SkðmkÞÞ ð16Þ

Ultimately, the model probability was updated:

mkðmkÞ ¼
LkðmkÞbk� 1ðmkÞ

Bk
ð17Þ

Bk ¼
X

mk2M

LkðmkÞbk� 1ðmkÞ ð18Þ

(4) Estimated output: state of the target was assumed as below expression:

x̂k ¼
X

mk2M

x̂kðmkÞmkðmkÞ ð19Þ
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3. Results

3.1 Metrics for tracking

This article assesses various MOT algorithms in diverse scenarios, employing the following

evaluation criteria.

MOT accuracy (MOTA) serves as an intuitive gauge for evaluating the performance of

object detection and trajectory maintenance, regardless of the estimated accuracy of object

positions. A higher MOTA value signifies superior performance, which could be computed

with the following equation:

MOTA ¼ 1 �

P
FNt þ FPt þ IDSWtX

t
GTt

ð20Þ

where, FNt and FPt suggested false negative and false positive, respectively; IDSWt is ID

Switch, and GTt denotes the number of all objects.

MOT precision (MOTP) was adopted to judge the positioning precision, with a larger

MOTP values suggesting a better positioning effect.

MOTP ¼

X

t;i
dt;i

X

t
Ct

ð21Þ

where, d was the average metric distance (i.e., the IoU value of the bounding box) and C

denoted the number of current frames which were successful matched.

IDF1 referred to the F1 score for the identification, which is calculated using Eq (22), where

IDTP indicates the number of correctly matched identifications, while IDFP and IDFN denote

the number of incorrectly matched and unmatched identifications, respectively.

IDF1 ¼
2� IDTP

2� IDTP þ IDFPþ IDFN
ð22Þ

Mostly tracked (MT) refers to the count of successful tracking results where the object’s

position matches the ground truth for at least 80% of the time.

Mostly lost (ML) signifies the count of successful tracking results where the object’s position

matches the ground truth for less than 20% of the time.

ID switch denotes the count of instance in which assigned IDs change during tracking.

Fragmentation (FM) indicates the number of times tracking is interrupted, meaning

instances when the tagged object fails to be matched.

FP represents the count of false alarms, which corresponds to the incorrect trajectory

predictions.

FN reflects the count of missed detections and undetected tracking objects.

3.2 Dataset and experiment setups

In our experiment, the intelligent unmanned field platform equipped with the Jetson AGX

Xavier developed by NVIDIA was utilized for onboard image processing. This modular super-

computer boasts a formidable configuration, featuring a 512 CUDA-core NVIDIA Volta GPU

along with an 8-core ARMv8.2 CPU, offering remarkable AI computing capabilities. Notably,

it exhibits a 10-fold increase in power consumption ratio and a 20-fold boost in performance

when compared to the previous Jetson TX2 platform, which was equipped with a 256 CUDA-

core NVIDIA Pascal GUP and a CPU of quad-core ARM.
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In this article, a dataset was curated, consisting of the data of 10 cow video sequences from

the study area. Approximately 100 video frames with the same interval were selected as a

batch, which were converted into JPEG images of uniform size (640×640), obtaining 6,000

cow images in total. Subsequently, these images were annotated using Labelimage to save

them as XML files. Next, they were annotated into three subsets: training, validation, and test-

ing at a ratio of 7:2:1. The model was trained based on CenterNet, using the improved DLA-34

as the backbone network. Meanwhile, the model optimization was conducted using the Adam

optimizer, with the following training parameters: an epoch count of 160, a batch size of 24,

and an initial learning rate of 1×10−4, which was subsequently reduced to 1/10 during the

100th and 140th epochs. In addition, considering that more than 70% of the occlusion duration

in the cow dataset curated is less than 20 frames, the initial lifespan value of the objects in the

“stranding area” is set to 20.

3.3 Evaluation of benchmarks

To validate the effectiveness of the algorithm enhancements proposed in this article and to

explore the most impactful improvements, a series of ablation experiments were conducted on

the optimized CenterTrack-based MOT algorithm.

Firstly, ablation experiments were performed. MOTA, IDF1, and IDs were selected for

comparative testing to demonstrate the individual contributions of varying improvements, as

summarized in Table 1. (Note: " signifies that a higher evaluation index value indicates better

performance; while # suggests that a lower value means better performance).

Table 1 reveals that compared to the original network, the introduction of the PSA module

resulted in an increase of 6.1% and 0.5% in MOTA and IDF1, respectively, while reducing the

IDs by nearly 10%. By introducing the SAF, the MOTA and IDF1 were increased by 1.3% and

1.6%, respectively, and the IDs also decreased to some extent. In addition, IDs were signifi-

cantly reduced through employing the two-stage matching algorithms in place of the distance-

based greedy matching algorithms. This experiment demonstrated that in contrast to the base-

line method, the improved approach substantially optimized the MOTA, IDF1, and IDs, indi-

cating its enhancements in accuracy of target discrimination and tracking while delivering a

notable optimization effect on the tracking algorithm.

Furthermore, the tracking results under two different scenarios were visualized and ana-

lyzed in Figs 9 and 10, respectively, to assess the robustness of our algorithm in various

scenarios.

In Fig 9, it was apparent that the cow within the red elliptical box was not detected using

the CenterTrack tracking algorithm in frame 450, but it was assigned an ID of 215 by frame

455. By frame 460, both the detection box and ID of the cow disappeared once more due to

occlusion. Conversely, in the same scenario, our algorithm effectively detected cows and stably

assigned them an ID of 198. In addition, the CenterTrack failed to detect all small targets in

the image. Consequently, our algorithm benefits from the finer-grained features provided by

Table 1. Ablation experiment of baseline algorithm.

Model MOTA " (%) IDF1 " (%) IDsw #

Baseline 62.4 66.7 285

Baseline (DLA-34+PAS) 68.5 67.2 259

Baseline (DLA-34+PAS+Swith) 69.8 68.8 256

Baseline+ two-stage matching algorithm 70.5 69.4 243

Ours 72.7 70.2 238

https://doi.org/10.1371/journal.pone.0302277.t001
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the PSA module, demonstrating strong detection and tracking performance for cows in the

image.

Fig 10 provides a detailed view of a specific object tracking when the object is occluded and

then reappears. In this case, target 12 was almost completely obscured by target 16 in the inter-

mediate frame. As depicted in Fig 10(a), when target 12 appeared again, the CenterTrack algo-

rithm assigned it a new ID, namely, 20. However, our algorithm temporarily retained the

occluded target 15 in the stranding area and restored its ID when it reappeared (Fig 10(b)),

thus ensuring uninterrupted tracking.

Finally, the target localization algorithm was integrated to our tracking algorithm for exper-

iments to compare it with the original tracking algorithm, thus assessing the effectiveness of

the target localization algorithm in improving the performance of our tracking algorithm.

With MOTP as the evaluation indicator, the evaluation results are outlined in Table 2.

Table 2 demonstrates a notable enhancement in the MOTP value for the tracking algorithm

integrated with the target localization algorithm, further validating the satisfactory perfor-

mance of the target positioning algorithm.

Fig 11 illustrates the tracking results of a video sequence, showcasing the impressive perfor-

mance of our tracking algorithm in challenging environments. Therefore, this algorithm excels

in accurately detecting multiple targets in each frame, while maintaining consistent tracking of

the same targets.

Fig 9. Comparison of tracking results between our tracking algorithm and the CenterTrack in complex scenarios.

https://doi.org/10.1371/journal.pone.0302277.g009

Fig 10. An example of tracking occluded objects using (a) CenterTrack algorithm; (b) Our algorithm; The blue

arrow represented the bidirectional motion vector.

https://doi.org/10.1371/journal.pone.0302277.g010
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Table 3 provides a comparison of the tracking performance between the proposed tracking

algorithm and the most advanced tracking algorithm.

Table 4 provides a comparison of tracking performance between the proposed tracking

algorithms and state-of-the-art tracking algorithms on the MOT17 and MOT20 datasets.

4. Discussion

The experimental observations demonstrate several advantages of our tracking algorithm. (a)

It incorporated attention mechanisms and multi-scale fusion using a pyramid segmented

attention model to improve the network performance in detecting occluded targets. Further-

more, the ReLU activation function was replaced with SAF to enhance the generalization abil-

ity and to effectively improve the tracking accuracy of the algorithm adopted in this article. (b)

A two-stage matching algorithm, instead of the distance-based greedy matching algorithm,

was employed in the baseline model, which significantly improved the performance in detect-

ing target occlusion. In many cases where a substantial portion of a target is occluded or tem-

porarily disappears from the image, tracking interruptions are common for most existing

tracking algorithms. In contrast, the two-stage matching algorithm proposed in this article

leverages the bi-directional motion prediction information, improving occlusion processing

capabilities. In the matching algorithm, a “stranding area” was set to temporarily store objects

that failed be tracked. When these objects appeared, our method firstly attempted to match

them with objects in the “stranding area”, preventing the mistake of identifying new identities

and thus ensuring a more continuous trajectory. (c) Our tracking algorithm was optimized by

integrating a target positioning algorithm (IMM-PF algorithm) that can handle nonlinear and

non-Gaussian system filtering. In this way, it alleviated errors in estimating the latitude and

longitude of aircraft in GPS measurements, errors in measuring aircraft attitude in INS, and

Table 2. Performance comparison between the original tracking algorithm and the tracking algorithm with target

localization algorithm.

Model MOTP " (%)

Ours (Without target localization algorithm) 62.4

Ours (With target localization algorithm) 67.5

https://doi.org/10.1371/journal.pone.0302277.t002

Fig 11. The tracking results using the target localization algorithm.

https://doi.org/10.1371/journal.pone.0302277.g011
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issues related to drone camera line-of-sight jitter. As a result, it improved the accuracy in multi

target localization.

In addition to the baseline algorithm (i.e., CenterTrack), there are several advanced tracking

methods that share similarities with our algorithm. However, they all are subjected to certain

drawbacks. For example, SORT achieves the fastest track but lacks appearance features, result-

ing in lower tracking accuracy. DeepSORT introduces re-recognition features in the correla-

tion section of the data to extract deep surface features, enabling the re-recognition of partially

occluded objects. However, it requires repeated feature extraction operations, increasing the

computational complexity. JDE simultaneously extracts the Re-ID information (low dimen-

sional vector information) from both the detection frame and the objects within it. Neverthe-

less, anchors generated based on the Anchor-based detectors may not be suitable for learning

appropriate Re-ID information, resulting in a single object identified by several anchors, lead-

ing to severe network ambiguity. In addition, the FairMOT algorithm combines detection and

appearance feature extraction within a network structure, triggering competition among vari-

ous components, thereby increasing the occurrence of target identity switches during the

tracking.

Table 1 shows that compared to the original network, the introduction of the PSA module

resulted in an increase of 6.1 and 0.5 percentage points in MOTA and IDF1, respectively,

while ID decreased by nearly 10 percentage points. These performance improvements demon-

strate the effectiveness of integrating the PSA module into the backbone network, enhancing

the model’s ability to detect and track small and occluded targets. By introducing SAF, MOTA

and IDF1 have increased by 1.3 and 1.6 percentage points respectively, while ID has also

decreased. These performance improvements demonstrate the effectiveness of replacing the

Relu activation function with SAF, which enhances the model’s generalization ability and

enables it to better adapt to different datasets. In addition, replacing distance based greedy

matching algorithm with two-stage matching algorithm significantly reduces ID, which proves

Table 3. Comparison of our method with other popular models.

Method MOTA"(%) MOTP"(%) IDF1"(%) MT"(%) ML#(%) FP# FN# IDsw# FPS"

SORT 57.4 70.2 46.7 21.1 35.3 4303 17262 402 56.0

Deep SORT 59.3 73.2 58.2 22.8 36.3 4486 15529 345 7.5

JDE 63.4 74.0 62.8 28.4 34.2 5863 14568 352 17.3

FairMOT 65.9 76.4 64.3 31.2 33.6 6465 13566 343 21.6

CenterTrack 67.2 75.1 64.7 33.5 31.8 3856 14981 285 16.3

Ours 72.7 79.4 70.2 37.4 29.7 4635 11594 238 18.7

https://doi.org/10.1371/journal.pone.0302277.t003

Table 4. Comparison of our method with other popular models on MOT17 and MOT20.

Dateset Tracker MOTA"(%) IDF1"(%) HOTA" IDsw# FPS"

MOT17 SORT 42.4 38.9 33.7 4796 112

Deep SORT 45.53 42.8 40.2 4315 14

JDE 63.0 59.5 45.5 4172 18.8

FairMOT 73.7 72.3 59.3 3303 20

CenterTrack 67.8 64.7 52.2 3039 17

ours 74.7 73.1 60.6 3002 22

MOT20 FairMOT 61.8 67.3 54.6 5243 8.9

ours 66.6 68.8 58.3 3961 9.3

https://doi.org/10.1371/journal.pone.0302277.t004
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that our proposed two-stage matching algorithm performs better in dealing with long-term

occlusion target tracking problems. It can reduce ID switching and achieve continuous track-

ing. In summary, this experiment shows that compared with the baseline method, the

improved method significantly optimizes MOTA, IDF1, and ID, indicating that it improves

the accuracy of target recognition and tracking, and has a significant optimization effect on

the tracking algorithm.

Table 2 shows that compared with the original tracking algorithm, the MOTP value of the

tracking algorithm integrated with the target localization algorithm is significantly improved.

This performance improvement indicates that our target localization algorithm has better

localization performance, thus proving that the IMM-PM algorithm can serve as a better auxil-

iary tracking for the target localization algorithm and verifying its satisfactory performance.

Table 3 summarizes the comparison results of our tracking algorithm with other main-

stream algorithms on our cow dataset. Our tracking algorithm achieved 72.7%, 79.4%, 70.2%,

37.4%, 29.7%, 4635%, 11594%, 238%, and 18.7% of MOTA, MOTP, IDF1, MT, ML, FP, FN,

IDsw, and FPS on our cow dataset, respectively. Compared with the baseline algorithm Cen-

terTrack, the MOT algorithm used in this article increases the MOTA value by 5.5%, the

MOTP value by 4.3%, the IDF1 value by 5.5%, the FN value by 3387, and the ID is reduced to

obtain a higher FPS value. In addition, compared with SORT, DeepSORT, JDE, and FairMOT,

the proposed MOT algorithm achieves higher values in MOTA, MOTP, and IDF1, and lower

values in IDsw and FN. Due to the fact that SORT algorithm only uses IOU matching, its pro-

cessing speed is much faster than our algorithm. In addition, due to the integration of PSA and

other modules into the algorithm backbone network, our algorithm has achieved detection

and recognition of small and occluded targets, reducing the number of missed detections

(FN). However, this improvement has also led to an increase in the number of false positives

(FP) in our algorithm. In summary, the experimental results demonstrate that our algorithm

has achieved the best overall performance, which further confirms the progress and effective-

ness of this paper.

Table 4 summarizes the comparison results of our algorithm with other mainstream algo-

rithms on the public datasets MOT17 and MOT20. Compared with mainstream algorithms

such as SORT, DeepSORT, JDE, FairMOT, CenterTrack, etc., our algorithm has the best per-

formance among these algorithms except for FPS performance which is not as good as SORT

algorithm (SORT algorithm only matches through IOU, so its speed is very fast). This proves

that our algorithm can be applied to different datasets, further demonstrating the robustness

of our algorithm.

5. Conclusion

This article proposes a highly reliable drone target tracking system to address the challenges

associated with missed detection and tracking failures in dense scenes where objects often

overlap. In terms of algorithm model, this article uses CenterTrack algorithm as the baseline

algorithm for the tracker. On this basis, we combined the feature enhancement module and

introduced SAF to improve the detection and tracking performance of small and overlapping

targets. We propose a two-stage matching algorithm that combines distance based greedy

matching with stranded regions to alleviate tracking interruptions caused by short-term occlu-

sion. In addition, we will apply the IMM-PF algorithm to target localization of unmanned

aerial vehicles to improve the accuracy of target localization. In terms of algorithm perfor-

mance, we conducted tracking experiments on Holstein cows in the pasture. The experimental

results show that our algorithm achieves 72.7%, 79.4%, 70.2%, 37.4%, 29.7%, 4635, 11594, 238,

and 18.7% for MOTA, MOTP, IDF1, MT, ML, FP, FN, IDsw, and FPS, respectively. Compared
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with the baseline algorithm CenterTrack, our algorithm has achieved better performance in all

aspects except for FP, which proves that our algorithm can effectively track and monitor cattle

herds in complex and dense scenes. In addition, we also tested the performance of the algo-

rithm on the public datasets MOT17 and MOT20. The experimental results show that, apart

from FPS, our algorithm performs better than mainstream algorithms such as SORT, further

proving the robustness of our algorithm.

On the other hand, the methods used in this article have the following limitations that need

to be noted. (a) The loss function has not been optimized (b), and the tracking effect is not

ideal in environments with changing lighting conditions; (c) The proposed framework aims to

track multiple cows in the pasture. Both cows and drone cameras are in motion, but the MOT

algorithm does not consider camera motion compensation, which to some extent hinders

accuracy.

In future work, we will use a center loss function applied in the field of facial recognition,

which not only includes the distance between classes, but also considers reducing intra class dif-

ferences, achieving inter class separability and intra class compactness, to better solve the prob-

lem of high similarity and difficulty in distinguishing between individual cows. In addition, we

will integrate visible and infrared images and use the RGB-T algorithm with fusion attention

mechanism for tracking to solve the challenge of a single sensor being unable to obtain accurate

information due to lighting issues in complex environments such as low light and strong light.

This will reduce the possibility of tracking faults and improve robustness under various lighting

conditions. At the same time, we will explore integrating global motion compensation into the

MOT algorithm, which we consider as an image registration method suitable for revealing

background motion. This method extracts image key points and sparse optical flow for feature

tracking based on local outlier suppression by translation, thereby compensating for the motion

of the drone camera and improving the accuracy of the MOT algorithm.
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